JP2013127393A - 蛍光検出装置及び蛍光検出方法 - Google Patents

蛍光検出装置及び蛍光検出方法 Download PDF

Info

Publication number
JP2013127393A
JP2013127393A JP2011276807A JP2011276807A JP2013127393A JP 2013127393 A JP2013127393 A JP 2013127393A JP 2011276807 A JP2011276807 A JP 2011276807A JP 2011276807 A JP2011276807 A JP 2011276807A JP 2013127393 A JP2013127393 A JP 2013127393A
Authority
JP
Japan
Prior art keywords
signal
fluorescence
optical
light
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011276807A
Other languages
English (en)
Other versions
JP5461510B2 (ja
Inventor
Kyoji Doi
恭二 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2011276807A priority Critical patent/JP5461510B2/ja
Publication of JP2013127393A publication Critical patent/JP2013127393A/ja
Application granted granted Critical
Publication of JP5461510B2 publication Critical patent/JP5461510B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】精度の高い蛍光緩和時間を取得することができる蛍光検出装置及び蛍光検出方法を提供する。
【解決手段】測定対象物にレーザ光を照射したときに発せられる蛍光を検出する蛍光検出装置であって、強度変調したレーザ光を測定対象物に照射するレーザ光源部と、レーザ光を強度変調するための変調周波数を有する変調信号を用いたバイアス信号で誘導放出を行うことにより、散乱光の光信号の増幅を行う第1の光増幅部と、増幅された散乱光の光信号を受光し、散乱光の電気信号を出力する第1の受光素子と、前記変調信号を用いたバイアス信号で誘導放出を行うことにより、蛍光の光信号の増幅を行う第2の光増幅部と、増幅された蛍光の光信号を受光し、蛍光の電気信号を出力する第2の受光素子とを含む受光部と、散乱光の電気信号と蛍光の電気信号とを用いて、変調信号に対する蛍光の位相差を算出し、位相差から蛍光の蛍光緩和時間を求める処理部と、を有する。
【選択図】図1

