JP2013113696A - Displacement measuring method and displacement measuring apparatus - Google Patents

Displacement measuring method and displacement measuring apparatus Download PDF

Info

Publication number
JP2013113696A
JP2013113696A JP2011259779A JP2011259779A JP2013113696A JP 2013113696 A JP2013113696 A JP 2013113696A JP 2011259779 A JP2011259779 A JP 2011259779A JP 2011259779 A JP2011259779 A JP 2011259779A JP 2013113696 A JP2013113696 A JP 2013113696A
Authority
JP
Japan
Prior art keywords
displacement
luminance
light
pixel
line image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011259779A
Other languages
Japanese (ja)
Inventor
Tomomi Hori
友実 堀
Takeshi Imagawa
剛 今川
Tadamichi Shiraishi
忠道 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011259779A priority Critical patent/JP2013113696A/en
Publication of JP2013113696A publication Critical patent/JP2013113696A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a displacement measuring method and a displacement measuring apparatus in which accuracy of displacement measurement is improved by performing centroid position calculation without being influenced by a pixel having particular luminance.SOLUTION: A displacement measuring apparatus comprises a slit light irradiation device 2 which irradiates a measurement subject 1 with slit light 3, a camera 5 which images a photo cutting line 4 generated by irradiating the measurement subject 1 with the slit light 3, and an image processing device 7 which determines displacement of the measurement subject 1 from a photo cutting line image captured by the camera 5. In the image processing device 7, luminance of pixels in a centroid position calculation direction of the photo cutting line image captured by the camera 5 is approximated to ideal luminance distribution according to the least square method and further approximated again to the ideal luminance distribution according to the weighted least square method using a differential between a luminance value and an approximation value, and a centroid position of the photo cutting line image is calculated from an expectation value of that distribution, thereby determining the displacement of the measurement subject 1.

Description

この発明は、計測対象の変位を測定する変位測定方法および変位測定装置に関するものである。   The present invention relates to a displacement measuring method and a displacement measuring apparatus for measuring a displacement of a measurement object.

計測対象の変位を測定する方法として、光切断法がある。これは、計測対象にスリット光を照射してできた光切断線をカメラで撮影し、その光切断線像の輝度データから重心位置を計算することにより計測対象物の変位を求めるものである。   As a method for measuring the displacement of the measurement object, there is a light cutting method. In this method, the optical cutting line formed by irradiating the measurement target with slit light is photographed by a camera, and the position of the center of gravity is calculated from the luminance data of the optical cutting line image to obtain the displacement of the measurement target.

この方法を用いた三次元形状認識装置が特開平3−249509号公報(特許文献1)に開示されている。図7は、この特許文献1に開示された三次元形状認識装置の構成を模式的に示すもので、測定対象物にスリット光を照射するスリット光発生装置70、スリット光によって測定対象物上に形成された光学像を撮像するカメラ71、カメラ71による画像データを、画素セルを単位として取り込む画像取り込み器72、画像データの重心を演算する重心演算器73、線状に集約した画像データの座標を得る座標演算器74、および画像取り込み器72と重心演算器73との間に介在された光強度平均器75とにより構成されている。なお、光強度平均器75は、画像セルの光強度をばらつきなく平均化するもので、中心となる画像セルにつきその周囲の画像セルの光強度を加味するものである。   A three-dimensional shape recognition apparatus using this method is disclosed in Japanese Patent Laid-Open No. 3-249509 (Patent Document 1). FIG. 7 schematically shows the configuration of the three-dimensional shape recognition apparatus disclosed in Patent Document 1, a slit light generator 70 that irradiates the measurement object with slit light, and the slit light on the measurement object. A camera 71 that captures the formed optical image, an image capturing device 72 that captures image data from the camera 71 in units of pixel cells, a centroid calculator 73 that calculates the centroid of the image data, and coordinates of the image data aggregated in a linear form And a light intensity averager 75 interposed between the image capturing unit 72 and the centroid calculating unit 73. The light intensity averager 75 averages the light intensity of the image cells without variation, and takes into account the light intensity of the surrounding image cells for the central image cell.

上記構成による特許文献1に開示された三次元形状認識装置は、図8に示すような平均化処理をすることによって、CCDセルの特性のばらつきや雑音の影響による画像セル、即ち、画素の輝度ムラを減少し、重心位置の算出精度を向上させている。即ち、図8(a)の画素Aに対しては、図8(b)に示す画素A、B、C、D、Eの輝度の平均値、または図8(c)に示す画素A、B、C、D、E、F、G、H、Iの輝度の平均値を用いることにより、画素の輝度ムラを減少し、重心位置の算出精度を向上させている。そして、図8(a)の拡大である図8(d)のX座標、Z座標で示す光切断線像の輝度値に対し、上記のような平均化処理を行った後、重心位置を算出している。   The three-dimensional shape recognition device disclosed in Patent Document 1 having the above configuration performs an averaging process as shown in FIG. Unevenness is reduced, and the calculation accuracy of the center of gravity is improved. That is, for the pixel A in FIG. 8A, the average value of the luminance of the pixels A, B, C, D, and E shown in FIG. 8B, or the pixels A and B shown in FIG. , C, D, E, F, G, H, and I are used, the luminance unevenness of the pixels is reduced, and the calculation accuracy of the center of gravity is improved. Then, after performing the above averaging process on the luminance values of the optical section line image indicated by the X coordinate and Z coordinate of FIG. 8D, which is an enlargement of FIG. 8A, the center of gravity position is calculated. doing.

