JP2013166982A - Method for producing functionally gradient material by using both sintering method and casting method - Google Patents

Method for producing functionally gradient material by using both sintering method and casting method Download PDF

Info

Publication number
JP2013166982A
JP2013166982A JP2012030069A JP2012030069A JP2013166982A JP 2013166982 A JP2013166982 A JP 2013166982A JP 2012030069 A JP2012030069 A JP 2012030069A JP 2012030069 A JP2012030069 A JP 2012030069A JP 2013166982 A JP2013166982 A JP 2013166982A
Authority
JP
Japan
Prior art keywords
base metal
casting
fine particles
powder
reinforcing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012030069A
Other languages
Japanese (ja)
Inventor
Takahiro Kunimine
崇裕 國峯
Yoshimi Watanabe
義見 渡辺
Takashi Sato
尚 佐藤
Masafumi Shibuya
将史 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2012030069A priority Critical patent/JP2013166982A/en
Publication of JP2013166982A publication Critical patent/JP2013166982A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a functionally gradient material in which a base metal and very fine particles of reinforcing material are integrally molded by using both sintering method and casting method.SOLUTION: A compact is produced by mixing base metal powders with very fine particle powders of reinforcing material to produce mixed powders of them, and by performing centrifugal sintering after injecting the mixed powders into a cylindrically-shaped die. A functionally gradient material in which the base metal and the very fine particles of reinforcing material are integrally molded is produced by putting the produced compact into a casting mold after being pulled out of the cylindrically-shaped die, and by casting the melted base metal which is melted in a melting furnace for casting into the casting mold. Alternatively, the compact is produced by mixing the base metal powders with the very fine particle powders of reinforcing material to produce the mixed powders of them, and by performing centrifugal sintering after injecting the mixed powders into the cylindrically-shaped die. The functionally gradient material in which the base metal and the very fine particles of reinforcing material are integrally molded is produced by casting the melted base metal which is melted in the melting furnace for casting into the cylindrically-shaped die.

Description

本発明は、焼結法と鋳造法とを併用することにより、母材金属と強化材微細粒子とが一体成形された傾斜機能材料を製造する方法に関するものである。   The present invention relates to a method for producing a functionally gradient material in which a base metal and reinforcing material fine particles are integrally formed by using a sintering method and a casting method in combination.

傾斜機能材料とは、組成や組織が異なる複数の素材が材料中に傾斜分散され、それらが一体的に形成された材料のことである。傾斜機能材料の製造技術は、素材と製造する製品の大きさの組み合わせにより多種多岐にわたる。   The functionally gradient material is a material in which a plurality of materials having different compositions and structures are dispersed in the material and are integrally formed. The manufacturing technology of functionally gradient materials varies widely depending on the combination of the material and the size of the product to be manufactured.

母材金属中に強化材微細粒子を傾斜分散させ、かつ比較的大きな製品を製造する方法として、特許文献1や非特許文献1に示されている遠心力混合粉末法がある。この製造方法では、まず母材金属粉末と複合化させたい強化材微細粒子粉末とを混合して混合粉末1を作製する。そして該混合粉末1を円筒形状金型2に投入した後に、前記円筒形状金型2を回転させることによって該混合粉末1に遠心力を作用させ、必要に応じて前記円筒形状金型2の予備加熱を行う(図1)。そして湯道3を通じて回転中の前記円筒形状金型2へ鋳造用溶解炉で溶解された母材溶融金属4を流し込むことによって(図2)、強化材微細粒子が母材金属に強固に固定され、かつ母材金属中に均一あるいは傾斜分散された傾斜機能材料を製造する。   As a method for producing a relatively large product by tilting and dispersing reinforcing material fine particles in a base metal, there are centrifugal force mixed powder methods shown in Patent Document 1 and Non-Patent Document 1. In this manufacturing method, first, a mixed powder 1 is prepared by mixing a base metal powder and a reinforcing fine particle powder to be combined. After the mixed powder 1 is put into the cylindrical mold 2, the cylindrical mold 2 is rotated so that a centrifugal force is applied to the mixed powder 1, and the cylindrical mold 2 is spared as necessary. Heating is performed (FIG. 1). Then, by pouring the base metal molten metal 4 melted in the casting melting furnace into the rotating cylindrical mold 2 through the runner 3 (FIG. 2), the reinforcing material fine particles are firmly fixed to the base metal. In addition, a functionally graded material that is uniform or graded and dispersed in the base metal is manufactured.

しかしながら遠心力混合粉末法では、前記の回転中の円筒形状金型2へ鋳造用溶解炉で溶解された母材溶融金属4を流し込む過程において、流し込んだ該母材溶融金属4により一部の混合粉末1の湯流れが生じるため、前記円筒形状金型2の円の中心から半径方向に対して強化材微粒子が傾斜分散され、かつ該円筒形状金型2の半径方向と垂直な該円筒形状金型2の幅方向に対して材料全体が均一な製品を製造することに困難を伴うことがある。   However, in the centrifugal mixed powder method, in the process of pouring the base metal molten metal 4 melted in the casting melting furnace into the rotating cylindrical mold 2, a part of the mixed base metal molten metal 4 is mixed. Since the hot water flow of the powder 1 occurs, the reinforcing material fine particles are inclined and dispersed in the radial direction from the center of the circle of the cylindrical mold 2 and the cylindrical mold 2 is perpendicular to the radial direction of the cylindrical mold 2. It may be difficult to produce a product with the entire material uniform in the width direction of the mold 2.

特開2008-284589号公報JP 2008-284589 A

Yoshimi Watanabe, Yoshifumi Inaguma, Hisashi Sato and Eri Miura-Fujiwara; Materials, 2 (2009) 2510-2525.Yoshimi Watanabe, Yoshifumi Inaguma, Hisashi Sato and Eri Miura-Fujiwara; Materials, 2 (2009) 2510-2525.

