JP2013203575A - METHOD AND DEVICE FOR PRODUCING SiO - Google Patents

METHOD AND DEVICE FOR PRODUCING SiO Download PDF

Info

Publication number
JP2013203575A
JP2013203575A JP2012073248A JP2012073248A JP2013203575A JP 2013203575 A JP2013203575 A JP 2013203575A JP 2012073248 A JP2012073248 A JP 2012073248A JP 2012073248 A JP2012073248 A JP 2012073248A JP 2013203575 A JP2013203575 A JP 2013203575A
Authority
JP
Japan
Prior art keywords
sio
raw material
vapor
carbon
carbon electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012073248A
Other languages
Japanese (ja)
Other versions
JP5811002B2 (en
Inventor
Yasuhiko Nishi
泰彦 西
Kenji Somiya
賢治 宗宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2012073248A priority Critical patent/JP5811002B2/en
Publication of JP2013203575A publication Critical patent/JP2013203575A/en
Application granted granted Critical
Publication of JP5811002B2 publication Critical patent/JP5811002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Silicon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing SiO, which is low in production energy and has high productivity.SOLUTION: Firstly, a raw material including SiOis fed into a furnace. Then the raw material 7 is heated by an arc discharge using a carbon electrode 8, and carbon vapor is supplied to the raw material 7 from the carbon electrode 8. The SiOof the raw material 7 is reduced by a reducing agent including carbon vapor to produce SiO vapor. Then the SiO vapor is solidified to recover SiO. An arc discharge part using the carbon electrode locally and instantaneously reaches a high temperature, so an efficient reaction field can be generated. Further, the carbon vapor of high chemical activity is stably supplied to the raw material from the carbon electrode, so the reaction speed of reduction reaction is extremely fast. Consequently, the method for producing the SiO, having high productivity with low energy is accomplished.

Description

本発明は、SiOを還元してSiOを製造するSiOの製造方法及び装置に関する。 The present invention relates to a SiO manufacturing method and apparatus for manufacturing SiO by reducing SiO 2 .

SiOは下記の(1)及び(2)の還元反応、又は(3)の酸化反応を利用して製造される。   SiO is produced by using the following reduction reactions (1) and (2) or the oxidation reaction (3).

(1) SiO+C→SiO+CO
(2) SiO+Si→2SiO
(3) 2Si+O→2SiO
SiOは特殊な材料であるが、その用途が広がりつつあり、量産化が望まれている。現在、SiOは、バリアフィルムの蒸着材、太陽電池バックシート材、SiC及びSiNの中間生成物に用いられている。将来的には、リチウムイオン電池の負極材にも用いられようとしている。
(1) SiO 2 + C → SiO + CO
(2) SiO 2 + Si → 2SiO
(3) 2Si + O 2 → 2SiO
Although SiO is a special material, its use is expanding and mass production is desired. At present, SiO is used for barrier film deposition materials, solar battery backsheet materials, and intermediate products of SiC and SiN. In the future, it is going to be used also for the negative electrode material of a lithium ion battery.

上記(1)及び上記(2)の還元反応を利用した具体的なSiOの製造方法として、特許文献1に記載のSiOの製造方法が知られている。図11に示すように、まず、原料1としてSiOと還元剤である炭素及び/又は珪素との混合物を炉2に投入する。次に、0.1気圧以下に減圧した非酸化性雰囲気で加熱装置3が1300〜2000℃の温度域に加熱する。すると、SiOが還元されてSiOが生成する。1300〜2000℃の温度域で生成したSiOは蒸発し、SiO蒸気は回収装置4によって凝固及び回収される。 As a specific method for producing SiO utilizing the reduction reactions (1) and (2), a method for producing SiO described in Patent Document 1 is known. As shown in FIG. 11, first, as a raw material 1, a mixture of SiO 2 and carbon and / or silicon as a reducing agent is put into a furnace 2. Next, the heating device 3 heats to a temperature range of 1300 to 2000 ° C. in a non-oxidizing atmosphere reduced to 0.1 atm or less. Then, SiO 2 is reduced to generate SiO. The SiO generated in the temperature range of 1300 to 2000 ° C. evaporates, and the SiO vapor is solidified and recovered by the recovery device 4.

上記(3)の酸化反応を利用したSiOの製造方法として、特許文献2に記載のSiOの製造方法が知られている。シリコン金属粉末をプラズマジェット中に投入して金属粉末の蒸気を得る。蒸気にしたシリコン金属粉末を酸素ガスと接触させることによりSiO蒸気を発生させる。このSiO蒸気を凝固させてSiO粉末を得る。   As a method for producing SiO using the oxidation reaction (3), a method for producing SiO described in Patent Document 2 is known. Silicon metal powder is put into a plasma jet to obtain metal powder vapor. SiO vapor is generated by bringing the vaporized silicon metal powder into contact with oxygen gas. This SiO vapor is solidified to obtain SiO powder.