Description

本発明は、測定対象物にレーザ光を照射したときに発せられる蛍光を検出する蛍光検出装置及び蛍光検出方法に関する。
測定対象物にレーザ光を照射し、測定対象物が発する蛍光を受光して、測定対象物の情報を取得する蛍光検出装置及び蛍光検出方法が知られている。
蛍光検出装置及び蛍光検出方法を用いたフローサイトメータは、蛍光試薬でラベル化された細胞、DNA、RNA、酵素、蛋白等の測定対象物をシース液に流す。この測定対象物にレーザ光を照射することにより、測定対象物に付与された蛍光色素が蛍光を発する。フローサイトメータは、この蛍光を検出することにより、測定対象物の情報を取得することができる。
また、所定の周波数で強度変調したレーザ光を測定対象物に照射し、測定対象物が発する蛍光を受光することにより蛍光緩和時間(蛍光寿命)を算出する蛍光検出装置及び蛍光検出方法が知られている(特許文献1)。
特開2006−226698号公報
従来の蛍光検出装置では、測定対象物が発した蛍光は、光電変換素子に入射されることにより電気信号に変換された後に、増幅及び復調される。光電変換素子としては、増幅率が優れているという点から、光電子増倍管が多く用いられている。ところで、一般的な光電子増倍管は、電子の増幅率が優れている一方で量子効率が低い(例えば、約25%以下)ため、光電子増倍管に入射する光子の数が少ない場合、電子に変換可能な光子の数がさらに減少する。この場合、電気信号に変換された蛍光の強度が微弱になるため、蛍光の電気信号が他の電気信号に埋もれて抽出が困難となり、またノイズとして除去されるおそれがある。したがって、蛍光の強度が低い場合、蛍光検出装置によって求められた蛍光緩和時間の測定精度が低下する可能性がある。
そこで、本発明は、精度の高い蛍光緩和時間を取得することができる蛍光検出装置及び蛍光検出方法を提供することを目的とする。
本発明の一態様は、測定対象物にレーザ光を照射したときに発せられる蛍光を検出する蛍光検出装置である。
当該蛍光検出装置は、
強度変調したレーザ光を前記測定対象物に照射するレーザ光源部と、
前記レーザ光を強度変調するための変調周波数を有する変調信号を用いたバイアス信号で誘導放出を行うことにより、前記測定対象物に前記レーザ光を照射したときに前記測定対象物で散乱する前記レーザ光の散乱光の光信号を増幅する第1の光増幅部と、第1の光増幅部によって増幅された前記散乱光の光信号を受光し、前記散乱光の電気信号を出力する第1の受光素子と、前記変調信号を用いたバイアス信号で誘導放出を行うことにより、前記測定対象物に前記レーザ光を照射したときに発せられる蛍光の光信号を増幅する第2の光増幅部と、第2の光増幅部によって増幅された前記蛍光の光信号を受光し、前記蛍光の電気信号を出力する第2の受光素子とを含む受光部と、
前記受光部から出力された前記散乱光の電気信号と前記蛍光の電気信号とを用いて、前記変調信号に対する前記蛍光の位相差を算出し、前記位相差から前記蛍光の蛍光緩和時間を求める処理部と、を有する。
前記バイアス信号は、前記変調信号と同相の信号と、前記変調信号に対して90度位相シフトした信号とを含む、ことが好ましい。
また、前記第1の光増幅器は、前記変調信号に対する前記散乱光の位相差の情報を含む光信号を出力する、ことが好ましい。
さらに、前記第2の光増幅器は、前記変調信号に対する前記蛍光の位相差の情報を含む光信号を出力する、ことが好ましい。
本発明の他の態様は、測定対象物にレーザ光を照射したときに発せられる蛍光を検出する蛍光検出方法である。
当該蛍光検出方法は、
強度変調したレーザ光を前記測定対象物に照射するステップと、
前記レーザ光を強度変調するための変調周波数を有する変調信号を用いたバイアス信号で誘導放出を行うことにより、前記測定対象物に前記レーザ光を照射したときに前記測定対象物で散乱する前記レーザ光の散乱光の光信号を増幅するステップと、
増幅された前記散乱光の光信号を受光し、前記散乱光の電気信号を出力するステップと、
前記変調信号を用いたバイアス信号で誘導放出を行うことにより、前記測定対象物に前記レーザ光を照射したときに発せられる蛍光の光信号を増幅するステップと、
増幅された前記蛍光の光信号を受光し、前記蛍光の電気信号を出力するステップと、
出力された前記散乱光の電気信号と前記蛍光の電気信号とを用いて、前記変調信号に対する前記蛍光の位相差を算出し、前記位相差から前記蛍光の蛍光緩和時間を求めるステップと、を有する。
上述の蛍光検出装置及び蛍光検出方法によれば、精度の高い蛍光緩和時間を取得することができる。
第1実施形態の蛍光検出装置を用いたフローサイトメータの一例を示す概略構成図である。 レーザ光源部の構成の一例を示す図である。 第2受光部の構成の一例を示す図である。 信号処理部の構成の一例を示す図である。 制御部の構成の一例を示す図である。 分析装置の構成の一例を示す図である。 本実施形態の蛍光検出方法のフローの一例を説明する図である。 図3に示した第2受光部の変形例を説明する図である。 第2実施形態の蛍光検出装置を用いたフローサイトメータに含まれる発振器の構成の一例を説明する図である。
以下、本発明の蛍光検出装置及び蛍光検出方法を適用したフローサイトメータについて、詳細に説明する。
<第1実施形態>
(フローサイトメータの構成)
まず、図1を参照して、第1実施形態のフローサイトメータの構成について説明する。図1は、本実施形態のフローサイトメータの一例を示す概略構成図である。フローサイトメータは、測定対象物12にレーザ光を照射し、レーザ光が照射された測定対象物12から発せられる蛍光を受光することにより、測定対象物12の情報を取得することができる。
フローサイトメータは、フローセル10と、レーザ光源部20と、第1受光部30と、第2受光部40と、制御部50と、分析装置60と、出力部70と、を備える。また、フローセル10の下流には、測定対象物12を回収するための容器16が配置される。以下、各構成について詳細に説明する。
細胞、DNA(Deoxyribonucleic Acid)、RNA(Ribonucleic Acid)、酵素、蛋白等の測定対象物12は、シース液に囲まれてフローセル10の内部を流れる。後述するように、レーザ光源部20が測定対象物12にレーザ光を照射し、その際に発せられる蛍光から測定対象物12の情報を取得するため、測定対象物12には、蛍光色素14が予め付与されている。蛍光色素14は、例えば、CFP(Cyan Fluorescent Protein)、YFP(Yellow Fluorescent Protein)等が用いられる。フローセル10の内部では、シース液に囲まれた測定対象物12が、流体力学的絞り込みを受けることにより細い液流となって、フローセル10の内部を流れる。
レーザ光源部20は、例えば、350nm〜800nmの可視光帯域の波長を有し、所定の変調信号を用いて強度変調されたレーザ光を測定対象物12に照射する。
図2に示すように、レーザ光源部20は、レーザ光源21と、レンズ系22と、レーザドライバ23とを有している。
レーザ光源21は、強度が一定のCW(連続波)レーザ光を強度変調して出射する。
レンズ系22は、レーザ光源21から出射されたレーザ光を、フローセル10中の所定の測定点(測定場)に集束させる。
レーザドライバ23は、後述する制御部50と電気的に接続されており、制御部50から供給された変調信号の周波数(変調周波数)でレーザ光の強度を変調するように構成されている。
なお、レーザ光源部20は、1つのレーザ光源を用いてもよいし、複数のレーザ光源を用いてもよい。複数のレーザ光源が用いられる場合には、複数のレーザ光源からのレーザ光がダイクロイックミラー等を用いて合成されることにより、測定場に向けて出射されるレーザ光が形成されることが好ましい。
レーザ光を出射する光源として、例えば、半導体レーザを用いることができる。レーザ光の出力は、例えば、5mW〜100mWである。また、変調周波数は、その周期が蛍光緩和時間に比べてやや長く、例えば、10MHz〜200MHzである。
第1受光部30は、フローセル10の測定場を基準として、レーザ光源部20と反対側に配置される。第1受光部30は、フローセル10の測定場を通過する測定対象物12にレーザ光が照射されたときに、測定対象物12で散乱するレーザ光の前方散乱光を受光する。
第1受光部30は、例えば、フォトダイオード等の光電変換器を備える。光電変換器は、受光した前方散乱光を電気信号に変換する。
第1受光部30の光電変換器によって変換された電気信号は分析装置60へ出力され、当該電気信号は、測定対象物12がフローセル10の測定場を通過するタイミングを知らせるためのトリガ信号として用いられる。
また、第1受光部30は、例えば、前方散乱光を光電変換器に集束させるレンズ系(図示省略)と、レーザ光が光電変換器に直接入射しないようにレンズ系の測定対象物12側前面に設けられた遮蔽板(図示省略)とを有してもよい。
第2受光部40は、レーザ光源部20から出射されるレーザ光の出射方向に対して垂直方向であって、且つ、フローセル10中の測定対象物12の移動方向に対して垂直方向に配置されている。第2受光部40は、フローセル10の測定場を通過する測定対象物12にレーザ光が照射されたときに測定対象物12から発せられる蛍光と、レーザ光の側方散乱光とを、光増幅器で増幅して受光する。
図3に示すように、第2受光部40は、レンズ系41と、ダイクロイックミラー42と、ハーフミラー43a,43bと、バンドパスフィルタ(BPF)44a,44b,44c,44dと、光増幅器45a,45b,45c,45dと、信号処理部46a,46b,46c,46dと、パワースプリッタ47a,47bと、90度位相シフタ48a,48bと、を有する。