また、光切断線の重心位置を算出する方法が特開平6−74724号公報(特許文献2)に開示されている。特許文献2に開示された光切断線の重心位置算出方法は、カメラを光切断線の重心演算方向に画素間ピッチより小さいステップ量ずつ複数回移動させて撮影するもので、これによって分解能を上げて重心演算データを増やし、光切断線像の重心位置算出の精度を上げるものである。   A method for calculating the position of the center of gravity of the light section line is disclosed in Japanese Patent Laid-Open No. 6-74724 (Patent Document 2). The method for calculating the barycentric position of the optical cutting line disclosed in Patent Document 2 is to take a picture by moving the camera a plurality of times smaller than the inter-pixel pitch in the barycentric calculation direction of the optical cutting line, thereby increasing the resolution. Thus, the center of gravity calculation data is increased to improve the accuracy of calculating the center of gravity position of the optical section line image.

特開平3−249509号公報JP-A-3-249509 特開平6−74724号公報JP-A-6-74724

光切断線像には、計測対象表面で拡散反射した光同士の干渉などによって、特異な輝度を持つ画素がランダムに現れる場合がある。上記特許文献1に開示された光切断線像の重心位置演算方法では、どの画素に対しても周囲の画素を用いて平均化処理を行うため、重心位置演算結果は、特異な輝度の影響を受けることになる。例えば、異常に高い輝度を持つ画素が含まれていれば、平均化処理をすることによってその周囲の画素の輝度が高くなり、重心位置演算結果は輝度の高い画素位置に片寄る。このため、計測対象の表面形状を
測定する場合、特異な輝度を持つ画素が存在すれば、重心位置演算に誤差が生じ、計測した表面形状にノイズが含まれるという課題がある。
In the light section line image, pixels having specific luminance may appear at random due to interference between light diffusely reflected on the measurement target surface. In the method of calculating the barycentric position of the optical section line image disclosed in Patent Document 1 described above, since the averaging process is performed using the surrounding pixels for every pixel, the barycentric position calculation result is influenced by a specific luminance. Will receive. For example, if a pixel having an abnormally high luminance is included, the luminance of the surrounding pixels is increased by performing the averaging process, and the center of gravity position calculation result is shifted to a pixel position having a high luminance. For this reason, when measuring the surface shape of the measurement target, if there is a pixel having a specific luminance, an error occurs in the gravity center position calculation, and there is a problem that the measured surface shape includes noise.

また、時間経過によって特異な輝度を持つ画素位置が変動すれば、重心位置も変動し、変位測定の繰り返し再現性が低くなるという課題がある。   In addition, if the pixel position having a specific luminance varies with the passage of time, the position of the center of gravity also varies, resulting in a problem that the repeatability of displacement measurement is reduced.

また、上記特許文献2に開示された光切断線の重心位置算出方法においても、特異な輝度を持つ画素を含んだまま重心位置を算出するため、計測対象の表面形状を測定する場合、特異な輝度を持つ画素が存在すれば、重心位置演算に誤差が生じ、計測した表面形状にノイズが含まれるという課題がある。   Also, in the method of calculating the center of gravity position of the optical cutting line disclosed in Patent Document 2, the center of gravity position is calculated while including pixels having specific brightness. If there is a pixel having luminance, there is a problem that an error occurs in the gravity center position calculation, and noise is included in the measured surface shape.

この発明は、上記課題に鑑みてなされたもので、特異な輝度を持つ画素に影響されない重心位置算出を行い、変位測定の精度を向上する変位測定方法および変位測定装置を得ることを目的とするものである。   The present invention has been made in view of the above problems, and an object of the present invention is to obtain a displacement measuring method and a displacement measuring apparatus that perform center-of-gravity position calculation that is not affected by pixels having a specific luminance and improve the accuracy of displacement measurement. Is.

この発明に係る変位測定方法は、計測対象にスリット光を照射して生成した光切断線を撮影して得た光切断線像の重心位置を算出し、上記計測対象の変位を求める変位測定方法において、上記光切断線像の重心位置演算方向の各画素の輝度を最小二乗法で理想的な輝度分布に近似させた後、さらに輝度値と近似値の差分を用いて重み付き最小二乗法で理想的な輝度分布に再近似させ、その分布の期待値から上記光切断線像の重心位置を算出して上記計測対象の変位を求めるものである。   The displacement measuring method according to the present invention is a displacement measuring method for calculating a center of gravity position of a light cutting line image obtained by photographing a light cutting line generated by irradiating a measuring object with slit light and obtaining a displacement of the measuring object. In the above, the luminance of each pixel in the centroid position calculation direction of the light section line image is approximated to an ideal luminance distribution by the least square method, and further using the weighted least square method using the difference between the luminance value and the approximate value. Re-approximation to an ideal luminance distribution is performed, and the position of the center of gravity of the light section line image is calculated from the expected value of the distribution to determine the displacement of the measurement object.

また、この発明に係る変位測定装置は、計測対象にスリット光を照射するスリット光照射装置と、上記スリット光を上記計測対象に照射することによって生成される光切断線を撮影する撮影装置と、上記撮影装置により得られた光切断線像から上記計測対象の変位を求める画像処理装置と、を備え、上記画像処理装置は、上記撮影装置により得られた光切断線像の重心位置演算方向の各画素の輝度を最小二乗法で理想的な輝度分布に近似させた後、さらに輝度値と近似値の差分を用いて重み付き最小二乗法で理想的な輝度分布に再近似させ、その分布の期待値から上記光切断線像の重心位置を算出して上記計測対象の変位を求めるものである。   Further, the displacement measuring device according to the present invention includes a slit light irradiation device that irradiates a measurement target with slit light, a photographing device that captures a light cutting line generated by irradiating the measurement target with the slit light, and An image processing device that obtains the displacement of the measurement target from the optical cutting line image obtained by the photographing device, and the image processing device is configured to calculate the center of gravity position of the optical cutting line image obtained by the photographing device. After approximating the luminance of each pixel to an ideal luminance distribution using the least square method, the difference between the luminance value and the approximate value is used to approximate the luminance distribution to an ideal luminance distribution using the weighted least square method. The center-of-gravity position of the optical section line image is calculated from the expected value to determine the displacement of the measurement target.

