JP2013171623A - Light source device, and lighting device - Google Patents

Light source device, and lighting device Download PDF

Info

Publication number
JP2013171623A
JP2013171623A JP2012032871A JP2012032871A JP2013171623A JP 2013171623 A JP2013171623 A JP 2013171623A JP 2012032871 A JP2012032871 A JP 2012032871A JP 2012032871 A JP2012032871 A JP 2012032871A JP 2013171623 A JP2013171623 A JP 2013171623A
Authority
JP
Japan
Prior art keywords
transparent member
light
disk
shaped
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012032871A
Other languages
Japanese (ja)
Inventor
Takao Saito
貴夫 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2012032871A priority Critical patent/JP2013171623A/en
Publication of JP2013171623A publication Critical patent/JP2013171623A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To remarkably reduce color irregularities and luminance unevenness, in a light source device combining semiconductor light-emitting elements (solid light sources) and wavelength conversion elements (a wavelength conversion member).SOLUTION: A light source device includes: a ring-shaped wavelength conversion member 12 of the same thickness D as a disc-shape transparent member 11, arranged so as to surround an outer periphery of the disc-shape transparent member 11, and with a width H in a radial direction uniform along a circumferential direction of the disc-shape transparent member 11; and a solid light source 15 positioned spatially away from the disc-shape transparent member 11, emitting light of a given wavelength out of a wavelength region from ultraviolet to visible light as excitation light and letting the excitation light incident into a center part of the disc-shape transparent member 11.

Description

本発明は、光源装置および照明装置に関する。   The present invention relates to a light source device and an illumination device.

近年、LEDやLD等の半導体発光素子と蛍光体などの波長変換素子とを組み合わせた光源装置は広く普及し始め、一般照明や自動車のヘッドランプなどその応用範囲が広がってきている。   In recent years, light source devices in which semiconductor light emitting elements such as LEDs and LDs and wavelength conversion elements such as phosphors are combined have started to become widespread, and their application ranges such as general lighting and automobile headlamps have expanded.

このような半導体発光素子と蛍光体などの波長変換素子とを組み合わせた光源装置として、従来、特許文献1、特許文献2、特許文献3に示されているような光源装置が知られている。   Conventionally, light source devices as shown in Patent Document 1, Patent Document 2, and Patent Document 3 are known as light source devices that combine such semiconductor light emitting elements and wavelength conversion elements such as phosphors.

図1には、特許文献1の光源装置(照明装置)が示されている。図1を参照すると、この光源装置(照明装置)では、実装基板110上に、複数のLEDチップ120を互いに離隔して実装し、LEDチップ120の周囲及びLEDチップ120同士の間隙部分に、蛍光体部130を配設している。そして、この蛍光体部130のうちでLEDチップ120間の間隙を覆う部位に、溝部141を設けている。これにより、LEDチップ120から放射される光が蛍光体部130の外部に放射されるまでの光路長が、光の放射方向によらずに略等しくなる。従って、蛍光体部130によって異なる色に変換された光と変換されていない光の比率が、場所によらず略均一となるので、色むらを抑制することができる。また、LEDチップ120の周囲を蛍光体部130で隙間なく覆っているので、LEDチップ120の側面から放射される光も、蛍光体で異なる色に変換されるなどして発光に寄与する。よって、高い発光効率を得ることができる。このように、特許文献1の光源装置(照明装置)では、色むらが少なく、発光効率の高い照明装置を提供することを意図している。   FIG. 1 shows a light source device (illumination device) of Patent Document 1. Referring to FIG. 1, in this light source device (illumination device), a plurality of LED chips 120 are mounted on a mounting substrate 110 so as to be separated from each other, and fluorescent light is emitted around the LED chips 120 and in the gaps between the LED chips 120. A body part 130 is disposed. And the groove part 141 is provided in the site | part which covers the gap | interval between LED chips 120 among this fluorescent substance part 130. FIG. Thereby, the optical path length until the light radiated | emitted from LED chip 120 is radiated | emitted outside the fluorescent substance part 130 becomes substantially equal irrespective of the radiation | emission direction of light. Therefore, the ratio of the light converted into a different color by the phosphor portion 130 and the light not converted is substantially uniform regardless of the place, and thus color unevenness can be suppressed. Moreover, since the periphery of the LED chip 120 is covered with the phosphor part 130 without a gap, the light emitted from the side surface of the LED chip 120 also contributes to light emission by being converted into a different color by the phosphor. Therefore, high luminous efficiency can be obtained. As described above, the light source device (illumination device) of Patent Document 1 intends to provide an illumination device with little color unevenness and high luminous efficiency.

また、図2には、特許文献2の光源装置(発光モジュール)が示されている。図2を参照すると、この光源装置(発光モジュール)では、光波長変換セラミック258は、半導体発光素子252が発する光の波長を変換する。光波長変換セラミック258は、変換光波長域の全光線透過率が40%以上の透明に設けられる。反射膜260は、光波長変換セラミック258の表面上に設けられ、光波長変換セラミック258を通過した光の出射面積を半導体発光素子252の発光面積より小さく絞る。このとき反射膜260は、半導体発光素子252の発光面と略平行に光が出射するよう導光する。   FIG. 2 shows a light source device (light emitting module) of Patent Document 2. Referring to FIG. 2, in this light source device (light emitting module), the light wavelength conversion ceramic 258 converts the wavelength of light emitted from the semiconductor light emitting element 252. The light wavelength conversion ceramic 258 is provided so as to have a total light transmittance of 40% or more in the converted light wavelength region. The reflective film 260 is provided on the surface of the light wavelength conversion ceramic 258, and narrows the emission area of light that has passed through the light wavelength conversion ceramic 258 to be smaller than the light emission area of the semiconductor light emitting element 252. At this time, the reflective film 260 guides light so that light is emitted substantially parallel to the light emitting surface of the semiconductor light emitting element 252.

また、図3には、特許文献3の光源装置(照明装置)が示されている。図3を参照すると、この光源装置(照明装置)では、青色の光を放射するLEDチップ310と、LEDチップ310がサブマウント部材330を介して実装されたベース部材たる実装基板320と、LEDチップ310を囲みLEDチップ310から放射された光によって励起されてLEDチップ310の発光色とは異なる色の光を放射する蛍光材料である黄色蛍光体を透明材料(例えば、シリコーン樹脂など)とともに成形した成形品からなるドーム状の色変換部材340とを備えている。色変換部材340は、厚み(肉厚)が一様になるように成形してあるが、LEDチップ310から放射される光の強度分布に応じて、当該色変換部材340から出射される混色光の色むらをなくすように蛍光材料の濃度分布が付与されている。   FIG. 3 shows the light source device (illumination device) of Patent Document 3. Referring to FIG. 3, in this light source device (illumination device), an LED chip 310 that emits blue light, a mounting substrate 320 that is a base member on which the LED chip 310 is mounted via a submount member 330, and an LED chip A yellow phosphor, which is a fluorescent material that surrounds 310 and is excited by light emitted from the LED chip 310 and emits light of a color different from the emission color of the LED chip 310, is molded together with a transparent material (for example, a silicone resin). And a dome-shaped color conversion member 340 made of a molded product. The color conversion member 340 is formed so as to have a uniform thickness (thickness), but the mixed color light emitted from the color conversion member 340 according to the intensity distribution of the light emitted from the LED chip 310. The concentration distribution of the fluorescent material is given so as to eliminate the color unevenness.

特開2011−60967号公報JP 2011-60967 A WO2010/044240A号公報WO2010 / 044240A publication 特開2007−35802号公報JP 2007-35802 A

このように、上述した従来例では、半導体発光素子と蛍光体などの波長変換素子とを組み合わせた光源装置において、色むらを低減することを意図している。   As described above, the conventional example described above is intended to reduce color unevenness in a light source device in which a semiconductor light emitting element and a wavelength conversion element such as a phosphor are combined.

ところで、半導体発光素子と波長変換素子とを組み合わせた光源装置において、明るさ(光の利用効率)の向上と色ムラ・輝度ムラの低減とは逆の関係にある。すなわち、光の利用効率を高めようと発光面積を広くすると、それだけ大面積を色ムラ・輝度ムラの少ない光にする必要がある、という課題があった。   By the way, in a light source device in which a semiconductor light emitting element and a wavelength conversion element are combined, improvement in brightness (light utilization efficiency) and reduction in color unevenness and brightness unevenness are in an inverse relationship. That is, there is a problem that when the light emitting area is widened so as to increase the light use efficiency, it is necessary to make the large area light with less color unevenness and luminance unevenness.

半導体発光素子から出射し、波長変換素子の一部分に入射し、波長変換素子の他の部分から出射する光線を考えると、色ムラ・輝度ムラの少ない光を得るためには、各光線の光路長が等しくなければならない。入射面・出射面の空間的な位置関係は立体角で捉えなければならず、そのためには例えば特許文献3に示されているように構成要素が球や円といった角度依存性の少ない形であることが求められる。   Considering the light emitted from the semiconductor light emitting element, incident on a part of the wavelength conversion element, and emitted from the other part of the wavelength conversion element, in order to obtain light with less color unevenness and luminance unevenness, the optical path length of each light ray Must be equal. The spatial positional relationship between the entrance surface and the exit surface must be grasped by a solid angle. For this purpose, for example, as shown in Patent Document 3, the constituent elements have a shape with little angle dependency such as a sphere or a circle. Is required.

一般照明のような放射光として利用する場合は、レーザー光線でない限り空気中で散乱されるため光路長は「ほぼ」一定であれば良く、ムラ要件(色ムラ・輝度ムラを少なくするという要件)は緩和される。しかしながら、車両用灯具のように光学系を用いて特定の配光パターンを照射・投影する用途の場合は、光路長は正確に一定でなければならず、ムラ要件はとてもシビアとなる。   When used as radiated light such as general illumination, the optical path length should be "almost" constant because it is scattered in the air unless it is a laser beam, and unevenness requirements (requirements to reduce unevenness in color and brightness) are Alleviated. However, in the case of an application that uses an optical system to irradiate and project a specific light distribution pattern such as a vehicular lamp, the optical path length must be exactly constant, and the unevenness requirement becomes very severe.

特許文献1や特許文献2に示されているような、半導体発光素子と波長変換素子が密接した形態では、ムラ要件を満足しようとすると半導体素子を円形にダイシングする必要があり、歩留まりが悪くなってしまう。   In a form in which the semiconductor light emitting element and the wavelength conversion element are in close contact as shown in Patent Document 1 and Patent Document 2, it is necessary to dice the semiconductor element into a circle in order to satisfy the non-uniformity requirement, resulting in poor yield. End up.

また、特許文献3に示されているように、波長変換素子を半球ドーム状に成形することは色ムラの低減に有効ではあるものの、四角形にダイシングされたチップ(半導体発光素子)を使用しており、チップの鉛直上が一番明るく、周辺部に行くほど暗くなるという輝度分布(すなわち、一種の輝度ムラ)を生じてしまう。このように光源装置が輝度分布を持っていることは、配光設計の難しさに直結するので、好適ではない。   In addition, as shown in Patent Document 3, forming a wavelength conversion element into a hemispherical dome shape is effective in reducing color unevenness, but using a chip (semiconductor light emitting element) diced in a square shape. As a result, a brightness distribution (that is, a kind of brightness unevenness) is generated such that the top of the chip is brightest and becomes darker toward the periphery. Such a light source device having a luminance distribution is not suitable because it directly relates to the difficulty of light distribution design.

本発明は、半導体発光素子(固体光源)と波長変換素子(波長変換部材)とを組み合わせた光源装置において、色ムラ・輝度ムラを著しく低減することの可能な光源装置および照明装置を提供することを目的としている。   The present invention provides a light source device and an illumination device capable of remarkably reducing color unevenness and luminance unevenness in a light source device in which a semiconductor light emitting element (solid light source) and a wavelength conversion element (wavelength conversion member) are combined. It is an object.

上記目的を達成するために、請求項1記載の発明は、円板状の透明部材と、
該円板状の透明部材と同一の厚さであって前記円板状の透明部材の外周を取り囲むように配置され、前記円板状の透明部材の円周方向に沿って半径方向の幅が均一となっているリング状の波長変換部材と、
前記円板状の透明部材と空間的に離れた位置にあり、紫外光から可視光までの波長領域のうちの所定の波長の光を励起光として発光して該励起光を前記円板状の透明部材の中心部に入射させる固体光源とを備え、
前記円板状の透明部材の中心部には、前記固体光源から入射した励起光を拡散させる光拡散領域が設けられ、
前記円板状の透明部材および前記リング状の波長変換部材には、前記円板状の透明部材および前記リング状の波長変換部材を厚さ方向上下から挟み込み、前記円板状の透明部材および前記リング状の波長変換部材を導光する光を反射する反射部材が設けられており、
前記リング状の波長変換部材は、前記固体光源から出射され、前記円板状の透明部材を介して入射した励起光により励起され前記固体光源の発光波長よりも長波長の蛍光を発光する少なくとも1種類の蛍光体を含んでいることを特徴としている。
In order to achieve the above object, the invention described in claim 1 includes a disk-shaped transparent member,
The disk-shaped transparent member has the same thickness and is disposed so as to surround the outer periphery of the disk-shaped transparent member, and has a radial width along the circumferential direction of the disk-shaped transparent member. A ring-shaped wavelength conversion member that is uniform;
Located at a position spatially separated from the disk-shaped transparent member, emits light having a predetermined wavelength in a wavelength region from ultraviolet light to visible light as excitation light, and emits the excitation light to the disk-shaped transparent member. A solid light source incident on the center of the transparent member,
A light diffusion region for diffusing excitation light incident from the solid light source is provided at the center of the disc-shaped transparent member,
The disk-shaped transparent member and the ring-shaped wavelength conversion member are sandwiched between the disk-shaped transparent member and the ring-shaped wavelength conversion member from above and below in the thickness direction, and the disk-shaped transparent member and the A reflection member that reflects light that guides the ring-shaped wavelength conversion member is provided,
The ring-shaped wavelength converting member emits fluorescence having a wavelength longer than the emission wavelength of the solid light source by being excited by excitation light emitted from the solid light source and incident through the disk-shaped transparent member. It is characterized by containing various kinds of phosphors.

また、請求項2記載の発明は、円板状の透明部材と、
該円板状の透明部材と同一の厚さであって前記円板状の透明部材の外周を取り囲むように配置され、前記円板状の透明部材の円周方向に沿って半径方向の幅が均一となっているリング状の波長変換部材と、
前記円板状の透明部材と空間的に離れた位置にあり、紫外光から可視光までの波長領域のうちの所定の波長の光を励起光として発光して該励起光を前記円板状の透明部材の中心部に入射させる固体光源とを備え、
前記円板状の透明部材の中心部には、固体光源から入射した励起光を所定の角度で反射させる円錐状の切欠きが設けられており、
前記リング状の波長変換部材は、前記固体光源から出射され、前記円板状の透明部材を介して入射した励起光により励起され前記固体光源の発光波長よりも長波長の蛍光を発光する少なくとも1種類の蛍光体を含んでいることを特徴としている。
The invention according to claim 2 is a disk-shaped transparent member;
The disk-shaped transparent member has the same thickness and is disposed so as to surround the outer periphery of the disk-shaped transparent member, and has a radial width along the circumferential direction of the disk-shaped transparent member. A ring-shaped wavelength conversion member that is uniform;
Located at a position spatially separated from the disk-shaped transparent member, emits light having a predetermined wavelength in a wavelength region from ultraviolet light to visible light as excitation light, and emits the excitation light to the disk-shaped transparent member. A solid light source incident on the center of the transparent member,
A conical notch that reflects excitation light incident from a solid light source at a predetermined angle is provided at the center of the disk-shaped transparent member,
The ring-shaped wavelength converting member emits fluorescence having a wavelength longer than the emission wavelength of the solid light source by being excited by excitation light emitted from the solid light source and incident through the disk-shaped transparent member. It is characterized by containing various kinds of phosphors.

また、請求項3記載の発明は、請求項2記載の光源装置において、前記円板状の透明部材および前記リング状の波長変換部材には、前記円板状の透明部材および前記リング状の波長変換部材を厚さ方向上下から挟み込み、前記円板状の透明部材および前記リング状の波長変換部材を導光する光を反射する反射部材が設けられていることを特徴としている。   According to a third aspect of the present invention, in the light source device according to the second aspect, the disk-shaped transparent member and the ring-shaped wavelength conversion member include the disk-shaped transparent member and the ring-shaped wavelength. It is characterized in that a reflecting member is provided that reflects light guided between the disk-shaped transparent member and the ring-shaped wavelength converting member by sandwiching the converting member from above and below in the thickness direction.

また、請求項4記載の発明は、請求項1乃至請求項3のいずれか一項に記載の光源装置において、固体光源からの励起光を前記円板状の透明部材の中心部に導光させる導光部材がさらに設けられていることを特徴としている。   According to a fourth aspect of the present invention, in the light source device according to any one of the first to third aspects, the excitation light from the solid light source is guided to the central portion of the disk-shaped transparent member. A light guide member is further provided.

また、請求項5記載の発明は、請求項1乃至請求項4のいずれか一項に記載の光源装置が用いられていることを特徴とする照明装置である。   The invention according to claim 5 is an illumination device characterized by using the light source device according to any one of claims 1 to 4.

請求項1、請求項4、請求項5記載の発明によれば、円板状の透明部材と、
該円板状の透明部材と同一の厚さであって前記円板状の透明部材の外周を取り囲むように配置され、前記円板状の透明部材の円周方向に沿って半径方向の幅が均一となっているリング状の波長変換部材と、
前記円板状の透明部材と空間的に離れた位置にあり、紫外光から可視光までの波長領域のうちの所定の波長の光を励起光として発光して該励起光を前記円板状の透明部材の中心部に入射させる固体光源とを備え、
前記円板状の透明部材の中心部には、前記固体光源から入射した励起光を拡散させる光拡散領域が設けられ、
前記円板状の透明部材および前記リング状の波長変換部材には、前記円板状の透明部材および前記リング状の波長変換部材を厚さ方向上下から挟み込み、前記円板状の透明部材および前記リング状の波長変換部材を導光する光を反射する反射部材が設けられており、
前記リング状の波長変換部材は、前記固体光源から出射され、前記円板状の透明部材を介して入射した励起光により励起され前記固体光源の発光波長よりも長波長の蛍光を発光する少なくとも1種類の蛍光体を含んでおり、
前記円板状の透明部材では、この中心部に入射した固体光源からの励起光は、拡散と反射を繰り返しながら円周方向の角度によらずに半径方向に等方的に導光してリング状の波長変換部材に入射し(このとき、円周方向の光の分布は均一となっている)、リング状の波長変換部材では、励起光の一部が波長変換され、リング状の波長変換部材からは、その外周部からのみ、波長変換された光(蛍光)と励起光との混色光が出射され、この際、リング状の波長変換部材における光(蛍光、励起光)の光路長は、リング状の波長変換部材が円板状の透明部材の円周方向に沿って半径方向の幅および厚さが均一なものとなっていることから、一定であり、これにより、色ムラ・輝度ムラを著しく低減することができる。
According to invention of Claim 1, Claim 4, Claim 5, a disk-shaped transparent member,
The disk-shaped transparent member has the same thickness and is disposed so as to surround the outer periphery of the disk-shaped transparent member, and has a radial width along the circumferential direction of the disk-shaped transparent member. A ring-shaped wavelength conversion member that is uniform;
Located at a position spatially separated from the disk-shaped transparent member, emits light having a predetermined wavelength in a wavelength region from ultraviolet light to visible light as excitation light, and emits the excitation light to the disk-shaped transparent member. A solid light source incident on the center of the transparent member,
A light diffusion region for diffusing excitation light incident from the solid light source is provided at the center of the disc-shaped transparent member,
The disk-shaped transparent member and the ring-shaped wavelength conversion member are sandwiched between the disk-shaped transparent member and the ring-shaped wavelength conversion member from above and below in the thickness direction, and the disk-shaped transparent member and the A reflection member that reflects light that guides the ring-shaped wavelength conversion member is provided,
The ring-shaped wavelength converting member emits fluorescence having a wavelength longer than the emission wavelength of the solid light source by being excited by excitation light emitted from the solid light source and incident through the disk-shaped transparent member. Including various types of phosphors,
In the disk-shaped transparent member, the excitation light from the solid light source incident on the center is guided by isotropically guiding in the radial direction regardless of the angle in the circumferential direction while repeating diffusion and reflection. The ring-shaped wavelength conversion member is incident on the ring-shaped wavelength conversion member (at this time, the distribution of light in the circumferential direction is uniform). From the member, the color-mixed light of the wavelength-converted light (fluorescence) and the excitation light is emitted only from the outer peripheral portion. At this time, the optical path length of the light (fluorescence, excitation light) in the ring-shaped wavelength conversion member is The ring-shaped wavelength converting member has a uniform width and thickness in the radial direction along the circumferential direction of the disk-shaped transparent member, and therefore, the color variation and luminance are constant. Unevenness can be significantly reduced.

また、請求項2、請求項3、請求項4、請求項5記載の発明によれば、円板状の透明部材と、
該円板状の透明部材と同一の厚さであって前記円板状の透明部材の外周を取り囲むように配置され、前記円板状の透明部材の円周方向に沿って半径方向の幅が均一となっているリング状の波長変換部材と、
前記円板状の透明部材と空間的に離れた位置にあり、紫外光から可視光までの波長領域のうちの所定の波長の光を励起光として発光して該励起光を前記円板状の透明部材の中心部に入射させる固体光源とを備え、
前記円板状の透明部材の中心部には、固体光源から入射した励起光を所定の角度で反射させる円錐状の切欠きが設けられており、
前記リング状の波長変換部材は、前記固体光源から出射され、前記円板状の透明部材を介して入射した励起光により励起され前記固体光源の発光波長よりも長波長の蛍光を発光する少なくとも1種類の蛍光体を含んでおり、
前記円板状の透明部材では、この中心部に入射した固体光源からの励起光は、反射(全反射)を繰り返しながら円周方向の角度によらずに半径方向に等方的に導光してリング状の波長変換部材に入射し(このとき、円周方向の光の分布は均一となっている)、リング状の波長変換部材では、励起光の一部が波長変換され、リング状の波長変換部材からは、その外周部からのみ、波長変換された光(蛍光)と励起光との混色光が出射され、この際、リング状の波長変換部材における光(蛍光、励起光)の光路長は、リング状の波長変換部材が円板状の透明部材の円周方向に沿って半径方向の幅および厚さが均一なものとなっていることから、一定であり、これにより、色ムラ・輝度ムラを著しく低減することができる。
Moreover, according to invention of Claim 2, Claim 3, Claim 4, Claim 5, a disk-shaped transparent member,
The disk-shaped transparent member has the same thickness and is disposed so as to surround the outer periphery of the disk-shaped transparent member, and has a radial width along the circumferential direction of the disk-shaped transparent member. A ring-shaped wavelength conversion member that is uniform;
Located at a position spatially separated from the disk-shaped transparent member, emits light having a predetermined wavelength in a wavelength region from ultraviolet light to visible light as excitation light, and emits the excitation light to the disk-shaped transparent member. A solid light source incident on the center of the transparent member,
A conical notch that reflects excitation light incident from a solid light source at a predetermined angle is provided at the center of the disk-shaped transparent member,
The ring-shaped wavelength converting member emits fluorescence having a wavelength longer than the emission wavelength of the solid light source by being excited by excitation light emitted from the solid light source and incident through the disk-shaped transparent member. Including various types of phosphors,
In the disk-shaped transparent member, the excitation light from the solid light source incident on the center is guided isotropically in the radial direction regardless of the angle in the circumferential direction while repeating reflection (total reflection). The ring-shaped wavelength conversion member (at this time, the distribution of light in the circumferential direction is uniform), and in the ring-shaped wavelength conversion member, part of the excitation light is wavelength-converted, and the ring-shaped wavelength conversion member From the wavelength conversion member, the color-mixed light of the wavelength-converted light (fluorescence) and the excitation light is emitted only from the outer peripheral portion. At this time, the optical path of the light (fluorescence, excitation light) in the ring-shaped wavelength conversion member The length is constant because the ring-shaped wavelength conversion member has a uniform width and thickness in the radial direction along the circumferential direction of the disk-shaped transparent member. -Brightness unevenness can be significantly reduced.

従来の光源装置を示す図である。It is a figure which shows the conventional light source device. 従来の光源装置を示す図である。It is a figure which shows the conventional light source device. 従来の光源装置を示す図である。It is a figure which shows the conventional light source device. 本発明の光源装置の第1の構成例を示す図である。It is a figure which shows the 1st structural example of the light source device of this invention. 本発明の光源装置の第2の構成例を示す図である。It is a figure which shows the 2nd structural example of the light source device of this invention. 円板状の透明部材、波長変換部材の作製工程例を示す図である。It is a figure which shows the example of a preparation process of a disk-shaped transparent member and a wavelength conversion member. 円板状の透明部材、波長変換部材の作製工程例を示す図である。It is a figure which shows the example of a preparation process of a disk-shaped transparent member and a wavelength conversion member. 本発明の光源装置を用いた照明装置の一例を示す図である。It is a figure which shows an example of the illuminating device using the light source device of this invention. 本発明の光源装置の変形例を示す図である。It is a figure which shows the modification of the light source device of this invention. 本発明の光源装置の変形例を示す図である。It is a figure which shows the modification of the light source device of this invention.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図4(a),(b)は、本発明の光源装置の第1の構成例を示す図である。なお、図4(a)は全体の断面図、図4(b)は円板状の透明部材と該円板状の透明部材の外周を取り囲むように配置されているリング状の波長変換部材とを示す斜視図である。   4A and 4B are diagrams showing a first configuration example of the light source device of the present invention. 4A is an overall cross-sectional view, and FIG. 4B is a disk-shaped transparent member and a ring-shaped wavelength conversion member disposed so as to surround the outer periphery of the disk-shaped transparent member. FIG.

図4(a),(b)を参照すると、この光源装置10は、円板状の透明部材11と、
該円板状の透明部材11と同一の厚さDであって前記円板状の透明部材11の外周を取り囲むように配置され、前記円板状の透明部材11の円周方向に沿って半径方向の幅Hが均一となっているリング状の波長変換部材12と、
前記円板状の透明部材11と空間的に離れた位置にあり、紫外光から可視光までの波長領域のうちの所定の波長の光を励起光として発光して該励起光を前記円板状の透明部材11の中心部に入射させる固体光源(半導体発光素子)15とを備えている。
Referring to FIGS. 4A and 4B, the light source device 10 includes a disk-shaped transparent member 11,
The disk-shaped transparent member 11 has the same thickness D and is disposed so as to surround the outer periphery of the disk-shaped transparent member 11, and has a radius along the circumferential direction of the disk-shaped transparent member 11. A ring-shaped wavelength conversion member 12 having a uniform width H in the direction;
The disc-like transparent member 11 is spatially separated, emits light having a predetermined wavelength in a wavelength region from ultraviolet light to visible light as excitation light, and emits the excitation light to the disc-like shape. And a solid light source (semiconductor light emitting element) 15 that is incident on the center of the transparent member 11.

ここで、この第1の構成例では、前記円板状の透明部材11の中心部には、前記固体光源15から入射した励起光を拡散させる光拡散領域13が設けられている。   Here, in the first configuration example, a light diffusion region 13 for diffusing the excitation light incident from the solid light source 15 is provided at the center of the disk-shaped transparent member 11.

また、この第1の構成例では、前記円板状の透明部材11および前記リング状の波長変換部材12には、前記円板状の透明部材11および前記リング状の波長変換部材12を厚さ方向上下から挟み込み、前記円板状の透明部材11および前記リング状の波長変換部材12を導光する光を反射する反射部材14が設けられている。   Moreover, in this 1st structural example, the said disk-shaped transparent member 11 and the said ring-shaped wavelength conversion member 12 are made into thickness at the said disk-shaped transparent member 11 and the said ring-shaped wavelength conversion member 12. A reflecting member 14 is provided that reflects light guided between the disk-shaped transparent member 11 and the ring-shaped wavelength conversion member 12 sandwiched from above and below in the direction.

また、前記リング状の波長変換部材12は、前記固体光源15から出射され、前記円板状の透明部材11を介して入射した励起光により励起され前記固体光源15の発光波長よりも長波長の蛍光を発光する少なくとも1種類の蛍光体を含んでいる。   The ring-shaped wavelength conversion member 12 is emitted from the solid light source 15 and is excited by the excitation light incident through the disk-shaped transparent member 11 and has a longer wavelength than the emission wavelength of the solid light source 15. It contains at least one phosphor that emits fluorescence.

なお、この第1の構成例では、固体光源15からの励起光を円板状の透明部材11の中心部に導光させる導光部材16がさらに設けられている。   In the first configuration example, a light guide member 16 that guides the excitation light from the solid light source 15 to the center of the disk-shaped transparent member 11 is further provided.

このような構成の光源装置10では、固体光源15からの励起光は、導光部材16によって円板状の透明部材11の中心部に導かれる。円板状の透明部材11では、この中心部に入射した固体光源15からの励起光は、光拡散領域13によって拡散され、円板状の透明部材11内部を拡散と反射を繰り返しながら円周方向の角度によらずに半径方向に等方的に導光してリング状の波長変換部材12に入射する(このとき、円周方向の光の分布は均一となっている)。リング状の波長変換部材12では、励起光の一部が波長変換され、リング状の波長変換部材12からは、その外周部からのみ、波長変換された光(蛍光(例えば黄色光))と励起光(例えば青色光)との混色光(白色光)が出射される。この際、リング状の波長変換部材12における光(蛍光、励起光)の光路長は、リング状の波長変換部材12が円板状の透明部材11の円周方向に沿って半径方向の幅Hおよび厚さDが均一なものとなっていることから、一定であり、これにより、色ムラ・輝度ムラを著しく低減することができる(リング状の波長変換部材12の外周上の全ての位置において同じ色度・同じ明るさとなる)。   In the light source device 10 having such a configuration, the excitation light from the solid light source 15 is guided to the center of the disk-shaped transparent member 11 by the light guide member 16. In the disk-shaped transparent member 11, the excitation light from the solid light source 15 incident on the central portion is diffused by the light diffusion region 13, and the diffusion direction and the reflection in the disk-shaped transparent member 11 are repeated in the circumferential direction. Regardless of the angle, the light isotropically guided in the radial direction and enters the ring-shaped wavelength conversion member 12 (at this time, the distribution of light in the circumferential direction is uniform). In the ring-shaped wavelength conversion member 12, a part of the excitation light is wavelength-converted, and from the ring-shaped wavelength conversion member 12, the wavelength-converted light (fluorescence (for example, yellow light)) and excitation are excited only from the outer periphery. Mixed color light (white light) with light (for example, blue light) is emitted. At this time, the optical path length of light (fluorescence, excitation light) in the ring-shaped wavelength conversion member 12 is such that the ring-shaped wavelength conversion member 12 has a radial width H along the circumferential direction of the disk-shaped transparent member 11. In addition, since the thickness D is uniform, it is constant, thereby making it possible to significantly reduce color unevenness and luminance unevenness (at all positions on the outer periphery of the ring-shaped wavelength conversion member 12). (Same chromaticity and same brightness)

図5(a),(b)は、本発明の光源装置の第2の構成例を示す図である。なお、図5(a)は全体の断面図、図5(b)は円板状の透明部材と該円板状の透明部材の外周を取り囲むように配置されているリング状の波長変換部材とを示す斜視図であり、図5(a),(b)において図4(a),(b)と同様の箇所には同じ符号を付している。   FIGS. 5A and 5B are diagrams showing a second configuration example of the light source device of the present invention. 5A is an overall cross-sectional view, and FIG. 5B is a disk-shaped transparent member and a ring-shaped wavelength conversion member disposed so as to surround the outer periphery of the disk-shaped transparent member. In FIGS. 5 (a) and 5 (b), the same parts as those in FIGS. 4 (a) and 4 (b) are denoted by the same reference numerals.

図5(a),(b)を参照すると、この光源装置20は、円板状の透明部材21と、
該円板状の透明部材21と同一の厚さDであって前記円板状の透明部材21の外周を取り囲むように配置され、前記円板状の透明部材21の円周方向に沿って半径方向の幅Hが均一となっているリング状の波長変換部材12と、
前記円板状の透明部材21と空間的に離れた位置にあり、紫外光から可視光までの波長領域のうちの所定の波長の光を励起光として発光して該励起光を前記円板状の透明部材21の中心部に入射させる固体光源15とを備えている。
Referring to FIGS. 5A and 5B, the light source device 20 includes a disk-shaped transparent member 21,
The disk-shaped transparent member 21 has the same thickness D and is disposed so as to surround the outer periphery of the disk-shaped transparent member 21, and has a radius along the circumferential direction of the disk-shaped transparent member 21. A ring-shaped wavelength conversion member 12 having a uniform width H in the direction;
The disc-shaped transparent member 21 is spatially separated, emits light having a predetermined wavelength in a wavelength region from ultraviolet light to visible light as excitation light, and the excitation light is emitted into the disc-like shape. And a solid light source 15 that is incident on the center of the transparent member 21.

ここで、この第2の構成例では、前記円板状の透明部材21の中心部には、固体光源15から入射した励起光を所定の角度で反射させる円錐状の切欠き23が設けられており(図5(a),(b)の例では、円板状の透明部材21の中心部において、固体光源15からの励起光の入射側とは反対の側に設けられており)、上記所定の角度は、固体光源15から入射した励起光を円板状の透明部材21およびリング状の波長変換部材12内で全反射させるように(全反射の条件を満たすように)反射する角度となっている。   Here, in the second configuration example, a conical cutout 23 that reflects the excitation light incident from the solid light source 15 at a predetermined angle is provided at the center of the disk-shaped transparent member 21. 5 (in the example of FIGS. 5A and 5B, it is provided on the opposite side of the incident side of the excitation light from the solid light source 15 in the central portion of the disc-shaped transparent member 21), The predetermined angle is an angle at which the excitation light incident from the solid light source 15 is reflected so as to be totally reflected within the disc-shaped transparent member 21 and the ring-shaped wavelength conversion member 12 (so as to satisfy the condition of total reflection). It has become.

また、前記リング状の波長変換部材12は、前記固体光源15から出射され、前記円板状の透明部材11を介して入射した励起光により励起され前記固体光源15の発光波長よりも長波長の蛍光を発光する少なくとも1種類の蛍光体を含んでいる。   The ring-shaped wavelength conversion member 12 is emitted from the solid light source 15 and is excited by the excitation light incident through the disk-shaped transparent member 11 and has a longer wavelength than the emission wavelength of the solid light source 15. It contains at least one phosphor that emits fluorescence.

なお、この第2の構成例においても、固体光源15からの励起光を円板状の透明部材21の中心部に導光させる導光部材16がさらに設けられている。   In the second configuration example, the light guide member 16 that guides the excitation light from the solid light source 15 to the center of the disk-shaped transparent member 21 is further provided.

このような構成の光源装置20では、固体光源15からの励起光は、導光部材16によって円板状の透明部材21の中心部に導かれる。円板状の透明部材21では、この中心部に入射した固体光源15からの励起光は、円錐状の切欠き23によって全反射され、円板状の透明部材21内部を反射(全反射)を繰り返しながら円周方向の角度によらずに半径方向に等方的に導光してリング状の波長変換部材12に入射する(このとき、円周方向の光の分布は均一となっている)。リング状の波長変換部材12では、励起光の一部が波長変換され、リング状の波長変換部材12からは、その外周部からのみ、波長変換された光(蛍光(例えば黄色光))と励起光(例えば青色光)との混色光(白色光)が出射される。この際、リング状の波長変換部材12における光(蛍光、励起光)の光路長は、リング状の波長変換部材12が円板状の透明部材11の円周方向に沿って半径方向の幅Hおよび厚さDが均一なものとなっていることから、一定であり、これにより、色ムラ・輝度ムラを著しく低減することができる(リング状の波長変換部材12の外周上の全ての位置において同じ色度・同じ明るさとなる)。   In the light source device 20 having such a configuration, the excitation light from the solid light source 15 is guided to the center of the disk-shaped transparent member 21 by the light guide member 16. In the disk-shaped transparent member 21, the excitation light from the solid light source 15 incident on the central portion is totally reflected by the conical cutout 23 and is reflected (totally reflected) inside the disk-shaped transparent member 21. While being repeated, the light isotropically guided in the radial direction regardless of the angle in the circumferential direction and is incident on the ring-shaped wavelength conversion member 12 (at this time, the distribution of light in the circumferential direction is uniform). . In the ring-shaped wavelength conversion member 12, a part of the excitation light is wavelength-converted, and from the ring-shaped wavelength conversion member 12, the wavelength-converted light (fluorescence (for example, yellow light)) and excitation are excited only from the outer periphery. Mixed color light (white light) with light (for example, blue light) is emitted. At this time, the optical path length of light (fluorescence, excitation light) in the ring-shaped wavelength conversion member 12 is such that the ring-shaped wavelength conversion member 12 has a radial width H along the circumferential direction of the disk-shaped transparent member 11. In addition, since the thickness D is uniform, it is constant, thereby making it possible to significantly reduce color unevenness and luminance unevenness (at all positions on the outer periphery of the ring-shaped wavelength conversion member 12). (Same chromaticity and same brightness)

なお、図5(a),(b)の例では設けられていないが、この第2の構成例においても、前記円板状の透明部材21および前記リング状の波長変換部材12には、前記円板状の透明部材21および前記リング状の波長変換部材12を厚さ方向上下から挟み込み、前記円板状の透明部材21および前記リング状の波長変換部材12を導光する光を反射する反射部材(第1の構成例の反射部材14に対応した反射部材)が設けられていても良い。   Although not provided in the examples of FIGS. 5A and 5B, the disk-shaped transparent member 21 and the ring-shaped wavelength conversion member 12 also have the above-described structure in the second configuration example. The disk-shaped transparent member 21 and the ring-shaped wavelength conversion member 12 are sandwiched from above and below in the thickness direction, and the light that reflects the light guided through the disk-shaped transparent member 21 and the ring-shaped wavelength conversion member 12 is reflected. A member (a reflecting member corresponding to the reflecting member 14 of the first configuration example) may be provided.

次に、図4(a),(b)の光源装置10、および、図5(a),(b)の光源装置20をより詳細に説明する。   Next, the light source device 10 shown in FIGS. 4A and 4B and the light source device 20 shown in FIGS. 5A and 5B will be described in more detail.

図4(a),(b)の光源装置10、図5(a),(b)の光源装置20において、固体光源(半導体発光素子)15には、紫外光から可視光領域に発光波長をもつ発光ダイオードや半導体レーザーなどが使用可能である。   In the light source device 10 of FIGS. 4A and 4B and the light source device 20 of FIGS. 5A and 5B, the solid-state light source (semiconductor light emitting element) 15 has a light emission wavelength from the ultraviolet light to the visible light region. A light emitting diode, a semiconductor laser, or the like can be used.

より具体的に、固体光源15には、例えば、InGaN系の材料を用いた発光波長が約380nmの近紫外光を発光する発光ダイオードや半導体レーザーなどを用いることができる。この場合、波長変換部材12の蛍光体としては、波長が約380nmないし約400nmの紫外光により励起されるものとして、例えば、赤色蛍光体には、CaAlSiN:Eu2+、CaSi:Eu2+、LaS:Eu3+、KSiF:Mn4+、 KTiF:Mn4+等を用いることができ、緑色蛍光体には、LuAl12:Ce3+、(Si,Al)(O,N):Eu2+、BaMgAl1017:Eu2+,Mn2+、(Ba,Sr)SiO:Eu2+等を用いることができ、青色蛍光体には、(Sr,Ca,Ba,Mg)10(POl2:Eu2+、BaMgAl1017:Eu2+、LaAl(Si,Al)(N,O)10:Ce3+等を用いることができる。 More specifically, the solid-state light source 15 may be, for example, a light emitting diode or semiconductor laser that emits near-ultraviolet light having an emission wavelength of about 380 nm using an InGaN-based material. In this case, the phosphor of the wavelength conversion member 12 is excited by ultraviolet light having a wavelength of about 380 nm to about 400 nm. For example, the red phosphor has CaAlSiN 3 : Eu 2+ , Ca 2 Si 5 N 8. : Eu 2+ , La 2 O 2 S: Eu 3+ , KSiF 6 : Mn 4+ , KTiF 6 : Mn 4+, etc. can be used, and for the green phosphor, Lu 3 Al 5 O 12 : Ce 3+ , (Si, Al) 6 (O, N) 8 : Eu 2+ , BaMgAl 10 O 17 : Eu 2+ , Mn 2+ , (Ba, Sr) 2 SiO 4 : Eu 2+, etc. can be used, and (Sr , Ca, Ba, Mg) 10 (PO 4) 6 C l2: Eu 2+, BaMgAl 10 O 17: Eu 2+, LaAl (Si, Al) 6 (N, O) 10 : Ce 3+ or the like can be used.

また、固体光源15には、例えば、GaN系の材料を用いた発光波長が約460nmの青色光を発光する発光ダイオードや半導体レーザーなどを用いることができる。この場合、波長変換部材12の蛍光体としては、波長が約440nmないし約470nmの青色光により励起されるものとして、例えば、赤色蛍光体には、CaAlSiN:Eu2+、CaSi:Eu2+、KSiF:Mn4+、KTiF:Mn4+等を用いることができ、緑色蛍光体には、LuAl12:Ce3+、Y(Ga,Al)12:Ce3+、CaScSi12:Ce3+、CaSc:Eu2+、(Ba,Sr)SiO:Eu2+、BaSi12:Eu2+、(Si,Al)(O,N):Eu2+等を用いることができる。また、波長が約440nmないし約470nmの青色光により励起されるものとして、例えば、YAl12:Ce3+ (YAG)、(Sr,Ba)SiO:Eu2+、Ca(Si,Al)12(O,N)16:Eu2+等の黄色蛍光体を用いることができる。 The solid-state light source 15 may be, for example, a light emitting diode or semiconductor laser that emits blue light having a light emission wavelength of about 460 nm using a GaN-based material. In this case, the phosphor of the wavelength conversion member 12 is excited by blue light having a wavelength of about 440 nm to about 470 nm. For example, the red phosphor includes CaAlSiN 3 : Eu 2+ , Ca 2 Si 5 N 8. : Eu 2+ , KSiF 6 : Mn 4+ , KTiF 6 : Mn 4+ and the like can be used, and for the green phosphor, Lu 3 Al 5 O 12 : Ce 3+ , Y 3 (Ga, Al) 5 O 12 : Ce 3+ , Ca 3 Sc 2 Si 3 O 12 : Ce 3+ , CaSc 2 O 4 : Eu 2+ , (Ba, Sr) 2 SiO 4 : Eu 2+ , Ba 3 Si 6 O 12 N 2 : Eu 2+ , (Si, Al ) 6 (O, N) 8 : Eu 2+ or the like can be used. Moreover, as what is excited by blue light with a wavelength of about 440 nm to about 470 nm, for example, Y 3 Al 5 O 12 : Ce 3+ (YAG), (Sr, Ba) 2 SiO 4 : Eu 2+ , Ca x (Si , Al) 12 (O, N) 16 : Eu 2+ or the like can be used.

波長変換部材12としては、これらの蛍光体粉末をガラスや樹脂中に分散させたものや、ガラス母体に発光中心イオンを添加したガラス蛍光体、樹脂などの結合部材を含まない蛍光体セラミックス等を用いることができるが、この中でも、蛍光体セラミックスを用いるのが望ましい。   Examples of the wavelength conversion member 12 include those obtained by dispersing these phosphor powders in glass or resin, glass phosphors obtained by adding luminescent center ions to a glass matrix, phosphor ceramics that do not include a binding member such as a resin, and the like. Among them, it is desirable to use phosphor ceramics.

ここで、青色励起の黄色発光蛍光体であるYAl12:Ce3+蛍光体を例に、透光性を有する蛍光体セラミックスの製造方法を説明する。蛍光体セラミックスは出発原料の混合工程、成形工程、焼成工程、加工工程を経て製造される。出発原料には、酸化イットリウムや酸化セリウムやアルミナ等、YAl12:Ce3+蛍光体の構成元素の酸化物や、焼成後に酸化物となる炭酸塩、硝酸塩、硫酸塩等を用いる。出発原料の粒径はサブミクロンサイズのものが望ましい。これらの原料を化学量論比となるように秤量する。このとき焼成後のセラミックスの透過率向上を目的として、カルシウムやシリコンなどの化合物を添加することも可能である。秤量した原料は、水もしくは有機溶剤を用い、湿式ボールミルにより十分に分散、混合を行う。次に混合物を所定の形状に成形する。成形方法としては、一軸加圧法、冷間静水圧法、スリップキャスティング法や射出成形法等を用いることができる。得られた成形体を1600〜1800℃で焼成する。これにより、透光性のYAl12:Ce3+蛍光体セラミックスを得ることができる。 Here, a method of manufacturing a phosphor ceramic having translucency will be described by taking as an example a Y 3 Al 5 O 12 : Ce 3+ phosphor which is a blue-excited yellow light-emitting phosphor. The phosphor ceramic is manufactured through a starting material mixing step, a forming step, a firing step, and a processing step. As starting materials, yttrium oxide, cerium oxide, alumina, and the like, oxides of constituent elements of Y 3 Al 5 O 12 : Ce 3+ phosphor, carbonates, nitrates, sulfates and the like that become oxides after firing are used. The particle size of the starting material is preferably a submicron size. These raw materials are weighed so as to have a stoichiometric ratio. At this time, for the purpose of improving the transmittance of the ceramic after firing, it is also possible to add a compound such as calcium or silicon. The weighed raw materials are sufficiently dispersed and mixed by a wet ball mill using water or an organic solvent. Next, the mixture is formed into a predetermined shape. As the molding method, a uniaxial pressing method, a cold isostatic pressing method, a slip casting method, an injection molding method, or the like can be used. The obtained molded body is fired at 1600 to 1800 ° C. Thus, translucent Y 3 Al 5 O 12: Ce 3+ phosphor ceramic can be obtained.

また、図4(a),(b)の光源装置10、図5(a),(b)の光源装置20において、円板状の透明部材11、21には、例えば、無色透明なセラミックスが用いられる。この場合、材料としてはアルミナ(Al)が好適であり、例えばアルミナ粉末を型に入れて加圧(100MPa程度)成形した後に焼成(2000℃で1時間程度)することで、無色透明なセラミックスを得ることができる。 Further, in the light source device 10 of FIGS. 4A and 4B and the light source device 20 of FIGS. 5A and 5B, the disk-like transparent members 11 and 21 are made of, for example, colorless and transparent ceramics. Used. In this case, alumina (Al 2 O 3 ) is suitable as a material. For example, alumina powder is put into a mold and pressed (about 100 MPa) and then fired (at 2000 ° C. for about 1 hour) to be colorless and transparent. Ceramics can be obtained.

なお、波長変換部材12、透明部材11、21にセラミックスを用いる理由は、耐熱性である。すなわち、固体光源15の光出力が大きくなると、波長変換部材12でのストークス損(発熱)が増大し、樹脂などの有機物では耐熱温度が低く、すぐに融解してしまう。従って、波長変換部材12、透明部材11、21としては、耐熱温度1000℃以上の無機物すなわちセラミックスのみで構成することが、好ましい。   The reason why ceramics are used for the wavelength conversion member 12 and the transparent members 11 and 21 is heat resistance. That is, when the light output of the solid light source 15 increases, the Stokes loss (heat generation) in the wavelength conversion member 12 increases, and an organic material such as a resin has a low heat resistant temperature and melts immediately. Therefore, it is preferable that the wavelength conversion member 12 and the transparent members 11 and 21 are composed only of an inorganic material having a heat resistant temperature of 1000 ° C. or higher, that is, ceramics.

また、図4(a),(b)の光源装置10において、円板状の透明部材(例えば、無色透明なセラミックス)11の中心部に設けられている光拡散領域13は、透明部材11に拡散材として例えば酸化亜鉛(ZnO)を5〜10%混合したり、焼成温度を下げて(1200〜1500℃程度にして)多結晶化させたりすることで、形成できる。   Further, in the light source device 10 of FIGS. 4A and 4B, the light diffusion region 13 provided at the center of the disk-shaped transparent member (for example, colorless and transparent ceramics) 11 is formed on the transparent member 11. For example, it can be formed by mixing 5 to 10% of zinc oxide (ZnO) as a diffusing material or polycrystallizing it by lowering the firing temperature (about 1200 to 1500 ° C.).

また、図4(a),(b)の光源装置10、図5(a),(b)の光源装置20において、円板状の透明部材11、21の半径Rは例えば1.0mm程度であり、波長変換部材12の幅Hは0.3〜0.5mm程度であり、円板状の透明部材11、21、波長変換部材12の厚さDは0.3〜0.5mm程度である。   Further, in the light source device 10 of FIGS. 4A and 4B and the light source device 20 of FIGS. 5A and 5B, the radius R of the disk-shaped transparent members 11 and 21 is, for example, about 1.0 mm. Yes, the width H of the wavelength conversion member 12 is about 0.3 to 0.5 mm, and the thickness D of the disk-shaped transparent members 11 and 21 and the wavelength conversion member 12 is about 0.3 to 0.5 mm. .

図6(a),(b),(c)、図7(a),(b),(c)は、円板状の透明部材11(21)、波長変換部材12の作製工程例を示す図である。図6(a),(b),(c)、図7(a),(b),(c)を参照すると、先ず、無色透明なセラミックスの丸棒11(21)を芯として用いる(図6(a))。この例では、直径2mm×長さ20mmの丸棒11(21)を芯材料として用いた。芯材料としてはアルミナ(Al)が好適である。無色透明なセラミックスの丸棒の成形方法は種々あるが、例えばアルミナ粉末を型に入れて加圧(100MPa程度)成形した後に焼成(2000℃で1時間程度)し、ダイヤモンド砥石等を用いて所望の寸法に削りだす方法がある。なお、図4(a),(b)の光源装置10では、円板状の透明部材11の中心部に光拡散領域13が設けるため、この部分に拡散材を混合したり、焼成温度を下げて(1200〜1500℃程度にして)多結晶化させたりする必要がある。 6 (a), (b), (c), and FIGS. 7 (a), (b), (c) show examples of manufacturing steps of the disk-shaped transparent member 11 (21) and the wavelength conversion member 12. FIG. FIG. 6 (a), (b), (c) and FIGS. 7 (a), (b), (c), first, a colorless and transparent ceramic round bar 11 (21) is used as a core (FIG. 6 (a)). In this example, a round bar 11 (21) having a diameter of 2 mm and a length of 20 mm was used as the core material. Alumina (Al 2 O 3 ) is suitable as the core material. There are various methods for forming colorless and transparent ceramic round bars. For example, alumina powder is put into a mold and pressed (about 100 MPa), then fired (at about 2000 ° C. for about 1 hour), and desired using a diamond grindstone or the like. There is a method of cutting to the size of. 4A and 4B, since the light diffusion region 13 is provided at the center of the disc-shaped transparent member 11, a diffusing material is mixed in this portion or the firing temperature is lowered. (By about 1200 to 1500 ° C.).

次に、丸棒11(21)の周囲にYAl12:Ce3+蛍光体(YAG蛍光体)などの波長変換セラミックス(蛍光セラミックス)を付着させて、さらに焼成する。前工程と同様に、波長変換セラミックスの粉末を丸棒11(21)と一緒に型に入れて加圧(200MPa程度)成形し、焼結(1700℃で1時間程度)することで一体化させる。この時、丸棒11(21)は、波長変換セラミックスの略中心に来るように、かつ両端を1〜2mm程度残しておく。焼結後の波長変換セラミックス(蛍光セラミックス)12の状態は、表面が凸凹している(図6(b))。 Next, wavelength conversion ceramics (fluorescent ceramics) such as Y 3 Al 5 O 12 : Ce 3+ phosphor (YAG phosphor) are attached to the periphery of the round bar 11 (21), and further fired. As in the previous step, the wavelength conversion ceramic powder is put together with the round bar 11 (21) into a mold, pressed (about 200 MPa), and sintered (at 1700 ° C. for about 1 hour) to be integrated. . At this time, the round bar 11 (21) is left approximately 1 to 2 mm at both ends so as to be approximately at the center of the wavelength conversion ceramic. As for the state of the wavelength conversion ceramics (fluorescent ceramics) 12 after sintering, the surface is uneven (FIG. 6B).

続いて、丸棒11(21)を中心に高速回転させる。前工程で残しておいた両端の部分をチャックし、旋盤の要領で波長変換セラミックス(蛍光セラミックス)12の部分を、ダイヤモンド粉末等でコーティングされたバイト30を用いて均一な厚さ(0.3〜0.5mm・外径:2.6〜3.0mm)となるように削り出す(図6(c))。この工程によって、全周にわたって半径が一定という要件がクリアされる(図7(a))。   Subsequently, the round bar 11 (21) is rotated at a high speed. The both end portions left in the previous process are chucked, and the portion of the wavelength conversion ceramics (fluorescent ceramics) 12 is turned into a uniform thickness (0.3 by using a cutting tool 30 coated with diamond powder or the like in the manner of a lathe. To 0.5 mm and outer diameter: 2.6 to 3.0 mm) (FIG. 6C). By this step, the requirement that the radius is constant over the entire circumference is cleared (FIG. 7A).

最後に、円柱の断面(円)方向に等間隔(0.3〜0.5mm程度の間隔)で、ダイヤモンドリングカッター等を用いてスライスする(図7(b))。これにより、円板状の複合セラミックス(円板状の透明部材11(21)および波長変換部材12)が出来上がる(図7(c))。必要に応じて、断面を更に研磨して薄型化しても良い。   Finally, it slices using a diamond ring cutter etc. at equal intervals (interval of about 0.3-0.5 mm) in the cross-section (circle) direction of a cylinder (FIG.7 (b)). Thereby, disk-shaped composite ceramics (disk-shaped transparent member 11 (21) and wavelength conversion member 12) are completed (FIG.7 (c)). If necessary, the cross section may be further polished to reduce the thickness.

図8は上述した本発明の光源装置10(20)を用いた照明装置の一例を示す図である。図8の照明装置では、円板状の透明部材11(21)およびリング状の波長変換部材12を、回転放物面の反射鏡41の焦点位置に設置する。固体光源15からの励起光(例えば青色光)は、円板状の透明部材11(21)およびリング状の波長変換部材12を導光し、リング状の波長変換部材12において一部が蛍光(例えば黄色光)に変換され、リング状の波長変換部材12から均一な光(例えば、励起光(青色光)と蛍光(黄色光)との混色光としての白色光)として、回転放物面の反射鏡41へと放出され、回転放物面の反射鏡41によって平行光線となり、反射鏡41の開口部から出射する。これにより均一な白色照明光を得ることができる。   FIG. 8 is a view showing an example of an illumination device using the above-described light source device 10 (20) of the present invention. In the illuminating device of FIG. 8, the disc-shaped transparent member 11 (21) and the ring-shaped wavelength converting member 12 are installed at the focal position of the reflecting mirror 41 on the paraboloid of revolution. Excitation light (for example, blue light) from the solid light source 15 guides the disk-shaped transparent member 11 (21) and the ring-shaped wavelength conversion member 12, and a part of the ring-shaped wavelength conversion member 12 is fluorescent ( For example, it is converted into yellow light), and uniform light (for example, white light as mixed light of excitation light (blue light) and fluorescence (yellow light)) from the ring-shaped wavelength conversion member 12 is used as a rotating paraboloid. The light is emitted to the reflecting mirror 41, becomes a parallel light beam by the rotating paraboloid reflecting mirror 41, and is emitted from the opening of the reflecting mirror 41. Thereby, uniform white illumination light can be obtained.

なお、図8の例では、回転放物面の反射鏡41を用いたが、目的とする配光設計に応じて、反射鏡だけでなくレンズ系も自由に組み合わせることができる。   In the example of FIG. 8, the rotating paraboloid reflecting mirror 41 is used. However, not only the reflecting mirror but also a lens system can be freely combined depending on the intended light distribution design.

上述した図4(a),(b)の光源装置10、図5(a),(b)の光源装置20では、固体光源15からの励起光を円板状の透明部材21の中心部に導光させる導光部材16が設けられているが、固体光源15が半導体レーザー(レーザーダイオード)のようにコヒーレント性の強いものなどである場合には、図9の構成例のように(なお、図9は図5に対応したものとなっている)、導光部材16は必ずしも設けられなくても良い。すなわち、固体光源15が半導体レーザー(レーザーダイオード)のようにコヒーレント性の強いものなどである場合には、導光部材16が設けられていなくても、固体光源15から出た光は、優れた直進性によって円板状の透明部材21の中心部に達するからである。   In the light source device 10 shown in FIGS. 4A and 4B and the light source device 20 shown in FIGS. 5A and 5B, the excitation light from the solid light source 15 is applied to the central portion of the disc-shaped transparent member 21. Although the light guide member 16 for guiding light is provided, when the solid light source 15 is a highly coherent one such as a semiconductor laser (laser diode), as in the configuration example of FIG. FIG. 9 corresponds to FIG. 5), and the light guide member 16 is not necessarily provided. That is, when the solid light source 15 is a highly coherent one such as a semiconductor laser (laser diode), the light emitted from the solid light source 15 is excellent even if the light guide member 16 is not provided. This is because the central part of the disk-shaped transparent member 21 is reached by straightness.

また、上述した図4(a),(b)の光源装置10では、円板状の透明部材11およびリング状の波長変換部材12には、前記円板状の透明部材11および前記リング状の波長変換部材12を厚さ方向上下から挟み込み、前記円板状の透明部材11および前記リング状の波長変換部材12を導光する光を反射する反射部材14が設けられているが、図10に示すように、この反射部材14を半径方向にさらに大きなものとし、リング状の波長変換部材12からはみ出すように設けても良い。同様に、図5(a),(b)の光源装置20に同様の反射部材を設ける場合にも、この反射部材を半径方向にさらに大きなものとし、リング状の波長変換部材12からはみ出すように設けても良い。   In the light source device 10 shown in FIGS. 4A and 4B described above, the disk-shaped transparent member 11 and the ring-shaped wavelength conversion member 12 include the disk-shaped transparent member 11 and the ring-shaped transparent member 11. The wavelength conversion member 12 is sandwiched from above and below in the thickness direction, and the disk-shaped transparent member 11 and the reflection member 14 for reflecting the light that guides the ring-shaped wavelength conversion member 12 are provided. As shown, the reflecting member 14 may be made larger in the radial direction so as to protrude from the ring-shaped wavelength conversion member 12. Similarly, when a similar reflecting member is provided in the light source device 20 of FIGS. 5A and 5B, the reflecting member is made larger in the radial direction so as to protrude from the ring-shaped wavelength conversion member 12. It may be provided.

上述したように、本発明は、リング状の波長変換部材12における光(蛍光、励起光)の光路長を一定のものにすることができ、これにより、色ムラ・輝度ムラを著しく低減することができる(リング状の波長変換部材12の外周上の全ての位置において同じ色度・同じ明るさとなる)ので、特に、車両用灯具のように光学系を用いて特定の配光パターンを照射・投影する用途などに有用である。すなわち、車両用灯具のように光学系を用いて特定の配光パターンを照射・投影する用途などの場合は、光路長は正確に一定でなければならず、この種の用途などに本発明は有用である。   As described above, the present invention can make the optical path length of the light (fluorescence, excitation light) in the ring-shaped wavelength conversion member 12 constant, thereby significantly reducing color unevenness and luminance unevenness. (The same chromaticity and the same brightness are obtained at all positions on the outer periphery of the ring-shaped wavelength conversion member 12), and in particular, a specific light distribution pattern is irradiated using an optical system like a vehicular lamp. This is useful for applications such as projection. That is, in the case of an application such as a vehicular lamp where an optical system is used to irradiate and project a specific light distribution pattern, the optical path length must be exactly constant, and the present invention is applicable to this kind of application. Useful.

本発明は、照明一般などに利用可能である。   The present invention can be used for lighting in general.