レンズ系41は、第2受光部40に入射した光を集光する。
ダイクロイックミラー42は、レンズ系41を透過した光のうち、レーザ光の側方散乱光の波長領域の光を反射し、蛍光の波長領域を含む波長領域の光を透過させるミラーである。
ハーフミラー43aは、ダイクロイックミラー42で反射した側方散乱光の一部を透過させるとともに、残りの側方散乱光を反射することにより、側方散乱光を2方向に分配するミラーである。また、ハーフミラー43bは、ダイクロイックミラー42を透過した蛍光の一部を透過させるとともに、残りの蛍光を反射することにより、蛍光を2方向に分配するミラーである。なお、ハーフミラー43a,43bの代わりに、ビームスプリッタを用いてもよい。
BPF44a,44b,44c,44dは、光増幅器45a,45b,45c,45dそれぞれの前面に設けられ、所定の波長帯域の蛍光あるいは側方散乱光のみを透過させるフィルタである。なお、透過させる側方散乱光あるいは蛍光の波長帯域は、側方散乱光の波長帯域、あるいは蛍光色素14が発する蛍光の波長帯域に対応して設定されている。また、BPF44a,44b,44c,44dの代わりに、バンドリジェクトフィルタを用いてもよい。
光増幅器45a,45b,45c,45dは、例えば半導体光増幅器であり、後述するように、変調信号を誘導放出のためのシフト信号として用いて、入射した側方散乱光あるいは蛍光の光信号を増幅する。また、光増幅器45a,45b,45c,45dは、レンズ系41から入射口までの光の光路長が互いに同一になるように配置されている。これは、後述するように、光増幅器45a,45b,45c,45dのそれぞれで光増幅したとき、光増幅器45a,45b,45c,45dが、変調信号を用いたバイアス信号で誘導放出を行うことにより、変調信号に対する側方散乱光の位相差の情報、あるいは変調信号に対する蛍光の位相差の情報を含む光信号を出力するためである。
光増幅器45a,45bは、側方散乱光の光信号を増幅するために設けられており、パワースプリッタ47aを介して制御部50と電気的に接続され、制御部50から送信された変調信号でバイアスされている。また、光増幅器45bは、90度位相シフタ48aを介してパワースプリッタ47aと接続されている。制御部50から送信された変調信号は、パワースプリッタ47aにより分配される。そして、光増幅器45aには、制御部50から送信された変調信号と同相の信号が供給される。一方、光増幅器45bに供給される信号は、90度位相シフタ48aによって、制御部50から送信された変調信号に対して90度位相がシフトしている。これにより、光増幅器45a,45bのそれぞれを構成するレーザ媒質の原子あるいは分子は、変調信号により励起される。そして、側方散乱光が入射すると、レーザ媒質の原子あるいは分子の誘導放出により、光増幅器45a,45bに入射した側方散乱光は増幅される。なお、光増幅器45a,45bは、本発明における第1の光増幅部の一例である。
光増幅器45a,45bを用いることにより、側方散乱光の光信号が電気信号に変換される前に、側方散乱光の光信号を増幅することができる。
また、光増幅器45c,45dは、蛍光の光信号を増幅するために設けられており、パワースプリッタ47bを介して制御部50と電気的に接続され、制御部50から送信された変調信号でバイアスされている。また、光増幅器45dは、90度位相シフタ48bを介してパワースプリッタ47bと接続されている。制御部50から送信された変調信号は、パワースプリッタ47bにより分配される。そして、光増幅器45cには、制御部50から送信された変調信号と同相の信号が供給される。一方、光増幅器45dに供給される信号は、90度位相シフタ48bによって、制御部50から送信された変調信号に対して90度位相がシフトしている。これにより、光増幅器45c,45dのそれぞれを構成するレーザ媒質の原子あるいは分子は、変調信号により励起される。そして、蛍光が入射すると、レーザ媒質の原子あるいは分子の誘導放出により、光増幅器45c,45dに入射した蛍光は増幅される。なお、光増幅器45c,45dは、本発明における第2の光増幅部の一例である。
光増幅器45c,45dを用いることにより、蛍光の光信号が電気信号に変換される前に、蛍光の光信号を増幅することができる。
次に、光信号の増幅について詳細に説明する。光信号の増幅は、変調信号あるいは変調信号を90度位相シフトした信号をバイアス信号として用いて、光増幅器45a,45b,45c,45dに光の誘導放出を行わせることにより、行われる。これにより、蛍光及び側方散乱光の光信号は、変調信号を参照信号としてミキシングされる。以降では、光増幅器45cを用いて蛍光の光信号を増幅する場合について、代表して説明する。
光増幅器45cを構成するレーザ媒質の原子あるいは分子は、変調信号のエネルギーを吸収すると、基底状態から励起状態に遷移し、一定時間後に光を放出(自然放出)して、再び基底状態に戻る。また、励起状態の原子あるいは分子は、変調信号と同じ周波数の光信号(蛍光信号)が入射されると、同一方向に向けて連鎖反応的に光を放出(誘導放出)する。レーザ媒質の原子あるいは分子が単位時間あたりに自然放出、吸収または誘導放出する確率は、それぞれA、B12W、B21Wで表される。ここで、Wは入射光のエネルギー密度であり、A,B12,B21は状態が遷移する確率である。また、原子あるいは分子の集団が熱平衡状態にある場合、B12=B21であることから、以降ではB12及びB21のそれぞれを単にBと表す。
基底状態の原子あるいは分子の密度(占位数)をN、励起状態の原子あるいは分子の密度(占位数)をNとしたとき、N,Nの時間変化を表す微分方程式(レート方程式)は、以下の式(1)のように示される。下記の式(1)では、励起状態の原子あるいは分子の密度の時間変化(式(1)の左辺)は、励起状態の原子あるいは分子の自然放出の発生頻度(式(1)の右辺第1項)と、誘導放出の発生頻度(式(1)の右辺第2項)に応じて低減することを示している。
Figure 2013127393
また、N+N=Nとすると、式(1)は、以下の式(2)のように示される。
Figure 2013127393
ここで、光増幅器45cのバイアス信号の電圧を、変調信号と同じ角周波数ωで変化させた場合には、確率A,BはそれぞれA=acosωt、B=bcosωtで表される。なお、a,bは確率値であるため、a,b≦1である。また、蛍光は変調信号で強度変調されたレーザ光により発するので、光増幅器45cに入射する入射光(蛍光)も角周波数ωで変調されていることから、変調信号に対する蛍光の位相差をθとすると、入射光のエネルギー密度Wは、W=wcos(ωt+θ)で表される。なお、wは入射光の強度である。A、B及びWの値を式(2)に代入し、三角関数の加法定理を用いると、式(2)は以下の式(3)のように示される。
Figure 2013127393
式(3)において、tは入射光が光増幅器45cを通過する時間である。また、
Figure 2013127393
Figure 2013127393
としたとき、式(3)の一般解は、定数変化法を用いることにより、以下の式(6)のように示される。
Figure 2013127393
なお、式(6)において、∫p(t)dtは、式(4)より以下の式(7)のように示される。
Figure 2013127393
ここで、変調信号の変調周波数は、例えば、10Hz程度であることから、角周波数ω>>1となる。また、入射光の強度wは、例えば、数mW〜数十mW程度である。これにより、(a/ω)・sinωtの値と、(bw/2ω)・sin(2ωt+θ)の値は、極めて小さくなることから、ほぼ影響が無いと考えられる。したがって、式(7)は、以下の式(8)のように近似することができる。
Figure 2013127393
また、式(6)の∫dt´q(t´)exp(∫p(t)dt)は、以下の式(9)のように示される。
Figure 2013127393
ここで、入射光が進行する方向の光増幅器45cの長さは、数cm〜数十cm程度であることから、t<<1とすることができる。したがって、式(9)のexp{(bwcosθ)t}は、以下の式(10)のように近似することができる。
Figure 2013127393
さらに、Nの値はアボガドロ数程度の大きさと考えられることから、式(9)は、以下の式(11)のように近似することができる。
Figure 2013127393
したがって、式(6)の右辺第2項は、以下の式(12)のように示される。
Figure 2013127393
よって、式(6)は、式(12)を用いて以下の式(13)のように示される。
Figure 2013127393
そして、光増幅器45cから出力される蛍光は、Nの時間微分で表すことができることから、式(13)を用いて以下の式(14)のように示される。
Figure 2013127393
式(14)より、光増幅器45cから出力される蛍光の光信号には、入射光(蛍光)の周波数と変調信号の周波数との加算周波数を成分とする高周波成分と、入射光の周波数と変調信号の周波数との差分周波数を成分とする低周波成分とが含まれていることがわかる。すなわち、変調信号を用いたバイアス信号で誘導放出が行われることにより、光増幅器45cは、入射光すなわち蛍光の光信号と、変調信号とをミキシングした結果を得ることができる。また、蛍光の光信号と、蛍光の光信号と同じ周波数を有する変調信号とをミキシングした結果が得られることによって、レーザ光によって変調された蛍光を復調することができる。さらに、蛍光の光信号は、Nb/2(>1)倍に増幅されている。