特公平4−81524号公報Japanese Patent Publication No. 4-81524 特公平4−79975号公報Japanese Examined Patent Publication No. 4-79975

しかし、特許文献1に記載の発明にあっては、SiOと還元剤との混合物が固体であるので、反応効率が低く、反応速度が遅く、このため生産性が劣るという問題がある。SiO蒸気を発生させるために、製造温度を上げたり、雰囲気を減圧するなどの必要があり、製造エネルギが大きくなるという問題がある。 However, in the invention described in Patent Document 1, since the mixture of SiO 2 and the reducing agent is a solid, there is a problem that the reaction efficiency is low and the reaction rate is low, and thus the productivity is inferior. In order to generate the SiO vapor, it is necessary to raise the production temperature or to reduce the atmosphere, and there is a problem that the production energy increases.

特許文献2に記載の発明にあっては、製造物がSi、SiO,SiOの混合物になり、SiO収率が低く、分離工程を要するなどの問題がある。 In the invention described in Patent Document 2, product is Si, SiO, become a mixture of SiO 2, low SiO yields, there are problems such as requiring a separation step.

そこで本発明は、低い製造エネルギで高い生産性を有するSiOの製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for producing SiO having high productivity with low production energy.

上記課題を解決するために、本発明の一態様は、SiOを含む原料を炉に投入し、炭素電極を用いたアーク放電によって、前記原料を加熱すると共に、前記原料に前記炭素電極から炭素蒸気を供給し、前記炭素蒸気を含む還元剤によって前記原料の前記SiOを還元してSiO蒸気を生成し、前記SiO蒸気を凝固してSiOを回収するSiOの製造方法である。 In order to solve the above problems, according to one embodiment of the present invention, a raw material containing SiO 2 is charged into a furnace, the raw material is heated by arc discharge using a carbon electrode, and the carbon from the carbon electrode to the raw material. This is a method for producing SiO, in which steam is supplied, the raw material SiO 2 is reduced by a reducing agent containing carbon vapor to generate SiO vapor, and the SiO vapor is solidified to recover SiO.

本発明の他の態様は、SiOを含む原料が投入される炉と、前記SiOを還元することによって生成したSiO蒸気を凝固し、SiOを回収する生成物回収装置と、を備えるSiOの製造装置において、炭素電極を用いたアーク放電によって、前記原料を加熱すると共に、前記原料に炭素蒸気を供給し、前記炭素蒸気を含む還元剤で前記SiOを還元して前記SiO蒸気を生成することを特徴とするSiOの製造装置である。 Another aspect of the present invention includes a furnace in which a raw material containing SiO 2 is charged, and a product recovery device that solidifies SiO vapor generated by reducing the SiO 2 and recovers SiO. In the manufacturing apparatus, the raw material is heated by arc discharge using a carbon electrode, carbon vapor is supplied to the raw material, and the SiO 2 is reduced by a reducing agent containing the carbon vapor to generate the SiO vapor. This is an apparatus for producing SiO.

炭素電極を用いたアーク放電部は局所的にかつ即座に高温になるので、効率のよい反応場を作り出せる。しかも、原料には炭素電極から化学活性度の高い炭素蒸気が安定して供給されるので、還元反応の反応速度が著しく速い。このため、低いエネルギで高い生産性を有するSiO製造方法が達成される。   Since the arc discharge part using a carbon electrode locally and immediately becomes high temperature, an efficient reaction field can be created. In addition, since carbon vapor having high chemical activity is stably supplied from the carbon electrode to the raw material, the reaction rate of the reduction reaction is remarkably high. For this reason, the SiO manufacturing method which has high productivity with low energy is achieved.

本発明の一実施形態のSiOの製造方法の概要図Schematic diagram of a method for producing SiO according to an embodiment of the present invention アーク放電部の拡大図Enlarged view of the arc discharge section シリカのSEM像を示す画像(図(a)は籾殻由来の植物シリカを示し、図(b)は一般的なシリカを示す)Image showing SEM image of silica (Figure (a) shows plant silica derived from rice husk, Figure (b) shows general silica) 本発明の一実施形態のSiOの製造装置の概要図1 is a schematic diagram of an apparatus for producing SiO according to an embodiment of the present invention. 相対移動手段の概要図Schematic diagram of relative movement means 実施例で使用した黒鉛坩堝の概要図Overview of the graphite crucible used in the examples 回収蓋に付着した付着物の画像Image of deposits on the collection lid 付着物のラマン分光分析結果を示すグラフGraph showing the results of Raman spectroscopic analysis of deposits 付着物のX線回折による同定結果を示すグラフA graph showing the identification result of the deposit by X-ray diffraction SiOの生成能率を示すグラフGraph showing the production efficiency of SiO 従来のSiOの製造装置の概要図Overview of conventional SiO production equipment

以下添付図面に基づいて、本発明の一実施形態のSiOの製造方法を説明する。図1は、本実施形態のSiOの製造方法の概要図を示す。   Hereinafter, based on an accompanying drawing, the manufacturing method of SiO of one embodiment of the present invention is explained. FIG. 1 shows a schematic diagram of a method for producing SiO of the present embodiment.

