JP2013177816A - Axial-flow turbomachine - Google Patents

Axial-flow turbomachine Download PDF

Info

Publication number
JP2013177816A
JP2013177816A JP2012040861A JP2012040861A JP2013177816A JP 2013177816 A JP2013177816 A JP 2013177816A JP 2012040861 A JP2012040861 A JP 2012040861A JP 2012040861 A JP2012040861 A JP 2012040861A JP 2013177816 A JP2013177816 A JP 2013177816A
Authority
JP
Japan
Prior art keywords
stationary blade
stationary
blade
blades
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012040861A
Other languages
Japanese (ja)
Inventor
Shuichi Ozaki
修一 尾崎
Minoru Yamashita
穣 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012040861A priority Critical patent/JP2013177816A/en
Publication of JP2013177816A publication Critical patent/JP2013177816A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a blade row structure of an axial-flow turbomachine with a simple structure which can reduce an exciting force acting on a moving blade at specific stationary blade post-flow frequencies, and decrease a resonant response even when the stationary blade post-flow frequency and a moving blade natural vibration frequency coincide with each other without reducing stage structure efficiency.SOLUTION: An axial-flow turbomachine including a stage structure having a stationary blade row comprising a plurality of stationary blades 3 provided in a circumferential direction, and a moving blade row comprising a plurality of moving blades 4 provided in the circumferential direction on a downstream side of a flow direction of a working fluid of the stationary blades. The stationary blades 3 configuring the stationary blade row are arranged to differ axial positions of stationary blade trailing edges in the circumferential direction so that stationary blade post-flow pitches 14 in a moving blade front edge line 15 are not uniform.

Description

本発明は、軸流ターボ機械の静翼の翼列構造に関する。   The present invention relates to a cascade structure of a stationary blade of an axial flow turbomachine.

軸流ターボ機械は、静翼と、静翼の下流側に配置された動翼からなる段落で構成された構造となっている。   The axial-flow turbomachine has a structure composed of a stationary blade and a paragraph composed of a moving blade disposed on the downstream side of the stationary blade.

静翼の上流側から流入した作動流体は、静翼間内を通過して、所定の流出角で動翼上流側へと流れる。その際に、静翼後縁より下流の領域では、静翼の翼面で発達した境界層の影響により、速度が遅い領域いわゆる静翼後流が形成される。   The working fluid flowing in from the upstream side of the stationary blade passes through the space between the stationary blades and flows to the upstream side of the moving blade at a predetermined outlet angle. At that time, in a region downstream from the trailing edge of the stationary blade, a region where the speed is low, so-called stationary blade wake, is formed due to the influence of the boundary layer developed on the blade surface of the stationary blade.

静翼後流の数は後流を形成する静翼本数と一致するため、動翼がタービン軸周りを一周する間に、動翼の上流側にある静翼本数分だけ静翼後流を通過することになる。このとき動翼は、回転周波数と静翼本数との積で表される静翼後流周波数の流体励振力によって励振される。   Since the number of stator blade wakes matches the number of stator blades that form the wake, the rotor blades pass through the stator blade wakes by the number of stator blades upstream of the rotor blades as they move around the turbine axis. Will do. At this time, the rotor blades are excited by a fluid excitation force having a stator blade wake frequency represented by the product of the rotational frequency and the number of stator blades.

静翼後流周波数と動翼固有振動数が一致した場合、共振により動翼に過大な変動応力が発生し、動翼が疲労破壊してしまう可能性がある。従来では、かかる動翼の疲労破壊を防止するために、定格回転速度における後流周波数と動翼固有振動数を離調させる設計が行われている。   If the stationary blade wake frequency and the moving blade natural frequency match, an excessive fluctuating stress is generated in the moving blade due to resonance, and the moving blade may be fatigued. Conventionally, in order to prevent fatigue destruction of the moving blade, a design has been made to detune the wake frequency at the rated rotational speed and the natural frequency of the moving blade.

離調設計では、静翼本数の調整により静翼後流周波数を変更して、動翼固有振動数と一致しないようにするため、設計時に選択できる静翼本数が限られるといった問題がある。   In the detuned design, there is a problem that the number of stationary blades that can be selected at the time of design is limited in order to change the stationary blade wake frequency by adjusting the number of stationary blades so as not to coincide with the natural frequency of the moving blade.

また、静翼後流周波数と動翼固有振動数が一致した場合でも、動翼が疲労破壊しないように、充分な耐振強度を有した動翼を採用しているため、翼幅の増大による材料費の増大や性能向上の妨げになるといった問題がある。   In addition, even if the stationary blade wake frequency and the natural frequency of the moving blade match, the moving blade has sufficient vibration resistance so that the moving blade does not undergo fatigue failure. There are problems such as increased costs and hindering performance improvement.

以上のように、軸流ターボ機械の段落設計において、静翼後流周波数で動翼に作用する励振力が、材料費の増大や性能向上の妨げになっているため、励振力を低減することが望まれている。   As described above, in the stage design of an axial-flow turbomachine, the excitation force acting on the moving blade at the stationary blade wake frequency hinders the increase in material cost and the performance improvement. Is desired.

本技術分野の従来技術として、特開平8−61002号公報(特許文献1)がある。
特許文献1では、ダイアフラムの円周方向に配設される静翼を3種類設けて、各静翼を異なるピッチにして、配列し、ダイアフラムに取り付けることにより、静翼後縁の蒸気流れの遅い部分によって生じる静翼後流が上記ピッチの違いによる振動数の混在したものとなり、一定周波数の静翼後流励振力が発生しないようにして、動翼の固有振動数と共振するのを防止したと記載されている。
As a prior art in this technical field, there is JP-A-8-61002 (Patent Document 1).
In Patent Document 1, by providing three types of stationary blades arranged in the circumferential direction of the diaphragm, arranging the stationary blades at different pitches and attaching them to the diaphragm, the steam flow at the trailing edge of the stationary blade is slow. The vane wake generated by the part becomes a mixture of frequencies due to the above-mentioned pitch difference, so that it does not resonate with the natural frequency of the rotor blade by preventing the occurrence of a constant-blade wake wake excitation force. It is described.

特開平8−61002号公報Japanese Patent Laid-Open No. 8-61002

一般的な蒸気タービンでは、段落効率が低下しないように、静翼の上流側より流入した作動流体が所定の角度で流出するように、同じ翼高さ断面では、全周で一定の静翼流出角になるように設計されるため、各静翼間でのスロート・ピッチ比も一定にしなければならない。   In general steam turbines, a constant vane outflow is maintained at the same blade height cross-section so that the working fluid flowing in from the upstream side of the vane flows out at a predetermined angle so that the stage efficiency does not decrease. Since it is designed to have a corner, the throat / pitch ratio between each stationary blade must also be constant.

そのため、周方向に複数の異なるピッチで静翼を設置した場合、各静翼は異なった形状または設置角にして各静翼間でのスロート・ピッチ比を一定にする必要があり、静翼構造が複雑となる可能性がある。   Therefore, when stator blades are installed at a plurality of different pitches in the circumferential direction, each stator blade must have a different shape or installation angle, and the throat pitch ratio between each stator blade must be constant. Can be complicated.

すなわち、特許文献1では、異なるピッチを有する3種類の静翼を採用しているため、静翼構造が複雑となり製作コストが増大する可能性がある。   That is, in Patent Document 1, since three types of stationary blades having different pitches are employed, the stationary blade structure may be complicated and the manufacturing cost may increase.

さらに、周方向に異なる静翼を異なるピッチで配置した場合には、静翼下流側で作動流体の流量が周方向で不均一になるためアンバランス流れとなり、段落効率の低下や静翼後流周波数とは別の周波数で振動問題が生じるといった課題があると考えられる。   Furthermore, when different stator blades are arranged at different pitches in the circumferential direction, the flow rate of the working fluid is not uniform in the circumferential direction on the downstream side of the stator blades, resulting in an unbalanced flow, resulting in reduced paragraph efficiency and It is considered that there is a problem that a vibration problem occurs at a frequency different from the frequency.

そこで本発明は、簡単な構造で、段落効率を低下させずに、ある特定の静翼後流周波数で動翼に作用する励振力を低減し、静翼後流周波数と動翼固有振動数が一致した場合でも共振応答を小さくできる軸流ターボ機械の静翼構造を提供することを目的とする。   Therefore, the present invention reduces the excitation force acting on the moving blade at a specific stationary blade wake frequency without reducing the paragraph efficiency, and reduces the stationary blade wake frequency and the moving blade natural frequency. It is an object of the present invention to provide a stationary blade structure for an axial-flow turbomachine that can reduce the resonance response even when the values match.

上記課題を解決するため、本発明は、周方向に複数設けられた静翼からなる静翼列と、該静翼の作動流体流れ方向の下流側に周方向に複数設けられた動翼からなる動翼列とを有する段落を備えた軸流ターボ機械において、静翼列を構成する複数の静翼は、互いに静翼後縁位置を軸方向に所定の間隔だけずらして配置されていることを特徴とする。   In order to solve the above-mentioned problems, the present invention comprises a stationary blade row composed of a plurality of stationary blades provided in the circumferential direction and a plurality of moving blades provided in the circumferential direction on the downstream side in the working fluid flow direction of the stationary blades. In an axial-flow turbomachine having a paragraph having a moving blade row, a plurality of stationary blades constituting the stationary blade row are arranged with their stationary blade trailing edge positions shifted from each other by a predetermined interval in the axial direction. Features.

本発明によれば、全静翼の翼形状が一定となる簡単な構造で、段落効率を低下させずに、ある特定の静翼後流周波数で動翼に作用する励振力を低減し、静翼後流周波数と動翼固有振動数が一致した場合でも共振応答を小さくできる軸流ターボ機械の静翼構造を提供することができる。   According to the present invention, a simple structure in which the blade shapes of all the stationary blades are constant, the excitation force acting on the moving blades at a specific stationary blade wake frequency is reduced without lowering the paragraph efficiency, and It is possible to provide a stationary blade structure of an axial-flow turbomachine that can reduce the resonance response even when the blade wake frequency and the blade natural frequency coincide with each other.

上記した以外の課題、構成及び効果には、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

蒸気タービンの段落構造の例である。It is an example of the paragraph structure of a steam turbine. 一般的な静翼の翼列構造をタービン径方向から見た展開図の例である。It is an example of the expanded view which looked at the cascade structure of the general stationary blade from the turbine radial direction. 本発明に係る静翼の静翼列構造の例(実施例1)をタービン径方向から見た展開図である。It is the expanded view which looked at the example (Example 1) of the stationary blade cascade structure of the stationary blade which concerns on this invention from the turbine radial direction. 本発明の作用について説明する図である。It is a figure explaining the effect | action of this invention. 本発明の効果について説明する図である。It is a figure explaining the effect of the present invention. 本発明に係る蒸気タービンの静翼列構造の例(実施例2)を半径方向から見た展開図である。It is the expanded view which looked at the example (Example 2) of the stationary blade row | line | column structure of the steam turbine which concerns on this invention from the radial direction.

以下、本発明の実施例について図面を用いて説明する。なお、以下に説明する実施例は、軸流ターボ機械の一例として蒸気タービンに本発明を適用した例であるが、本発明は、蒸気タービンに限らず、ガスタービンや圧縮機にも適用可能である。   Embodiments of the present invention will be described below with reference to the drawings. In addition, although the Example described below is an example which applied this invention to the steam turbine as an example of an axial flow turbomachine, this invention is applicable not only to a steam turbine but to a gas turbine and a compressor. is there.

本発明の第1の実施例について説明する。まず初めに、本発明が適用される蒸気タービンの一例について説明する。   A first embodiment of the present invention will be described. First, an example of a steam turbine to which the present invention is applied will be described.

図1は、軸流ターボ機械の一例である蒸気タービンの段落構造の例である。図1において、1はダイアフラム外輪、2はダイアフラム内輪、3は静翼、4は動翼、5はロータ、6はシュラウドカバー、7で示した矢印は作動流体である蒸気の流れ方向、16はロータ5の中心軸を各々示す。なお、方向の定義として、図面左から右に向かってタービン軸方向、下から上に向かってタービン径方向、手前から奥に向かって周方向となっている。   FIG. 1 is an example of a paragraph structure of a steam turbine that is an example of an axial-flow turbomachine. In FIG. 1, 1 is an outer ring of a diaphragm, 2 is an inner ring of a diaphragm, 3 is a stationary blade, 4 is a moving blade, 5 is a rotor, 6 is a shroud cover, an arrow indicated by 7 is a flow direction of steam as working fluid, 16 The central axes of the rotor 5 are shown respectively. In addition, as a definition of a direction, it is a turbine axial direction from the drawing left to the right, a turbine radial direction from the bottom to the top, and a circumferential direction from the front to the back.

一般的な蒸気タービンは、円環状に組み立てられたダイアフラム外輪1とダイアフラム内輪2との間に、周方向に複数枚の静翼3を固定して環状流路を形成する静翼列と、静翼列の作動流体の流れ方向下流側に、ロータ5のディスク部に周方向に複数枚の動翼4を固定して形成される動翼列とを一列ずつ組み合わせた段落が、軸流方向に複数並んだ構造となっている。ダイアフラム外輪1は外周側でケーシング(図示せず)に固定されている。
また、動翼4の外周側は、一般的にシュラウドカバー6で連結され、固定されている。
A general steam turbine includes a stationary blade row that forms an annular flow path by fixing a plurality of stationary blades 3 in the circumferential direction between a diaphragm outer ring 1 and a diaphragm inner ring 2 that are assembled in an annular shape. A stage in which a plurality of blades 4 formed by fixing a plurality of blades 4 in the circumferential direction to the disk portion of the rotor 5 is combined in the axial direction in the axial direction. It has a structure with multiple lines. The diaphragm outer ring 1 is fixed to a casing (not shown) on the outer peripheral side.
Moreover, the outer peripheral side of the moving blade 4 is generally connected and fixed by a shroud cover 6.

静翼3は、静翼3の流れ方向上流側より流入する作動流体を整流し加速する役割を果たしている。静翼3によって加速された作動流体のエネルギが、動翼4によって回転エネルギに変換され、回転体であるロータ5を回転させる。ロータ5は図示しない発電機に連結されており、ロータ5の回転によって発電する。   The stationary blade 3 plays a role of rectifying and accelerating the working fluid flowing from the upstream side of the stationary blade 3 in the flow direction. The energy of the working fluid accelerated by the stationary blade 3 is converted into rotational energy by the moving blade 4 to rotate the rotor 5 that is a rotating body. The rotor 5 is connected to a generator (not shown), and generates electricity by the rotation of the rotor 5.

図2は、一般的な静翼3の翼列構造をタービン径方向から見た展開図の例である。図2において、10は静翼ピッチ、11は静翼スロート、12は静翼後縁線、13は静翼後流、14は静翼後流ピッチ、15は動翼前縁線、17は翼の設置角を各々示す。ここでいう静翼後縁線12とは、各静翼3の後縁位置を結んだ線であり、動翼前縁線15は、各動翼4の前縁位置を結んだ線である。また翼の設置角17は、静翼3の前縁と後縁とを結んだ線とタービンの回転方向(周方向)との間の角度である。   FIG. 2 is an example of a development view in which the cascade structure of a general stationary blade 3 is viewed from the turbine radial direction. In FIG. 2, 10 is a stationary blade pitch, 11 is a stationary blade throat, 12 is a stationary blade trailing edge, 13 is a stationary blade trailing flow, 14 is a stationary blade trailing flow pitch, 15 is a moving blade leading edge line, and 17 is a blade. The installation angles are shown respectively. The stationary blade trailing edge line 12 here is a line connecting the trailing edge positions of the stationary blades 3, and the moving blade leading edge line 15 is a line connecting the leading edge positions of the moving blades 4. The blade installation angle 17 is an angle between a line connecting the leading edge and the trailing edge of the stationary blade 3 and the rotational direction (circumferential direction) of the turbine.

図2では、全周360°に渡って所定数の静翼3を配置することで静翼列が構成されている。この静翼列では、軸方向上流側より流入した作動流体が、全周360°に渡って静翼列より所定の角度で流出するように、静翼ピッチ10および静翼スロート11は全周で一定となっている。また、各静翼3で静翼後縁の軸方向位置が一定であるため、静翼後縁線12は周方向に直線な形状となっている。   In FIG. 2, a stationary blade row is configured by arranging a predetermined number of stationary blades 3 over the entire circumference of 360 °. In this stationary blade row, the stationary blade pitch 10 and the stationary blade throat 11 are arranged on the entire circumference so that the working fluid flowing in from the upstream side in the axial direction flows out from the stationary blade row at a predetermined angle over the entire circumference 360 °. It is constant. Moreover, since the axial position of the stationary blade trailing edge is constant in each stationary blade 3, the stationary blade trailing edge line 12 has a linear shape in the circumferential direction.

つまり、各静翼3の下流側に形成される静翼後流13も全周に渡って一定の角度で流出するため、動翼前縁線15に到達した際の静翼後流ピッチ14は全周で一定間隔となる。   That is, the stationary blade wake 13 formed on the downstream side of each stationary blade 3 also flows out at a constant angle over the entire circumference, so the stationary blade wake pitch 14 when reaching the moving blade leading edge line 15 is At regular intervals throughout the circumference.

一定間隔である静翼後流13を動翼4が通過する周波数と、動翼4の固有振動数が一致して、動翼4に作用する励振力が大きい場合には、共振応答が増大し動翼4が疲労破壊する可能性があるため、静翼後流13の周波数で作用する励振力を低減したいといった課題がある。   When the frequency at which the moving blade 4 passes through the stationary blade wake 13 at a constant interval matches the natural frequency of the moving blade 4 and the excitation force acting on the moving blade 4 is large, the resonance response increases. Since there is a possibility that the rotor blade 4 may be fatigued and destroyed, there is a problem that it is desired to reduce the excitation force acting at the frequency of the stationary blade wake 13.

そこで、静翼後流周波数での励振力を低減できる、本実施例に係る静翼の翼列構造について説明する。   Therefore, the cascade structure of the stationary blade according to the present embodiment, which can reduce the excitation force at the stationary blade wake frequency, will be described.

図3は、本実施例の静翼の翼列構造をタービン径方向から見た展開図の例である。   FIG. 3 is an example of a development view in which the cascade structure of the stationary blade of this embodiment is viewed from the turbine radial direction.

図3に示すように、本実施例は全周360°で同じ形状の静翼3を用いており、設置角をA、AB、B、BAと4種類に変更したものを周方向に周期的に配列して、各静翼後縁の軸方向位置が、周方向で異なる翼列構造となっている。なお、アンバランス流れの影響を最小限に抑えるため、静翼ピッチ10は全周で等間隔としている。   As shown in FIG. 3, the present embodiment uses the same shape of the stationary blade 3 at 360 ° in the entire circumference, and periodically changes the installation angles to four types A, AB, B, and BA. In this arrangement, the axial positions of the trailing edges of the stationary blades are different in the circumferential direction. In order to minimize the influence of the unbalanced flow, the stationary blade pitch 10 is set at regular intervals on the entire circumference.

ここで、静翼後縁の軸方向位置を周方向で異ならせることと、各静翼3から前記作動流体7が所定の角度で流出できるようにすることを両立させて、段落効率への影響を最小限に抑えた構造とするには、各静翼スロート11を所定の長さに保つ必要がある。そのためには、設置角が異なる静翼3を少なくても4種類用いる必要がある。   Here, the axial position of the trailing edge of the stationary blade is varied in the circumferential direction and the working fluid 7 can be allowed to flow out from each stationary blade 3 at a predetermined angle, thereby affecting the paragraph efficiency. In order to obtain a structure that minimizes the above, it is necessary to keep each stationary blade throat 11 at a predetermined length. For this purpose, it is necessary to use at least four types of stationary blades 3 having different installation angles.

図3に示すように、設置角Aの静翼3では、図上から図下の静翼3に移るにつれ、翼列内の軸方向最下流側に配置された静翼から翼列内の軸方向最上流側に配置された静翼に向かって、静翼後縁の軸方向位置が漸次上流側へ移動している。このとき、隣り合う静翼後縁の軸方向移動量を一定、つまり静翼後縁線12の傾きが一定になるようにすれば、同じ設置角Aの静翼3を用いるだけで、各静翼3の静翼スロート11を一定の長さに保つことができる。よって、各静翼3の静翼後縁を軸方向に移動させつつ、各静翼3から作動流体が所定の角度で流出できるようにすることを両立することが可能となる。   As shown in FIG. 3, in the stationary blade 3 at the installation angle A, as it moves from the top of the drawing to the stationary blade 3 of the bottom of the drawing, the shaft in the blade row from the stationary blade arranged in the most downstream side in the axial direction in the blade row. The axial position of the trailing edge of the stationary blade gradually moves toward the upstream side toward the stationary blade disposed on the most upstream side in the direction. At this time, if the amount of axial movement of the adjacent stationary blade trailing edges is constant, that is, the inclination of the stationary blade trailing edge line 12 is constant, each stationary blade 3 having the same installation angle A can be used. The stationary blade throat 11 of the blade 3 can be maintained at a certain length. Therefore, it is possible to make it possible to allow the working fluid to flow out from each stationary blade 3 at a predetermined angle while moving the trailing edge of each stationary blade 3 in the axial direction.

続いて、上流側へ移動した静翼後縁の軸方向位置を、全周360°で元の軸方向位置に戻すには、設置角Aの静翼3とは逆に、図上から図下の静翼3に移るにつれ、翼列内の軸方向最上流側に配置された静翼から翼列内の軸方向最下流側に配置された静翼に向かって、静翼後縁の軸方向位置が漸次下流側へ移動するような構造にする必要がある。この際に、各静翼3から作動流体が所定の角度で流出できるようにするには、設置角Aとは異なる設置角Bの静翼3を用いる必要がある。また、設置角Aと設置角Bが切り替わる静翼3で、設置角AB、BAの静翼3を用いるため、合計4種類の設置角が異なる静翼3が必要となる。設置角ABは、設置角Aの静翼から設置角Bの静翼への切り替えを滑らかに行うために設定される角度であり、設置角AとBのバランスで決まる角度である。また同様に設置角BAも設置角Bの静翼から設置角Aの静翼への切り替えを滑らかに行うために設定される角度であり、設置角AとBのバランスで決まる角度である。   Subsequently, in order to return the axial position of the trailing edge of the stationary blade that has moved upstream to the original axial position at the entire circumference of 360 °, the lower position of the stationary blade 3 at the installation angle A is reversed. Of the stationary blade trailing edge from the stationary blade disposed on the most upstream side in the axial direction in the cascade toward the stationary blade disposed on the most downstream side in the axial direction. It is necessary to make the structure such that the position gradually moves downstream. At this time, in order to allow the working fluid to flow out from each stationary blade 3 at a predetermined angle, it is necessary to use the stationary blade 3 having an installation angle B different from the installation angle A. In addition, since the stationary blade 3 with the installation angle A and the installation angle B is switched and the stationary blades 3 having the installation angles AB and BA are used, a total of four types of stationary blades 3 having different installation angles are required. The installation angle AB is an angle that is set in order to smoothly switch from the stationary blade having the installation angle A to the stationary blade having the installation angle B, and is an angle determined by the balance between the installation angles A and B. Similarly, the installation angle BA is an angle set in order to smoothly switch from the stationary blade with the installation angle B to the stationary blade with the installation angle A, and is an angle determined by the balance between the installation angles A and B.

ここで、本実施例では、全周360°で設置角が異なる静翼3が、A→AB→B→BA→Aと1周期で配列されているが、例えばA→AB→B→BA→A→AB→B→BA→Aであるように複数周期で配列されても構わない。また、設置角が異なる静翼3を4種類用いたが、必ずしも4種類である必要はない。   Here, in the present embodiment, the stationary blades 3 having different installation angles on the entire circumference of 360 ° are arranged in one cycle of A → AB → B → BA → A. For example, A → AB → B → BA → It may be arranged in a plurality of cycles such that A → AB → B → BA → A. Moreover, although four types of stationary blades 3 having different installation angles are used, it is not always necessary to have four types.

図4は、本実施例の作用について説明した図である。   FIG. 4 is a diagram for explaining the operation of this embodiment.

本実施例の静翼構造では、各静翼3において静翼後縁の軸方向位置が、周方向で異なる構造となっているため、図4に示すように、静翼後縁の軸方向位置が全周で一定となる静翼構造に比べて、動翼前縁線15での静翼後流13が周方向にズレてることがわかる。   In the stationary blade structure of the present embodiment, the axial position of the stationary blade trailing edge in each stationary blade 3 is different in the circumferential direction. Therefore, as shown in FIG. It can be seen that the stationary blade wake 13 at the moving blade leading edge line 15 is displaced in the circumferential direction compared to the stationary blade structure in which is constant over the entire circumference.

つまり、本実施例では、動翼4へ流入する静翼後流13において、静翼後流ピッチ14が静翼後縁の軸方向位置が全周で一定となる静翼構造とは異なるため、静翼後流ピッチ14から算出される静翼後流周波数も複数存在することになる。   That is, in this embodiment, the stationary blade wake 13 flowing into the moving blade 4 is different from the stationary blade structure in which the stationary blade trailing edge pitch 14 is constant along the entire circumference of the stationary blade trailing edge. There are also a plurality of stationary blade wake frequencies calculated from the stationary blade wake pitch 14.

次に、本実施例の効果について説明する。図5は、周波数に対する静翼後流13の速度振幅について、従来の静翼構造と本実施例の静翼構造を比較したものを示している。なお、本実施例については、静翼後縁の軸方向移動量を小、中、大の三段階に変化させた場合の結果について比較している。   Next, the effect of the present embodiment will be described. FIG. 5 shows a comparison of the conventional vane structure and the vane structure of this embodiment with respect to the velocity amplitude of the vane wake 13 with respect to the frequency. In addition, about a present Example, it compares about the result at the time of changing the axial direction movement amount of a stationary blade trailing edge into three steps, small, medium, and large.

図5で示すように、静翼後縁の軸方向位置を移動させない従来の静翼構造では、静翼後流周波数のみで速度振幅が大きくなっている。これに対して、軸方向位置を移動させる本実施例の振幅は、移動量を大きくする程、静翼後流周波数での速度振幅が減少して、他の周波数成分でも速度振幅が生じている。   As shown in FIG. 5, in the conventional stationary blade structure in which the axial position of the stationary blade trailing edge is not moved, the velocity amplitude is increased only by the stationary blade wake frequency. On the other hand, in the amplitude of the present embodiment for moving the axial position, the velocity amplitude at the stationary blade wake frequency decreases as the amount of movement increases, and velocity amplitude is also generated at other frequency components. .

ここで、静翼後流周波数での静翼後流13の速度振幅が減少すれば、動翼4に作用する励振力も減少するため、本実施例の静翼構造を用いることで、静翼後流周波数と動翼固有振動数と一致した場合でも、共振応答を小さくできるといった効果がある。   Here, if the velocity amplitude of the stationary blade wake 13 at the stationary blade wake frequency decreases, the excitation force acting on the moving blade 4 also decreases. Therefore, by using the stationary blade structure of this embodiment, Even when the flow frequency and the natural frequency of the moving blade coincide with each other, the resonance response can be reduced.

また、本実施例によれば、スロート・ピッチ比は一定であり、静翼下流側で作動流体の流量が周方向で均一化を図ることができ、アンバランス流れを抑制して段落効率の低下を抑制できるとともに、同一形状の静翼を用いることができるので製作コストも低くできる。   In addition, according to the present embodiment, the throat pitch ratio is constant, the flow rate of the working fluid can be made uniform in the circumferential direction on the downstream side of the stationary blade, the unbalanced flow is suppressed, and the paragraph efficiency is reduced. Can be suppressed, and a stationary blade having the same shape can be used, so that the manufacturing cost can be reduced.

よって、翼列に用いられる静翼の翼形状が同一となる簡単な構造で、段落効率の低下も抑制しつつ、ある特定の静翼後流周波数で動翼に作用する励振力を低減し、静翼後流周波数と動翼固有振動数が一致した場合でも共振応答を小さくできる。   Therefore, with a simple structure in which the blade shapes of the stationary blades used in the blade row are the same, while suppressing the decrease in the paragraph efficiency, the excitation force acting on the moving blades at a certain stationary blade wake frequency is reduced, The resonance response can be reduced even when the stationary blade wake frequency and the moving blade natural frequency match.

次に本発明の第2の実施例について説明する。図6は、隣り合う静翼後縁の軸方向移動量を一定としない本実施例の静翼構造を示した図である。ここで、先に第1の実施例で説明した構成と同等の構成については同一の符号を付して説明を省略し、先に説明した実施例と異なる箇所について説明をする。   Next, a second embodiment of the present invention will be described. FIG. 6 is a view showing the stationary blade structure of the present embodiment in which the axial movement amount of adjacent stationary blade trailing edges is not constant. Here, the same components as those described in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and portions different from those in the first embodiment are described.

図6では、静翼後縁の軸方向位置が、周方向で異なる静翼構造となっているため、先に説明した実施例と同様の効果が得られる。しかし、実施例1と異なる点は、隣り合う静翼後縁の軸方向移動量を一定としていないため、静翼後縁線12の傾きが一定ではない形状となる点である。   In FIG. 6, since the stationary blade trailing edge has a different stationary blade structure in the circumferential direction, the same effect as the embodiment described above can be obtained. However, the difference from the first embodiment is that the amount of axial movement of the adjacent stationary blade trailing edge is not constant, and the inclination of the stationary blade trailing edge line 12 is not constant.

ここで、段落効率の低下を最小限に抑えるには、実施例1と同様に、各静翼3で静翼スロート11の長さを調整して、作動流体7が所定の角度で流出できるようにする必要がある。   Here, in order to minimize the reduction in the paragraph efficiency, the length of the stationary blade throat 11 is adjusted by each stationary blade 3 so that the working fluid 7 can flow out at a predetermined angle as in the first embodiment. It is necessary to.

本実施例では、静翼ピッチ10が一定で、且つ静翼後縁の軸方向移動量が一定でないため、実施例1のように、同じ設置角の静翼3を隣り合うように配列しただけでは、静翼スロート11の長さを一定に保つことができない。   In the present embodiment, since the stationary blade pitch 10 is constant and the axial movement amount of the stationary blade trailing edge is not constant, the stationary blades 3 having the same installation angle are simply arranged adjacent to each other as in the first embodiment. Then, the length of the stationary blade throat 11 cannot be kept constant.

静翼スロート11の長さを一定に保つには、各静翼3の形状を異ならせるか、各静翼3の設置角を変更する必要があるが、各静翼3の形状を変更すると、静翼3の下流側でアンバランス流れが生じる可能性があるため、本実施例では、各静翼3の設置角を変更した静翼構造となっている。   In order to keep the length of the stationary blade throat 11 constant, it is necessary to change the shape of each stationary blade 3 or to change the installation angle of each stationary blade 3, but when the shape of each stationary blade 3 is changed, Since an unbalanced flow may occur on the downstream side of the stationary blade 3, the present embodiment has a stationary blade structure in which the installation angle of each stationary blade 3 is changed.

しかし、隣り合う静翼後縁の軸方向移動量が大きすぎると、静翼3の設置角を大幅に変更する必要があるだけでなく、静翼スロート11が翼の上流側に移動するため、性能が低下する恐れがあり望ましくない。   However, if the axial movement amount of the adjacent stationary blade trailing edges is too large, not only the installation angle of the stationary blade 3 needs to be significantly changed, but also the stationary blade throat 11 moves to the upstream side of the blade, Performance may be degraded, which is not desirable.

よって、静翼後縁の軸方向移動量としては、前記静翼後流ピッチ14の間隔が不均一になるように、一般的な軸流ターボ機械の静翼製造公差よりも大きくして、且つ静翼スロート11が静翼3の上流側に移動し過ぎないような範囲内で収まることが望ましい。   Therefore, the axial movement amount of the stationary blade trailing edge is larger than the stationary blade manufacturing tolerance of a general axial flow turbomachine so that the interval of the stationary blade wake pitch 14 becomes non-uniform, and It is desirable that the stationary blade throat 11 be within a range that does not move too far upstream of the stationary blade 3.

本実施例の利点としては、静翼後縁の軸方向移動量が一定でないため、実施例1に比べて、より多くの異なる前記静翼後流ピッチ14が形成されるため、静翼後流周波数も多くの周波数にバラつかせることができる。   As an advantage of the present embodiment, since the axial movement amount of the stationary blade trailing edge is not constant, a larger number of different stationary blade wake pitches 14 are formed compared to the first embodiment. The frequency can also be varied to many frequencies.

つまり、実施例1よりも、静翼後流周波数での静翼後流13の速度振幅が減少するため、動翼4に作用する静翼後流周波数での励振力をより減少させることが可能となる。   That is, since the velocity amplitude of the stationary blade wake 13 at the stationary blade wake frequency is reduced as compared with the first embodiment, the excitation force at the stationary blade wake frequency acting on the moving blade 4 can be further reduced. It becomes.

また、周方向に複数の異なるピッチで静翼を設置している公知例と比較して、本実施例では、各静翼3の形状が同形状であるため、静翼3の前記作動流体7の下流側でのアンバランス流れを抑制することができるため、性能低下を最小限に抑えることができるだけでなく、製造しやすいといった利点がある。   Further, in this embodiment, since the shape of each stationary blade 3 is the same as that of the known example in which the stationary blades are installed at a plurality of different pitches in the circumferential direction, the working fluid 7 of the stationary blade 3 is the same. Since the unbalanced flow on the downstream side can be suppressed, there is an advantage that not only performance degradation can be minimized, but also manufacturing is easy.

以上、本発明の実施例を説明したが、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば実施例1の図3では、全ての静翼3において、静翼後縁の軸方向位置が異なる構造となっているが、必ずしも全ての静翼で異なる必要はなく、周方向のある領域では静翼後縁の軸方向位置を同じにして、違う領域では実施例1の図3のように静翼後縁の軸方向位置を異ならせるといった、複合構造でも構わない。要は静翼後縁の軸方向位置が異なる静翼3が少しでも含まれれば効果がある。   As mentioned above, although the Example of this invention was described, this invention is not limited to an above-described Example, Various modifications are included. For example, in FIG. 3 of the first embodiment, all the stationary blades 3 have a structure in which the axial position of the stationary blade trailing edge is different, but it is not necessarily different in all the stationary blades, and in a certain region in the circumferential direction. A composite structure in which the axial position of the trailing edge of the stationary blade is the same and the axial position of the trailing edge of the stationary blade is different in different regions as shown in FIG. In short, it is effective if the stator blade 3 having a different axial position of the trailing edge of the stator blade is included.

また、本発明の実施例では、ダイアフラム構造の蒸気タービンを例として説明したが、本発明はダイアフラム構造の蒸気タービンに限定されるものではなく、例えば組み立て式静翼の構造でも同様の効果が得られる。   In the embodiments of the present invention, the diaphragm-structured steam turbine has been described as an example. However, the present invention is not limited to the diaphragm-structured steam turbine. It is done.

1 ダイアフラム外輪
2 ダイアフラム内輪
3 静翼
4 動翼
5 ロータ
6 シュラウドカバー
10 静翼ピッチ
11 静翼スロート
12 静翼後縁線
13 静翼後流
14 静翼後流ピッチ
15 動翼前縁線
16 ロータの中心軸
DESCRIPTION OF SYMBOLS 1 Diaphragm outer ring 2 Diaphragm inner ring 3 Stator blade 4 Rotor blade 5 Rotor 6 Shroud cover 10 Stator blade pitch 11 Stator blade throat 12 Stator blade trailing edge 13 Stator blade trailing flow 14 Stator blade trailing pitch 15 Rotor leading edge 16 Rotor Center axis

Claims (2)

周方向に複数設けられた静翼からなる静翼列と、該静翼の作動流体流れ方向の下流側に周方向に複数設けられた動翼からなる動翼列とを有する段落を備えた軸流ターボ機械であって、
前記静翼列を構成する複数の静翼は、互いに静翼後縁位置を軸方向に所定の間隔だけずらして配置されていることを特徴とする軸流ターボ機械。
A shaft provided with a paragraph having a stationary blade row composed of a plurality of stationary blades provided in the circumferential direction and a moving blade row composed of a plurality of moving blades provided in the circumferential direction on the downstream side in the working fluid flow direction of the stationary blades A flow turbomachine,
A plurality of stationary blades constituting the stationary blade row are arranged such that the stationary blade trailing edge positions are shifted from each other by a predetermined interval in the axial direction.
請求項1記載の軸流ターボ機械であって、
前記静翼列は、隣り合う静翼の静翼後縁間隔および静翼スロート長さが全周で一定となるように、前記静翼を静翼後縁の軸方向位置によって異なる設置角で設置していることを特徴とする軸流ターボ機械。
An axial-flow turbomachine according to claim 1,
The stationary blade row is installed at different installation angles depending on the axial position of the stationary blade trailing edge so that the stationary blade trailing edge interval and the stationary blade throat length of adjacent stationary blades are constant over the entire circumference. An axial-flow turbomachine characterized by
JP2012040861A 2012-02-28 2012-02-28 Axial-flow turbomachine Pending JP2013177816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012040861A JP2013177816A (en) 2012-02-28 2012-02-28 Axial-flow turbomachine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012040861A JP2013177816A (en) 2012-02-28 2012-02-28 Axial-flow turbomachine

Publications (1)

Publication Number Publication Date
JP2013177816A true JP2013177816A (en) 2013-09-09

Family

ID=49269680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012040861A Pending JP2013177816A (en) 2012-02-28 2012-02-28 Axial-flow turbomachine

Country Status (1)

Country Link
JP (1) JP2013177816A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105264237A (en) * 2013-10-17 2016-01-20 三菱重工业株式会社 Compressor and gas turbine
DE102018119704A1 (en) * 2018-08-14 2020-02-20 Rolls-Royce Deutschland Ltd & Co Kg Paddle wheel of a turbomachine
CN112943699A (en) * 2021-02-08 2021-06-11 中国科学院工程热物理研究所 Compressor stator blade vibration reduction optimization design method based on corner design

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105264237A (en) * 2013-10-17 2016-01-20 三菱重工业株式会社 Compressor and gas turbine
CN105264237B (en) * 2013-10-17 2017-05-31 三菱重工业株式会社 Compressor and gas turbine
US10774750B2 (en) 2013-10-17 2020-09-15 Mitsubishi Heavy Industries, Ltd. Compressor with stator vane configuration in vicinity of bleed structure, and gas turbine engine
DE102018119704A1 (en) * 2018-08-14 2020-02-20 Rolls-Royce Deutschland Ltd & Co Kg Paddle wheel of a turbomachine
US11105207B2 (en) 2018-08-14 2021-08-31 Rolls-Royce Deutschland Ltd & Co Kg Wheel of a fluid flow machine
US11391169B2 (en) 2018-08-14 2022-07-19 Rolls-Royce Deutschland Ltd & Co Kg Wheel of a fluid flow machine
CN112943699A (en) * 2021-02-08 2021-06-11 中国科学院工程热物理研究所 Compressor stator blade vibration reduction optimization design method based on corner design
CN112943699B (en) * 2021-02-08 2022-06-28 中国科学院工程热物理研究所 Compressor stator blade vibration reduction optimization design method based on corner design

Similar Documents

Publication Publication Date Title
JP5965609B2 (en) Rotating machine with spacers for fluid dynamics control
US7118331B2 (en) Stator vane assembly for a turbomachine
EP2960462B1 (en) Turbine wheel for a radial turbine
US10443626B2 (en) Non uniform vane spacing
US10006467B2 (en) Assembly for a fluid flow machine
JP2017115873A (en) Turbomachine and turbine nozzle therefor
US20120272663A1 (en) Centrifugal compressor assembly with stator vane row
JP5681384B2 (en) Rotor blade for turbine engine
US9581034B2 (en) Turbomachinery stationary vane arrangement for disk and blade excitation reduction and phase cancellation
CA2791971A1 (en) Non-uniform variable vanes
JP2012031864A (en) Low-pressure steam turbine and method for operating the same
JP2017519154A (en) Diffuser for centrifugal compressor
JP5494972B2 (en) Axial-flow turbomachine and its modification method
JP2017145829A (en) Turbine blade centroid shifting method and system
US7762764B2 (en) Turbomachine
JP2013177816A (en) Axial-flow turbomachine
JP2012188957A (en) Axial flow turbine
EP2685050B1 (en) Stationary vane assembly for an axial flow turbine
JP2016094914A (en) Wing of axial flow machine
JP2013148084A (en) Turbomachine including blade tuning system
JP2011137413A (en) Steam turbine
JP2013072432A (en) Noise reduction in turbomachine, and related method thereof
JP2013047461A (en) Axial-flow turbomachine
JP2014047692A (en) Axial flow turbo machine
WO2011145326A1 (en) Turbine of gas turbine engine

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140123

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140827