このようにして、光増幅器45cは、変調信号を用いたバイアス信号で誘導放出を行うことにより、蛍光の光信号を増幅することができるとともに、蛍光の光信号と変調信号とをミキシングした結果を得ることができる。なお、光増幅器45cから出力された蛍光の光信号の低周波成分は、後述する信号処理部46cにおいて、変調信号に対する蛍光の位相差の情報である実数部成分(Re成分)として得られる。
また、光増幅器45dは、制御部50から送信された変調信号に対して90度位相シフトした信号を用いたバイアス信号で誘導放出を行うことにより、光増幅器45cと同様に、蛍光の光信号を増幅する。このとき、光増幅器45dは、蛍光の光信号とバイアス信号とをミキシングした結果を得ることができる。なお、光増幅器45dから出力された蛍光の光信号の低周波成分は、後述する信号処理部46dにおいて、変調信号に対する蛍光の位相差の情報である虚数部成分(Im成分)として得られる。
さらに、光増幅器45aは、変調信号を用いたバイアス信号で誘導放出を行うことにより、側方散乱光の光信号を増幅することができるとともに、側方散乱光の光信号と変調信号とをミキシングした結果を得ることができる。なお、光増幅器45aから出力された側方散乱光の光信号の低周波成分は、後述する信号処理部46aにおいて、変調信号に対する側方散乱光の位相差の情報である実数部成分(Re成分)として得られる。
さらにまた、光増幅器45bは、制御部50から送信された変調信号に対して90度位相シフトした信号を用いたバイアス信号で誘導放出を行うことにより、光増幅器45aと同様に、側方散乱光の光信号を増幅する。このとき、光増幅器45bは、側方散乱光の光信号とバイアス信号とをミキシングした結果を得ることができる。なお、光増幅器45bから出力された側方散乱光の光信号の低周波成分は、後述する信号処理部46bにおいて、変調信号に対する側方散乱光の位相差の情報である虚数部成分(Im成分)として得られる。
次に、図4を参照して、信号処理部46a,46b,46c,46dの構成について説明する。図4は、信号処理部46a,46b,46c,46dの構成の一例を示す図である。信号処理部46aは、光増幅器45aから出力された側方散乱光の光信号を電気信号に変換し、信号処理部46bは、光増幅器45bから出力された側方散乱光の光信号を電気信号に変換する。また、信号処理部46cは、光増幅器45cから出力された蛍光の光信号を電気信号に変換し、信号処理部46dは、光増幅器45dから出力された蛍光の光信号を電気信号に変換する。図4に示すように、信号処理部46a,46b,46c,46dは、BPF461と、光電変換器462と、ローパスフィルタ(LPF)463と、A/D変換器464と、を有している。
BPF461は、光電変換器462の前面に設けられ、所定の波長帯域の蛍光の光信号を透過させるフィルタである。これにより、迷光を抑制することができる。なお、BPF461の代わりに、バンドリジェクトフィルタを用いてもよい。
光電変換器462は、例えばフォトダイオードや光電子増倍管等であり、蛍光あるいは側方散乱光の光信号を受光し、光信号を電気信号に変換して出力する受光素子を有している。ここで、フォトダイオードは、光電子増倍管と比べて、量子効率が優れている一方で、増幅率が劣るという特性を有している。このため、蛍光の光信号を増幅する光電変換器を用いて蛍光を検出する従来技術の構成では、フォトダイオードを光電変換器に用いることが困難であった。一方、本実施形態では、蛍光の光信号が光増幅器45c,45dによって増幅されていることから、光電変換器で蛍光の光信号を増幅させなくてもよい。これにより、本実施形態では、従来技術において光電変換器に用いることが困難であったフォトダイオードを、光電変換器462に用いることができる。なお、信号処理部46a,46bの光電変換器462に含まれる受光素子は、本発明における第1の受光素子の一例であり、信号処理部46c,46dの光電変換器462に含まれる受光素子は、本発明における第2の受光素子の一例である。
LPF463は、光電変換器462から出力された蛍光あるいは側方散乱光の電気信号のうち、変調信号の周波数と蛍光信号の周波数との加算周波数を成分とする高周波成分を除去し、変調信号の周波数と蛍光信号の周波数との差分周波数を成分とする低周波成分を通過させるためのフィルタである。これにより、側方散乱光の電気信号の実数部成分(Re成分)が、信号処理部46aのLPF463から出力され、側方散乱光の電気信号の虚数部成分(Im成分)が、信号処理部46bのLPF463から出力される。また、蛍光の電気信号の実数部成分(Re成分)が、信号処理部46cのLPF463から出力され、蛍光の電気信号の虚数部成分(Im成分)が、信号処理部46dのLPF463から出力される。LPF463から低周波信号が出力されることにより、LPF463以降の信号処理において、高周波回路よりも製作するのが容易な低周波回路を用いてフローサイトメータを構成することができる。
なお、光電変換器462に低速な受光素子を用いた場合、電気信号の高周波成分が受光素子において自ずと除去されるので、例えば、光電変換処理後に、電気信号用のフィルタを用いて電気信号の高周波成分を除去する処理を行なくてもよい。これにより、信号処理部46a,46b,46c,46dの部品点数を低減することができるので、結果として、フローサイトメータの製造コストを低減することができる。
信号処理部46aのA/D変換器464は、LPF463から出力された側方散乱光の電気信号のRe成分をデジタルデータに変換する。信号処理部46bのA/D変換器464は、LPF463から出力された側方散乱光の電気信号のIm成分をデジタルデータに変換する。信号処理部46cのA/D変換器464は、LPF463から出力された蛍光の電気信号のRe成分をデジタルデータに変換する。信号処理部46dのA/D変換器464は、LPF463から出力された蛍光の電気信号のIm成分をデジタルデータに変換する。変換されたデジタルデータのそれぞれは、分析装置60に供給される。
次に、図5を参照して、制御部50の構成について説明する。図5は、制御部50の構成の一例を示す図である。制御部50は、変調信号の変調周波数を制御する。図5に示すように、制御部50は、発振器51と、パワースプリッタ52と、アンプ(AMP)53,54と、を有している。
発振器51は、所定の周波数の信号、例えば正弦波信号やパルス信号等を生成し、出力する。発振器51から出力される信号は変調信号として用いられる。上記信号の周波数は、例えば、1〜50MHzである。
発振器51から出力された所定の周波数の信号(変調信号)は、パワースプリッタ52により、2つのアンプ53,54に分配される。アンプ53で増幅された変調信号
は、レーザ光源部20へ出力される。また、アンプ54で増幅された変調信号は、第2受光部40へ出力される。アンプ54で増幅された変調信号を第2受光部40へ出力するのは、前述したように、変調信号を、第2受光部40の光増幅器45a,45b,45c,45dのバイアス信号として用いるためである。
次に、図6を参照して、分析装置60の構成について説明する。図6は、分析装置60の構成の一例を示す図である。分析装置60は、CPUを主体として構成されたコンピュータであり、第2受光部40の信号処理部46a,46b,46c,46dのそれぞれから出力された電気信号を用いて、変調信号に対する蛍光の位相差を算出する。また、分析装置60は、蛍光の位相差から蛍光の蛍光緩和時間を求める。分析装置60は、位相差算出部61と、蛍光緩和時間算出部62とを有している。位相差算出部61及び蛍光緩和時間算出部62は、コンピュータが実行可能なプログラムを実行することで形成されるモジュールである。
なお、分析装置60は、本発明における処理部の一例である。
位相差算出部61は、第2受光部40の信号処理部46aから受信した側方散乱光の電気信号のRe成分のデータと、第2受光部40の信号処理部46bから受信した側方散乱光の電気信号のIm成分のデータとを用いてtan−1(Im/Re)(ImはIm成分のデータの値、ReはRe成分のデータの値である)を算出することにより、変調信号に対する側方散乱光の位相差θ´を算出する。
また、位相差算出部61は、第2受光部40の信号処理部46cから受信した蛍光の電気信号のRe成分のデータと、第2受光部40の信号処理部46dから受信した蛍光の電気信号のIm成分のデータとを用いてtan−1(Im/Re)(ImはIm成分のデータの値、ReはRe成分のデータの値である)を算出することにより、変調信号に対する蛍光の位相差θを算出する。
さらに、位相差算出部61は、θ−θ´を算出することにより、変調信号に対する蛍光の位相差θを補正する。このように補正が行われるのは、変調信号の伝送線路と、蛍光や側方散乱光の光信号の伝送経路による位相のずれを補正するためである。
そして、位相差算出部61は、補正された位相差θを蛍光緩和時間算出部62に送信する。
蛍光緩和時間算出部62は、位相差算出部61から受信した位相差θを用いて、蛍光緩和時間τをτ=tanθ/(2πf)(fは変調信号の周波数の値である)に従って求める。蛍光緩和時間τを、上記式に従って求めることができるのは、蛍光は、略1次遅れの緩和応答に従うからである。
出力部70は、例えば、表示装置やプリンタ等であり、分析装置60が算出した結果、具体的には蛍光緩和時間等を出力する。
以上が本実施形態のフローサイトメータの概略構成である。
(蛍光検出方法)