図1に示すように、まず、炉6に、原料7としてSiOと還元剤とを混合させた混合物を投入する。SiOには、高純度の珪砂、高純度の珪石、又は籾殻等の植物由来のシリカが用いられる。珪砂はSiOの粒からなる砂である。珪石はSiOを主成分とする鉱石である。珪砂及び珪石は粉末状に粉砕されている。植物シリカは例えば籾殻から製造される。籾殻にはシリカが15〜20%含まれている。籾殻を燃焼させ、灰中にシリカを濃縮し、灰を精製することによって、高純度の植物シリカを得ることができる。 As shown in FIG. 1, first, a mixture in which SiO 2 and a reducing agent are mixed as a raw material 7 is charged into a furnace 6. For SiO 2 , plant-derived silica such as high-purity silica sand, high-purity silica stone, or rice husk is used. Silica sand is sand composed of SiO 2 grains. Silica is an ore whose main component is SiO 2 . Silica sand and silica are pulverized into powder. Plant silica is produced, for example, from rice husk. The rice husk contains 15-20% silica. High purity plant silica can be obtained by burning rice husk, concentrating silica in the ash, and purifying the ash.

還元剤には、炭素、珪素、又は炭素及び珪素が用いられる。炭素及び珪素はいずれも固体の粉末である。炭素には例えば黒鉛粉末が用いられ、珪素には例えば冶金グレードの金属珪素粉末が用いられる。   As the reducing agent, carbon, silicon, or carbon and silicon are used. Both carbon and silicon are solid powders. For example, graphite powder is used for carbon, and metallurgical grade metal silicon powder is used for silicon.

次に、炭素電極8を用いてアーク放電を行う。炭素電極8の下端にはアーク放電部9が局所的に形成される。炭素電極8と炉6との間には、炭素電極8を陽極にし、炉6を陰極にした直流が供給される。炭素電極8と炉6との間に電位差が生じることにより、これらの間にある気体に絶縁破壊(放電)が発生する。炭素電極8と炉6との間の気体分子は電離しイオン化が起こり、プラズマを生み出す。このプラズマ空間がアーク放電部9となり、アーク放電部9内を電流が走る。   Next, arc discharge is performed using the carbon electrode 8. An arc discharge portion 9 is locally formed at the lower end of the carbon electrode 8. A direct current is supplied between the carbon electrode 8 and the furnace 6 with the carbon electrode 8 as an anode and the furnace 6 as a cathode. When a potential difference is generated between the carbon electrode 8 and the furnace 6, dielectric breakdown (discharge) occurs in the gas between them. Gas molecules between the carbon electrode 8 and the furnace 6 are ionized and ionized to generate plasma. This plasma space becomes the arc discharge portion 9, and a current runs in the arc discharge portion 9.

図2の放電部の拡大図に示すように、炭素電極8は中空部8aを有する中空電極である。アーク放電部9には中空部8aを介してプラズマ励起ガスであるArガスが供給される。Arガスはプラズマ化してアーク放電部9を高密度のプラズマ空間にする。このため炭素電極8によるアーク放電が安定する。   As shown in the enlarged view of the discharge part in FIG. 2, the carbon electrode 8 is a hollow electrode having a hollow part 8a. Ar gas which is plasma excitation gas is supplied to the arc discharge part 9 through the hollow part 8a. Ar gas is turned into plasma to make the arc discharge portion 9 a high-density plasma space. For this reason, the arc discharge by the carbon electrode 8 is stabilized.

炭素電極の下端に局所的に形成されるアーク放電部9によって原料7が局所的に加熱される。原料7の加熱によって、原料である固相のSiO及び珪素は液化又は気化し、活発に反応する。また、原料である固相の炭素も液化又は気化したSiOと下記の反応式(1)又は(2)に示す還元反応が進行する。この還元反応によりSiOが発生する。炭素電極8によってアーク放電部9は局所的にかつ即座に高温になるので、炉全体を高温にするエネルギが不要となり、効率のよい反応場を作り出せる。 The raw material 7 is locally heated by the arc discharge part 9 locally formed at the lower end of the carbon electrode. By heating the raw material 7, the solid phase SiO 2 and silicon as the raw material are liquefied or vaporized and react actively. In addition, the solid phase carbon that is the raw material also undergoes a reduction reaction represented by the following reaction formula (1) or (2) with the liquefied or vaporized SiO 2 . This reduction reaction generates SiO. Since the arc discharge part 9 is locally and immediately heated to high temperature by the carbon electrode 8, energy for heating the entire furnace becomes unnecessary, and an efficient reaction field can be created.