この発明によれば、上記構成により、ノイズの少ない変位測定および表面形状の測定ができると共に、時間経過による測定ばらつきを抑えた変位測定および表面形状の測定ができる。   According to the present invention, with the above configuration, it is possible to perform displacement measurement and surface shape measurement with less noise, and displacement measurement and surface shape measurement with suppressed measurement variation over time.

この発明の実施の形態1に係る変位測定装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the displacement measuring apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る変位測定装置の光切断線像を示す模式図である。It is a schematic diagram which shows the optical cutting line image of the displacement measuring apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る変位測定方法を説明する模式図である。It is a schematic diagram explaining the displacement measuring method which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る変位測定方法を説明する模式図である。It is a schematic diagram explaining the displacement measuring method which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る変位測定方法を説明する模式図である。It is a schematic diagram explaining the displacement measuring method which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る変位測定方法を説明する模式図である。It is a schematic diagram explaining the displacement measuring method which concerns on Embodiment 2 of this invention. 従来の三次元形状認識装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the conventional three-dimensional shape recognition apparatus. 従来の三次元形状認識装置の重心位置算出方法を説明する模式図である。It is a schematic diagram explaining the gravity center position calculation method of the conventional three-dimensional shape recognition apparatus.

以下、この発明に係る変位測定方法および変位測定装置の好適な実施の形態について図
面を参照して説明する。なお、これらの実施の形態により発明が限定されるものではなく、その発明の範囲内において、各実施の形態を組み合わせたり、各実施の形態を適宜、変更、省略することが可能である。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of a displacement measuring method and a displacement measuring apparatus according to the invention will be described with reference to the drawings. The invention is not limited by these embodiments, and the embodiments can be combined, or the embodiments can be appropriately changed or omitted within the scope of the invention.

実施の形態1.
図1は、この発明の実施の形態1に係る変位測定装置の構成を示す模式図である。図1において、x、y、zで示される矢印は次に説明する方向を示すものである。即ち、xはスリット光の長軸に対して平行な方向を示し、yはスリット光の長軸と垂直な方向を示し、Z軸はx軸とy軸から成る面に対して垂直な方向、即ち高さ方向を示している。
Embodiment 1 FIG.
FIG. 1 is a schematic diagram showing a configuration of a displacement measuring apparatus according to Embodiment 1 of the present invention. In FIG. 1, arrows indicated by x, y, and z indicate directions to be described next. That is, x indicates a direction parallel to the major axis of the slit light, y indicates a direction perpendicular to the major axis of the slit light, Z-axis is a direction perpendicular to a plane composed of the x-axis and the y-axis, That is, the height direction is shown.

計測対象1は、この実施の形態で高さあるいは表面形状を測定する対象物である。スリット光照射装置2は、光の強度分布がガウス分布であるスリット光3を計測対象1に照射し、スリット光3が計測対象1の表面に照射された箇所は光切断線4となる。撮影装置、例えばカメラ5は、x軸方向に対して平行に設置され、かつ光軸がyz平面に平行となるように設置されており、光切断線4を撮影する。カメラ5による撮影画像は、図2に示すような光切断線像6となる。光切断線像6はデジタル画像である。   The measurement object 1 is an object whose height or surface shape is measured in this embodiment. The slit light irradiation device 2 irradiates the measurement object 1 with slit light 3 having a Gaussian light intensity distribution, and a portion where the slit light 3 is irradiated on the surface of the measurement object 1 becomes an optical cutting line 4. The imaging device, for example, the camera 5 is installed in parallel to the x-axis direction and is installed so that the optical axis is parallel to the yz plane, and images the light section line 4. An image captured by the camera 5 is a light section line image 6 as shown in FIG. The light section line image 6 is a digital image.

図3にx’、y’で示す矢印は、それぞれ図1の矢印xとyに対応しており、矢印x’は光切断線像6の線の長さ方向を示している。また、矢印y’は、光切断線像6の線の幅方向を示している。画像処理装置7は、カメラ5で撮影して得られた光切断線像6を取り込み、図3の矢印y’方向に輝度の重心位置を算出し、三角測量の原理を用いて重心位置を図1における矢印z方向(高さ方向)の位置に変換する。焦点調節装置8は、計測対象1に対してスリット光照射装置2から照射したスリット光3の焦点を調節している。   The arrows indicated by x ′ and y ′ in FIG. 3 correspond to the arrows x and y in FIG. 1, respectively, and the arrow x ′ indicates the length direction of the line of the optical section line image 6. An arrow y ′ indicates the line width direction of the light section line image 6. The image processing device 7 captures the optical section line image 6 obtained by photographing with the camera 5, calculates the center position of the luminance in the direction of the arrow y 'in FIG. 3, and displays the center position using the principle of triangulation. 1 is converted to a position in the arrow z direction (height direction). The focus adjustment device 8 adjusts the focus of the slit light 3 irradiated from the slit light irradiation device 2 to the measurement object 1.

スリット光照射装置2の光源は、シングル横モードのレーザーを用いた点光源であり、その強度分布はガウス分布である。この点光源をレンズで均一に一方向に広げることによってスリット光3に変換し、y軸方向の強度分布がガウス分布であるスリット光3を計測対象1に照射する。   The light source of the slit light irradiation device 2 is a point light source using a single transverse mode laser, and its intensity distribution is a Gaussian distribution. The point light source is uniformly spread by a lens in one direction to be converted into slit light 3, and the measurement target 1 is irradiated with slit light 3 having a Gaussian intensity distribution in the y-axis direction.

強度分布がガウス分布となる点光源としては、LED照明やハロゲン照明を使用し、光の強度分布をガウス分布に変換するようなレンズ、フィルタ、あるいは光導波路などを透過させても良く、また、ガルバノミラーやポリゴンミラーを用いて走査することで、点光源をスリット光3に変換しても良い。   As a point light source in which the intensity distribution is a Gaussian distribution, LED illumination or halogen illumination may be used, and it may be transmitted through a lens, a filter, an optical waveguide, or the like that converts the light intensity distribution into a Gaussian distribution. The point light source may be converted into slit light 3 by scanning using a galvanometer mirror or a polygon mirror.