図7は、本実施形態の蛍光検出方法のフローの一例を説明する図である。本実施形態の蛍光検出方法は、測定対象物12にレーザ光を照射し、レーザ光が照射された測定対象物12から発せられる蛍光を受光することにより、測定対象物12の情報を取得することができる。
まず、制御部50の発振器51は、所定の周波数の信号、例えば正弦波信号やパルス信号等を変調信号として生成し(ステップS1)、生成された変調信号をレーザ光源部20及び第2受光部40に供給する(ステップS2)。
次に、レーザ光源部20のレーザドライバ23は、制御部50から変調信号が供給されると、変調信号の変調周波数でレーザ光の強度を変調する。強度変調されたレーザ光は、レーザ光源21から出射され、フローセル10中の測定場を通過する測定対象物12にレーザ光が照射される(ステップS3)。
一方、第2受光部40の光増幅器45a,45b,45c,45dは、発振器51から供給された変調信号を用いたバイアス信号でバイアスされている。測定場を通過する測定対象物12にレーザ光が照射された際に発せられる蛍光が第2受光部40に受光されると、光増幅器45c,45dは、蛍光の光信号の増幅を行う(ステップS4)。これにより、変調信号に対する蛍光の位相差の情報であるRe成分を含む光信号と、変調信号に対する蛍光の位相差の情報であるIm成分を含む光信号とがそれぞれ増幅される。また、レーザ光が照射された際に測定対象物12で散乱したレーザ光の側方散乱光が第2受光部40に受光されると、光増幅器45a,45bは、側方散乱光の光信号の増幅を行う。これにより、変調信号に対する側方散乱光の位相差の情報であるRe成分を含む光信号と、変調信号に対する側方散乱光の位相差の情報であるIm成分を含む光信号とがそれぞれ増幅される。光増幅器45a,45b,45c,45dにて増幅された光信号は、信号処理部46a,46b,46c,46dにおいて電気信号に変換される。このとき、蛍光の電気信号のRe成分及びIm成分のデジタルデータと、側方散乱光の電気信号のRe成分及びIm成分のデジタルデータとが、信号処理部46a,46b,46c,46dから出力される。
次に、分析装置60の位相差算出部61は、第2受光部40から受信した蛍光の電気信号のRe成分及びIm成分のデジタルデータと、側方散乱光の電気信号のRe成分及びIm成分のデジタルデータとを用いて、変調信号に対する蛍光の位相差θを算出する(ステップS5)。
そして、蛍光緩和時間算出部62は、位相差算出部61が算出した位相差θを用いて、蛍光緩和時間τを求める(ステップS6)。
出力部70は、求められた蛍光緩和時間τ等の情報を出力する。
このように、本実施形態によれば、光増幅部45c,45dを用いて蛍光の光信号を増幅しているので、蛍光の光信号が電気信号に変換される前に蛍光の光信号を増幅することができる。これにより、入射する蛍光の光子数が少ない場合であっても、蛍光の強度を高めることができるので、蛍光の光信号が電気信号に変換された後に、蛍光の電気信号が他の電気信号に埋もれて抽出困難となる可能性、さらに蛍光の電気信号がノイズとして除去される可能性を低減することができる。したがって、蛍光の強度が低い場合であっても、蛍光を検出することができ、ひいては精度の高い蛍光緩和時間を取得することができる。
また、側方散乱光の電気信号と蛍光の電気信号とを用いて、変調信号に対する蛍光の位相差θを算出しているので、変調信号の伝送線路と、蛍光や側方散乱光の光信号の伝送経路とによる位相を含まない位相差θを算出することができる。したがって、精度の高い位相差θを用いて蛍光緩和時間を求めることができるので、精度の高い蛍光緩和時間を取得することができる。
さらに、変調信号を用いたバイアス信号でバイアスされた光増幅部45a,45b,45c,45dが、蛍光あるいは側方散乱光の光信号を増幅することにより、蛍光あるいは側方散乱光の光信号と、バイアス信号とがミキシングされる。このため、例えば、電気信号を混合するためのミキサー等の混合器を設ける必要がない。したがって、光信号を増幅するための装置と、混合器とを個別に設ける必要がないので、部品点数を低減することができ、フローサイトメータの製造コストを低減することができる。
(変形例)
図8を参照して、上記実施形態の変形例について説明する。図8は、図3に示した第2受光部の変形例を説明する図である。
上記実施形態では、側方散乱光の光信号を2つに分配して光増幅器45a,45bに入射するとともに、蛍光の光信号を2つに分配して光増幅器45c,45dに入射するように構成されている。本変形例では、図8に示すように、側方散乱光の光信号を1つの光増幅器45aに入射するとともに、蛍光の光信号を1つの光増幅器45cに入射するように構成した点において上記実施形態と異なる。
本変形例の光増幅器45a,45cは、パワースプリッタ47aを介して制御部50と電気的に接続されている。また、光増幅器45cは、90度位相シフタ48aを介してパワースプリッタ47aと接続されている。制御部50から送信された変調信号は、パワースプリッタ47aにより分配される。そして、光増幅器45aには、制御部50から送信された変調信号と同相の信号が供給される。一方、光増幅器45cに供給される信号は、90度位相シフタ48aによって、制御部50から送信された変調信号に対して90度位相がシフトしている。また、制御部50は、所定時間(例えば数マイクロ秒)経過する毎に、変調信号の位相を切替えて第2受光部40に送信する。具体的には、制御部50は、発振器51から出力された変調信号と同相の信号、例えば正弦波信号を第2受光部40に送信し、所定時間経過すると、発振器51から出力された変調信号に対して90度位相シフトした信号、例えば余弦信号を第2受光部40に送信する。そして、制御部50は、所定時間経過すると、第2受光部40に送信する信号を、発振器51から出力された変調信号と同相の信号に切替える。このような処理が繰り返されることにより、制御部50から送信される変調信号の位相が切替えられる。
これにより、側方散乱光の位相差のRe成分を含む光信号と、側方散乱光の位相差のIm成分を含む光信号とを、1つの光増幅器45aから時間的に前後して出力するとともに、蛍光の位相差のRe成分を含む光信号と、蛍光の位相差のIm成分を含む光信号とを、1つの光増幅器45cから出力することができる。
このように、本変形例によれば、上記実施形態と同様に、光増幅部45cを用いて蛍光の光信号を増幅しているので、蛍光の光信号が電気信号に変換される前に蛍光の光信号を増幅することができる。これにより、入射する蛍光の光子数が少ない場合であっても、蛍光の強度を高めることができるので、蛍光の光信号が電気信号に変換された後に、蛍光の電気信号が他の電気信号に埋もれて抽出困難となる可能性、さらに蛍光の電気信号がノイズとして除去される可能性を低減することができる。したがって、蛍光の強度が低い場合であっても、蛍光を検出することができ、ひいては精度の高い蛍光緩和時間を取得することができる。
また、側方散乱光の電気信号と蛍光の電気信号とを用いて、変調信号に対する蛍光の位相差θを算出しているので、変調信号の伝送線路と、蛍光や側方散乱光の光信号の伝送経路とによる位相を含まない位相差θを算出することができる。したがって、精度の高い位相差θを用いて蛍光緩和時間を求めることができるので、精度の高い蛍光緩和時間を取得することができる。
さらに、変調信号を用いたバイアス信号でバイアスされた光増幅部45a,45cが、蛍光あるいは側方散乱光の光信号を増幅することにより、蛍光あるいは側方散乱光の光信号と、バイアス信号とがミキシングされる。このため、例えば、電気信号を混合するためのミキサー等の混合器を設ける必要がない。したがって、光信号を増幅するための装置と、混合器とを個別に設ける必要がないので、部品点数を低減することができ、フローサイトメータの製造コストを低減することができる。
また、本変形例では、蛍光の光信号を2つに分配する必要がないので、上記実施形態のハーフミラー43a,43b、BPF44b,44d、光増幅器45b,45d、信号処理部46b,46dを設ける必要がない。このため、部品点数を低減して、フローサイトメータの製造コストを低減することができる。
(第2実施形態)
以下に、第2実施形態の蛍光検出装置及び蛍光検出方法を適用したフローサイトメータについて説明する。第2実施形態のフローサイトメータの構成は、第1実施形態のフローサイトメータの構成とほぼ同じである。第2実施形態のフローサイトメータが第1実施形態のフローサイトメータと異なる点は、信号値が符号化された信号(符号化系列信号)を、レーザ光を強度変調するための変調信号及びバイアス信号として用いる点にある。具体的には、本実施形態の発振器51の構成が、第1実形態の発振器51の構成と異なっている。
図9を参照して、本実施形態の発振器51の構成について説明する。図9は、第2実施形態のフローサイトメータに含まれる発振器51の構成の一例を説明する図である。
発振器51は、所定の符号化系列信号を生成し、この符号化系列信号を、アンプ53,54に供給する。発振器51は、変調信号としてレーザ光源部20に供給される符号化系列信号の生成と、光増幅器45a,45bのバイアス信号として第2受光部40に供給される符号化系列信号の生成を繰り返し行う。
なお、符号化系列信号として、信号値が所定長さで符号化された信号であって、ビット方向にビット単位でシフトすることにより、シフト前の信号とシフト後の信号とが互いに略直交するように構成された信号が用いられる。ビット方向とは、信号値の配列方向をいう。このような符号化系列信号として、例えば、PN符号化系列信号が好適に用いられる。PN符号化系列信号は、M系列あるいはGold系列の符号を用いた信号であることが好ましく、特に、M系列が後述する相関特性の点で好ましい。