(1) SiO+C→SiO+CO
(2) SiO+Si→2SiO
SiOの還元反応は不活性ガス雰囲気かつ大気圧下で行われる。炉内を真空にする必要がないので、SiOの合成プロセスの構築が容易になる、という利点もある。
(1) SiO 2 + C → SiO + CO
(2) SiO 2 + Si → 2SiO
The reduction reaction of SiO 2 is performed under an inert gas atmosphere and atmospheric pressure. Since there is no need to evacuate the inside of the furnace, there is an advantage that it is easy to construct a synthesis process of SiO.

図2に示すように、アーク放電部9は、原料7を加熱するだけでなく、原料7に炭素蒸気を供給する。炭素蒸気は炭素電極8の炭素が昇華したものである。炭素電極8を陽極にし、炉6を陰極にすることで、アーク放電部9の熱が炭素電極8に効率的に供給される。このため炭素電極8の炭素の昇華が促進される。この炭素蒸気は化学活性度が高く、SiOを還元する役割を持つと共に、SiOと固相の還元剤との還元反応効率を速める役割を持つ。 As shown in FIG. 2, the arc discharge unit 9 not only heats the raw material 7 but also supplies carbon vapor to the raw material 7. The carbon vapor is obtained by sublimating carbon of the carbon electrode 8. By using the carbon electrode 8 as an anode and the furnace 6 as a cathode, the heat of the arc discharge section 9 is efficiently supplied to the carbon electrode 8. For this reason, the carbon sublimation of the carbon electrode 8 is promoted. This carbon vapor has a high chemical activity, has a role of reducing SiO 2 , and has a role of accelerating the reduction reaction efficiency between SiO 2 and a solid phase reducing agent.

図1に示すように、SiOはアーク放電部9から供給される熱によって蒸発する。表1に示すように、SiOの沸点はSiO、Si、Cに比較して相対的に低い。アーク放電部9から原料に供給する熱量を調整することで、SiOを選択的に蒸発させることが可能になる。上述のようにSiOの還元反応は不活性ガス雰囲気で行われる。SiO蒸気は不安定であり、酸素雰囲気下であると、SiOに酸化される。不活性ガス雰囲気にすることで、SiOが酸化するのを防止することができる。 As shown in FIG. 1, SiO is evaporated by the heat supplied from the arc discharge unit 9. As shown in Table 1, the boiling point of SiO is relatively low compared to SiO 2 , Si, and C. By adjusting the amount of heat supplied from the arc discharge section 9 to the raw material, SiO can be selectively evaporated. As described above, the reduction reaction of SiO 2 is performed in an inert gas atmosphere. SiO vapor is unstable and is oxidized to SiO 2 under an oxygen atmosphere. By making the inert gas atmosphere, SiO can be prevented from being oxidized.

Figure 2013203575
Figure 2013203575

発生したSiO蒸気は図示しない回収装置で吸引される。回収装置は、吸引したSiO蒸気を凝固してSiO粉末にし、SiO粉末を回収する。回収装置は、例えば吸引ポンプと、集塵機と、を備える。集塵機には、フィルタータイプ、サイクロン、電気集塵装置等様々なものを用いることができる。なお、炉内の圧力は大気圧に設定されるが、回収装置によって炉内の気体が吸引される。不活性ガスの吹き込みと回収装置による吸引のバランスから、炉内の圧力が0.8〜1.2気圧の範囲内で変化してもよい。   The generated SiO vapor is sucked by a recovery device (not shown). The recovery device solidifies the sucked SiO vapor into SiO powder, and recovers the SiO powder. The recovery device includes, for example, a suction pump and a dust collector. As the dust collector, various types such as a filter type, a cyclone, and an electric dust collector can be used. In addition, although the pressure in a furnace is set to atmospheric pressure, the gas in a furnace is attracted | sucked by the collection | recovery apparatus. The pressure in the furnace may vary within the range of 0.8 to 1.2 atm from the balance between the blowing of the inert gas and the suction by the recovery device.

図3は、籾殻由来の植物シリカと珪砂又は珪石由来の一般的なシリカとを比較したSEM像を示す。籾殻由来の植物シリカは一般的なシリカと比較して多孔質であり、比表面積が大きい。それゆえ反応性が高く、一般的なシリカを使用した場合に比べて低い雰囲気温度で還元反応が進行する。   FIG. 3 shows SEM images comparing plant silica derived from rice husk and general silica derived from silica sand or silica. Rice husk-derived plant silica is more porous than common silica and has a large specific surface area. Therefore, the reactivity is high, and the reduction reaction proceeds at a lower atmospheric temperature than when general silica is used.