更に、LED照明光やハロゲン照明光をレンズでスリット状にしてから、光の強度分布をガウス分布に変換するレンズ、フィルタ、あるいは光導波路などを透過させても良く、LED照明光やハロゲン照明光をレンズで点光源に変換し、レンズやガルバノミラー、ポリゴンミラーでスリット状にしてから、光の強度分をガウス分布に変換するレンズ、フィルタ、あるいは光導波路などを透過させても良い。   Furthermore, after the LED illumination light or halogen illumination light is slit with a lens, it may be transmitted through a lens, a filter, an optical waveguide, or the like that converts the light intensity distribution into a Gaussian distribution. May be converted into a point light source with a lens and slitted with a lens, galvanometer mirror, or polygon mirror, and then transmitted through a lens, filter, optical waveguide, or the like that converts the intensity of light into a Gaussian distribution.

焦点調節装置8は、スリット光照射装置2から出力されたスリット光3の焦点をズームレンズやバリフォーカルレンズ(焦点可変レンズ)で調節する。なお、焦点調節装置8に替えてスリット光照射装置2の内部で、スリット光3に変換される前の点光源をズームレンズやバリフォーカルレンズ(焦点可変レンズ)を用いて焦点調節しても良く、スリット光照射装置2と計測対象1の距離を変化させて、スリット光3の焦点を調節しても良い。   The focus adjustment device 8 adjusts the focus of the slit light 3 output from the slit light irradiation device 2 using a zoom lens or a varifocal lens (focus variable lens). In addition, instead of the focus adjustment device 8, the point light source before being converted into the slit light 3 may be focus-adjusted using a zoom lens or a varifocal lens (variable focus lens) inside the slit light irradiation device 2. The focus of the slit light 3 may be adjusted by changing the distance between the slit light irradiation device 2 and the measurement target 1.

実施の形態1に係る変位測定装置は上記のように構成されており、同装置を用いて計測対象1の高さを測定方法について説明する。
スリット光照射装置2から光の強度分布がガウス分布であるスリット光3を計測対象1に照射する。焦点調節装置8で計測対象1に対してスリット光3の焦点がデフォーカスす
るように調節し、光切断線4がぼやけるよう設定する。この光切断線4をカメラ5で撮影し、光切断線像6として画像処理装置7に取り込む。光切断線4はぼやけており強度分布が広がっているため、光切断線像6のうち光切断線4に該当する部分の輝度分布も広がり光切断線4に該当する画素数が増える。
The displacement measuring apparatus according to the first embodiment is configured as described above, and a method for measuring the height of the measuring object 1 using the apparatus will be described.
The slit light irradiation device 2 irradiates the measurement target 1 with slit light 3 having a Gaussian light intensity distribution. The focus adjustment device 8 is adjusted so that the focus of the slit light 3 is defocused with respect to the measurement target 1, and the light cutting line 4 is set to be blurred. The light cutting line 4 is photographed by the camera 5 and taken into the image processing device 7 as a light cutting line image 6. Since the light cutting line 4 is blurred and the intensity distribution is widened, the luminance distribution of the portion corresponding to the light cutting line 4 in the light cutting line image 6 is also widened, and the number of pixels corresponding to the light cutting line 4 is increased.

このような光切断線像6を画像処理装置7に取り込み、図3に示すようなy’軸方向の画素列9について輝度重心を算出する。まず、最小二乗法を用いて画素列9の輝度分布に近似した(1)式のようなガウス分布Giを求める。   Such a light section line image 6 is taken into the image processing device 7, and the luminance centroid is calculated for the pixel array 9 in the y'-axis direction as shown in FIG. First, a Gaussian distribution Gi such as Equation (1) approximated to the luminance distribution of the pixel array 9 is obtained using the least square method.

Figure 2013113696
Figure 2013113696

ただし、iはy’軸方向の画素位置、Giは画素位置iにおいて画素列9をガウス分布で近似した輝度を示す。また、N、m、σは、それぞれ輝度分布全体の大きさ、輝度分布の期待値(重心位置)、輝度分布の広がりを示すパラメータであり、最小二乗法で求められるのはこれら三つのパラメータである。   Here, i represents a pixel position in the y′-axis direction, and Gi represents a luminance obtained by approximating the pixel row 9 with a Gaussian distribution at the pixel position i. N, m, and σ are parameters indicating the overall luminance distribution, the expected value of the luminance distribution (center of gravity position), and the spread of the luminance distribution, respectively. These three parameters are obtained by the least square method. is there.

次に、画素列9の輝度分布と近似したガウス分布の差分を求め、次式のように各画素の重みを決定する。   Next, the difference between the luminance distribution of the pixel array 9 and the Gaussian distribution approximated is obtained, and the weight of each pixel is determined as in the following equation.

Figure 2013113696
Figure 2013113696

Figure 2013113696
Figure 2013113696

ただし、fiは画素列9における画素位置iの輝度、diはfiとGiの差分、wiは画素位置iの画素の重み、Wは重み決定のための閾値を示す。この式では差分diの絶対値が大きいほど重みが小さくなり、更に、差分diの絶対値が予め設定した閾値Wよりも大きければ重みを0とする。   Here, fi is the luminance at the pixel position i in the pixel row 9, di is the difference between fi and Gi, wi is the weight of the pixel at the pixel position i, and W is a threshold for determining the weight. In this equation, the larger the absolute value of the difference di is, the smaller the weight is. Further, if the absolute value of the difference di is larger than a preset threshold value W, the weight is set to 0.