なお、M系列とは、発振器20が、シフトレジスタ符号発生器を有し、このシフトレジスタ符号発生器は、m段(mは自然数)のシフトレジスタと、シフトレジスタの各段の状態の論理結合をシフトレジスタの入力へフィードバックする論理回路とで構成されるとき、信号長さLが2m−1で表されたものをいう。Gold系列は、2つのM系列を、同期してビットごとに加算したものである。従って2つの符号発生器の位相関係は不変であり、生成される系列の長さはもとになる系列の長さと同じ長さであるが、M系列にはならないものである。
PN符号化系列信号は、値が0および1からなる1ビット信号で、ビット方向にビット単位でシフトすることによってできる自己相関関数の値が0又は−1/n(nは後述する系列符号の長さ)となる信号である。
PN符号化系列信号は、一例を挙げると以下のように作成されるPN系列符号のデータを用いて信号化したものである。
次数k=5、符号系列の長さn=31とし、係数h=1,h=1,h=0,h=1,h=1とし、初期値a=1,a=1,a=0,a=1,a=0としたとき下記式(15)に示す漸化式で一意的にPN系列符号C={a}(kは自然数)を求めることができる。
Figure 2013127393
さらに、系列符号C={a,a,a,………,an−1}を用いて基準となる符号化系列信号を生成するとともに、さらにこの系列符号Cをq1ビット、ビット方向にビットシフトさせた系列符号Tq1・C(Tq1は、ビット方向にq1ビット、ビットシフトする作用素である)を用いて符号化系列信号を生成する。ここで、系列符号Tq1・Cは、{aq1,aq1+1,aq1+2,………,aq1+N−1}である。さらに、系列符号Cをq2ビット(例えば、q2=2×q1)、ビット方向にビットシフトさせた系列符号Tq2・Cを用いて符号化系列信号を生成する。
この符号化系列信号を生成するために用いられる系列符号C,Tq1・C,Tq2・Cは、互いに直交する特性を有するので、生成される符号化系列信号も互いに直交する性質を有する。
具体的に説明すると、長さnの系列符号をC={b,b,b,………,bn−1}とし、上記作用素Tを系列符号Cに作用させた系列符号をC´=T・C、すなわちC´={b,bq+1,bq+2,………,bq+n−1}としたとき、系列符号CとC´との間の相関関数Rcc´(q)は下記式(16)のように定義される。ここで、Nは系列符号における項bと項bq+i(iは0以上n−1以下の整数)の値が一致する数であり、Nは系列符号における項bと項bq+iの値の不一致の数である。また、NとNの和は系列符号長さnとなる(N+N=n)。ここで、iとq+iはmod(n)で考える。
Figure 2013127393
上記PN符号化系列において2つの系列を項毎にmod(2)で加算した結果はもとのPN系列符号を巡回シフトしたPN系列符号になる性質があり、PN系列符号の値が0となる個数は値が1となる個数より1つだけ少ないので、N−N=−1となる。これより、PN系列符号において下記式(17)および(18)に示す値となる。
Figure 2013127393
Figure 2013127393
上記式(17)より、ビットシフト量が0、すなわちq=0(mod(n))の場合、式(17)に示すようにRcc´(q)の値は1となり自己相関性を有する。一方、ビットシフト量が0でない、すなわちq≠0(mod(n))の場合、式(18)に示すようにRcc´(q)の値は−1/nとなる。ここで系列符号長さnを大きくすることにより、Rcc´(q)(q≠0)の値は0に近づく。
すなわち、系列符号CとC´は自己相関性を持ち、かつ略直交性を有するといえる。
このようなPN系列符号の値を0,1として時系列信号としたのがPN符号化系列信号である。
発振器51は、このようなPN符号化系列信号を生成する。
次に、本実施形態の発振器51の構成について、図9を参照して説明する。変調信号に対する蛍光の位相差θの分解能を高めるためには、符号化系列信号のデータ間の時間間隔Δtを極めて狭くする必要がある。すなわち、上記PN符号化系列信号の1ビットシフトする時間幅が小さくなるようにする必要がある。このため、発振器51は、高速の符号化系列信号を発振させる必要があることから、図9に示すように、FPGA(Field Programmable Gate Array)51a、パラレル・シリアル(P/S)変換器51b,51c、同期信号分割器51d,51e、クロック信号発生器51fを用いて構成することが好ましい。
パラレル・シリアル変換器51b,51cを用いるのは、符号化系列信号を高速化させるためである。また、クロック信号発生器51fを用いるのは、パラレル・シリアル変換器51b,51cのシリアル信号として生成され、アンプ53及びアンプ54に送られる2つの符号化系列信号を同期あるいは遅延時間を制御するためである。同期あるいは遅延時間を制御するのは、例えば、光増幅器45c,45dを用いて蛍光の増幅処理を行うとき、アンプ54に送られる符号化系列信号が、光増幅器45c,45dにて蛍光の光信号とミキシングされることにより、光増幅器45c,45dに入射する蛍光の光信号との間で相関関数を作成するためである。なお、光増幅器45c,45dに入射する蛍光の光信号は、アンプ53に送られる符号化系列信号によって変調されている。
発振器51は、分析装置60からのパルス信号、あるいは図示されない制御装置からのパルス信号、に応じて、符号化系列信号を繰り返し生成する。
バイアス信号として光増幅器45a,45b,45c,45dに供給される符号化系列信号は、発振器51で繰り返し生成され、しかも、生成されるタイミングが、符号化系列信号のデータ間の時間間隔Δtずつ、すなわち、符号化系列信号の1ビットずつ、ビット方向にシフトしている。このときのシフトによる遅延は、変調信号としてレーザ光源部20に供給される符号化系列信号の生成のタイミングを基準とした遅延である。
光増幅器45a,45b,45c,45dでの増幅時におけるミキシングでは、遅延した符号化系列信号をa(t+Δ)とし、入射光(蛍光)の光信号をb(t)としたとき、a(t+Δ)×b(t)の演算を行う。ここでΔは、遅延時間であり、Δ=k・Δt(kは自然数であり、データポイント上の1ビットのシフト量を表す)である。
信号処理部46a,46b,46c,46dそれぞれのLPF463は、光増幅器45a,45b,45c,45dにてミキシングされた蛍光あるいは側方散乱光の信号のうち、符号化系列信号に応じて設定される周波数をカットオフ周波数として高周波成分の信号成分を除去して、低周波成分の信号を通過させる。
分析装置60の位相差算出部61は、発振器51で繰り返し生成される符号化系列信号の生成のタイミングに同期して、上記低周波成分の信号を、符号化系列信号の1周期の時間、積算する。これにより、遅延時間Δにおける相関関数の値を求めることができる。この遅延時間Δが順次変更されることにより、相関関数を求めることができる。
また、位相差算出部61は、符号化系列信号の1周期の時間のうち相関関数の値が最大となる遅延時間Δを求め、求められた遅延時間Δを用いて2πf・Δ(fは変調周波数の値である)を算出することにより、変調信号に対する蛍光の位相差θと、変調信号に対する側方散乱光の位相差θ´とを算出する。なお、位相差算出部61において求められる相関関数は、回路の帯域が無限大である場合、自己相関関数となる。
さらに、位相差算出部61は、θ−θ´を算出することにより、変調信号に対する蛍光の位相差θを補正する。
蛍光緩和時間算出部62は、位相差算出部61から受信した位相差θを用いて、蛍光緩和時間τをτ=tanθ/(2πf)に従って求める。
このように、本実施形態によれば、変調信号が、信号値が符号化された信号であって、ビット方向にビット単位でシフトすることにより、シフト前の信号とシフト後の信号とが互いに略直交するように構成された信号である。このため、位相差算出部61にて相関関数が求められるとき、相関がない状態では、近似的に値が0になる。このため、蛍光の遅延時間を示す相関関数のピーク位置が明確に形成される。したがって、蛍光の位相差θを精度良く求めることができ、精度の高い蛍光緩和時間を取得することができる。
なお、相関関数のSN比を高めることにより、遅延時間Δを求めやすくするためには、相関関数の最大値以外の値(=−1/n)が0に近くなる、すなわち近似的に直交性を実現する(略直交する)ことが必要である。このためには、符号化系列信号の1周期のデータ数nを大きくする必要がある。しかし、データ数nを大きくすることにより、1周期に対応する時間T(=n・Δt)が増大し、相関関数を0〜Tの遅延時間の範囲で算出するには多くの計算時間を要する。
したがって、符号化系列信号を用いて蛍光検出を行う場合、測定場における測定対象物12の滞在時間を長くすることが好ましく、例えば、蛍光顕微鏡に本実施形態の蛍光検出装置及び蛍光検出方法を適用することが好ましい。
以上、本発明の蛍光検出装置及び蛍光検出方法について詳細に説明したが、本発明は上記実施形態および変形例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
10 フローセル
12 測定対象物
20 レーザ光源部
30 第1受光部
40 第2受光部
45a,45b,45c,45d 光増幅器
50 制御部
51 発振器
60 分析装置
61 位相差算出部
62 蛍光緩和時間算出部
70 出力部