本発明は上記点に鑑みて、遠心力混合粉末法による傾斜機能材料製造プロセスにおいて、回転中の円筒形状金型2へ鋳造用溶解炉で溶解された母材溶融金属4を流し込む際に、流し込んだ該母材溶融金属4により一部の混合粉末1の湯流れが生じるため、前記円筒形状金型2の円の中心から半径方向に対して強化材微細粒子が傾斜分散され、かつ前記円筒形状金型2の円の半径方向と垂直な該円筒形状金型2の幅方向に対して材料全体が均一な製品を製造することが困難である点を解決することを目的とする。   In view of the above points, the present invention, in the functionally gradient material manufacturing process using the centrifugal force mixed powder method, poured the molten base metal 4 melted in the melting furnace for casting into the rotating cylindrical mold 2. However, since a molten metal flow of a part of the mixed powder 1 is generated by the base metal molten metal 4, the reinforcing material fine particles are inclined and dispersed in the radial direction from the center of the circle of the cylindrical mold 2, and the cylindrical shape The object is to solve the point that it is difficult to manufacture a product having a uniform material as a whole in the width direction of the cylindrical mold 2 perpendicular to the radial direction of the circle of the mold 2.

上記目的を達成するため、請求項1および請求項2に記載の発明では、焼結法と鋳造法とを併用することによって、母材金属と強化材微細粒子とが一体成形された傾斜機能材料を製造する。   In order to achieve the above object, in the inventions according to claim 1 and claim 2, the functionally gradient material in which the base metal and the reinforcing material fine particles are integrally formed by using the sintering method and the casting method together. Manufacturing.

請求項1に記載の発明における製造方法では、まず母材金属粉末および強化材微細粒子粉末を混合することにより混合粉末5を作製し、該混合粉末5を円筒形状金型6に投入した後に、回転軸7まわりに該円筒形状金型6を回転させる。そして加熱器8により該円筒形状金型6を加熱することによって、該混合粉末5を遠心焼結することにより、成形体9を製造する(図3)。   In the manufacturing method according to the first aspect of the invention, first, the mixed powder 5 is prepared by mixing the base metal powder and the reinforcing fine particle powder, and after the mixed powder 5 is put into the cylindrical mold 6, The cylindrical mold 6 is rotated around the rotation shaft 7. Then, the cylindrical mold 6 is heated by a heater 8 to centrifugally sinter the mixed powder 5 to produce a molded body 9 (FIG. 3).

そして製造した前記成形体9を前記円筒形状金型6から取り出した後に鋳造用鋳型に入れ、該鋳造用鋳型に鋳造用溶解炉で溶解された母材溶融金属を流し込むことにより、母材金属と強化材微細粒子とが一体成形され、かつ断面円の中心から半径方向に対して母材金属中に強化材微細粒子が傾斜分散、または断面円の外周部に強化材微細粒子が分散された傾斜機能材料を製造する。該製造工程(図4)を特徴とする焼結法と鋳造法とを併用した傾斜機能材料の製造方法、すなわち遠心焼結鋳造法を本発明の技術的手段とする。   The produced molded body 9 is taken out from the cylindrical mold 6 and then placed in a casting mold, and the molten metal melted in the casting melting furnace is poured into the casting mold, thereby forming the base metal and Reinforcement material fine particles are integrally molded, and the reinforcement material fine particles are inclined and dispersed in the base metal with respect to the radial direction from the center of the cross-sectional circle, or the reinforcement fine particles are dispersed on the outer periphery of the cross-sectional circle. Manufacture functional materials. The manufacturing method of the functionally gradient material using the sintering method and the casting method characterized by the manufacturing process (FIG. 4), that is, the centrifugal sintering casting method is used as the technical means of the present invention.

請求項2に記載の発明における製造方法では、まず母材金属粉末および強化材微細粒子粉末を混合することにより混合粉末5を作製し、該混合粉末5を円筒形状金型6に投入した後に、回転軸7まわりに該円筒形状金型6を回転させる。そして加熱器8により該円筒形状金型6を加熱することによって、該混合粉末5を遠心焼結することにより、成形体9を製造する(図3)。   In the manufacturing method according to the second aspect of the present invention, first, the mixed powder 5 is prepared by mixing the base metal powder and the reinforcing fine particle powder, and after the mixed powder 5 is put into the cylindrical mold 6, The cylindrical mold 6 is rotated around the rotation shaft 7. Then, the cylindrical mold 6 is heated by a heater 8 to centrifugally sinter the mixed powder 5 to produce a molded body 9 (FIG. 3).

そして鋳造用溶解炉で溶解された母材溶融金属を該円筒形状金型6に流し込むことにより、母材金属と強化材微細粒子とが一体成形され、かつ断面円の中心から半径方向に対して母材金属中に強化材微細粒子が傾斜分散、または断面円の外周部に強化材微細粒子が分散された傾斜機能材料を製造する。該製造工程(図4)を特徴とする焼結法と鋳造法とを併用した傾斜機能材料の製造方法、すなわち遠心焼結鋳造法を本発明の技術的手段とする。   Then, the base metal molten metal melted in the casting melting furnace is poured into the cylindrical mold 6 so that the base metal and the reinforcing material fine particles are integrally formed, and from the center of the cross-sectional circle to the radial direction. A functionally graded material is produced in which fine particles of reinforcing material are inclined and dispersed in a base metal, or fine particles of reinforcing material are dispersed in the outer periphery of a cross-sectional circle. The manufacturing method of the functionally gradient material using the sintering method and the casting method characterized by the manufacturing process (FIG. 4), that is, the centrifugal sintering casting method is used as the technical means of the present invention.

また請求項1および請求項2において記述されている該円筒形状金型6の形状は、上記実施例に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用可能である。例えば、三角柱、四角柱および多角柱などその他複雑な形状のものにも適用可能である。   Further, the shape of the cylindrical mold 6 described in claims 1 and 2 is not limited to the above-described embodiment, and can be appropriately changed and applied without departing from the gist thereof. For example, the present invention can be applied to other complicated shapes such as a triangular prism, a quadrangular prism, and a polygonal prism.

さらに請求項1および請求項2において記述されている該母材金属粉末と該母材溶融金属は、同一の種類の金属や合金である必要は無く、例えば、母材金属粉末が銅合金、母材溶融金属が銅といった様に、その他すべての金属および合金の組み合わせにおいても適用可能である。   Further, the base metal powder and the base metal molten metal described in claim 1 and claim 2 do not have to be the same type of metal or alloy. For example, the base metal powder is a copper alloy, The present invention can be applied to all other metal and alloy combinations such as copper as a molten metal.

請求項1および請求項2において記述されている遠心焼結鋳造法によって製造された傾斜機能材料は、例えば母材金属を銅、強化材微細粒子をダイヤモンド微細粒子とすることで、断面円の外周部に砥粒であるダイヤモンド微細粒子が分散した銅基ダイヤモンド傾斜機能砥石等として産業への応用が期待できる。   The functionally gradient material manufactured by the centrifugal sintering casting method described in claim 1 and claim 2 is, for example, an outer periphery of a cross-sectional circle by using copper as a base metal and diamond fine particles as reinforcing material fine particles. Application to industry can be expected as a copper-based diamond functionally graded grindstone or the like in which fine diamond particles, which are abrasive grains, are dispersed.

本発明の背景技術である遠心力混合粉末法における母材金属粉末と強化材微細粒子粉末の混合粉末1を回転中の円筒形状金型2に投入する方法を模式的に描いた図である。It is the figure which drawn typically the method of throwing into the rotating cylindrical-shaped metal mold | die 2 the mixed powder 1 of the base material metal powder and the reinforcing material fine particle powder in the centrifugal force mixed powder method which is the background art of the present invention. 本発明の背景技術である遠心力混合粉末法における母材溶融金属4を回転中の円筒形状金型2に流し込む方法を模式的に描いた図である。It is the figure which drawn typically the method of pouring the base metal molten metal 4 in the rotating cylindrical metal mold | die 2 in the centrifugal force mixed powder method which is background art of this invention. 本発明において課題を解決するための手段として行われる、成形体9製造工程を模式的に描いた図である。It is the figure which drawn typically the manufacturing process of the molded object 9 performed as a means for solving a problem in this invention. 本発明において課題を解決するための手段として行われる傾斜機能材料製造法の工程表を示した図である。It is the figure which showed the process chart of the functional gradient material manufacturing method performed as a means for solving a problem in this invention. 本発明の第1実施形態における遠心焼結によって製造したAl-15mass%Si合金(母材金属)とダイヤモンド微細粒子(強化材微細粒子)から構成される成形体である。It is the molded object comprised from the Al-15mass% Si alloy (base metal) manufactured by the centrifugal sintering in 1st Embodiment of this invention, and a diamond fine particle (reinforcement material fine particle). 本発明の第1実施形態における遠心焼結鋳造法によって製造した断面円の外周部にダイヤモンド微細粒子(強化材微細粒子)が分散されたアルミニウム基ダイヤモンド傾斜機能材料の断面写真である。It is a cross-sectional photograph of the aluminum-based diamond functionally gradient material in which diamond fine particles (strengthening material fine particles) are dispersed in the outer periphery of the cross-sectional circle manufactured by the centrifugal sintering casting method according to the first embodiment of the present invention. 本発明の第1実施形態における遠心焼結鋳造法により製造したアルミニウム基ダイヤモンド傾斜機能材料の断面円外周部におけるダイヤモンド微細粒子(強化材微細粒子)とアルミニウム母材金属から構成される微細組織の様子を示した走査型電子顕微鏡像である。The state of the microstructure composed of diamond fine particles (strengthening material fine particles) and aluminum base metal at the outer periphery of the cross-sectional circle of the aluminum-based diamond gradient functional material produced by the centrifugal sintering casting method according to the first embodiment of the present invention It is the scanning electron microscope image which showed. 本発明の第2実施形態における遠心焼結によって製造した銅(母材金属)とダイヤモンド微細粒子(強化材微細粒子)から構成される成形体である。It is a molded object comprised from the copper (base metal) manufactured by the centrifugal sintering in 2nd Embodiment of this invention, and a diamond fine particle (reinforcement material fine particle). 本発明の第2実施形態における遠心焼結鋳造法によって製造した断面円の外周部にダイヤモンド微細粒子(強化材微細粒子)が分散された銅基ダイヤモンド傾斜機能材料の断面写真である。It is a cross-sectional photograph of the copper-based diamond gradient functional material in which diamond fine particles (reinforcement material fine particles) are dispersed in the outer periphery of the cross-sectional circle manufactured by the centrifugal sintering casting method according to the second embodiment of the present invention. 本発明の第2実施形態における遠心焼結鋳造法により製造した銅基ダイヤモンド傾斜機能材料の断面円外周部におけるダイヤモンド微細粒子(強化材微細粒子)と銅母材金属から構成される微細組織の様子を示した走査型電子顕微鏡像である。The state of the microstructure composed of diamond fine particles (strengthening material fine particles) and copper base metal at the outer periphery of the cross-sectional circle of the copper-based diamond gradient functional material produced by the centrifugal sintering casting method according to the second embodiment of the present invention It is the scanning electron microscope image which showed.

(第1実施形態)
母材金属粉末である粒子径125μm以下のAl-15mass%Si合金粉末4.25gと、強化材微細粒子粉末である粒子径60-70μmのダイヤモンド微細粒子粉末0.63gとからなる混合粉末を作製し、該混合粉末を直径20mm、幅30mmの空洞を有する円筒形状金型に投入した後、該円筒形状金型を回転させて、真空中、焼結温度570℃、焼結時間3時間、重力倍数280G(重力倍数1Gが重力場に相当)の条件で遠心焼結を行った。この製造工程によりAl-15mass%Si合金とダイヤモンド微細粒子から構成される成形体を製造した(図5)。
(First embodiment)
Produced a mixed powder consisting of 4.15 g Al-15 mass% Si alloy powder with a particle size of 125 μm or less, which is a base metal powder, and 0.63 g diamond fine particle powder with a particle size of 60-70 μm, which is a reinforcing material fine particle powder, After the mixed powder is put into a cylindrical mold having a cavity with a diameter of 20 mm and a width of 30 mm, the cylindrical mold is rotated, and in vacuum, a sintering temperature of 570 ° C., a sintering time of 3 hours, a gravity multiple of 280 G Centrifugal sintering was performed under the condition of gravity multiple 1G corresponding to the gravitational field. By this manufacturing process, a molded body composed of an Al-15 mass% Si alloy and diamond fine particles was manufactured (FIG. 5).

次に母材金属であるアルミニウムインゴット35gおよび製造した該成形体をそれぞれ鋳造用溶解炉および鋳造用鋳型に装填した。そして該アルミニウムインゴットを1100℃に加熱して母材溶融金属とした後に該鋳造用鋳型に流し込んだ。この鋳造工程により、断面円の外周部にダイヤモンド微細粒子が分散されたアルミニウム基ダイヤモンド傾斜機能材料を製造した(図6)。図7は、製造したアルミニウム基ダイヤモンド傾斜機能材料の断面円外周部における、ダイヤモンド微細粒子とアルミニウム母材金属から構成される微細組織の様子を示している。図7において黒い部分が該ダイヤモンド微細粒子であり、それ以外は該アルミニウム母材金属である。   Next, 35 g of an aluminum ingot as a base metal and the produced molded body were loaded into a casting melting furnace and a casting mold, respectively. The aluminum ingot was heated to 1100 ° C. to form a base metal molten metal, and then poured into the casting mold. By this casting process, an aluminum-based diamond functionally graded material in which diamond fine particles are dispersed on the outer periphery of the cross-sectional circle was manufactured (FIG. 6). FIG. 7 shows a microstructure of diamond fine particles and an aluminum base metal at the outer periphery of the cross-sectional circle of the manufactured aluminum-based diamond functionally gradient material. In FIG. 7, the black portions are the diamond fine particles, and the others are the aluminum base metal.

(第2実施形態)
母材金属粉末である純度99.5mass%の銅の電解粉末11.99gと、強化材微細粒子粉末である粒子径60-70μmのダイヤモンド微細粒子粉末1.58gとからなる混合粉末を作製し、該混合粉末を直径20mm、幅30mmの空洞を有する円筒形状金型に投入した後、該円筒形状金型を回転させて、真空中、焼結温度800℃、焼結時間1時間、重力倍数1100G(重力倍数1Gが重力場に相当)の条件で遠心焼結を行った。この製造工程により銅とダイヤモンド微細粒子から構成される成形体を製造した(図8)。
(Second Embodiment)
Producing a mixed powder consisting of 11.99 g of copper electrolytic powder with a purity of 99.5 mass% as a base metal powder and 1.58 g of diamond fine particle powder with a particle diameter of 60-70 μm as a reinforcing material fine particle powder, the mixed powder Was put into a cylindrical mold having a cavity with a diameter of 20 mm and a width of 30 mm, and then the cylindrical mold was rotated, in vacuum, sintering temperature 800 ° C., sintering time 1 hour, gravity multiple 1100 G (gravity multiple) Centrifugal sintering was performed under the condition of 1G corresponding to a gravitational field. A molded body composed of copper and diamond fine particles was manufactured by this manufacturing process (FIG. 8).

次に母材金属である銅インゴット115gおよび製造した該成形体をそれぞれ鋳造用溶解炉および鋳造用鋳型に装填した。そして該銅インゴットを1120℃に加熱して母材溶融金属とした後に該鋳造用鋳型に流し込んだ。この鋳造工程により、断面円の外周部にダイヤモンド微細粒子が分散された銅基ダイヤモンド傾斜機能材料を製造した(図9)。図10は、製造した銅基ダイヤモンド傾斜機能材料の断面円外周部における、ダイヤモンド微細粒子と銅母材金属から構成される微細組織の様子を示している。図10において黒い部分が該ダイヤモンド微細粒子であり、それ以外は該銅母材金属である。   Next, 115 g of the copper ingot as a base metal and the produced molded body were loaded into a casting melting furnace and a casting mold, respectively. The copper ingot was heated to 1120 ° C. to form a base metal molten metal, and then poured into the casting mold. By this casting process, a copper-based diamond functionally gradient material in which diamond fine particles are dispersed on the outer periphery of the cross-sectional circle was manufactured (FIG. 9). FIG. 10 shows a microstructure of diamond fine particles and a copper base metal at the outer periphery of the cross-sectional circle of the produced copper-based diamond functionally gradient material. In FIG. 10, the black portions are the diamond fine particles, and the others are the copper base metal.

(第3実施形態)
母材金属粉末である粒子径125μm以下のAl-15mass%Si合金粉末4.25gと、強化材微細粒子粉末である粒子径60-70μmのダイヤモンド微細粒子粉末0.63gとからなる混合粉末を作製し、該混合粉末を直径20mm、幅30mmの空洞を有する円筒形状金型に投入した後、該円筒形状金型を回転させて、真空中、焼結温度570℃、焼結時間3時間、重力倍数280G(重力倍数1Gが重力場に相当)の条件で遠心焼結を行った。この製造工程によりAl-15mass%Si合金とダイヤモンド微細粒子から構成される成形体を製造した。該成形体は、第1実施形態で製造した図5に示す前記成形体と同様なものとして製造された。
(Third embodiment)
Produced a mixed powder consisting of 4.15 g Al-15 mass% Si alloy powder with a particle size of 125 μm or less, which is a base metal powder, and 0.63 g diamond fine particle powder with a particle size of 60-70 μm, which is a reinforcing material fine particle powder, After the mixed powder is put into a cylindrical mold having a cavity with a diameter of 20 mm and a width of 30 mm, the cylindrical mold is rotated, and in vacuum, a sintering temperature of 570 ° C., a sintering time of 3 hours, a gravity multiple of 280 G Centrifugal sintering was performed under the condition of gravity multiple 1G corresponding to the gravitational field. By this manufacturing process, a compact composed of an Al-15 mass% Si alloy and diamond fine particles was manufactured. The molded body was manufactured in the same manner as the molded body shown in FIG. 5 manufactured in the first embodiment.

次に母材金属であるアルミニウムインゴット35gを鋳造用溶解炉に装填した。そして該アルミニウムインゴットを1100℃に加熱して母材溶融金属とした後に該円筒形状金型に流し込んだ。この鋳造工程により、断面円の外周部にダイヤモンド微細粒子が分散されたアルミニウム基ダイヤモンド傾斜機能材料を製造した。製造した該アルミニウム基ダイヤモンド傾斜機能材料の断面マクロ組織や、断面円外周部におけるダイヤモンド微細粒子とアルミニウム母材金属から構成される微細組織の様子は、第1実施形態で製造したアルミニウム基ダイヤモンド傾斜機能材料で観察された組織、すなわち図6および図7と同様であった。   Next, 35 g of an aluminum ingot as a base metal was loaded into a casting melting furnace. The aluminum ingot was heated to 1100 ° C. to obtain a base metal molten metal, and then poured into the cylindrical mold. By this casting process, an aluminum-based diamond functionally gradient material in which diamond fine particles are dispersed on the outer periphery of the cross-sectional circle was manufactured. The cross-sectional macrostructure of the manufactured aluminum-based diamond gradient functional material and the state of the microstructure composed of diamond fine particles and an aluminum base metal at the outer periphery of the cross-sectional circle are the aluminum-based diamond gradient function manufactured in the first embodiment. It was the same as the structure observed in the material, ie FIG. 6 and FIG.

(他の実施形態)
前記実施形態における母材金属および強化材微細粒子は、上記実施例に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用可能である。例えば、母材金属として純鉄及び鉄鋼、アルミニウム合金、銅合金、ニッケル及びニッケル合金、チタン及びチタン合金、マグネシウム及びマグネシウム合金、コバルト及びコバルト合金、その他鋳造により製造し得る全ての金属及び合金に対して適用可能である。また、強化材微細粒子として、カーボンナノチューブ、グラファイト、ダイヤモンドライクカーボン、炭素繊維、アルミナ、ジルコニア、チタニア、ボロンナイトライド、シリコンカーバイド、タングステンカーバイドなど、前記傾斜機能材料製造法に適用する該母材金属及び合金よりも高融点を有するその他全ての金属、合金及びセラミックスに対して適用可能である。
(Other embodiments)
The base metal and the reinforcing material fine particles in the embodiment are not limited to the above-described examples, and can be appropriately changed and applied without departing from the spirit thereof. For example, pure metals and steels as base metals, aluminum alloys, copper alloys, nickel and nickel alloys, titanium and titanium alloys, magnesium and magnesium alloys, cobalt and cobalt alloys, and all other metals and alloys that can be produced by casting It is applicable. Further, as the reinforcing material fine particles, the base metal applied to the functionally gradient material manufacturing method such as carbon nanotube, graphite, diamond-like carbon, carbon fiber, alumina, zirconia, titania, boron nitride, silicon carbide, tungsten carbide, etc. And all other metals, alloys and ceramics having a higher melting point than the alloy.

1 母材金属粉末と強化材微細粒子粉末を混合することにより作製された混合粉末である。   1 A mixed powder produced by mixing a base metal powder and a reinforcing material fine particle powder.

2 空洞を有し、回転可能な円筒形状金型である。   2 Cylindrical mold having a cavity and rotatable.

3 混合粉末や母材溶融金属を円筒形状金型へ流し込むための湯道である。   3 A runner for pouring mixed powder and base metal molten metal into a cylindrical mold.

4 傾斜機能材料の母材金属とするために、円筒形状金型へ流し込む母材溶融金属である。   4 A base metal molten metal poured into a cylindrical mold in order to use a base metal of a functionally gradient material.

5 母材金属粉末と強化材微細粒子粉末を混合することにより作製された混合粉末である。   5 Mixed powder produced by mixing base metal powder and reinforcing material fine particle powder.

6 空洞を有し、回転可能な円筒形状金型である。   6 A cylindrical mold having a cavity and rotatable.

7 円筒形状金型の回転軸である。   7 A rotation axis of a cylindrical mold.

8 円筒形状金型を加熱するための加熱器である。   8 A heater for heating a cylindrical mold.

9 混合粉末を遠心焼結することによって得られる成形体である。   9 A molded body obtained by centrifugally sintering mixed powder.

Claims (2)

母材金属粉末および強化材微細粒子粉末を混合してこれらの混合粉末を作製し、該混合粉末を円筒形状金型に投入した後に遠心焼結することにより成形体を製造し、製造した前記成形体を前記円筒形状金型から取り出した後に鋳造用鋳型に入れ、前記鋳造用鋳型に鋳造用溶解炉で溶融された母材溶融金属を流し込むことにより、母材金属と強化材微細粒子とが一体成形された傾斜機能材料を製造する方法。   The base metal metal powder and the reinforcing material fine particle powder are mixed to produce a mixed powder, and the mixed powder is put into a cylindrical mold and then subjected to centrifugal sintering to produce a molded body. After the body is removed from the cylindrical mold, it is placed in a casting mold, and the base metal molten metal melted in the casting melting furnace is poured into the casting mold so that the base metal and the reinforcing material fine particles are integrated. A method for producing a molded functionally gradient material. 母材金属粉末および強化材微細粒子粉末を混合してこれらの混合粉末を作製し、該混合粉末を円筒形状金型に投入した後に遠心焼結することにより成形体を製造し、鋳造用溶解炉で溶融された母材溶融金属を前記円筒形状金型に流し込むことにより、母材金属と強化材微細粒子とが一体成形された傾斜機能材料を製造する方法。   A base metal powder and a reinforcing material fine particle powder are mixed to produce a mixed powder, and the mixed powder is put into a cylindrical mold and then sintered by centrifugation to produce a molded body. A method of producing a functionally gradient material in which a base metal and reinforcing material fine particles are integrally formed by pouring the base metal molten metal melted in step 1 into the cylindrical mold.
JP2012030069A 2012-02-15 2012-02-15 Method for producing functionally gradient material by using both sintering method and casting method Pending JP2013166982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012030069A JP2013166982A (en) 2012-02-15 2012-02-15 Method for producing functionally gradient material by using both sintering method and casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012030069A JP2013166982A (en) 2012-02-15 2012-02-15 Method for producing functionally gradient material by using both sintering method and casting method

Publications (1)

Publication Number Publication Date
JP2013166982A true JP2013166982A (en) 2013-08-29

Family

ID=49177601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012030069A Pending JP2013166982A (en) 2012-02-15 2012-02-15 Method for producing functionally gradient material by using both sintering method and casting method

Country Status (1)

Country Link
JP (1) JP2013166982A (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104630527A (en) * 2014-12-30 2015-05-20 北京安泰钢研超硬材料制品有限责任公司 Method for preparing copper-based diamond composite material
KR20160084358A (en) * 2016-07-06 2016-07-13 부경대학교 산학협력단 Functionally graded dual-nanoparticlate-reinforced aluminum matrix bulk materials and preparation method thereof
KR101859168B1 (en) * 2016-05-23 2018-05-16 부경대학교 산학협력단 Functionally graded aluminum matrix bulk materials reinforced with carbon nanotube and nano-siliconcarbide and preparation method thereof
US10568635B2 (en) 2010-07-28 2020-02-25 Covidien Lp Articulating clip applier
US10582931B2 (en) 2016-02-24 2020-03-10 Covidien Lp Endoscopic reposable surgical clip applier
US10639044B2 (en) 2016-10-31 2020-05-05 Covidien Lp Ligation clip module and clip applier
US10660639B2 (en) 2012-05-04 2020-05-26 Covidien Lp Surgical clip applier with dissector
US10660652B2 (en) 2015-10-10 2020-05-26 Covidien Lp Endoscopic surgical clip applier
US10660651B2 (en) 2016-10-31 2020-05-26 Covidien Lp Endoscopic reposable surgical clip applier
US10682146B2 (en) 2013-08-27 2020-06-16 Covidien Lp Surgical clip applier
US10682135B2 (en) 2008-08-29 2020-06-16 Covidien Lp Endoscopic surgical clip applier
US10702279B2 (en) 2015-11-03 2020-07-07 Covidien Lp Endoscopic surgical clip applier
US10702280B2 (en) 2015-11-10 2020-07-07 Covidien Lp Endoscopic reposable surgical clip applier
US10743886B2 (en) 2013-01-08 2020-08-18 Covidien Lp Surgical clip applier
US10743887B2 (en) 2017-12-13 2020-08-18 Covidien Lp Reposable multi-fire surgical clip applier
US10758234B2 (en) 2009-12-09 2020-09-01 Covidien Lp Surgical clip applier
US10765431B2 (en) 2016-01-18 2020-09-08 Covidien Lp Endoscopic surgical clip applier
US10765435B2 (en) 2015-01-07 2020-09-08 Covidien Lp Reposable clip applier
US10786263B2 (en) 2017-08-15 2020-09-29 Covidien Lp Endoscopic reposable surgical clip applier
US10786273B2 (en) 2018-07-13 2020-09-29 Covidien Lp Rotation knob assemblies for handle assemblies
US10786262B2 (en) 2017-08-09 2020-09-29 Covidien Lp Endoscopic reposable surgical clip applier
US10806464B2 (en) 2016-08-11 2020-10-20 Covidien Lp Endoscopic surgical clip applier and clip applying systems
US10806463B2 (en) 2011-11-21 2020-10-20 Covidien Lp Surgical clip applier
US10828044B2 (en) 2015-03-10 2020-11-10 Covidien Lp Endoscopic reposable surgical clip applier
US10835341B2 (en) 2017-09-12 2020-11-17 Covidien Lp Endoscopic surgical clip applier and handle assemblies for use therewith
US10849630B2 (en) 2017-12-13 2020-12-01 Covidien Lp Reposable multi-fire surgical clip applier
US10863992B2 (en) 2017-08-08 2020-12-15 Covidien Lp Endoscopic surgical clip applier
US10905425B2 (en) 2015-11-10 2021-02-02 Covidien Lp Endoscopic reposable surgical clip applier
US10932793B2 (en) 2016-01-11 2021-03-02 Covidien Lp Endoscopic reposable surgical clip applier
US10932790B2 (en) 2017-08-08 2021-03-02 Covidien Lp Geared actuation mechanism and surgical clip applier including the same
US10945734B2 (en) 2017-11-03 2021-03-16 Covidien Lp Rotation knob assemblies and surgical instruments including the same
US10993721B2 (en) 2018-04-25 2021-05-04 Covidien Lp Surgical clip applier
US11026696B2 (en) 2012-05-31 2021-06-08 Covidien Lp Endoscopic clip applier
US11033256B2 (en) 2018-08-13 2021-06-15 Covidien Lp Linkage assembly for reusable surgical handle assemblies
US11051828B2 (en) 2018-08-13 2021-07-06 Covidien Lp Rotation knob assemblies and surgical instruments including same
US11051827B2 (en) 2018-01-16 2021-07-06 Covidien Lp Endoscopic surgical instrument and handle assemblies for use therewith
US11058432B2 (en) 2015-01-15 2021-07-13 Covidien Lp Endoscopic reposable surgical clip applier
US11116513B2 (en) 2017-11-03 2021-09-14 Covidien Lp Modular surgical clip cartridge
US11134956B2 (en) 2015-01-28 2021-10-05 Covidien Lp Surgical clip applier with integrated cutter
US11147566B2 (en) 2018-10-01 2021-10-19 Covidien Lp Endoscopic surgical clip applier
US11213298B2 (en) 2008-08-29 2022-01-04 Covidien Lp Endoscopic surgical clip applier with wedge plate
US11213299B2 (en) 2010-02-25 2022-01-04 Covidien Lp Articulating endoscopic surgical clip applier
US11253267B2 (en) 2018-08-13 2022-02-22 Covidien Lp Friction reduction mechanisms for handle assemblies
US11259887B2 (en) 2018-08-10 2022-03-01 Covidien Lp Feedback mechanisms for handle assemblies
US11278267B2 (en) 2018-08-13 2022-03-22 Covidien Lp Latch assemblies and surgical instruments including the same
US11278287B2 (en) 2011-12-29 2022-03-22 Covidien Lp Surgical clip applier with integrated clip counter
US11298135B2 (en) 2015-11-10 2022-04-12 Covidien Lp Endoscopic reposable surgical clip applier
US11376015B2 (en) 2017-11-03 2022-07-05 Covidien Lp Endoscopic surgical clip applier and handle assemblies for use therewith
US11510682B2 (en) 2008-08-25 2022-11-29 Covidien Lp Surgical clip applier and method of assembly
US11524398B2 (en) 2019-03-19 2022-12-13 Covidien Lp Gear drive mechanisms for surgical instruments
US11723669B2 (en) 2020-01-08 2023-08-15 Covidien Lp Clip applier with clip cartridge interface
US11779340B2 (en) 2020-01-02 2023-10-10 Covidien Lp Ligation clip loading device

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11510682B2 (en) 2008-08-25 2022-11-29 Covidien Lp Surgical clip applier and method of assembly
US11213298B2 (en) 2008-08-29 2022-01-04 Covidien Lp Endoscopic surgical clip applier with wedge plate
US10682135B2 (en) 2008-08-29 2020-06-16 Covidien Lp Endoscopic surgical clip applier
US11806021B2 (en) 2008-08-29 2023-11-07 Covidien Lp Endoscopic surgical clip applier with wedge plate
US10758234B2 (en) 2009-12-09 2020-09-01 Covidien Lp Surgical clip applier
US11213299B2 (en) 2010-02-25 2022-01-04 Covidien Lp Articulating endoscopic surgical clip applier
US11918231B2 (en) 2010-02-25 2024-03-05 Covidien Lp Articulating endoscopic surgical clip applier
US11517322B2 (en) 2010-07-28 2022-12-06 Covidien Lp Articulating clip applier
US10568635B2 (en) 2010-07-28 2020-02-25 Covidien Lp Articulating clip applier
US10806463B2 (en) 2011-11-21 2020-10-20 Covidien Lp Surgical clip applier
US11278287B2 (en) 2011-12-29 2022-03-22 Covidien Lp Surgical clip applier with integrated clip counter
US10660639B2 (en) 2012-05-04 2020-05-26 Covidien Lp Surgical clip applier with dissector
US11026696B2 (en) 2012-05-31 2021-06-08 Covidien Lp Endoscopic clip applier
US10743886B2 (en) 2013-01-08 2020-08-18 Covidien Lp Surgical clip applier
US10682146B2 (en) 2013-08-27 2020-06-16 Covidien Lp Surgical clip applier
CN104630527A (en) * 2014-12-30 2015-05-20 北京安泰钢研超硬材料制品有限责任公司 Method for preparing copper-based diamond composite material
US10765435B2 (en) 2015-01-07 2020-09-08 Covidien Lp Reposable clip applier
US11058432B2 (en) 2015-01-15 2021-07-13 Covidien Lp Endoscopic reposable surgical clip applier
US11134956B2 (en) 2015-01-28 2021-10-05 Covidien Lp Surgical clip applier with integrated cutter
US10828044B2 (en) 2015-03-10 2020-11-10 Covidien Lp Endoscopic reposable surgical clip applier
US10660652B2 (en) 2015-10-10 2020-05-26 Covidien Lp Endoscopic surgical clip applier
US10702279B2 (en) 2015-11-03 2020-07-07 Covidien Lp Endoscopic surgical clip applier
US10702280B2 (en) 2015-11-10 2020-07-07 Covidien Lp Endoscopic reposable surgical clip applier
US10905425B2 (en) 2015-11-10 2021-02-02 Covidien Lp Endoscopic reposable surgical clip applier
US11298135B2 (en) 2015-11-10 2022-04-12 Covidien Lp Endoscopic reposable surgical clip applier
US10932793B2 (en) 2016-01-11 2021-03-02 Covidien Lp Endoscopic reposable surgical clip applier
US10765431B2 (en) 2016-01-18 2020-09-08 Covidien Lp Endoscopic surgical clip applier
US11478252B2 (en) 2016-02-24 2022-10-25 Covidien Lp Endoscopic reposable surgical clip applier
US10582931B2 (en) 2016-02-24 2020-03-10 Covidien Lp Endoscopic reposable surgical clip applier
KR101859168B1 (en) * 2016-05-23 2018-05-16 부경대학교 산학협력단 Functionally graded aluminum matrix bulk materials reinforced with carbon nanotube and nano-siliconcarbide and preparation method thereof
KR101650342B1 (en) 2016-07-06 2016-08-23 부경대학교 산학협력단 Functionally graded dual-nanoparticlate-reinforced aluminum matrix bulk materials and preparation method thereof
KR20160084358A (en) * 2016-07-06 2016-07-13 부경대학교 산학협력단 Functionally graded dual-nanoparticlate-reinforced aluminum matrix bulk materials and preparation method thereof
US10806464B2 (en) 2016-08-11 2020-10-20 Covidien Lp Endoscopic surgical clip applier and clip applying systems
US10639044B2 (en) 2016-10-31 2020-05-05 Covidien Lp Ligation clip module and clip applier
US10660651B2 (en) 2016-10-31 2020-05-26 Covidien Lp Endoscopic reposable surgical clip applier
US10863992B2 (en) 2017-08-08 2020-12-15 Covidien Lp Endoscopic surgical clip applier
US10932790B2 (en) 2017-08-08 2021-03-02 Covidien Lp Geared actuation mechanism and surgical clip applier including the same
US10786262B2 (en) 2017-08-09 2020-09-29 Covidien Lp Endoscopic reposable surgical clip applier
US10786263B2 (en) 2017-08-15 2020-09-29 Covidien Lp Endoscopic reposable surgical clip applier
US10835341B2 (en) 2017-09-12 2020-11-17 Covidien Lp Endoscopic surgical clip applier and handle assemblies for use therewith
US11376015B2 (en) 2017-11-03 2022-07-05 Covidien Lp Endoscopic surgical clip applier and handle assemblies for use therewith
US11116513B2 (en) 2017-11-03 2021-09-14 Covidien Lp Modular surgical clip cartridge
US10945734B2 (en) 2017-11-03 2021-03-16 Covidien Lp Rotation knob assemblies and surgical instruments including the same
US10743887B2 (en) 2017-12-13 2020-08-18 Covidien Lp Reposable multi-fire surgical clip applier
US10849630B2 (en) 2017-12-13 2020-12-01 Covidien Lp Reposable multi-fire surgical clip applier
US11051827B2 (en) 2018-01-16 2021-07-06 Covidien Lp Endoscopic surgical instrument and handle assemblies for use therewith
US10993721B2 (en) 2018-04-25 2021-05-04 Covidien Lp Surgical clip applier
US10786273B2 (en) 2018-07-13 2020-09-29 Covidien Lp Rotation knob assemblies for handle assemblies
US11259887B2 (en) 2018-08-10 2022-03-01 Covidien Lp Feedback mechanisms for handle assemblies
US11278267B2 (en) 2018-08-13 2022-03-22 Covidien Lp Latch assemblies and surgical instruments including the same
US11033256B2 (en) 2018-08-13 2021-06-15 Covidien Lp Linkage assembly for reusable surgical handle assemblies
US11051828B2 (en) 2018-08-13 2021-07-06 Covidien Lp Rotation knob assemblies and surgical instruments including same
US11253267B2 (en) 2018-08-13 2022-02-22 Covidien Lp Friction reduction mechanisms for handle assemblies
US11812972B2 (en) 2018-10-01 2023-11-14 Covidien Lp Endoscopic surgical clip applier
US11147566B2 (en) 2018-10-01 2021-10-19 Covidien Lp Endoscopic surgical clip applier
US11524398B2 (en) 2019-03-19 2022-12-13 Covidien Lp Gear drive mechanisms for surgical instruments
US11779340B2 (en) 2020-01-02 2023-10-10 Covidien Lp Ligation clip loading device
US11723669B2 (en) 2020-01-08 2023-08-15 Covidien Lp Clip applier with clip cartridge interface

Similar Documents

Publication Publication Date Title
JP2013166982A (en) Method for producing functionally gradient material by using both sintering method and casting method
JP4261130B2 (en) Silicon / silicon carbide composite material
JP2007224359A (en) Metal matrix composite powder, metal matrix composite material and method for producing the same
EP2490844A1 (en) Casting long products
JP2013198928A (en) Method of producing composite material formed by composite of matrix metal and solid-phase fine particles, and metal bonded grinding wheel produced by the same
KR101491216B1 (en) High elastic aluminum alloy and method for producing the same
JP6315761B2 (en) Self-lubricating metal composite material and self-lubricating metal matrix composite material excellent in strength, lubricity and wear resistance, and method for producing the metal composite material and metal matrix composite material
CN102688988A (en) Micro-investment casting forming method for complex micro-component
CN111868008B (en) Method for producing porous preforms with controlled porosity from silicon carbide and porous preforms of silicon carbide
Raghunandan et al. Processing of primary silicon and Mg2Si reinforced hybrid functionally graded aluminum composites by centrifugal casting
US20200101530A1 (en) Powder mixtures containing uniform dispersions of ceramic particles in superalloy particles and related methods
JP2017159362A (en) Casting with second metal component formed around first metal component using hot isostatic pressing
JP2015507540A (en) Silicon eutectic alloy composition and production method by rotary casting method
Yang et al. Studies of microstructures made of Zn–Al alloys using microcasting
CN108385040A (en) A kind of chopped carbon fiber enhancing magnesium-aluminum-based composite material and preparation method
JP6230156B2 (en) Lining material and cylinder for molding machine having the same
US9205484B2 (en) High thermal conductivity shell molds
JP2007239050A (en) Method for manufacturing composite metal alloy, and method for manufacturing composite metal molded article
JP5095669B2 (en) Cylinder lining material for centrifugal casting and centrifugal casting method for producing cylinder lining material
Chuang et al. Micro precision casting based on investment casting for micro structures with high aspect ratio
JPWO2019045067A1 (en) Cylinder for molding machine and its manufacturing method
JP2012236751A (en) Metal-carbon composite material and method for producing the same
JP2008284589A (en) Manufacturing method of fine-grained composite material with fine-grained powder complexed
JP2007022914A (en) Method for manufacturing silicon/silicon carbide composite material
JP2007204839A (en) Method for producing fiber-reinforced metal matrix composite, and fiber-reinforced metal matrix composite