なお、重みwiは差分diの絶対値または二乗した値が大きいほど小さくなれば良く、差分diの絶対値または二乗した値が閾値Wよりも大きければ、重みを0としても良い。または、上記2つの方法の混合でも良い。そのため、(3)式の代わりに、差分diの絶対値または二乗した値の逆数を重みwiとしても良い。また、差分diの絶対値または二乗した値が閾値Wよりも大きければ重みを0とし、閾値Wよりも小さければ重みを1とし
ても良い。
The weight wi only needs to be smaller as the absolute value or the squared value of the difference di increases, and the weight may be set to 0 if the absolute value or the squared value of the difference di is larger than the threshold value W. Alternatively, the above two methods may be mixed. Therefore, instead of the expression (3), the absolute value of the difference di or the inverse of the squared value may be used as the weight wi. Further, the weight may be set to 0 if the absolute value or the squared value of the difference di is larger than the threshold value W, and the weight may be set to 1 if it is smaller than the threshold value W.

各画素の重みwiが決定すれば、重み付き最小二乗法を用いて各画素列の輝度分布に近似したガウス分布を再度求める。ここで得られたパラメータmが画素列9の重心位置となる。例えば、画素列9の輝度分布が図4に示すようなものであるとする。ここでは計算を容易にするため、諧調数は変えずに輝度範囲を0〜1で正規化を行い、輝度値の対数をとった。最小二乗法によって、この輝度値の対数の分布に近似したガウス分布は図4に示す点線のようになる。更に、重み付き最小二乗法によって近似したガウス分布は図4に示す実線のようになる。ただし、閾値W=1.0である。こうして得られたパラメータは、それぞれN≒0.0658、m≒−0.0510、σ≒1.1180となり、図4の場合、輝度分布の重心位置は、パラメータmを輝度位置に変換した72.7010画素となる。   When the weight wi of each pixel is determined, a Gaussian distribution approximated to the luminance distribution of each pixel column is obtained again using a weighted least square method. The parameter m obtained here is the barycentric position of the pixel row 9. For example, assume that the luminance distribution of the pixel column 9 is as shown in FIG. Here, in order to facilitate the calculation, the luminance range was normalized with 0 to 1 without changing the gradation number, and the logarithm of the luminance value was taken. The Gaussian distribution approximated to the logarithmic distribution of the luminance values by the least square method is as shown by a dotted line in FIG. Further, the Gaussian distribution approximated by the weighted least square method is as shown by a solid line in FIG. However, the threshold value W = 1.0. The parameters thus obtained are N≈0.0658, m≈−0.0510, and σ≈1.1180, respectively. In the case of FIG. 4, the barycentric position of the luminance distribution is obtained by converting the parameter m into the luminance position. 7010 pixels.

最後に、上記の方法で得られた重心位置から三角測量を用いて、計測対象1の高さまたは表面形状を測定することができる。   Finally, the height or surface shape of the measurement object 1 can be measured using triangulation from the barycentric position obtained by the above method.

従って、計測対象1の表面で拡散反射した光同士の干渉などによって光切断線像6に特異な輝度を持つ画素10(図2参照)が含まれた場合、特異な輝度を持つ画素10を除外または重み付けを用いて影響度を小さくして重心位置を算出するため、重心位置が特異な輝度を持った画素に片寄らない。そのため、特異な輝度を持つ画素10がランダムに発生した場合に、高さ測定結果または表面形状の測定結果に現れる微細なノイズを低減することができる。   Therefore, when a pixel 10 (see FIG. 2) having a specific luminance is included in the light section line image 6 due to interference between light diffusely reflected on the surface of the measurement object 1, the pixel 10 having a specific luminance is excluded. Alternatively, since the gravity center position is calculated by reducing the degree of influence using weighting, the gravity center position does not shift to a pixel having a specific luminance. Therefore, when the pixels 10 having specific luminance are randomly generated, it is possible to reduce fine noise appearing in the height measurement result or the surface shape measurement result.

また、時間経過によって特異な輝度を持つ画素10の位置が変動した場合に、高さ測定結果または表面形状の測定結果の時間経過によるばらつきを低減することができる。   Further, when the position of the pixel 10 having a specific luminance varies with the passage of time, it is possible to reduce the variation of the height measurement result or the surface shape measurement result with the passage of time.

特許文献1の開示技術のように、光切断線像6に対して平均化処理を行えば、光切断線像6に含まれる微小な輝度のムラやノイズを低減することができ、特異な輝度を持つ画素が含まれている場合は特異な画素の輝度値は減少するが、その周囲の画素の輝度値が高くなり、重心位置は特異な輝度を持つ画素に片寄る。従って、高さ測定結果や表面形状の測定結果のノイズや時間的なばらつきを抑えるためには、特異な輝度を持つ画素を除去または影響度を小さくして重心位置を算出する方法が有効である。   If the averaging process is performed on the optical section line image 6 as disclosed in Patent Document 1, minute luminance unevenness and noise included in the optical section line image 6 can be reduced. If the pixel having the pixel value is included, the luminance value of the specific pixel decreases, but the luminance value of the surrounding pixel increases, and the position of the center of gravity shifts to the pixel having the specific luminance. Therefore, in order to suppress noise and temporal variations in the height measurement result and the surface shape measurement result, it is effective to calculate the barycentric position by removing pixels having a specific luminance or reducing the influence level. .

実施の形態2.
次に、実施の形態2に係る変位測定方法および変位測定装置について説明する。実施の形態2では、実施の形態1に対して、光切断線像6の重心位置算出方法が異なる。
まず、画像処理装置7に取り込んだ光切断線像6に対して、図5に示すy’軸方向の画素列9の輝度分布と、その両隣の画素列11および12の輝度分布を抽出する。重心位置を求めるのは画素列9である。画素列11の輝度分布と画素列12の輝度分布の平均を求め、次式のように画素列9について各画素の重みを決定する。
Embodiment 2. FIG.
Next, a displacement measuring method and a displacement measuring device according to Embodiment 2 will be described. The second embodiment is different from the first embodiment in the method of calculating the barycentric position of the light section line image 6.
First, the luminance distribution of the pixel column 9 in the y′-axis direction and the luminance distributions of the adjacent pixel columns 11 and 12 shown in FIG. It is the pixel column 9 that obtains the position of the center of gravity. The average of the luminance distribution of the pixel column 11 and the luminance distribution of the pixel column 12 is obtained, and the weight of each pixel is determined for the pixel column 9 as follows.

Figure 2013113696
Figure 2013113696

Figure 2013113696
Figure 2013113696

ただし、aiはy’軸方向の画素位置iにおける画素列11と画素列12の輝度の平均値、fiは画素列9における画素位置iの輝度、diは各画素の輝度fiとaiの差分、wiは画素位置iの重み、Wは重み決定のための閾値である。この式は、差分diの絶対値が予め設定した閾値W以内であれば重みを1とし、閾値Wより大きければ重みを0にす
る。
However, ai is the average value of the luminance of the pixel column 11 and the pixel column 12 at the pixel position i in the y′-axis direction, fi is the luminance of the pixel position i in the pixel column 9, di is the difference between the luminance fi and ai of each pixel, wi is a weight of the pixel position i, and W is a threshold for determining the weight. In this equation, the weight is set to 1 if the absolute value of the difference di is within the preset threshold value W, and the weight is set to 0 if the absolute value is greater than the threshold value W.

なお、重みは画素列9が近隣の画素列と比較して、差分diが大きければ重みを0とすれば良い。そのため、画素列9と比較する画素列は、画素列11のみでも良く、画素列12のみでも良い。また、画素列は複数でも良い。また、比較する画素列が複数であった場合、差分diは複数の画素列の輝度分布の平均値との差分でも良く、複数の画素列の最大値との差分でも良い。また、複数の画素列の最小値との差分でも良い。更に、閾値Wとの比較は、差分diの絶対値の代わりに差分diを二乗した値を使用しても良い。   Note that the weight may be set to 0 if the difference di is large compared to the pixel row 9 in the pixel row 9 and the neighboring pixel row. Therefore, the pixel column to be compared with the pixel column 9 may be only the pixel column 11 or only the pixel column 12. A plurality of pixel columns may be used. When there are a plurality of pixel columns to be compared, the difference di may be a difference from the average value of the luminance distributions of the plurality of pixel columns or a difference from the maximum value of the plurality of pixel columns. Moreover, the difference with the minimum value of a some pixel row | line | column may be sufficient. Further, the comparison with the threshold value W may use a value obtained by squaring the difference di instead of the absolute value of the difference di.

各画素の重みが決定すれば、重み付き最小二乗法を用いて各画素列の輝度分布に近似した(1)式のガウス分布を求める。ここで得られたパラメータmが画素列9の重心位置となる。例えば、画素列9の輝度分布が図6に示すようなものであるとする。画素列9の両隣である画素列11と画素列12の平均値を求め、画素列9の輝度分布との差分を採ると、図6の点線で示す画素が重み0となる。ただし、閾値W=20である。ここで、計算を容易にするため、諧調数は変えずに輝度範囲を0〜1で正規化を行い、輝度値の対数を採った。重み付き最小二乗法によって、この輝度値の対数の分布に近似したガウス分布は図6に示す実線のようになる。こうして得られたパラメータは、それぞれN≒0.0701、m≒−0.0441、σ≒1.1054となり、図6の場合、輝度分布の重心位置はmを輝度位置に変換した72.7294画素となる。従って、実施の形態2による重心位置算出方法も実施の形態1と同じ効果を得る。   If the weight of each pixel is determined, a Gaussian distribution of equation (1) approximated to the luminance distribution of each pixel column is obtained using a weighted least square method. The parameter m obtained here is the barycentric position of the pixel row 9. For example, assume that the luminance distribution of the pixel column 9 is as shown in FIG. When the average value of the pixel column 11 and the pixel column 12 which are adjacent to the pixel column 9 is obtained and the difference from the luminance distribution of the pixel column 9 is taken, the pixel indicated by the dotted line in FIG. However, the threshold value W = 20. Here, in order to facilitate the calculation, the luminance range was normalized with 0 to 1 without changing the gradation number, and the logarithm of the luminance value was taken. The Gaussian distribution approximated to the logarithmic distribution of the luminance values by the weighted least square method is as shown by a solid line in FIG. The parameters thus obtained are N≈0.0701, m≈−0.0441, and σ≈1.1054. In the case of FIG. 6, the center of gravity position of the luminance distribution is 72.7294 pixels obtained by converting m into the luminance position. It becomes. Therefore, the center-of-gravity position calculation method according to the second embodiment also obtains the same effect as that of the first embodiment.

1 計測対象 2 スリット光照射装置
3 スリット光 4 光切断線
5、71 カメラ 6 光切断線像
7 画像処理装置 8 焦点調節装置
9、11、12 画素列 10 特異な輝度を持つ画素
70 スリット光発生装置 72 画像取り込み器
73 重心演算器 74 座標演算器
75 光強度平均器
DESCRIPTION OF SYMBOLS 1 Measurement object 2 Slit light irradiation apparatus 3 Slit light 4 Optical cutting line 5, 71 Camera 6 Optical cutting line image 7 Image processing apparatus 8 Focus adjustment apparatus 9, 11, 12 Pixel row 10 Pixel 70 with peculiar luminance 70 Slit light generation Device 72 Image capture unit 73 Center of gravity calculator 74 Coordinate calculator 75 Light intensity averager

Claims (6)

計測対象にスリット光を照射して生成した光切断線を撮影して得た光切断線像の重心位置を算出し、上記計測対象の変位を求める変位測定方法において、
上記光切断線像の重心位置演算方向の各画素の輝度を最小二乗法で理想的な輝度分布に近似させた後、さらに輝度値と近似値の差分を用いて重み付き最小二乗法で理想的な輝度分布に再近似させ、その分布の期待値から上記光切断線像の重心位置を算出して上記計測対象の変位を求めることを特徴とする変位測定方法。
In the displacement measurement method for calculating the center of gravity position of the light cutting line image obtained by photographing the light cutting line generated by irradiating the measurement target with slit light, and obtaining the displacement of the measurement target,
After approximating the luminance of each pixel in the calculation direction of the center of gravity of the light section line image to the ideal luminance distribution by the least square method, it is ideal by the weighted least square method using the difference between the luminance value and the approximate value. A displacement measuring method characterized by re-approximate to a proper luminance distribution and calculating the center of gravity position of the light section line image from the expected value of the distribution to obtain the displacement of the measurement object.
計測対象にスリット光を照射して生成した光切断線を撮影して得た光切断線像の重心位置を算出し、上記計測対象の変位を求める変位測定方法において、
上記光切断線像の重心位置演算方向の任意の輝度分布とその近隣の輝度分布を比較して、極端に輝度値の異なる画素があれば、その画素を除外して最小二乗法で理想的な輝度分布に近似させ、上記任意の輝度分布の期待値から上記光切断線像の重心位置を算出して上記計測対象の変位を求めることを特徴とする変位測定方法。
In the displacement measurement method for calculating the center of gravity position of the light cutting line image obtained by photographing the light cutting line generated by irradiating the measurement target with slit light, and obtaining the displacement of the measurement target,
Comparing the arbitrary luminance distribution in the centroid position calculation direction of the light section line image and the luminance distribution in the vicinity thereof, if there is a pixel with extremely different luminance values, the pixel is excluded and ideal by the least square method A displacement measuring method characterized by approximating a luminance distribution and calculating a center of gravity position of the optical section line image from an expected value of the arbitrary luminance distribution to obtain a displacement of the measurement object.
上記スリット光の焦点を調節することを特徴とする請求項1または請求項2に記載の変位測定方法。   The displacement measuring method according to claim 1, wherein a focus of the slit light is adjusted. 計測対象にスリット光を照射するスリット光照射装置と、
上記スリット光を上記計測対象に照射することによって生成される光切断線を撮影する撮影装置と、
上記撮影装置により得られた光切断線像から上記計測対象の変位を求める画像処理装置と、を備え、
上記画像処理装置は、
上記撮影装置により得られた光切断線像の重心位置演算方向の各画素の輝度を最小二乗法で理想的な輝度分布に近似させた後、さらに輝度値と近似値の差分を用いて重み付き最小二乗法で理想的な輝度分布に再近似させ、その分布の期待値から上記光切断線像の重心位置を算出して上記計測対象の変位を求めることを特徴とする変位測定装置。
A slit light irradiation device for irradiating a measurement object with slit light;
An imaging device that captures a light cutting line generated by irradiating the measurement object with the slit light;
An image processing device for obtaining a displacement of the measurement object from a light section line image obtained by the imaging device,
The image processing apparatus includes:
After approximating the luminance of each pixel in the centroid position calculation direction of the light section line image obtained by the above imaging device to the ideal luminance distribution by the least square method, weighting is performed using the difference between the luminance value and the approximate value. A displacement measuring apparatus which re-approximates an ideal luminance distribution by a least square method and calculates a center of gravity position of the optical section line image from an expected value of the distribution to obtain a displacement of the measurement object.
計測対象にスリット光を照射するスリット光照射装置と、
上記スリット光を上記計測対象に照射することによって生成される光切断線を撮影する撮影装置と、
上記撮影装置により得られた光切断線像から上記計測対象の変位を求める画像処理装置と、を備え、
上記画像処理装置は、
上記撮影装置により得られた光切断線像の重心位置演算方向の任意の輝度分布とその近隣の輝度分布を比較して、極端に輝度値の異なる画素があれば、その画素を除外して最小二乗法で理想的な輝度分布に近似させ、上記任意の輝度分布の期待値から上記光切断線像の重心位置を算出して上記計測対象の変位を求めることを特徴とする変位測定装置。
A slit light irradiation device for irradiating a measurement object with slit light;
An imaging device that captures a light cutting line generated by irradiating the measurement object with the slit light;
An image processing device for obtaining a displacement of the measurement object from a light section line image obtained by the imaging device,
The image processing apparatus includes:
Compare any luminance distribution in the centroid position calculation direction of the light section line image obtained by the above imaging device with the luminance distribution in the vicinity, and if there is a pixel with extremely different luminance values, exclude that pixel and minimize it A displacement measuring apparatus that approximates an ideal luminance distribution by a square method and calculates a center of gravity position of the optical section line image from an expected value of the arbitrary luminance distribution to obtain a displacement of the measurement object.
上記スリット光の焦点を調節する焦点調節装置を備えたことを特徴とする請求項4または請求項5に記載の変位測定装置。   The displacement measuring device according to claim 4, further comprising a focus adjusting device that adjusts a focus of the slit light.
JP2011259779A 2011-11-29 2011-11-29 Displacement measuring method and displacement measuring apparatus Pending JP2013113696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011259779A JP2013113696A (en) 2011-11-29 2011-11-29 Displacement measuring method and displacement measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011259779A JP2013113696A (en) 2011-11-29 2011-11-29 Displacement measuring method and displacement measuring apparatus

Publications (1)

Publication Number Publication Date
JP2013113696A true JP2013113696A (en) 2013-06-10

Family

ID=48709358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011259779A Pending JP2013113696A (en) 2011-11-29 2011-11-29 Displacement measuring method and displacement measuring apparatus

Country Status (1)

Country Link
JP (1) JP2013113696A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054666A1 (en) * 2012-10-04 2014-04-10 株式会社日立製作所 Shape measuring method and device
WO2015059538A1 (en) * 2013-10-21 2015-04-30 Toyota Jidosha Kabushiki Kaisha Axial force measurement method
JP2016530485A (en) * 2013-07-15 2016-09-29 ファロ テクノロジーズ インコーポレーテッド Laser line probe with improved high dynamic range
US9531967B2 (en) 2013-12-31 2016-12-27 Faro Technologies, Inc. Dynamic range of a line scanner having a photosensitive array that provides variable exposure
JP2017032671A (en) * 2015-07-30 2017-02-09 株式会社Screenホールディングス Position measurement device, data correction device, position measurement method, and data correction method
US9658061B2 (en) 2013-12-31 2017-05-23 Faro Technologies, Inc. Line scanner that uses a color image sensor to improve dynamic range
JP2018162997A (en) * 2017-03-24 2018-10-18 株式会社ミツトヨ Information processing device and program
CN113012279A (en) * 2021-03-18 2021-06-22 上海交通大学 Non-contact three-dimensional imaging measurement method and system and computer readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178622A (en) * 1994-08-22 1996-07-12 Matsushita Electric Ind Co Ltd Edge line measuring method
JPH11173813A (en) * 1997-12-11 1999-07-02 Dainippon Screen Mfg Co Ltd Positioning method of light spot and measurement method of film thickness on substrate
JP2001050714A (en) * 1999-08-04 2001-02-23 Hitachi Techno Eng Co Ltd Paste height measuring device
JP2009192332A (en) * 2008-02-13 2009-08-27 Konica Minolta Sensing Inc Three-dimensional processor and method for controlling display of three-dimensional data in the three-dimensional processor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178622A (en) * 1994-08-22 1996-07-12 Matsushita Electric Ind Co Ltd Edge line measuring method
JPH11173813A (en) * 1997-12-11 1999-07-02 Dainippon Screen Mfg Co Ltd Positioning method of light spot and measurement method of film thickness on substrate
JP2001050714A (en) * 1999-08-04 2001-02-23 Hitachi Techno Eng Co Ltd Paste height measuring device
JP2009192332A (en) * 2008-02-13 2009-08-27 Konica Minolta Sensing Inc Three-dimensional processor and method for controlling display of three-dimensional data in the three-dimensional processor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054666A1 (en) * 2012-10-04 2014-04-10 株式会社日立製作所 Shape measuring method and device
US9541380B2 (en) 2012-10-04 2017-01-10 Hitachi, Ltd. Shape measuring method and device
JP2016530485A (en) * 2013-07-15 2016-09-29 ファロ テクノロジーズ インコーポレーテッド Laser line probe with improved high dynamic range
US9500469B2 (en) 2013-07-15 2016-11-22 Faro Technologies, Inc. Laser line probe having improved high dynamic range
CN105659060A (en) * 2013-10-21 2016-06-08 丰田自动车株式会社 Axial force measurement method
WO2015059538A1 (en) * 2013-10-21 2015-04-30 Toyota Jidosha Kabushiki Kaisha Axial force measurement method
US9805459B2 (en) 2013-10-21 2017-10-31 Toyota Jidosha Kabushiki Kaisha Axial force measurement method
CN105659060B (en) * 2013-10-21 2018-01-23 丰田自动车株式会社 Axial force measuration method
US9531967B2 (en) 2013-12-31 2016-12-27 Faro Technologies, Inc. Dynamic range of a line scanner having a photosensitive array that provides variable exposure
US9658061B2 (en) 2013-12-31 2017-05-23 Faro Technologies, Inc. Line scanner that uses a color image sensor to improve dynamic range
US9909856B2 (en) 2013-12-31 2018-03-06 Faro Technologies, Inc. Dynamic range of a line scanner having a photosensitive array that provides variable exposure
JP2017032671A (en) * 2015-07-30 2017-02-09 株式会社Screenホールディングス Position measurement device, data correction device, position measurement method, and data correction method
JP2018162997A (en) * 2017-03-24 2018-10-18 株式会社ミツトヨ Information processing device and program
CN113012279A (en) * 2021-03-18 2021-06-22 上海交通大学 Non-contact three-dimensional imaging measurement method and system and computer readable storage medium

Similar Documents

Publication Publication Date Title
JP2013113696A (en) Displacement measuring method and displacement measuring apparatus
US10997696B2 (en) Image processing method, apparatus and device
JP6484072B2 (en) Object detection device
KR101737518B1 (en) Method and system for determining optimal exposure time and frequency of structured light based 3d camera
US11449964B2 (en) Image reconstruction method, device and microscopic imaging device
JP6519265B2 (en) Image processing method
US10379335B2 (en) Illumination setting method, light sheet microscope apparatus, and recording medium
WO2019105433A1 (en) Image distortion detection method and system
JP2005317818A (en) Pattern inspection device and method therefor
CN106981065B (en) A kind of image Absolute Central Moment innovatory algorithm based on exposure compensating
JP4885471B2 (en) Method for measuring refractive index distribution of preform rod
JP2016045120A (en) Three-dimensional measurement system and three-dimensional measurement method
JP2007322259A (en) Edge detecting method, apparatus and program
JP2008292404A (en) Device for measuring laser beam characteristic
JP2014095631A (en) Three-dimensional measurement device and three-dimensional measurement method
JP2018173338A (en) Three-dimensional shape measuring method using scanning white interference microscope
CN112637506A (en) Method for accelerating focusing of mobile phone
WO2016181099A1 (en) Night vision device testing
JP2015210396A (en) Aligment device, microscope system, alignment method and alignment program
JP2021004762A (en) Measurement device, imaging device, measurement system, control method, program and recording medium
US11997396B2 (en) Processing apparatus, processing system, image pickup apparatus, processing method, and memory medium
JP6991600B2 (en) Image measurement system, image measurement method, image measurement program and recording medium
US20210385390A1 (en) Processing apparatus, processing system, image pickup apparatus, processing method, and memory medium
JP7015078B1 (en) Inspection method and inspection system
JP6685550B2 (en) Autofocus device and autofocus program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141111