Claims (5)

  1. 測定対象物にレーザ光を照射したときに発せられる蛍光を検出する蛍光検出装置であって、
    強度変調したレーザ光を前記測定対象物に照射するレーザ光源部と、
    前記レーザ光を強度変調するための変調周波数を有する変調信号を用いたバイアス信号で誘導放出を行うことにより、前記測定対象物に前記レーザ光を照射したときに前記測定対象物で散乱する前記レーザ光の散乱光の光信号を増幅する第1の光増幅部と、第1の光増幅部によって増幅された前記散乱光の光信号を受光し、前記散乱光の電気信号を出力する第1の受光素子と、前記変調信号を用いたバイアス信号で誘導放出を行うことにより、前記測定対象物に前記レーザ光を照射したときに発せられる蛍光の光信号を増幅する第2の光増幅部と、第2の光増幅部によって増幅された前記蛍光の光信号を受光し、前記蛍光の電気信号を出力する第2の受光素子とを含む受光部と、
    前記受光部から出力された前記散乱光の電気信号と前記蛍光の電気信号とを用いて、前記変調信号に対する前記蛍光の位相差を算出し、前記位相差から前記蛍光の蛍光緩和時間を求める処理部と、を有する、
    ことを特徴とする蛍光検出装置。
  2. 前記バイアス信号は、前記変調信号と同相の信号と、前記変調信号に対して90度位相シフトした信号とを含む、請求項1に記載の蛍光検出装置。
  3. 前記第1の光増幅器は、前記変調信号に対する前記散乱光の位相差の情報を含む光信号を出力する、請求項1または2に記載の蛍光検出装置。
  4. 前記第2の光増幅器は、前記変調信号に対する前記蛍光の位相差の情報を含む光信号を出力する、請求項1〜3の何れか1項に記載の蛍光検出装置。
  5. 測定対象物にレーザ光を照射したときに発せられる蛍光を検出する蛍光検出方法であって、
    強度変調したレーザ光を前記測定対象物に照射するステップと、
    前記レーザ光を強度変調するための変調周波数を有する変調信号を用いたバイアス信号で誘導放出を行うことにより、前記測定対象物に前記レーザ光を照射したときに前記測定対象物で散乱する前記レーザ光の散乱光の光信号を増幅するステップと、
    増幅された前記散乱光の光信号を受光し、前記散乱光の電気信号を出力するステップと、
    前記変調信号を用いたバイアス信号で誘導放出を行うことにより、前記測定対象物に前記レーザ光を照射したときに発せられる蛍光の光信号を増幅するステップと、
    増幅された前記蛍光の光信号を受光し、前記蛍光の電気信号を出力するステップと、
    出力された前記散乱光の電気信号と前記蛍光の電気信号とを用いて、前記変調信号に対する前記蛍光の位相差を算出し、前記位相差から前記蛍光の蛍光緩和時間を求めるステップと、を有する、
    ことを特徴とする蛍光検出方法。
JP2011276807A 2011-12-19 2011-12-19 蛍光検出装置及び蛍光検出方法 Expired - Fee Related JP5461510B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011276807A JP5461510B2 (ja) 2011-12-19 2011-12-19 蛍光検出装置及び蛍光検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011276807A JP5461510B2 (ja) 2011-12-19 2011-12-19 蛍光検出装置及び蛍光検出方法