図4は、本発明の一実施形態のSiOの製造装置を示す。本実施形態のSiOの製造装置は、SiOを還元してSiO蒸気を生成させる炉11と、SiO蒸気を凝固させて回収する回収装置12と、を備える。図中符号13は炉本体、14は炭素電極、15は原料供給ホッパ、16は回転皿、17a,17bは歯車、18はモータである。 FIG. 4 shows an apparatus for producing SiO according to an embodiment of the present invention. The SiO production apparatus of this embodiment includes a furnace 11 that reduces SiO 2 to generate SiO vapor, and a recovery device 12 that solidifies and recovers the SiO vapor. In the figure, reference numeral 13 is a furnace body, 14 is a carbon electrode, 15 is a raw material supply hopper, 16 is a rotating pan, 17a and 17b are gears, and 18 is a motor.

炭素電極14にArガスを供給しながらアーク放電を行うと、SiOが還元されてSiO蒸気が発生するのは、図1に示す概要図と同一である。この実施形態の製造装置では、炭素電極14のアーク放電部19に連続的に原料20を供給できるように、アーク放電部19に対して原料20を相対的に移動させる相対移動手段16〜18を備える。 When arc discharge is performed while supplying Ar gas to the carbon electrode 14, SiO 2 is reduced and SiO vapor is generated, which is the same as the schematic diagram shown in FIG. In the manufacturing apparatus of this embodiment, relative moving means 16 to 18 for moving the raw material 20 relative to the arc discharge part 19 are provided so that the raw material 20 can be continuously supplied to the arc discharge part 19 of the carbon electrode 14. Prepare.

図5に示すように、回転皿上16にはリング状の溝21が形成される。リング状の溝21には原料供給ホッパ15から原料20が投入される。回転皿16は歯車17a,17bを介してモータ18に連結されており、垂直軸の回りを回転するようになっている。回転皿16が回転すると、原料供給ホッパ15から溝21上に投入された原料20が炭素電極14のアーク放電部19まで搬送される。新しい原料20が連続的にアーク放電部19に供給されるので。原料20の連続的な処理が可能になる。   As shown in FIG. 5, a ring-shaped groove 21 is formed on the rotating dish 16. The material 20 is fed from the material supply hopper 15 into the ring-shaped groove 21. The rotating dish 16 is connected to a motor 18 through gears 17a and 17b, and rotates around a vertical axis. When the rotating tray 16 rotates, the raw material 20 put into the groove 21 from the raw material supply hopper 15 is conveyed to the arc discharge part 19 of the carbon electrode 14. Because new raw materials 20 are continuously supplied to the arc discharge section 19. The raw material 20 can be continuously processed.

図4に示すように、炉本体13には不活性ガスであるNが供給される。還元反応により生成したSiO蒸気は回収装置12に吸引され、回収装置12にて凝固及び回収される。なお、炉本体13に供給されるガスは不活性なものであればArでもかまわず、酸化性ガスが混入しない状態では、特に供給しなくとも良い。 As shown in FIG. 4, N 2 that is an inert gas is supplied to the furnace body 13. The SiO vapor generated by the reduction reaction is sucked into the recovery device 12 and solidified and recovered by the recovery device 12. Note that Ar may be used as long as the gas supplied to the furnace body 13 is inactive, and it may not be supplied in particular in a state where no oxidizing gas is mixed.

図6に示す黒鉛坩堝30(反応炉)内に200mgの原料31を投入した。原料31には、籾殻由来の植物シリカと炭素(カーボンブラック)の混合物を使用した。炭素電極32に通電し、放電条件:20V、200−220A、10分未満でアーク放電を行った。アーク放電中、炭素電極32にArガスを供給した。また、アーク放電中、黒鉛坩堝30にNガスを供給し、黒鉛坩堝30内を不活性ガス雰囲気にした。すると、原料のSiOが還元されてSiOの蒸気が発生した。SiOの蒸気は回収蓋35で冷却され、付着物33になった。アーク放電中の黒鉛坩堝30の温度を測定したところ数百℃であった。アーク放電部34の温度は数千度〜1万度と推測されるが、黒鉛坩堝30の温度は低いものであった。 200 mg of raw material 31 was put into a graphite crucible 30 (reactor) shown in FIG. As the raw material 31, a mixture of rice husk-derived plant silica and carbon (carbon black) was used. The carbon electrode 32 was energized, and discharge conditions were 20 V, 200-220 A, and arc discharge was performed in less than 10 minutes. Ar gas was supplied to the carbon electrode 32 during the arc discharge. Further, during the arc discharge, N 2 gas was supplied to the graphite crucible 30 to make the inside of the graphite crucible 30 an inert gas atmosphere. Then, the raw material SiO 2 was reduced to generate SiO vapor. The SiO vapor was cooled by the recovery lid 35 and became a deposit 33. The temperature of the graphite crucible 30 during arc discharge was measured and found to be several hundred degrees Celsius. Although the temperature of the arc discharge part 34 is estimated to be several thousand degrees to 10,000 degrees, the temperature of the graphite crucible 30 was low.

図7は回収蓋35に付着した付着物33の実際の画像を示す。回収蓋35には黄土色の粉体が付着した。SiOは黄土色を示すので、実際の画像からSiOが付着したものと推測された。   FIG. 7 shows an actual image of the deposit 33 attached to the collection lid 35. Ocherous powder adhered to the collection lid 35. Since SiO shows an ocher color, it was estimated from the actual image that SiO adhered.

付着物33の組成を定性的に調べるために、付着物33のラマン分光分析を行った。リファレンスとして、市販されているSi、SiO、SiO、SiCについてもラマン分光分析を行った。図8にその結果を示す。付着物33は市販されているSiOに類似したラマンスペクトルを示した。付着物33の大部分はSiOであると推測される。 In order to examine the composition of the deposit 33 qualitatively, Raman spectroscopy analysis of the deposit 33 was performed. As a reference, Raman spectroscopic analysis was also performed on commercially available Si, SiO, SiO 2 and SiC. FIG. 8 shows the result. The deposit 33 showed a Raman spectrum similar to commercially available SiO. It is estimated that most of the deposit 33 is SiO.

図9に示すように、付着物33のX線回折による同定を行った。ピーク値は回折角20〜30度の範囲内にあり、主体がSiOであることが確認された。   As shown in FIG. 9, the deposit 33 was identified by X-ray diffraction. The peak value was in the range of diffraction angles of 20 to 30 degrees, and it was confirmed that the main component was SiO.

また、原料を異ならせて同様のアーク放電も行った。原料として植物シリカのみで還元剤を混合しない場合、植物シリカに珪素を混合した場合についても、同様にアーク放電を行った。植物シリカのみの場合でも、回収蓋35にSiOが付着した。還元剤を混合しなくても、炭素電極から発生する炭素蒸気が還元剤として機能することが確認できた。ただし、発生するSiOの量は少ないものとなった。また、還元剤として珪素を混合した場合は、炭素を混合した場合よりも多量のSiOが発生した。   Moreover, the same arc discharge was also performed using different raw materials. In the case where only the plant silica was used as the raw material and the reducing agent was not mixed, the arc discharge was performed in the same manner when the plant silica was mixed with silicon. Even when only plant silica was used, SiO adhered to the recovery lid 35. Even without mixing the reducing agent, it was confirmed that the carbon vapor generated from the carbon electrode functions as the reducing agent. However, the amount of generated SiO was small. Further, when silicon was mixed as a reducing agent, a larger amount of SiO was generated than when carbon was mixed.

図10はSiOの生成能率を示すグラフである。図10の横軸は放電時間を表し、縦軸は生成能率(時間当たりの回収量)を表す。放電時間が1分以内の短い時間で生成能率がピーク的に高くなり、放電時間を長くするほど生成能率が減少した。このことから、アークに放電によるSiOの反応時間は短く、アーク放電を行った直後にSiOが製造されることがわかった。図10中ひし形で示す籾殻由来の植物シリカは一般的なシリカに比べ、生成能率が2〜3割高かった。また、還元剤として珪素を用いた場合、炭素を用いた場合よりも生成能率が高くなることがわかった。   FIG. 10 is a graph showing the generation efficiency of SiO. The horizontal axis in FIG. 10 represents the discharge time, and the vertical axis represents the production efficiency (recovered amount per hour). The generation efficiency peaked at a short discharge time within 1 minute, and the generation efficiency decreased as the discharge time was increased. From this, it was found that the reaction time of SiO by discharge to the arc was short, and SiO was produced immediately after the arc discharge. In FIG. 10, rice husk-derived plant silica indicated by rhombuses was 20 to 30% higher in production efficiency than general silica. It was also found that when silicon is used as the reducing agent, the production efficiency is higher than when carbon is used.

6…炉
7…原料
8…炭素電極
8a…中空部
9…アーク放電部
11…炉
12…回収装置
14…炭素電極
16…回転皿
17a,17b…歯車
18…モータ
16-18…相対移動手段
19…アーク放電部
20…原料
30…黒鉛坩堝
31…原料
32…炭素電極
33…付着物
34…アーク放電部
35…回収蓋
6 ... furnace 7 ... raw material 8 ... carbon electrode 8a ... hollow part 9 ... arc discharge part 11 ... furnace 12 ... recovery device 14 ... carbon electrode 16 ... rotating dish 17a, 17b ... gear 18 ... motor 16-18 ... relative movement means 19 ... Arc discharge part 20 ... Raw material 30 ... Graphite crucible 31 ... Raw material 32 ... Carbon electrode 33 ... Deposit 34 ... Arc discharge part 35 ... Recovery lid

Claims (7)

SiOを含む原料を炉に投入し、
炭素電極を用いたアーク放電によって、前記原料を加熱すると共に、前記原料に前記炭素電極から炭素蒸気を供給し、
前記炭素蒸気を含む還元剤によって前記原料の前記SiOを還元してSiO蒸気を生成し、
前記SiO蒸気を凝固してSiOを回収するSiOの製造方法。
A raw material containing SiO 2 is put into a furnace,
While heating the raw material by arc discharge using a carbon electrode, supplying carbon vapor from the carbon electrode to the raw material,
The raw material SiO 2 is reduced by the reducing agent containing the carbon vapor to generate SiO vapor,
A method for producing SiO, wherein the SiO vapor is solidified to recover SiO.
前記炭素電極に中空部を有する中空電極を用い、
前記炭素電極のアーク放電部に前記中空部を介してプラズマ励起ガスを供給することを特徴とする請求項1に記載のSiOの製造方法。
Using a hollow electrode having a hollow portion in the carbon electrode,
The method for producing SiO according to claim 1, wherein a plasma excitation gas is supplied to the arc discharge part of the carbon electrode through the hollow part.
前記SiOは、植物シリカであることを特徴とする請求項1又は2に記載のSiOの製造方法。 The method for producing SiO according to claim 1, wherein the SiO 2 is plant silica. 前記アーク放電を行うために、前記炭素電極を陽極にし、及び前記炉を陰極にした直流を供給することを特徴とする請求項1ないし3のいずれかに記載のSiOの製造方法。   The method for producing SiO according to any one of claims 1 to 3, wherein in order to perform the arc discharge, direct current is supplied with the carbon electrode as an anode and the furnace as a cathode. 前記原料は、還元剤として炭素及び/又は珪素を含むことを特徴とする請求項1ないし4のいずれかに記載のSiOの製造方法。   5. The method for producing SiO according to claim 1, wherein the raw material contains carbon and / or silicon as a reducing agent. SiOを含む原料が投入される炉と、
前記SiOを還元することによって生成したSiO蒸気を凝固し、SiOを回収する生成物回収装置と、
を備えるSiOの製造装置において、
炭素電極を用いたアーク放電によって、前記原料を加熱すると共に、前記原料に炭素蒸気を供給し、
前記炭素蒸気を含む還元剤で前記SiOを還元して前記SiO蒸気を生成することを特徴とするSiOの製造装置。
A furnace in which a raw material containing SiO 2 is charged;
A product recovery device for solidifying the SiO vapor generated by reducing the SiO 2 and recovering the SiO;
In a SiO manufacturing apparatus comprising:
While heating the raw material by arc discharge using a carbon electrode, supplying carbon vapor to the raw material,
The apparatus for producing SiO, wherein the SiO 2 is generated by reducing the SiO 2 with a reducing agent containing the carbon vapor.
前記SiOの製造装置はさらに、
前記炭素電極のアーク放電部に前記原料を連続的に供給できるように、前記炭素電極のアーク放電部に対して前記原料を相対的に移動させる相対移動手段を備えることを特徴とする請求項6に記載のSiOの製造装置。

The SiO production apparatus further includes:
7. The apparatus according to claim 6, further comprising a relative moving means for moving the raw material relative to the arc discharge portion of the carbon electrode so that the raw material can be continuously supplied to the arc discharge portion of the carbon electrode. An apparatus for producing SiO described in 1.

JP2012073248A 2012-03-28 2012-03-28 Method and apparatus for producing SiO using hollow carbon electrode Active JP5811002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012073248A JP5811002B2 (en) 2012-03-28 2012-03-28 Method and apparatus for producing SiO using hollow carbon electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012073248A JP5811002B2 (en) 2012-03-28 2012-03-28 Method and apparatus for producing SiO using hollow carbon electrode

Publications (2)

Publication Number Publication Date
JP2013203575A true JP2013203575A (en) 2013-10-07
JP5811002B2 JP5811002B2 (en) 2015-11-11

Family

ID=49523079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012073248A Active JP5811002B2 (en) 2012-03-28 2012-03-28 Method and apparatus for producing SiO using hollow carbon electrode

Country Status (1)

Country Link
JP (1) JP5811002B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110364691A (en) * 2018-04-09 2019-10-22 北京航空航天大学 Lithium ion battery graphene-silicon oxide compound electrode material and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227318A (en) * 1985-07-29 1987-02-05 Kawasaki Steel Corp Method and apparatus for producing pulverous sio powder
JPH04231315A (en) * 1990-08-13 1992-08-20 Dow Corning Corp Silica melting technique using direct flow furnace
JPH0888079A (en) * 1994-09-20 1996-04-02 Toshiba Syst Technol Kk Control device for ac arc furnace
JP2001158613A (en) * 1999-12-02 2001-06-12 Denki Kagaku Kogyo Kk Low-class silicon oxide powder and method for producing the same
JP2001199716A (en) * 2000-01-11 2001-07-24 Denki Kagaku Kogyo Kk Method for producing silicon suboxide powder
JP2002156186A (en) * 2000-02-14 2002-05-31 Nkk Corp Melting equipment and treatment method using the same
JP2003119017A (en) * 2001-10-11 2003-04-23 Denki Kagaku Kogyo Kk Method of producing lower silicon oxide powder
JP2004083384A (en) * 2002-07-01 2004-03-18 Jfe Engineering Kk Method for producing carbon nanotube
JP2005097004A (en) * 2001-04-05 2005-04-14 B M:Kk Method for producing metal silicon

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227318A (en) * 1985-07-29 1987-02-05 Kawasaki Steel Corp Method and apparatus for producing pulverous sio powder
JPH0481524B2 (en) * 1985-07-29 1992-12-24 Kawasaki Steel Co
JPH04231315A (en) * 1990-08-13 1992-08-20 Dow Corning Corp Silica melting technique using direct flow furnace
JPH0888079A (en) * 1994-09-20 1996-04-02 Toshiba Syst Technol Kk Control device for ac arc furnace
JP2001158613A (en) * 1999-12-02 2001-06-12 Denki Kagaku Kogyo Kk Low-class silicon oxide powder and method for producing the same
JP2001199716A (en) * 2000-01-11 2001-07-24 Denki Kagaku Kogyo Kk Method for producing silicon suboxide powder
JP2002156186A (en) * 2000-02-14 2002-05-31 Nkk Corp Melting equipment and treatment method using the same
JP2005097004A (en) * 2001-04-05 2005-04-14 B M:Kk Method for producing metal silicon
JP2003119017A (en) * 2001-10-11 2003-04-23 Denki Kagaku Kogyo Kk Method of producing lower silicon oxide powder
JP2004083384A (en) * 2002-07-01 2004-03-18 Jfe Engineering Kk Method for producing carbon nanotube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110364691A (en) * 2018-04-09 2019-10-22 北京航空航天大学 Lithium ion battery graphene-silicon oxide compound electrode material and preparation method thereof

Also Published As

Publication number Publication date
JP5811002B2 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
JP5427452B2 (en) Method for producing titanium metal
CN103482623B (en) Method for preparing nano diamonds by using direct-current arc process
TWI778941B (en) Silica to high purity silicon production apparatus and rocess
KR20190032472A (en) Preparation of Tungsten Monocarbide (WC) Spherical Powder
JP2006001779A (en) Method for producing sic nanoparticles by nitrogen plasma
Wang et al. Size-controlled synthesis of high-purity tungsten carbide powders via a carbothermic reduction–carburization process
JPWO2015015795A1 (en) SiOX powder manufacturing method and SiOX powder manufacturing apparatus
JP2004124257A (en) Metal copper particulate, and production method therefor
JP2010100508A (en) Production method of high purity silicon
JP5811002B2 (en) Method and apparatus for producing SiO using hollow carbon electrode
Lin et al. Synthesis and characterization of WC—VC—Co nanocomposite powders through thermal-processing of a core—shell precursor
US10974220B2 (en) Fine particle producing apparatus and fine particle producing method
JP7142241B2 (en) Microparticle manufacturing apparatus and microparticle manufacturing method
KR101558525B1 (en) The method for fabrication of silicone nano-particle by thermal plasma jet and the silicone nano-particle thereby
JP4042095B2 (en) High purity metal powder manufacturing method and high purity metal powder manufacturing apparatus
WO2010055615A1 (en) High grade silicon and thermoelectric conversion material
JP2000226607A (en) Tantalum or niobium powder and its production
RU2327639C2 (en) Method of producing high purity silicon
TW201609536A (en) Novel process and product
JPH0352402B2 (en)
RU2354503C1 (en) Method of sodium diboride nano-powders production
JP5075899B2 (en) Powder containing calcium cyanamide, method for producing the powder and apparatus therefor
JP2007045670A (en) Manufacturing method of metal carbide
JP2001039708A (en) High purity metal silicon and its production
JP5252460B2 (en) Production method of SiC nanoparticles by nitrogen plasma

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150831

R150 Certificate of patent or registration of utility model

Ref document number: 5811002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350