10、20 光源装置
11、21 円板状の透明部材
12 リング状の波長変換部材
13 光拡散領域
14 反射部材
15 固体光源
16 導光部材
23 円錐状の切欠き
41 回転放物面の反射鏡
DESCRIPTION OF SYMBOLS 10, 20 Light source device 11, 21 Disc-shaped transparent member 12 Ring-shaped wavelength conversion member 13 Light diffusion region 14 Reflective member 15 Solid light source 16 Light guide member 23 Conical notch 41 Reflective mirror of rotating paraboloid

Claims (5)

円板状の透明部材と、
該円板状の透明部材と同一の厚さであって前記円板状の透明部材の外周を取り囲むように配置され、前記円板状の透明部材の円周方向に沿って半径方向の幅が均一となっているリング状の波長変換部材と、
前記円板状の透明部材と空間的に離れた位置にあり、紫外光から可視光までの波長領域のうちの所定の波長の光を励起光として発光して該励起光を前記円板状の透明部材の中心部に入射させる固体光源とを備え、
前記円板状の透明部材の中心部には、前記固体光源から入射した励起光を拡散させる光拡散領域が設けられ、
前記円板状の透明部材および前記リング状の波長変換部材には、前記円板状の透明部材および前記リング状の波長変換部材を厚さ方向上下から挟み込み、前記円板状の透明部材および前記リング状の波長変換部材を導光する光を反射する反射部材が設けられており、
前記リング状の波長変換部材は、前記固体光源から出射され、前記円板状の透明部材を介して入射した励起光により励起され前記固体光源の発光波長よりも長波長の蛍光を発光する少なくとも1種類の蛍光体を含んでいることを特徴とする光源装置。
A disc-shaped transparent member;
The disk-shaped transparent member has the same thickness and is disposed so as to surround the outer periphery of the disk-shaped transparent member, and has a radial width along the circumferential direction of the disk-shaped transparent member. A ring-shaped wavelength conversion member that is uniform;
Located at a position spatially separated from the disk-shaped transparent member, emits light having a predetermined wavelength in a wavelength region from ultraviolet light to visible light as excitation light, and emits the excitation light to the disk-shaped transparent member. A solid light source incident on the center of the transparent member,
A light diffusion region for diffusing excitation light incident from the solid light source is provided at the center of the disc-shaped transparent member,
The disk-shaped transparent member and the ring-shaped wavelength conversion member are sandwiched between the disk-shaped transparent member and the ring-shaped wavelength conversion member from above and below in the thickness direction, and the disk-shaped transparent member and the A reflection member that reflects light that guides the ring-shaped wavelength conversion member is provided,
The ring-shaped wavelength converting member emits fluorescence having a wavelength longer than the emission wavelength of the solid light source by being excited by excitation light emitted from the solid light source and incident through the disk-shaped transparent member. A light source device comprising a kind of phosphor.
円板状の透明部材と、
該円板状の透明部材と同一の厚さであって前記円板状の透明部材の外周を取り囲むように配置され、前記円板状の透明部材の円周方向に沿って半径方向の幅が均一となっているリング状の波長変換部材と、
前記円板状の透明部材と空間的に離れた位置にあり、紫外光から可視光までの波長領域のうちの所定の波長の光を励起光として発光して該励起光を前記円板状の透明部材の中心部に入射させる固体光源とを備え、
前記円板状の透明部材の中心部には、固体光源から入射した励起光を所定の角度で反射させる円錐状の切欠きが設けられており、
前記リング状の波長変換部材は、前記固体光源から出射され、前記円板状の透明部材を介して入射した励起光により励起され前記固体光源の発光波長よりも長波長の蛍光を発光する少なくとも1種類の蛍光体を含んでいることを特徴とする光源装置。
A disc-shaped transparent member;
The disk-shaped transparent member has the same thickness and is disposed so as to surround the outer periphery of the disk-shaped transparent member, and has a radial width along the circumferential direction of the disk-shaped transparent member. A ring-shaped wavelength conversion member that is uniform;
Located at a position spatially separated from the disk-shaped transparent member, emits light having a predetermined wavelength in a wavelength region from ultraviolet light to visible light as excitation light, and emits the excitation light to the disk-shaped transparent member. A solid light source incident on the center of the transparent member,
A conical notch that reflects excitation light incident from a solid light source at a predetermined angle is provided at the center of the disk-shaped transparent member,
The ring-shaped wavelength converting member emits fluorescence having a wavelength longer than the emission wavelength of the solid light source by being excited by excitation light emitted from the solid light source and incident through the disk-shaped transparent member. A light source device comprising a kind of phosphor.
請求項2記載の光源装置において、前記円板状の透明部材および前記リング状の波長変換部材には、前記円板状の透明部材および前記リング状の波長変換部材を厚さ方向上下から挟み込み、前記円板状の透明部材および前記リング状の波長変換部材を導光する光を反射する反射部材が設けられていることを特徴とする光源装置。 The light source device according to claim 2, wherein the disk-shaped transparent member and the ring-shaped wavelength conversion member are sandwiched between the disk-shaped transparent member and the ring-shaped wavelength conversion member from above and below in the thickness direction, A light source device comprising a reflective member that reflects light guided through the disk-shaped transparent member and the ring-shaped wavelength conversion member. 請求項1乃至請求項3のいずれか一項に記載の光源装置において、固体光源からの励起光を前記円板状の透明部材の中心部に導光させる導光部材がさらに設けられていることを特徴とする光源装置。 The light source device according to any one of claims 1 to 3, further comprising a light guide member that guides excitation light from a solid light source to a central portion of the disc-shaped transparent member. A light source device characterized by the above. 請求項1乃至請求項4のいずれか一項に記載の光源装置が用いられていることを特徴とする照明装置。 An illumination device, wherein the light source device according to any one of claims 1 to 4 is used.
JP2012032871A 2012-02-17 2012-02-17 Light source device, and lighting device Pending JP2013171623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012032871A JP2013171623A (en) 2012-02-17 2012-02-17 Light source device, and lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012032871A JP2013171623A (en) 2012-02-17 2012-02-17 Light source device, and lighting device

Publications (1)

Publication Number Publication Date
JP2013171623A true JP2013171623A (en) 2013-09-02

Family

ID=49265468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012032871A Pending JP2013171623A (en) 2012-02-17 2012-02-17 Light source device, and lighting device

Country Status (1)

Country Link
JP (1) JP2013171623A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6508580B1 (en) * 2017-07-25 2019-05-08 大日本印刷株式会社 Lighting device
US10705280B2 (en) 2018-11-28 2020-07-07 Sharp Kabushiki Kaisha Light source module and light source device
CN113302430A (en) * 2019-01-24 2021-08-24 松下知识产权经营株式会社 Lighting device
US11725803B2 (en) 2020-02-11 2023-08-15 Signify Holding B.V. Compact laser-based light generating device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024561A (en) * 2004-07-07 2006-01-26 Shogen Koden Kofun Yugenkoshi Backlight module having independent light source
WO2006038502A1 (en) * 2004-10-01 2006-04-13 Nichia Corporation Light-emitting device
JP2007220326A (en) * 2006-02-14 2007-08-30 Nichia Chem Ind Ltd Light-emitting device
JP2008004419A (en) * 2006-06-23 2008-01-10 Nichia Chem Ind Ltd Light emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024561A (en) * 2004-07-07 2006-01-26 Shogen Koden Kofun Yugenkoshi Backlight module having independent light source
WO2006038502A1 (en) * 2004-10-01 2006-04-13 Nichia Corporation Light-emitting device
JP2007220326A (en) * 2006-02-14 2007-08-30 Nichia Chem Ind Ltd Light-emitting device
JP2008004419A (en) * 2006-06-23 2008-01-10 Nichia Chem Ind Ltd Light emitting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6508580B1 (en) * 2017-07-25 2019-05-08 大日本印刷株式会社 Lighting device
US10705280B2 (en) 2018-11-28 2020-07-07 Sharp Kabushiki Kaisha Light source module and light source device
CN113302430A (en) * 2019-01-24 2021-08-24 松下知识产权经营株式会社 Lighting device
US11725803B2 (en) 2020-02-11 2023-08-15 Signify Holding B.V. Compact laser-based light generating device

Similar Documents

Publication Publication Date Title
US11028979B2 (en) Lighting source using solid state emitter and phosphor materials
EP2803898B1 (en) A light-emitting apparatus
US8872208B2 (en) Light source device and lighting device
TWI392112B (en) Led lighting arrangement including light emitting phosphor
US20100301353A1 (en) Led lighting device having a conversion reflector
JP5611690B2 (en) Light source device, color adjustment method, lighting device
US9671089B2 (en) Conversion element and illuminant
JP5709463B2 (en) Light source device and lighting device
JP2012089316A (en) Light source device, and lighting system
JP5917183B2 (en) Light source device and lighting device
JP2013171623A (en) Light source device, and lighting device
JP2012182009A (en) Lighting device
CN113396201A (en) Wavelength conversion element, light source device, vehicle headlamp, transmission type illumination device, display device, and illumination device
JP5975692B2 (en) Light source device and lighting device
JP2012243617A (en) Light source device and lighting device
JP5766521B2 (en) Lighting device
JP2013161561A (en) Light source device and lighting device
JP5629559B2 (en) Light source device and lighting device
JP5285795B1 (en) Lighting module
JP2012119121A (en) Light source device and lighting system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160223