Publications (2)

Publication Number Publication Date
JP2013127393A true JP2013127393A (ja) 2013-06-27
JP5461510B2 JP5461510B2 (ja) 2014-04-02

Family

ID=48778009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011276807A Expired - Fee Related JP5461510B2 (ja) 2011-12-19 2011-12-19 蛍光検出装置及び蛍光検出方法

Country Status (1)

Country Link
JP (1) JP5461510B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114324205A (zh) * 2021-12-16 2022-04-12 赛默飞世尔(上海)仪器有限公司 对样品进行光谱测定的方法、系统以及流式细胞仪
EP3872479A4 (en) * 2018-10-25 2022-08-10 Hamamatsu Photonics K.K. DEVICE FOR OPTICAL MEASUREMENT AND METHOD OF OPTICAL MEASUREMENT

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190445A (ja) * 1986-01-27 1987-08-20 ア−・フアウ・エル ア−・ゲ− 物質中に含まれる成分の濃度を求めるための方法
JP2006226698A (ja) * 2005-02-15 2006-08-31 Mitsui Eng & Shipbuild Co Ltd 強度変調したレーザ光による蛍光検出装置
JP2010099095A (ja) * 2008-05-02 2010-05-06 Olympus Corp 光学的検査装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190445A (ja) * 1986-01-27 1987-08-20 ア−・フアウ・エル ア−・ゲ− 物質中に含まれる成分の濃度を求めるための方法
JP2006226698A (ja) * 2005-02-15 2006-08-31 Mitsui Eng & Shipbuild Co Ltd 強度変調したレーザ光による蛍光検出装置
JP2010099095A (ja) * 2008-05-02 2010-05-06 Olympus Corp 光学的検査装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3872479A4 (en) * 2018-10-25 2022-08-10 Hamamatsu Photonics K.K. DEVICE FOR OPTICAL MEASUREMENT AND METHOD OF OPTICAL MEASUREMENT
CN114324205A (zh) * 2021-12-16 2022-04-12 赛默飞世尔(上海)仪器有限公司 对样品进行光谱测定的方法、系统以及流式细胞仪
WO2023109603A1 (zh) * 2021-12-16 2023-06-22 赛默飞世尔(上海)仪器有限公司 对样品进行光谱测定的方法、系统以及流式细胞仪

Also Published As

Publication number Publication date
JP5461510B2 (ja) 2014-04-02

Similar Documents

Publication Publication Date Title
JP4384064B2 (ja) 強度変調したレーザ光による蛍光検出装置
KR101200397B1 (ko) 형광 검출 장치 및 형광 검출 방법
EP1855102B1 (en) Fluorescence detecting device and fluorescence detecting method
JP4489147B2 (ja) 強度変調したレーザ光による蛍光検出装置および蛍光検出方法
JP4523673B1 (ja) 蛍光検出装置及び蛍光検出方法
CN101688836B (zh) Fret检测方法及装置
JP4540751B1 (ja) 蛍光検出装置及び蛍光検出方法
KR101236449B1 (ko) 강도 변조한 레이저광에 의한 형광 검출 장치 및 형광 검출 방법
CN110114691A (zh) 混合直接探测与相干光探测和测距系统
JP4980490B2 (ja) 蛍光測定装置及び蛍光測定方法
KR101152614B1 (ko) 형광 공명 에너지 이동 검출 방법 및 장치
CN109884654B (zh) 基于扩频调制的激光测距系统和方法
JP5461510B2 (ja) 蛍光検出装置及び蛍光検出方法
JP5654509B2 (ja) 蛍光検出装置及び蛍光検出方法
JP4579121B2 (ja) 蛍光測定装置
JP2006023245A (ja) 微小振動検出装置
JP2013200285A (ja) 蛍光検出装置及び蛍光検出方法
JP5324487B2 (ja) 蛍光検出用較正装置、蛍光検出用較正方法、および蛍光検出装置
JP2013200128A (ja) 蛍光検出装置及び蛍光検出方法
CN112684465A (zh) 一种基于相位调制编码脉冲的探测系统及探测方法
JPH11281571A (ja) 光計測装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140115

R150 Certificate of patent or registration of utility model

Ref document number: 5461510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees