JP2013105335A - Drive support device of vehicle - Google Patents

Drive support device of vehicle Download PDF

Info

Publication number
JP2013105335A
JP2013105335A JP2011249042A JP2011249042A JP2013105335A JP 2013105335 A JP2013105335 A JP 2013105335A JP 2011249042 A JP2011249042 A JP 2011249042A JP 2011249042 A JP2011249042 A JP 2011249042A JP 2013105335 A JP2013105335 A JP 2013105335A
Authority
JP
Japan
Prior art keywords
vehicle
contact
host vehicle
host
possibility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011249042A
Other languages
Japanese (ja)
Other versions
JP5658125B2 (en
Inventor
Yoji Sasabuchi
洋治 笹渕
Atsuo Eguchi
敦央 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011249042A priority Critical patent/JP5658125B2/en
Publication of JP2013105335A publication Critical patent/JP2013105335A/en
Application granted granted Critical
Publication of JP5658125B2 publication Critical patent/JP5658125B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a drive support device which can highly reliably estimate a relative position of another vehicle with respect to an own vehicle even in a situation in which the own vehicle is turning with respect to the other vehicle present in the front side of the own vehicle.SOLUTION: The drive support device includes: turning determination means 7 which determines whether an own vehicle 2 is turning with respect to another vehicle when the other vehicle is present in a monitoring area in the front side of the own vehicle 2; and other vehicle position estimation means 8 which sequentially estimates a relative position of a corner part where an end surface facing the own vehicle 2 among a front end surface and a rear end surface of the other vehicle intersects with a side surface facing the own vehicle 2 among both side surfaces of the other vehicle, with respect to the own vehicle 2, on the basis of measured data generated by a laser radar 3. Contact preventing processing means 9 which executes processing for preventing a contact of the other vehicle and the own vehicle 2 determines possibility of a future contact of the other vehicle and the own vehicle 2 by using the relative position estimated by the other vehicle position estimation means 8 when a determination result by the turning determination means 7 is positive.

Description

車両の前方側に存在する他車と自車両との間の距離をレーザレーダを用いて計測する測距装置と、この測距装置を有する運転支援装置とに関する。   The present invention relates to a distance measuring device that uses a laser radar to measure a distance between another vehicle existing on the front side of the vehicle and the host vehicle, and a driving support device having the distance measuring device.

従来、例えば特許文献1等に見られるように、車両に搭載したレーザレーダを用いて自車両の前方の監視領域に存在する他車等の物体と自車両との間の距離等の相対的な位置関係を逐次計測すると共に、その計測データの時系列を用いて、該他車と自車両との将来の接触の可能性を判断し、接触の可能性がある場合に、その接触を回避するための処理(運転者に対する警報の出力や、車両の制動制御等)を行うようにしたものが知られている。   Conventionally, as seen in, for example, Patent Document 1 and the like, a relative distance such as a distance between an object such as another vehicle existing in a monitoring area in front of the own vehicle and the own vehicle using a laser radar mounted on the vehicle. Sequentially measure the positional relationship and use the time series of the measurement data to determine the possibility of future contact between the other vehicle and the host vehicle, and avoid contact if there is a possibility of contact For this purpose, there are known processes for performing a process (outputting an alarm for a driver, braking control of a vehicle, etc.).

なお、この種のシステムのレーザレーダは、通常、上記監視領域を走査する(少なくとも自車両の車幅方向に走査する)ようにして該監視領域の各所にレーザ光を送信すると共に、そのレーザ光の各送信方向毎に該レーザ光の反射光を受信して、該レーザ光の送信タイミングと反射光の受信タイミングとの時間差を計測する。そして、レーザレーダは、計測した時間差に基づいて、レーザ光の各送信方向毎に、その送信方向に存在する物体と自車両との間の距離の計測データを生成する。   In addition, the laser radar of this type of system normally transmits laser light to each part of the monitoring area so as to scan the monitoring area (scan at least in the vehicle width direction of the host vehicle), and the laser light. The reflected light of the laser light is received for each of the transmission directions, and the time difference between the transmission timing of the laser light and the reception timing of the reflected light is measured. Then, the laser radar generates measurement data of the distance between the object existing in the transmission direction and the host vehicle for each transmission direction of the laser light based on the measured time difference.

特開2003−267200号公報JP 2003-267200 A

ところで、自車両とその前方側を走行する他車(前走車又は対向車)とが道路の車線に沿って走行しているような状況では、自車両に対する他車の姿勢は、該他車の車幅方向が自車両の車幅方向と概ね平行となっている場合が一般的である。   By the way, in a situation where the host vehicle and another vehicle (front vehicle or oncoming vehicle) traveling in front of the host vehicle are traveling along the lane of the road, the posture of the other vehicle with respect to the host vehicle is the other vehicle. The vehicle width direction is generally parallel to the vehicle width direction of the host vehicle.

そして、このような状況では、自車両の前方側の監視領域に存在する他車で反射されて自車両で受信されるレーザ光の反射光は、主に、該他車の前端面又は後端面のうちの自車両に臨む端面の各部で反射されたものとなる。   In such a situation, the reflected light of the laser beam reflected by the other vehicle existing in the monitoring area on the front side of the own vehicle and received by the own vehicle is mainly the front end surface or the rear end surface of the other vehicle. It is what was reflected in each part of the end surface which faces the own vehicle.

このため、レーザレーダの計測データを用いて自車両の前方側に存在する他車の自車両に対する相対的な位置を計測する場合、従来は、自車両で受信される該他車からの反射光が、自車両の車幅方向とほぼ平行な反射面としての該他車の前端面又は後端面の各部で反射されたものであるとの前提の基で、該反射面上の特定の代表点、例えば、該反射面の中央位置の代表点の自車両に対する相対位置を、自車両に対する他車の相対位置を代表する位置として、レーザレーダの計測データを用いて推定することが一般に行なわれている。   For this reason, when measuring the relative position of the other vehicle existing on the front side of the own vehicle with respect to the own vehicle using the measurement data of the laser radar, conventionally, the reflected light from the other vehicle received by the own vehicle is used. Is a specific representative point on the reflecting surface on the assumption that it is reflected at each part of the front end surface or the rear end surface of the other vehicle as a reflecting surface substantially parallel to the vehicle width direction of the host vehicle. For example, the relative position of the representative point at the central position of the reflecting surface with respect to the host vehicle is generally estimated using the measurement data of the laser radar as the position representative of the relative position of the other vehicle with respect to the host vehicle. Yes.

そして、このように推定した上記代表点の相対位置やその時間的変化率(相対速度)に基づいて、他車との自車両との接触の可能性を判断するようにしている。   Based on the relative position of the representative point estimated as described above and the temporal change rate (relative speed), the possibility of contact with the own vehicle with another vehicle is determined.

しかしながら、自車両が右左折あるいは進路変更を行なう場合のように、自車両がその前方側の他車に対して旋回を行なうような状況では、その旋回に伴い自車両に対する他車のヨー軸周り方向の姿勢が変化することで、自車両のレーザレーダが他車から受信する反射光には、他車の前端面又は後端面からの反射光だけでなく、該前端面又は後端面とは向きが異なる該他車の側面からの反射光も多く含まれるようになる。   However, in the situation where the host vehicle turns with respect to the other vehicle ahead, such as when the host vehicle turns right or left or changes the course, the yaw axis of the other vehicle with respect to the host vehicle is accompanied by the turn. The reflected light received from the other vehicle by the vehicle's laser radar changes not only the reflected light from the front end surface or the rear end surface of the other vehicle, but also the direction from the front end surface or the rear end surface. A lot of reflected light from the side surface of the other vehicle having a different value is included.

従って、自車両のレーザレーダは、上記他車からの反射光として、自車両の車幅方向と平行でない互いに異なる2つの反射面からの反射光を受信することとなる。また、それらの反射面の自車両に対する向きは、他車に対する自車両の旋回に伴い変化していくこととなる。   Therefore, the laser radar of the own vehicle receives reflected light from two different reflecting surfaces that are not parallel to the vehicle width direction of the own vehicle as reflected light from the other vehicle. In addition, the orientation of these reflecting surfaces with respect to the host vehicle changes as the host vehicle turns with respect to other vehicles.

このため、このような状況では、他車の反射面が、自車両の車幅方向とほぼ平行な反射面であるとの前提のもとで、レーザレーダの計測データに基づいて該反射面の代表点の自車両に対する相対位置を推定すると、その相対位置を推定した他車の部位が、自車両の旋回開始前と異なる部位となったり、当該部位が自車両の旋回中に変動することとなりやすい。   For this reason, in such a situation, on the assumption that the reflecting surface of the other vehicle is a reflecting surface that is substantially parallel to the vehicle width direction of the host vehicle, the reflecting surface of the reflecting vehicle is based on the measurement data of the laser radar. When the relative position of the representative point with respect to the host vehicle is estimated, the part of the other vehicle whose relative position is estimated is different from the part before the start of turning of the host vehicle, or the part changes during the turning of the host vehicle. Cheap.

ひいては、他車の位置を代表するものとして推定した相対位置の時間的な変化が、自車両に対する他車の実際の運動形態に整合しないものとなりやすく、該相対位置の信頼性を十分に確保することが困難となるという不都合があることが、本願発明者の検討により判明した。   As a result, the temporal change in the relative position estimated as representative of the position of the other vehicle tends to be inconsistent with the actual movement form of the other vehicle with respect to the own vehicle, and sufficiently ensures the reliability of the relative position. It has been found by the inventor's examination that there is an inconvenience that it becomes difficult.

そして、このように自車両に対する他車の相対位置の信頼性を十分に確保することが困難となることから、該他車と自車両との接触の可能性を高い信頼性で判断することも困難となるという不都合がある。   Since it is difficult to sufficiently ensure the reliability of the relative position of the other vehicle with respect to the own vehicle in this way, it is also possible to determine the possibility of contact between the other vehicle and the own vehicle with high reliability. There is an inconvenience that it becomes difficult.

本発明はかかる背景に鑑みてなされたものであり、自車両の前方側に存在する他車に対して自車両の旋回が行なわれる状況でも、自車両に対する他車の相対位置を高い信頼性で推定することができ、ひいては、自車両と他車との接触の可能性の判断の信頼性を高めることができる運転支援装置を提供することを目的とする。   The present invention has been made in view of such a background, and the relative position of the other vehicle with respect to the own vehicle is highly reliable even in a situation where the own vehicle turns with respect to the other vehicle existing on the front side of the own vehicle. It is an object of the present invention to provide a driving support device that can be estimated, and in turn can improve the reliability of determination of the possibility of contact between the host vehicle and another vehicle.

本発明の車両の運転支援装置は、かかる目的を達成するために、車両の前方側の所定の監視領域を少なくとも該車両の車幅方向で走査するようにレーザ光を送信し、該レーザ光の各送信方向の位置に存在する該レーザ光の反射物体と前記車両である自車両との間の距離の計測データを生成するレーザレーダと、少なくとも前記監視領域に前記反射物体としての他車が存在する場合に、該他車と自車両との将来の接触の可能性を判断し、該接触の可能性が有ると判断した場合に該接触を回避するための接触回避処理を実行する接触回避処理手段とを備える運転支援装置において、
前記監視領域に前記他車が存在する場合に、前記自車両が前記他車に対して旋回中であるか否かを判断する旋回判断手段と、
前記旋回判断手段の判断結果が肯定的である場合に、前記他車に対応して前記レーザレーダが生成した計測データに基づいて、該他車の前端面及び後端面のうちの自車両に臨む端面と該他車の両側面のうちの自車両に臨む側面とが交差する角部の自車両に対する相対位置を、自車両に対する前記他車の代表位置として逐次推定する他車位置推定手段とを備え、
前記接触回避処理手段は、前記旋回判断手段の判断結果が肯定的である場合に、前記他車位置推定手段により推定された前記他車の代表位置を用いて前記他車と自車両との将来の接触の可能性を判断することを特徴とする(第1発明)。
In order to achieve the above object, the vehicle driving support device of the present invention transmits a laser beam so as to scan a predetermined monitoring region on the front side of the vehicle at least in the vehicle width direction of the vehicle, A laser radar that generates measurement data of the distance between the reflected object of the laser beam present at each transmission direction position and the host vehicle, and another vehicle as the reflected object exists at least in the monitoring area A contact avoidance process for determining a possibility of a future contact between the other vehicle and the host vehicle and executing a contact avoidance process for avoiding the contact when the possibility of the contact is determined. A driving support device comprising means,
Turn determination means for determining whether or not the own vehicle is turning with respect to the other vehicle when the other vehicle exists in the monitoring area;
When the judgment result of the turning judgment means is affirmative, it faces the host vehicle on the front end surface and the rear end surface of the other vehicle based on the measurement data generated by the laser radar corresponding to the other vehicle. Other vehicle position estimating means for sequentially estimating the relative position of the corner portion where the end surface and the side surface facing the host vehicle of both side surfaces of the other vehicle intersect with the host vehicle as the representative position of the other vehicle with respect to the host vehicle. Prepared,
The contact avoidance processing unit uses the representative position of the other vehicle estimated by the other vehicle position estimating unit when the determination result of the turning determination unit is affirmative. The possibility of contact is determined (first invention).

ここで、前記自車両が前記他車に対して旋回中である場合には、自車両の前後方向が、他車の前後方向に対して傾きを有することとなるため、自車両の前方側の監視領域に前記他車が存在する場合に、自車両のレーザレーダにより送信されるレーザ光のうち、該他車に向う送信方向のレーザ光は、該他車の前端面及び後端面のうちの自車両に臨む端面(以下、自車側他車端面ということがある)と、該他車の両側面のうちの自車両に臨む側面(以下、自車側他車側面ということがある)とで反射されて自車両で受信されることとなる。   Here, when the host vehicle is turning with respect to the other vehicle, the front-rear direction of the host vehicle has an inclination with respect to the front-rear direction of the other vehicle. Among the laser beams transmitted by the laser radar of the host vehicle when the other vehicle is present in the monitoring area, the laser beam in the transmission direction toward the other vehicle is out of the front end surface and the rear end surface of the other vehicle. An end surface facing the host vehicle (hereinafter, may be referred to as an own vehicle side other vehicle end surface), and a side surface facing the host vehicle (hereinafter also referred to as an own vehicle side other vehicle side surface) of both side surfaces of the other vehicle; Will be received by the host vehicle.

また、この状態では、前記他車の外周面のうち、上記自車側他車端面と、自車側他車側面とが交差する角部が、自車両の前方側で自車両側に突き出るようにして該自車両に対向することとなる。   Further, in this state, a corner portion of the outer surface of the other vehicle where the own vehicle side other vehicle end surface intersects the own vehicle side other vehicle side surface protrudes toward the own vehicle on the front side of the own vehicle. Thus, it faces the host vehicle.

このため、前記自車両が前記他車に対して旋回中である場合には、前記レーザレーダの計測データに基づいて、前記他車単一の特定部位としての該他車の角部の、自車両に対する相対位置を逐次推定することが可能である。   For this reason, when the host vehicle is turning with respect to the other vehicle, based on the measurement data of the laser radar, the corner of the other vehicle as a specific part of the other vehicle It is possible to sequentially estimate the relative position with respect to the vehicle.

そこで、第1発明では、前記他車位置推定手段は、前記旋回判断手段の判断結果が肯定的である場合(自車両が他車に対して旋回中である場合)に、前記他車に対応して前記レーザレーダが生成した計測データに基づいて、前記自車側他車端面と自車側他車側面とが交差する角部の自車両に対する相対位置を、自車両に対する前記他車の代表位置として逐次推定する。   Therefore, in the first invention, the other vehicle position estimating means responds to the other vehicle when the judgment result of the turning judgment means is affirmative (when the own vehicle is turning with respect to the other vehicle). Then, based on the measurement data generated by the laser radar, the relative position of the corner portion where the own vehicle side other vehicle end surface and the own vehicle side other vehicle side face with respect to the own vehicle is represented by the representative of the other vehicle with respect to the own vehicle. The position is estimated sequentially.

この場合、逐次推定する他車の代表位置は、該他車の単一の特定部位たる角部の自車両に対する相対位置であるので、他車に対する自車両の旋回中に、推定対象たる他車の位置を代表する部位が一定に保たれる。このため、他車に対する自車両の旋回中に推定される他車の代表位置の信頼性を高めることができる。   In this case, since the representative position of the other vehicle to be sequentially estimated is a relative position with respect to the own vehicle at a corner that is a single specific part of the other vehicle, the other vehicle that is the estimation target during the turn of the own vehicle with respect to the other vehicle. The site representing the position of is kept constant. For this reason, the reliability of the representative position of the other vehicle estimated during the turning of the own vehicle with respect to the other vehicle can be enhanced.

そして、第1発明によれば、前記接触回避処理手段は、前記旋回判断手段の判断結果が肯定的である場合(自車両が他車に対して旋回中である場合)に、前記他車位置推定手段により推定された前記他車の代表位置を用いて前記他車と自車両との将来の接触の可能性を判断する。   According to the first aspect of the present invention, the contact avoidance processing unit is configured to detect the position of the other vehicle when the determination result of the turning determination unit is affirmative (when the host vehicle is turning with respect to the other vehicle). The possibility of future contact between the other vehicle and the host vehicle is determined using the representative position of the other vehicle estimated by the estimating means.

この場合、推定された他車の代表位置は、信頼性の高いものである。また、この代表位置の部位である前記他車の角部は、自車両の前方側で自車両側に突き出るようにして該自車両に対向する部位であるので、他車のうちの自車両に近い部位である。   In this case, the estimated representative position of the other vehicle is highly reliable. Further, the corner portion of the other vehicle, which is the representative position portion, is a portion facing the own vehicle so as to protrude toward the own vehicle side on the front side of the own vehicle. It is a close part.

従って、推定された前記他車の代表位置を用いて、該他車と自車両との将来の接触の可能性を高い信頼性で適切に判断することができる。   Therefore, the possibility of future contact between the other vehicle and the host vehicle can be appropriately determined with high reliability using the estimated representative position of the other vehicle.

よって、第1発明によれば、自車両の前方側に存在する他車に対して自車両の旋回が行なわれる状況でも、自車両に対する他車の相対位置を高い信頼性で推定することができ、ひいては、自車両と他車との接触の可能性の判断の信頼性を高めることができる。   Therefore, according to the first aspect of the present invention, the relative position of the other vehicle with respect to the own vehicle can be estimated with high reliability even in a situation where the own vehicle is turning with respect to the other vehicle existing in front of the own vehicle. As a result, the reliability of the determination of the possibility of contact between the host vehicle and another vehicle can be increased.

かかる第1発明においては、前記自車側他車端面と自車側他車側面とが交差する角部の相対位置は、より具体的には、例えば次のような手法によって算出することができる。すなわち、前記他車位置推定手段は、前記旋回判断手段の判断結果が肯定的である場合に、前記他車の前端面及び後端面のうちの自車両に臨む端面(自車側他車端面)と該他車の両側面のうちの自車両に臨む側面(自車側他車側面)とを互いに直角に交差する2つの仮想平坦面で近似して、当該2つの仮想平坦面の自車両に対する相対的な配置位置を、前記他車に対応して前記レーザレーダが生成した計測データに基づいて決定し、その決定した配置位置に配置した当該2つの仮想平坦面が交差する角部の自車両に対する相対位置を、前記他車の角部の相対位置として算出する(第2発明)。   In the first aspect of the invention, the relative position of the corner where the own vehicle side other vehicle end surface and the own vehicle side other vehicle side face can be calculated more specifically by, for example, the following method. . That is, the other vehicle position estimating means, when the judgment result of the turning judgment means is affirmative, of the front end face and the rear end face of the other vehicle facing the host vehicle (own vehicle side other vehicle end face). And two side surfaces of the other vehicle facing the host vehicle (side surface of the other vehicle side) are approximated by two virtual flat surfaces intersecting each other at right angles, and the two virtual flat surfaces with respect to the host vehicle Relative arrangement position is determined based on measurement data generated by the laser radar corresponding to the other vehicle, and the vehicle at the corner where the two virtual flat surfaces arranged at the determined arrangement position intersect Is calculated as the relative position of the corner of the other vehicle (second invention).

すなわち、実際の他車の前端面又は後端面と、側面とは、通常、ほぼ直角に交差するような面となっている。そこで、第2発明では、前記他車位置推定手段は、自車側他車端面と自車側他車側面とが、互いに直角に交差する2つの仮想平坦面で近似されるものとして、当該2つの仮想平坦面の自車両に対する相対的な配置位置を、前記他車に対応して前記レーザレーダが生成した計測データに基づいて決定する。   In other words, the front end surface or rear end surface of the actual other vehicle and the side surface are usually surfaces that intersect substantially at a right angle. Therefore, in the second invention, the other vehicle position estimation means is approximated by two virtual flat surfaces in which the own vehicle side other vehicle end surface and the own vehicle side other vehicle side surface intersect each other at right angles. A relative arrangement position of the two virtual flat surfaces with respect to the host vehicle is determined based on measurement data generated by the laser radar corresponding to the other vehicle.

この場合、当該2つの仮想平坦面の配置位置は、前記レーザレーダのレーザ光の各送信方向の位置に存する当該2つの仮想平坦面の各部の相対位置(自車両に対する相対位置)が、レーザレーダの計測データにより示される相対位置(レーザ光の送信方向と、その送信方向での他車と自車両との間の距離の計測値との組により規定される相対位置)にできるだけ合致するように決定すればよい。例えば、レーザレーダの計測データにより示される他車の各部(レーザ光の各送信方向の部分)の相対位置の、当該2つの仮想平坦面上の相対位置(レーザ光の各送信方向での相対位置)からの差のばらつき度合いが最小になるように、当該2つの仮想平坦面の配置位置を決定すればよい。   In this case, the arrangement positions of the two virtual flat surfaces are the relative positions (relative positions with respect to the host vehicle) of the portions of the two virtual flat surfaces at the positions in the transmission directions of the laser beams of the laser radar. To match as much as possible the relative position (relative position defined by the combination of the laser beam transmission direction and the measured value of the distance between the other vehicle in the transmission direction) Just decide. For example, the relative position (relative position in each transmission direction of laser light) of the relative position of each part (part in each transmission direction of laser light) of the other vehicle indicated by the measurement data of the laser radar on the two virtual flat surfaces The arrangement positions of the two virtual flat surfaces may be determined so that the variation degree of the difference from (2) is minimized.

そして、第2発明によれば、決定した配置位置に配置した当該2つの仮想平坦面が交差する角部の自車両に対する相対位置を、前記他車の角部の相対位置として算出することにより、前記他車の代表位置としての前記他車の角部の自車両に対する相対位置を適切に算出することができる。   And according to 2nd invention, by calculating the relative position with respect to the own vehicle of the corner | angular part where the said 2 virtual flat surface arrange | positioned in the determined arrangement position intersects as a relative position of the corner | angular part of the said other vehicle, The relative position of the corner portion of the other vehicle as the representative position of the other vehicle with respect to the host vehicle can be appropriately calculated.

また、上記第1発明又は第2発明では、前記旋回判断手段の判断結果が否定的である場合(自車両が他車に対して旋回していない場合)には、例えば次のように自車両に対する他車の代表位置を推定することができる。すなわち、前記他車位置推定手段は、前記旋回判断手段の判断結果が否定的である場合に、前記他車の前端面及び後端面のうちの自車両に臨む端面(自車側他車端面)を自車両の車幅方向と平行な1つの仮想平坦面で近似して、前記他車に対応して前記レーザレーダが生成した計測データに基づいて、当該1つの仮想平坦面上の部分の自車両に対する相対位置を自車両に対する前記他車の代表位置として推定する手段を備える。   In the first invention or the second invention described above, when the result of the turning judgment is negative (when the own vehicle is not turning with respect to another vehicle), for example, the own vehicle is as follows. The representative position of the other vehicle with respect to can be estimated. That is, the other vehicle position estimating means is the end face facing the host vehicle (the host vehicle side other car end face) of the front end face and the rear end face of the other vehicle when the judgment result of the turning judgment means is negative. Is approximated by one virtual flat surface parallel to the vehicle width direction of the host vehicle, and the portion of the portion on the one virtual flat surface is determined based on the measurement data generated by the laser radar corresponding to the other vehicle. Means for estimating a relative position with respect to the vehicle as a representative position of the other vehicle with respect to the host vehicle.

この場合、前記自車側他車端面を近似する当該1つの仮想平坦面上の部分の自車両に対する相対位置(他車の代表位置)の推定処理は、より具体的には、例えば次のように行なうことができる。すなわち、前記レーザレーダのレーザ光の各送信方向の位置に存する当該1つの仮想平坦面の各部の相対位置(自車両に対する相対位置)が、レーザレーダの計測データ(自車側他車端面からの反射光に対応する計測データ)により示される相対位置にできるだけ合致するように、当該1つの仮想平坦面の配置位置(自車両に対する配置位置を決定する)。そして、この決定した配置位置の仮想平坦面上の特定の部位、例えば中央部の自車両に対する相対位置を、他車の代表位置として推定する。   In this case, the estimation process of the relative position (the representative position of the other vehicle) of the portion on the one virtual flat surface that approximates the other vehicle end surface of the own vehicle with respect to the own vehicle is more specifically as follows, for example. Can be done. That is, the relative position (relative position with respect to the own vehicle) of each part of the one virtual flat surface existing at the position in the transmission direction of the laser light of the laser radar is measured from the measurement data of the laser radar (from the other vehicle end surface of the own vehicle side). The arrangement position of the one virtual flat surface (determine the arrangement position with respect to the host vehicle) so as to match the relative position indicated by the measurement data corresponding to the reflected light as much as possible. And the relative position with respect to the specific site | part on the virtual flat surface of this determined arrangement position, for example, a center part, is estimated as a representative position of another vehicle.

そして、前記旋回判断手段の判断結果が否定的である場合に、上記の如く前記他車の代表位置を推定する場合において、前記接触回避処理手段は、前記旋回判断手段の判断結果が肯定的である場合に前記他車と自車両との将来の接触の可能性を判断するために、現在時刻の直前において前記他車位置推定手段により推定された前記他車の代表位置の時系列に基づいて該他車の将来の第1予測進路を推定すると共に、該他車の第1予測進路と自車両の運動状態から推定した自車両の将来の予測進路とに基づいて前記他車と自車両との将来の接触の可能性を判断する第1接触可能性判断処理と、前記旋回判断手段の判断結果が肯定的となる直前において前記他車位置推定手段により推定された前記他車の代表位置の時系列に基づいて前記他車の将来の第2予測進路を推定すると共に、該他車の第2予測進路と自車両の将来の前記予測進路とに基づいて前記他車と自車両との将来の接触の可能性を判断する第2接触可能性判断処理とを実行し、該第1接触可能性判断処理による判断結果と第2接触可能性判断処理による判断結果とのいずれかが、前記他車と自車両との将来の接触の可能性が有るという判断結果である場合に、前記接触回避処理を実行するようにしてもよい(第3発明)。   Then, when the determination result of the turning determination means is negative, when the representative position of the other vehicle is estimated as described above, the contact avoidance processing means is positive in the determination result of the turning determination means. In order to determine the possibility of future contact between the other vehicle and the host vehicle in some cases, based on the time series of the representative position of the other vehicle estimated by the other vehicle position estimating means immediately before the current time. Estimating a future first predicted course of the other vehicle, and based on the first predicted course of the other vehicle and a predicted future course of the host vehicle estimated from a motion state of the host vehicle, A first contact possibility determination process for determining the possibility of future contact of the vehicle and a representative position of the other vehicle estimated by the other vehicle position estimation unit immediately before the determination result of the turning determination unit becomes affirmative. General of the other car based on time series A second predicted course of the second vehicle, and a possibility of future contact between the other vehicle and the own vehicle is determined based on the second predicted course of the other vehicle and the predicted future course of the own vehicle. The contact possibility determination process is executed, and any one of the determination result of the first contact possibility determination process and the determination result of the second contact possibility determination process indicates whether the other vehicle and the host vehicle When the determination result indicates that there is a possibility, the contact avoidance process may be executed (third invention).

この第3発明によれば、前記旋回判断手段の判断結果が肯定的である場合(自車両が他車に対して旋回中である場合)には、前記第1接触可能性判断処理と第2接触可能性判断処理とにより、それぞれ前記他車と自車両との将来の接触の可能性が判断される。   According to this third invention, when the determination result of the turning determination means is affirmative (when the host vehicle is turning with respect to another vehicle), the first contact possibility determination processing and the second In the contact possibility determination process, the possibility of future contact between the other vehicle and the host vehicle is determined.

この場合、第1接触可能性判断処理では、他車の将来の予測進路(第1予測進路)を推定するために、現在時刻の直前において前記他車位置推定手段により推定された前記他車の代表位置の時系列が用いられる。従って、前記他車の代表位置としての前記他車の角部の相対位置を反映させて、前記第1予測進路が推定される。   In this case, in the first contact possibility determination process, in order to estimate the future predicted course (first predicted course) of the other vehicle, the other vehicle position estimated by the other vehicle position estimating means immediately before the current time is estimated. A time series of representative positions is used. Accordingly, the first predicted course is estimated by reflecting the relative position of the corner of the other vehicle as the representative position of the other vehicle.

一方、第2接触可能性判断処理では、他車の将来の予測進路(第2予測進路)を推定するために、前記旋回判断手段の判断結果が肯定的となる直前において前記他車位置推定手段により推定された前記他車の代表位置の時系列が用いられる。従って、前記他車の代表位置としての前記他車の角部の相対位置を反映させることなく、前記第2予測進路が推定される。   On the other hand, in the second contact possibility determination process, in order to estimate the future predicted course of the other vehicle (second predicted course), the other vehicle position estimation means immediately before the result of the turning determination means becomes affirmative. The time series of the representative position of the other vehicle estimated by the above is used. Therefore, the second predicted course is estimated without reflecting the relative position of the corner of the other vehicle as the representative position of the other vehicle.

そして、接触回避処理手段は、第1接触可能性判断処理による判断結果と第2接触可能性判断処理による判断結果とのいずれかが、前記他車と自車両との将来の接触の可能性が有るという判断結果である場合に、前記接触回避処理を実行する。   Then, the contact avoidance processing means may determine whether there is a possibility of future contact between the other vehicle and the host vehicle, either of the determination result of the first contact possibility determination process and the determination result of the second contact possibility determination process. If the determination result is “Yes”, the contact avoidance process is executed.

このため、第3発明によれば、他車に対する自車両の旋回中に、前記他車の角部の相対位置を適切に推定することが困難となるような状況(例えば前記自車側他車端面や自車側他車側面が凹凸の多い面であるような場合等)で、前記第1接触可能性判断処理により、他車と自車両との将来の接触の可能性が無いと判断されても、前記第2接触可能性判断処理により、他車と自車両との将来の接触の可能性が無いと判断されれば、前記接触回避処理が実行される。   For this reason, according to the third aspect of the present invention, it is difficult to appropriately estimate the relative position of the corners of the other vehicle while the host vehicle is turning with respect to the other vehicle (for example, the host vehicle side other vehicle). In the case where the end surface or the side surface of the other side of the vehicle is a surface with many irregularities), it is determined by the first contact possibility determination process that there is no possibility of future contact between the other vehicle and the own vehicle. However, if it is determined by the second contact possibility determination process that there is no possibility of future contact between the other vehicle and the host vehicle, the contact avoidance process is executed.

従って、他車と自車両との将来の接触の可能性が有るのに、前記接触回避処理が実行されるなくなるような事態が発生するのを極力防止することができる。   Therefore, it is possible to prevent as much as possible the occurrence of the situation where the contact avoidance process is not executed even though there is a possibility of future contact between the other vehicle and the host vehicle.

本発明の一実施形態における運転支援装置の構成を示すブロック図。The block diagram which shows the structure of the driving assistance apparatus in one Embodiment of this invention. 図1に示すレーザレーダに関する説明図。Explanatory drawing regarding the laser radar shown in FIG. 図1に示す演算処理ユニットの処理を示すフローチャート。The flowchart which shows the process of the arithmetic processing unit shown in FIG. 図3のSTEP3の処理に関する説明図。Explanatory drawing regarding the process of STEP3 of FIG. 図3のSTEP4の処理に関する説明図。Explanatory drawing regarding the process of STEP4 of FIG. 図3のSTEP5の処理に関する説明図。Explanatory drawing regarding the process of STEP5 of FIG.

本発明の一実施形態を図1〜図6を参照して説明する。   An embodiment of the present invention will be described with reference to FIGS.

図1を参照して、本実施形態の運転支援装置1は、車両2(自車両)の前方側の所定の監視領域に存在する他車等の物体を監視するためのレーザレーダ3と、各種演算処理を実行して、車両2の運転者に対する警報等の報知を行なうための報知器4や車両2のブレーキ装置5の制動力の制御を行う演算処理ユニット6とを備えている。   Referring to FIG. 1, a driving support apparatus 1 according to the present embodiment includes a laser radar 3 for monitoring an object such as another vehicle existing in a predetermined monitoring area on the front side of a vehicle 2 (own vehicle), and various types of devices. An arithmetic unit 4 that performs arithmetic processing to notify the driver of the vehicle 2 of a warning or the like and an arithmetic processing unit 6 that controls the braking force of the brake device 5 of the vehicle 2 are provided.

レーザレーダ3は公知のものであり、図2に示すように、車両2の前部(例えばフロントグリル部)に搭載されている。このレーザレーダ3は、車両2の前方の所定の監視領域(例えば図2に示す点描領域)に存在する物体と自車両2と間の距離を計測するためのレーザ光を該監視領域内で複数の方向に送信すると共に、その各送信方向のレーザ光の反射光を受信する。   The laser radar 3 is a known one and is mounted on the front portion (for example, a front grill portion) of the vehicle 2 as shown in FIG. The laser radar 3 includes a plurality of laser beams for measuring the distance between an object existing in a predetermined monitoring area in front of the vehicle 2 (for example, the stippled area shown in FIG. 2) and the host vehicle 2 within the monitoring area. And the reflected light of the laser beam in each transmission direction is received.

この場合、レーザレーダ3は、図2に示す如く、上記監視領域内において、自車両2のヨー軸方向に垂直な平面(路面にほぼ平行な平面)上でヨー軸周りに所定角度ずつずらした複数の送信方向にレーザ光を送信する。これにより、レーザレーダ3は、自車両2の前方側の監視領域に対して、レーザ光を自車両2の車幅方向(横方向)に走査するようにして送信する。   In this case, as shown in FIG. 2, the laser radar 3 is shifted by a predetermined angle around the yaw axis on a plane perpendicular to the yaw axis direction of the host vehicle 2 (a plane substantially parallel to the road surface) in the monitoring area. Laser light is transmitted in a plurality of transmission directions. Thereby, the laser radar 3 transmits the laser beam to the monitoring area on the front side of the host vehicle 2 so as to scan in the vehicle width direction (lateral direction) of the host vehicle 2.

なお、例えば、レーザ光の送信方向をヨー軸周り変化させるだけでなく、ピッチ軸周り方向にも変化させるようにして、監視領域におけるレーザ光の走査を、自車両2の車幅方向だけでなく、高さ方向にも行なうことができるようにしてもよい。   In addition, for example, by changing the laser beam transmission direction not only around the yaw axis but also around the pitch axis, scanning of the laser beam in the monitoring region is performed not only in the vehicle width direction of the host vehicle 2. Alternatively, it may be performed in the height direction.

さらに、レーザレーダ3は、レーザ光の各送信方向毎に、送信したレーザ光の反射光を受信する。そして、このレーザ光の送信タイミングとこれに対応する反射光の受信タイミングとの時間差に基づいて、各送信方向毎に、監視領域内の該送信方向の位置に存在する他車等の物体(レーザ光の反射物体)と、自車両2との間の距離(該送信方向での距離)を示す計測データを生成して出力する。   Furthermore, the laser radar 3 receives the reflected light of the transmitted laser light for each transmission direction of the laser light. Then, based on the time difference between the transmission timing of the laser beam and the reception timing of the corresponding reflected beam, an object such as another vehicle (laser) that exists at the position in the transmission direction within the monitoring area for each transmission direction. Measurement data indicating the distance between the light reflecting object) and the host vehicle 2 (the distance in the transmission direction) is generated and output.

報知器4は、視覚的信号あるいは音声信号により運転者に対する報知を行なうものであり、例えば表示器(液晶ディスプレイ等)、ランプ、スピーカ等により構成される。   The notification device 4 notifies the driver by a visual signal or an audio signal, and includes, for example, a display (liquid crystal display or the like), a lamp, a speaker, and the like.

また、ブレーキ装置5は、詳細な構造の説明は省略するが、例えば、その制動力を発生するブレーキ圧を、車両2のブレーキペダルの操作量に対応するブレーキ圧に対して増減制御することが可能な公知の構造のものである。   The detailed description of the structure of the brake device 5 is omitted. For example, the brake pressure that generates the braking force can be increased or decreased with respect to the brake pressure corresponding to the operation amount of the brake pedal of the vehicle 2. It is of a known known structure.

演算処理ユニット6は、CPU、RAM、ROM、インターフェイス回路等から構成された電子回路ユニットであり、車両2の適所に配置されている。   The arithmetic processing unit 6 is an electronic circuit unit composed of a CPU, a RAM, a ROM, an interface circuit, and the like, and is disposed at an appropriate position of the vehicle 2.

この演算処理ユニット6は、本実施形態では、実装されたプログラム等により実現される機能として、自車両2の前方の監視領域に他車が存在する場合に、自車両2が他車に対して旋回中であるか否かを判断する旋回判断部7と、レーザレーダ3から与えられる計測データを使用して、車両2の前方の監視領域に存在する他車の自車両2に対する相対位置を推定する他車位置推定部8と、この他車位置推定部8で推定された相対位置を用いて自車両2と他車との将来の接触の可能性を判断し、接触の可能性が有ると判断した場合に、該接触を回避するための接触回避対策処理を実行する接触回避処理部9とを備える。   In the present embodiment, the arithmetic processing unit 6 functions as a function realized by an installed program or the like, when the other vehicle is present in the monitoring area in front of the own vehicle 2, The relative position of the other vehicle existing in the monitoring area ahead of the vehicle 2 with respect to the host vehicle 2 is estimated using the turning determination unit 7 that determines whether or not the vehicle is turning and the measurement data provided from the laser radar 3. The possibility of future contact between the host vehicle 2 and the other vehicle is determined by using the other vehicle position estimating unit 8 and the relative position estimated by the other vehicle position estimating unit 8, and there is a possibility of contact. And a contact avoidance processing unit 9 that executes a contact avoidance countermeasure process for avoiding the contact when the determination is made.

接触回避処理部9が実行する接触回避対策処理としては、本実施形態では、自車両2と他車とが接触する恐れがある旨の警報を、報知器4によって運転者に発する警報処理と、ブレーキ装置5のブレーキ圧を通常よりも増加させる(ひいては制動力を増加させる)制動制御処理とが含まれる。   As the contact avoidance countermeasure process executed by the contact avoidance processing unit 9, in this embodiment, an alarm process for issuing a warning to the driver by the alarm device 4 that there is a possibility that the host vehicle 2 and another vehicle may come into contact with each other, And a brake control process for increasing the brake pressure of the brake device 5 more than usual (and thus increasing the braking force).

補足すると、上記旋回判断部7、他車位置推定部8、及び接触回避処理部9は、それぞれ、本発明における旋回判断手段、他車位置推定手段、接触回避処理手段に相当するものである。   Supplementally, the turn determination unit 7, the other vehicle position estimation unit 8, and the contact avoidance processing unit 9 correspond to the turn determination unit, the other vehicle position estimation unit, and the contact avoidance processing unit in the present invention, respectively.

次に、上記各機能部の処理の詳細を含めて、演算処理ユニット6の全体的な処理を詳細に説明する。演算処理ユニット6は、図3のフローチャートに示す処理を実行する。   Next, the overall processing of the arithmetic processing unit 6 will be described in detail, including details of the processing of each functional unit. The arithmetic processing unit 6 executes the processing shown in the flowchart of FIG.

まず、STEP1において、演算処理ユニット6は、レーザレーダ3の計測データを取得する。   First, in STEP 1, the arithmetic processing unit 6 acquires measurement data of the laser radar 3.

次いで、演算処理ユニット6は、STEP2において、自車両2の前方の監視領域に他車(前走車又は対向車)が存在するか否かを判断する。   Next, in STEP 2, the arithmetic processing unit 6 determines whether or not there is another vehicle (front vehicle or oncoming vehicle) in the monitoring area in front of the host vehicle 2.

この場合、演算処理ユニット6は、例えば、該演算処理ユニット6の各演算処理周期において、レーザレーダ3の計測データから、自車両2からの距離がほぼ同一となるような領域を抽出すると共に、その領域内の各部(レーザ光の各送信方向に対応する部分)の自車両2に対する移動速度を、現在時刻から所定時間前までのレーザレーダ3の計測データを用いて算出する。そして、演算処理ユニット6は、その抽出した領域の幅(自車両2の車幅方向での幅)や、該領域の各部の移動速度に基づいて、当該領域に存在する物体が他車であるか否かを判断する。   In this case, the arithmetic processing unit 6 extracts, for example, an area where the distance from the own vehicle 2 is substantially the same from the measurement data of the laser radar 3 in each arithmetic processing cycle of the arithmetic processing unit 6. The moving speed of each part in the region (the part corresponding to each transmission direction of the laser light) with respect to the own vehicle 2 is calculated using measurement data of the laser radar 3 from the current time to a predetermined time before. Then, based on the width of the extracted region (the width of the host vehicle 2 in the vehicle width direction) and the moving speed of each part of the region, the arithmetic processing unit 6 is the other vehicle. Determine whether or not.

なお、例えば、前記監視領域を撮像するカメラが自車両2に搭載されているような場合には、レーザレーダ3の計測データと、カメラの撮像画像との両方を利用して、あるいは、カメラの撮像画像を基に、監視領域に他車が存在するか否かを判断するようにしてもよい。   For example, when a camera that captures the monitoring area is mounted on the host vehicle 2, both the measurement data of the laser radar 3 and the captured image of the camera are used, or the camera Based on the captured image, it may be determined whether there is another vehicle in the monitoring area.

STEP2の判断結果が否定的である場合には、演算処理ユニット6は、各演算処理周期における図3の処理を終了する。なお、監視領域に他車が存在しない場合には、さらに、監視領域に他車以外の所定種類の物体(例えば人)が存在するか否かの判断処理を行ない、該所定種類の物体が存在する場合で、該物体と自車両2との接触の可能性が有る場合に、該所定種類の物体と自車両2との接触を回避するための処理を行うようにしてもよい。   If the determination result in STEP 2 is negative, the arithmetic processing unit 6 ends the processing of FIG. 3 in each arithmetic processing cycle. When there is no other vehicle in the monitoring area, it is further determined whether or not there is a predetermined type of object (for example, a person) other than the other vehicle in the monitoring area. In this case, when there is a possibility of contact between the object and the host vehicle 2, a process for avoiding contact between the predetermined type of object and the host vehicle 2 may be performed.

一方、STEP2の判断結果が肯定的である場合には、演算処理ユニット6は、STEP3の判断処理を実行する。この判断処理は、前記旋回判断部7により実行する判断処理であり、自車両2が他車に対して旋回中であるか否かが判断される。   On the other hand, when the determination result of STEP2 is affirmative, the arithmetic processing unit 6 executes the determination process of STEP3. This determination process is a determination process executed by the turning determination unit 7, and it is determined whether or not the host vehicle 2 is turning with respect to another vehicle.

ここで、本実施形態では、演算処理ユニット6には、例えば図示しないヨーレートセンサから、自車両2のヨーレートの検出データが逐次与えられるようになっている。そして、旋回判断部7は、このヨーレートの検出データに基づいて、自車両2が旋回中であるか否かを判断する。   Here, in this embodiment, the yaw rate detection data of the host vehicle 2 is sequentially given to the arithmetic processing unit 6 from, for example, a yaw rate sensor (not shown). Then, based on the yaw rate detection data, the turning determination unit 7 determines whether or not the host vehicle 2 is turning.

より詳しくは、旋回判断部7は、例えば、ヨーレートの検出値が、自車両2の右旋回方向又は左旋回方向にあらかじめ定めた所定値以上の大きさとなり、且つ、該ヨーレートの検出値が所定値以上となってからの該ヨーレートの検出値の積分値(すなわち、自車両2の旋回開始後のヨー軸周りの姿勢の角度変化量)が所定角度以上の大きさとなった場合に、自車両2が他車に対して旋回中であると判断する。この場合、旋回判断部7は、上記角度変化量の極性に基づいて、自車両2の旋回方向が右側及び左側のいずれの側への方向であるかの判断も行なう。   More specifically, for example, the turning determination unit 7 has a yaw rate detection value that is greater than or equal to a predetermined value set in advance in the right turn direction or the left turn direction of the host vehicle 2, and the detected yaw rate value is When the integrated value of the detected value of the yaw rate after the predetermined value or more (that is, the amount of change in the angle of the attitude around the yaw axis after the start of turning of the host vehicle 2) becomes larger than the predetermined angle, It is determined that the vehicle 2 is turning with respect to another vehicle. In this case, the turning determination unit 7 also determines whether the turning direction of the host vehicle 2 is the right side or the left side based on the polarity of the angle change amount.

なお、自車両2が旋回中であるか否かの判断(旋回方向の判断も含む)は、例えば、次のような手法により行なうようにしてもよい。すなわち、例えば自車両2のステアリングの操舵角の検出データ、あるいは、自車両2の左右の車輪速の差の検出データをヨーレートの検出データの代わりに用いて、自車両2が旋回中であるか否かを判断するようにしてもよい。あるいは、自車両2のヨーレート、ステアリングの操舵角、及び左右の車輪速の差のうちの2つ以上の種類のパラメータの検出データを総合して、自車両2が旋回中であるか否かの判断を行なうようにしてもよい。   The determination as to whether or not the host vehicle 2 is turning (including the determination of the turning direction) may be performed by the following method, for example. That is, for example, whether the host vehicle 2 is turning by using the detection data of the steering angle of the host vehicle 2 or the detection data of the difference between the left and right wheel speeds of the host vehicle 2 instead of the yaw rate detection data. It may be determined whether or not. Alternatively, whether or not the host vehicle 2 is turning is determined by combining detection data of two or more types of parameters among the yaw rate of the host vehicle 2, the steering angle of the steering wheel, and the difference between the left and right wheel speeds. A determination may be made.

さらに、自車両2の走行車線と同方向に延在もしくは並ぶような静止物体(例えば電柱、街路灯、ガードレール、縁石等)の自車両2に対する相対的な延在方向又は配列方向を前記レーザレーダ3の計測データに基づいて(あるいは、自車両2に搭載されたカメラの撮像画像等に基づいて)推定し、その推定した静止物体の相対的な延在方向又は配列方向に基づいて(換言すれば、静止物体の延在方向又は配列方向に対する自車両2の相対的なヨー軸周り方向の姿勢に基づいて)、自車両2が他車に対して旋回中であるか否かの判断を、その旋回方向を含めて判断するようにしてもよい。   Further, the laser radar indicates the relative extension direction or arrangement direction of a stationary object (for example, a utility pole, a street light, a guard rail, a curb stone, etc.) extending or aligned in the same direction as the traveling lane of the own vehicle 2 with respect to the own vehicle 2. 3 (or based on a captured image of a camera mounted on the host vehicle 2) and based on the estimated relative extension direction or arrangement direction of the stationary objects (in other words, (E.g., based on the posture of the own vehicle 2 relative to the direction of the yaw axis relative to the extending direction or the arrangement direction of the stationary object), and determining whether the own vehicle 2 is turning with respect to the other vehicle, You may make it judge including the turning direction.

例えば、図4に例示するような状況で、静止物体X(この例では、電柱あるいは街路灯等)の配列方向に対して自車両2の前後方向が、ヨー軸周り方向に所定角度以上の角度αで傾いた場合に、自車両2が他車に対して旋回中であると判断し、また、その角度αの極性に基づいて、自車両2の旋回方向を判断するようにしてもよい。   For example, in the situation illustrated in FIG. 4, the front-rear direction of the host vehicle 2 is an angle greater than or equal to a predetermined angle in the direction around the yaw axis with respect to the arrangement direction of the stationary object X (in this example, a utility pole or street light). When the vehicle leans at α, it may be determined that the host vehicle 2 is turning with respect to another vehicle, and the turning direction of the host vehicle 2 may be determined based on the polarity of the angle α.

演算処理ユニット6は、次に、STEP4又は5の処理を前記他車位置推定部8により実行することで、監視領域に存在する他車の自車両2に対する相対位置(以下、単に他車位置という)を推定する。この場合、他車位置推定部8は、STEP3の判断結果が否定的であるか肯定的であるかに応じて、互いに異なる演算処理によって他車位置を推定する。   Next, the arithmetic processing unit 6 executes the processing of STEP 4 or 5 by the other vehicle position estimation unit 8 so that the relative position of the other vehicle existing in the monitoring area with respect to the own vehicle 2 (hereinafter simply referred to as the other vehicle position). ). In this case, the other vehicle position estimation unit 8 estimates the other vehicle position by different arithmetic processing depending on whether the determination result in STEP 3 is negative or positive.

以降、STEP3の判断結果が否定的である場合(自車両2が他車に対して旋回中でない場合)に対応する処理によって推定される他車位置を通常時他車位置、STEP3の判断結果が肯定的である場合(自車両2が他車に対して旋回中でない場合)に対応する処理によって推定される他車位置を旋回時他車位置という。   Thereafter, the other vehicle position estimated by the processing corresponding to the case where the determination result of STEP 3 is negative (when the own vehicle 2 is not turning with respect to the other vehicle) is the normal vehicle position, and the determination result of STEP 3 is The other vehicle position estimated by the process corresponding to the case where the vehicle is affirmative (when the host vehicle 2 is not turning with respect to the other vehicle) is referred to as the other vehicle position during turning.

他車位置推定部8は、STEP3の判断結果が否定的である場合には、STEP4の処理によって、通常時他車位置を推定する。   If the determination result in STEP 3 is negative, the other vehicle position estimation unit 8 estimates the other vehicle position at the normal time by the processing in STEP 4.

この処理は、次のように行われる。すなわち、自車両2が他車に対して旋回中でない場合には、図5に例示する如く、自車両2の車幅方向が、他車の車幅方向と概ね同方向となっている。この状況では、自車両2のレーザレーダ3から送信されたレーザ光のうち、他車の存在方向に送信されたレーザ光は、主に、他車の前端面及び後端面のうち、自車両2に臨む端面(以下、自車側他車端面という)で反射され、その反射光がレーザレーダ3で受信される。   This process is performed as follows. That is, when the host vehicle 2 is not turning with respect to the other vehicle, the vehicle width direction of the host vehicle 2 is substantially the same as the vehicle width direction of the other vehicle, as illustrated in FIG. In this situation, among the laser beams transmitted from the laser radar 3 of the host vehicle 2, the laser beam transmitted in the direction in which the other vehicle is present is mainly the host vehicle 2 out of the front end surface and the rear end surface of the other vehicle. Is reflected by the end surface facing the vehicle (hereinafter referred to as the vehicle side other vehicle end surface), and the reflected light is received by the laser radar 3.

そして、該自車側他車端面は、自車両2の車幅方向と概ね平行な端面となる。そこで、STEP4の処理においては、他車位置推定部8は、自車側他車端面が、自車両2の車幅方向に平行な姿勢で、自車両2のヨー軸方向(車高方向)に起立する仮想平坦面(図5に参照符号PL1を付した平坦面)であると仮定し、その仮想平坦面PL1を、自車両2に対して、当該他車の自車側他車端面からの反射光が受信される方向の領域(レーザ光の送信方向のうちの自車側他車端面に向かう各送信方向を含む領域)に配置したときに、該仮想平坦面PL1の各部(レーザ光の各送信方向の部分)と自車両2との距離が、当該他車に対応してレーザレーダ3により得られた計測データに最も合致(整合)するように、自車両2に対する該仮想平坦面PL1の配置位置を決定する。   The own vehicle side other vehicle end surface is an end surface substantially parallel to the vehicle width direction of the own vehicle 2. Therefore, in the processing of STEP 4, the other vehicle position estimation unit 8 has the own vehicle side other vehicle end surface in a posture parallel to the vehicle width direction of the own vehicle 2 and in the yaw axis direction (vehicle height direction) of the own vehicle 2. Assuming that it is a virtual flat surface (a flat surface denoted by reference sign PL1 in FIG. 5) that stands up, the virtual flat surface PL1 from the vehicle side other vehicle end surface of the other vehicle with respect to the vehicle 2 When arranged in a region in the direction in which the reflected light is received (a region including each transmission direction toward the other vehicle end surface in the transmission direction of the laser light), each part of the virtual flat surface PL1 (laser light The virtual flat surface PL1 with respect to the host vehicle 2 so that the distance between the portion in each transmission direction) and the host vehicle 2 most closely matches (matches) the measurement data obtained by the laser radar 3 corresponding to the other vehicle. Determine the placement position.

この場合、より具体的には、例えば、レーザレーダ3の計測データにより示される自車側他車端面の各部(レーザ光の各送信方向の部分)の自車両2に対する相対位置(自車両2の前後方向及び車幅方向での位置)の、レーザ光の各送信方向での上記仮想平坦面PL1上の位置に対するばらつき度合い(例えば分散又は標準偏差)が最小となるように、自車両2に対する該平坦面PL1の配置位置が決定される。   In this case, more specifically, for example, the relative position (the position of the own vehicle 2) of each part (the part in each transmission direction of the laser light) of the own vehicle side other vehicle end surface indicated by the measurement data of the laser radar 3 with respect to the own vehicle 2. (Position in the front-rear direction and vehicle width direction) with respect to the host vehicle 2 so that the degree of variation (for example, dispersion or standard deviation) with respect to the position on the virtual flat surface PL1 in each laser light transmission direction is minimized. The arrangement position of the flat surface PL1 is determined.

そして、他車位置推定部8は、このように配置位置を決定した仮想平坦面PL1の車幅方向の中央点Q1を他車の代表点とし、この中央点P1の自車両2に対する相対位置を、自車両2に対する他車の相対位置を代表する前記通常時他車位置の推定値として算出する。   Then, the other vehicle position estimation unit 8 uses the center point Q1 in the vehicle width direction of the virtual flat surface PL1 whose arrangement position is determined as described above as a representative point of the other vehicle, and determines the relative position of the center point P1 with respect to the host vehicle 2. Then, it is calculated as an estimated value of the normal vehicle position representing the relative position of the vehicle relative to the host vehicle 2.

一方、STEP3の判断結果が肯定的である場合には、他車位置推定部8は、STEP5の処理によって、旋回時他車位置を推定する。   On the other hand, if the determination result in STEP 3 is affirmative, the other vehicle position estimation unit 8 estimates the other vehicle position during a turn by the processing in STEP 5.

この処理は、次のように行われる。すなわち、自車両2が他車に対して旋回中である場合には、図6に例示する如く、自車両2の車幅方向が、他車の車幅方向に対して傾いたものとなっている。この状況では、自車両2のレーザレーダ3から送信されたレーザ光のうち、他車の存在方向に送信されたレーザ光は、他車の前端面及び後端面のうちの前記自車側他車端面だけでなく、他車の車幅方向の両側面のうちの自車両2に臨む側面(以降、自車側他車側面という)でも反射され、それらの反射光がレーザレーダ3で受信される。   This process is performed as follows. That is, when the host vehicle 2 is turning with respect to another vehicle, as illustrated in FIG. 6, the vehicle width direction of the host vehicle 2 is inclined with respect to the vehicle width direction of the other vehicle. Yes. In this situation, among the laser beams transmitted from the laser radar 3 of the host vehicle 2, the laser beam transmitted in the direction in which the other vehicle exists is the other vehicle side other vehicle on the front end surface and the rear end surface of the other vehicle. Not only the end face but also the side face of the other vehicle in the vehicle width direction facing the host vehicle 2 (hereinafter referred to as the host vehicle side other car side face) is reflected, and the reflected light is received by the laser radar 3. .

そして、このようにレーザ光を反射する自車側他車端面及び自車側他車側面は、巨視的にみれば、他車の4隅の角部のうちの1つの角部の箇所で互いにほぼ直角に交差するような面である。   When viewed macroscopically, the own vehicle side other vehicle end surface and the own vehicle side other vehicle side surface that reflect the laser light in this way are mutually connected at one corner of the four corners of the other vehicle. It is a plane that intersects at almost right angles.

なお、自車両2の旋回方向が自車両2の右側への旋回方向である場合には、自車側他車側面は、自車両2から見て他車の左側の側面となり、自車両2の旋回方向が自車両2の左側への旋回方向である場合には、自車側他車側面は、自車両2から見て他車の右側の側面となる。   When the turning direction of the own vehicle 2 is the turning direction to the right side of the own vehicle 2, the side surface of the own vehicle side other vehicle is the left side surface of the other vehicle when viewed from the own vehicle 2, and When the turning direction is the turning direction to the left side of the host vehicle 2, the other vehicle side surface of the own vehicle is the right side surface of the other vehicle as viewed from the host vehicle 2.

そこで、STEP5の処理においては、他車位置推定部8は、自車側他車側面と自車側他車端面とが、自車両2のヨー軸方向(車高方向)に起立した姿勢で、他車の1つの角部にて互いに直角に交差する2つの仮想平坦面(図6に参照符号PL2a,PL2bを付した平坦面)であると仮定し、その仮想平坦面PL2a,PL2bを、自車両2に対して、当該他車の自車側他車側面及び自車側他車端面からの反射光が受信される方向の領域(レーザ光の送信方向のうちの自車側他車側面及び自車側他車端面に向かう各送信方向を含む領域)に配置したときに、該仮想平坦面PL2a,PL2bの各部(レーザ光の送信部分)と自車両2との距離が、当該他車に対応してレーザレーダ3により得られた計測データに最も合致(整合)するように、自車両2に対する該仮想平坦面PL2a,PL2bの組の配置位置を決定する。   Therefore, in the processing of STEP 5, the other vehicle position estimation unit 8 is in a posture in which the own vehicle side other vehicle side surface and the own vehicle side other vehicle end surface stand up in the yaw axis direction (vehicle height direction) of the own vehicle 2. Assuming that there are two virtual flat surfaces (flat surfaces denoted by reference characters PL2a and PL2b in FIG. 6) that intersect at right angles at one corner of another vehicle, the virtual flat surfaces PL2a and PL2b are Region of the direction in which the reflected light from the vehicle side other vehicle side surface and the vehicle side other vehicle end surface of the other vehicle is received with respect to the vehicle 2 (the vehicle side other vehicle side surface in the laser light transmission direction and The distance between each part (laser beam transmission part) of the virtual flat surfaces PL2a and PL2b and the own vehicle 2 when the vehicle is disposed in a region including each transmission direction toward the other vehicle end surface of the own vehicle side. Correspondingly, the measurement data obtained by the laser radar 3 is best matched (matched). The virtual flat surface PL2a respect to the vehicle 2, determining a set of positions of PL2b.

この場合、より具体的には、STEP4の処理の場合と同様に、レーザレーダ3の計測データにより示される他車の自車側他車側面及び自車側他車端面の各部(レーザ光の各送信方向の部分)の自車両2に対する相対位置(自車両2の前後方向及び車幅方向での位置)の、レーザ光の各送信方向での上記仮想平坦面PL2a,PL2b上の位置に対するばらつき度合い(例えば分散又は標準偏差)が最小となるように、自車両2に対する該仮想平坦面PL2a,PL2bの配置位置が決定される。   In this case, more specifically, as in the case of the processing of STEP 4, each part of the other vehicle side surface of the other vehicle and the other vehicle end surface of the other vehicle indicated by the measurement data of the laser radar 3 (each of the laser beams) The degree of variation of the relative position (position in the transmission direction) with respect to the host vehicle 2 (the position in the front-rear direction and the vehicle width direction of the host vehicle 2) with respect to the position on the virtual flat surfaces PL2a and PL2b in each laser beam transmission direction The arrangement positions of the virtual flat surfaces PL2a and PL2b with respect to the host vehicle 2 are determined so that (for example, variance or standard deviation) is minimized.

そして、他車位置推定部8は、このように配置位置を決定した仮想平坦面PL2a,PL2bが交差する角部の点Q2を他車の代表点とし、この点Q2の自車両2に対する相対位置を、自車両2に対する他車の相対位置を代表する前記旋回時他車位置の推定値として算出する。   Then, the other vehicle position estimating unit 8 uses the point Q2 at the corner where the virtual flat surfaces PL2a and PL2b intersected as described above as the representative point of the other vehicle, and the relative position of the point Q2 with respect to the host vehicle 2 Is calculated as an estimated value of the other vehicle position at the time of the turn that represents the relative position of the other vehicle with respect to the host vehicle 2.

なお、仮想平坦面PL2a,PL2bが交差する角部は、自車両2の旋回方向が自車両2の右側への旋回方向である場合には、自車側他車端面の両端の角部のうち、自車両2から見て左側の角部となり、自車両2の旋回方向が自車両2の左側への旋回方向である場合には、仮想平坦面PL2a,PL2bが交差する角部は、自車側他車端面の両端の角部のうち、自車両2から見て他車の右側の角部となる。   In addition, the corner | angular part where virtual flat surface PL2a, PL2b crosses is the corner | angular part of both ends of the own vehicle side other vehicle end surface, when the turning direction of the own vehicle 2 is a turning direction to the right side of the own vehicle 2. When the turning direction of the own vehicle 2 is the turning direction to the left side of the own vehicle 2, the corner where the virtual flat surfaces PL2a and PL2b intersect is Of the corners at both ends of the side other vehicle end surface, the corner on the right side of the other vehicle as viewed from the host vehicle 2.

補足すると、STEP5において、仮に、STEP4と同じ処理(単一の仮想平坦面PL1を用いる処理)によって、自車両2に対する他車位置を推定した場合には、例えば、図6中に参照符号Q3を示したような点Q3の自車両2に対するの相対位置が他車位置として算出されてしまう。このように算出される他車位置は、一般には、他車の外表面の部分の位置とはならず、また、自車両2の旋回に伴って、算出された他車位置に対応する該他車の部分が変化することとなってしまう。   Supplementally, in STEP5, if the position of the other vehicle with respect to the host vehicle 2 is estimated by the same processing as STEP4 (processing using a single virtual flat surface PL1), for example, the reference sign Q3 in FIG. The relative position of the point Q3 as shown with respect to the host vehicle 2 is calculated as the other vehicle position. The other vehicle position calculated in this way is generally not the position of the portion of the outer surface of the other vehicle, and the other vehicle position corresponding to the calculated other vehicle position as the host vehicle 2 turns. The car part will change.

以上の如くSTEP4又は5の処理によって、自車両2に対する相対的な他車位置を推定した後、演算処理ユニット6は、前記接触回避処理部9によって、STEP6〜8の処理を実行する。   After estimating the relative position of the other vehicle relative to the host vehicle 2 by the processing of STEP 4 or 5 as described above, the arithmetic processing unit 6 executes the processing of STEP 6 to 8 by the contact avoidance processing unit 9.

具体的には、接触回避処理部9は、STEP6において、自車両2及び他車の将来の(現在時刻以後の)進行経路(進路)を予測する。この場合、自車両2の将来の進行経路については、接触回避処理部9は、自車両2の運動状態に基づいて、自車両2の将来の進行経路を予測する。より具体的には、接触回避処理部9は、例えば、現在時刻での(あるいは、現在時刻から所定時間前までの期間での)自車両2の車速の検出データと、ヨーレートの検出データとから自車両2の将来の(現在時刻以後)の車速及びヨーレートを推定し、その推定した車速及びヨーレートに基づいて、自車両2の将来の進行経路を予測する。   Specifically, in STEP 6, the contact avoidance processing unit 9 predicts future travel paths (courses) of the host vehicle 2 and other vehicles (after the current time). In this case, for the future travel route of the host vehicle 2, the contact avoidance processing unit 9 predicts the future travel route of the host vehicle 2 based on the motion state of the host vehicle 2. More specifically, the contact avoidance processing unit 9 uses, for example, the vehicle speed detection data of the host vehicle 2 at the current time (or the period from the current time to a predetermined time before) and the yaw rate detection data. The future vehicle speed and yaw rate of the host vehicle 2 (after the current time) are estimated, and the future travel path of the host vehicle 2 is predicted based on the estimated vehicle speed and yaw rate.

また、他車の将来の進行経路については、接触回避処理部9は、例えば、現在時刻から所定時間前までの期間での他車位置(通常時他車位置又は旋回時他車位置)の時系列に基づいて、将来の(現在時刻以後の)他車の車速及びヨーレートを推定し、それらの推定値に基づいて、他車の将来の進行経路を予測する。   For the future travel route of the other vehicle, the contact avoidance processing unit 9 is, for example, when the vehicle is in another vehicle position (ordinary vehicle position or other vehicle position when turning) in a period from the current time to a predetermined time before. Based on the series, the vehicle speed and yaw rate of the other vehicle in the future (after the current time) are estimated, and the future traveling route of the other vehicle is predicted based on the estimated values.

なお、自車両2の将来の進行経路を予測する場合、自車両2のヨーレートの検出データの代わりに、自車両2のステアリングの操舵角の検出データや、自車両2の左右の車輪速の差の検出データを用いてもよい。あるいは、前記した如く、自車両2の走行車線に沿って延在又は並ぶ静止物体の延在方向又は配列方向に対する自車両2の傾斜角度(ヨー軸周りの傾斜角度)を推定する場合には、その傾斜角度の推定値の時系列を用いて自車両2の将来の進行経路を予測するようにしてもよい。   When predicting the future travel path of the host vehicle 2, instead of the yaw rate detection data of the host vehicle 2, the steering angle detection data of the host vehicle 2 and the difference between the left and right wheel speeds of the host vehicle 2 are detected. The detected data may be used. Alternatively, as described above, when estimating the inclination angle (inclination angle around the yaw axis) of the own vehicle 2 with respect to the extending direction or arrangement direction of stationary objects extending or arranged along the traveling lane of the own vehicle 2, You may make it predict the future advancing path | route of the own vehicle 2 using the time series of the estimated value of the inclination angle.

次いで、STEP7において、接触回避処理部9は、自車両2と他車との接触の可能性が有るか否かを判断する。   Next, in STEP 7, the contact avoidance processing unit 9 determines whether or not there is a possibility of contact between the host vehicle 2 and another vehicle.

この処理では、接触回避処理部9は、自車両2の将来の進行経路と、他車の進行経路とが、同時刻にて交差する場合(それぞれ進行経路沿いの一定幅の領域が互いに重なり合う場合を含む)に、自車両2と他車との接触の可能性が有ると判断する。そして、そうでない場合には、接触回避処理部9は、自車両2と他車との接触の可能性が無いと判断する。   In this process, the contact avoidance processing unit 9 causes the future traveling route of the host vehicle 2 and the traveling route of the other vehicle to intersect at the same time (in the case where regions of a certain width along the traveling route overlap each other). It is determined that there is a possibility of contact between the own vehicle 2 and another vehicle. If not, the contact avoidance processing unit 9 determines that there is no possibility of contact between the host vehicle 2 and another vehicle.

そして、接触回避処理部9は、STEP7の判断結果が肯定的となった場合には、STEP8において、自車両2と他車との接触を回避するための接触回避対策処理を実行する。   And when the judgment result of STEP7 becomes affirmative, the contact avoidance process part 9 performs the contact avoidance countermeasure process for avoiding the contact with the own vehicle 2 and another vehicle in STEP8.

具体的には、接触回避処理部9は、自車両2と他車との接触の可能性が有る旨の運転者への警報(視覚的な報知又は音声による報知)を報知器4から出力させるように該報知器4の作動を制御する。さらに、接触回避処理部9は、ブレーキ装置5による制動力を増加させるように、該ブレーキ装置5のブレーキ圧を制御する。これにより、自車両2と他車との接触の可能性が低減される。   Specifically, the contact avoidance processing unit 9 causes the alarm device 4 to output a warning (visual notification or voice notification) to the driver that there is a possibility of contact between the host vehicle 2 and another vehicle. Thus, the operation of the alarm 4 is controlled. Further, the contact avoidance processing unit 9 controls the brake pressure of the brake device 5 so as to increase the braking force by the brake device 5. Thereby, the possibility of contact between the host vehicle 2 and another vehicle is reduced.

なお、自車両2と他車との接触を回避するための処理では、ブレーキ装置5のブレーキ圧の制御の代わりに、又はブレーキ装置5のブレーキ圧の制御と併用して、車両2の動力源(エンジンや電動モータ等)の駆動力を制御するようにしてもよい。また、運転者への報知は、運転席の振動等の体感的な報知であってもよい。   In the process for avoiding contact between the host vehicle 2 and the other vehicle, the power source of the vehicle 2 is used instead of the brake pressure control of the brake device 5 or in combination with the brake pressure control of the brake device 5. You may make it control the drive force of (an engine, an electric motor, etc.). Further, the notification to the driver may be a bodily notification such as vibration of the driver's seat.

以上が本実施形態における演算処理ユニット6の制御処理である。   The above is the control processing of the arithmetic processing unit 6 in this embodiment.

以上説明した実施形態によれば、他車に対する自車両2の旋回中に、前記自車側他車端面と自車側他車側面とを互いに直角に交差する2つの仮想平坦面PL2a,PL2bで近似して、これらの仮想平坦面PL2a,PL2bが交差する角部の相対位置(自車両2に対する相対位置)が旋回時他車位置として逐次算出される。この場合、仮想平坦面PL2a,PL2bが交差する角部は、他車の単一の角部に相当するので、他車の単一の角部の自車両2に対する相対位置が前記旋回時他車位置として逐次推定されることとなる。   According to the embodiment described above, during the turning of the host vehicle 2 with respect to the other vehicle, the two virtual flat surfaces PL2a and PL2b intersecting the host vehicle side other vehicle end surface and the host vehicle side other vehicle side surface at right angles to each other. Approximately, the relative position (relative position with respect to the host vehicle 2) of the corner where these virtual flat surfaces PL2a and PL2b intersect is sequentially calculated as the other vehicle position at the time of turning. In this case, the corner portion where the virtual flat surfaces PL2a and PL2b intersect corresponds to a single corner portion of the other vehicle. Therefore, the relative position of the single corner portion of the other vehicle with respect to the host vehicle 2 is the other vehicle when turning. The position is sequentially estimated.

このため、他車に対する自車両2の旋回中に、他車に対する自車両2のヨー軸周りの姿勢が変化しても、他車の一定の部位(自車側他車端面と自車側他車側面とが交差する角部)の自車両2に対する相対位置を、前記旋回時他車位置として推定できることとなる。   For this reason, even if the posture of the own vehicle 2 around the yaw axis with respect to the other vehicle changes while the own vehicle 2 is turning with respect to the other vehicle, certain parts of the other vehicle (the other vehicle end surface and the other side of the own vehicle side The relative position with respect to the host vehicle 2 at the corner portion where the vehicle side surface intersects can be estimated as the other vehicle position during the turn.

従って、他車に対する自車両2の旋回中に、自車両2に対する他車の代表位置としての旋回時他車位置を、該位置に対応する他車の部位を一定に保つようにして、高い信頼性で推定することができる。   Therefore, during turning of the own vehicle 2 with respect to the other vehicle, the other vehicle position at the time of turning as a representative position of the other vehicle with respect to the own vehicle 2 is kept constant so that the part of the other vehicle corresponding to the position is kept constant. Can be estimated by sex.

また、この旋回時他車位置は、前記自車側他車端面と自車側他車側面とが交差する角部の相対位置であるので、該相対位置は、他車の外周面のうちの自車両2に向って突き出た角部、すなわち、自車両2寄りの部分の相対位置に相当する。   Further, since the other vehicle position at the time of turning is a relative position of a corner portion where the own vehicle side other vehicle end surface and the own vehicle side other vehicle side surface intersect, the relative position is determined from the outer peripheral surface of the other vehicle. This corresponds to the relative position of the corner protruding toward the host vehicle 2, that is, the portion near the host vehicle 2.

このため、この旋回時他車位置を用いて他車の進行経路を予測して、自車両2と他車との将来の接触の可能性を判断することで、その接触の可能性の判断の信頼性を高めることができる。ひいては、他車に対する自車両2の旋回中においても、自車両2と他車との将来の接触を回避するための処理を適切な状況で行うことができる。   For this reason, the travel path of the other vehicle is predicted using the position of the other vehicle at the time of turning, and the possibility of future contact between the host vehicle 2 and the other vehicle is determined. Reliability can be increased. As a result, the process for avoiding future contact between the host vehicle 2 and the other vehicle can be performed in an appropriate situation even while the host vehicle 2 is turning with respect to the other vehicle.

次に、前記実施形態の変形態様を説明しておく。他車に対する自車両2の旋回中に、他車と自車両2との接触の可能性を接触回避処理部9で判断する仕方は、前記実施形態で説明した手法に限られるものではなく、例えば、以下に説明する変形態様の手法を採用するようにしてもよい。   Next, modifications of the embodiment will be described. The method of determining the possibility of contact between the other vehicle and the host vehicle 2 by the contact avoidance processing unit 9 while the host vehicle 2 is turning with respect to the other vehicle is not limited to the method described in the above embodiment. The method of the modified mode described below may be adopted.

すなわち、この変形態様では、接触回避処理部9は、他車と自車両2との接触の可能性を第1接触可能性判断処理と、第2接触可能性判断処理との2つの処理によって、暫定的に判断する。   That is, in this modification, the contact avoidance processing unit 9 determines the possibility of contact between the other vehicle and the host vehicle 2 by two processes, a first contact possibility determination process and a second contact possibility determination process. Judge tentatively.

この場合、第1接触可能性判断処理では、接触回避処理部9は、前記実施形態におけるSTEP6,7と同じ処理によって、他車と自車両2との将来の接触の可能性を判断する。この判断処理では、STEP6において他車の将来の進行経路を予測するために、前記旋回時他車位置を含めて、現在時刻から所定時間前までの他車位置の推定値の時系列が用いられることとなる。なお、この場合に予測される他車の進行経路が本発明における第1予測進路に相当するものとなる。   In this case, in the first contact possibility determination process, the contact avoidance processing unit 9 determines the possibility of future contact between the other vehicle and the host vehicle 2 by the same process as STEPs 6 and 7 in the embodiment. In this determination process, in order to predict the future travel route of the other vehicle in STEP 6, a time series of estimated values of the other vehicle position from the current time to a predetermined time before, including the other vehicle position at the time of turning, is used. It will be. In addition, the travel route of the other vehicle predicted in this case corresponds to the first predicted travel route in the present invention.

また、第2接触可能性判断処理では、接触回避処理部9は、他車の将来の進行経路を予測を行なうために、旋回時他車位置の推定値を用いずに、他車に対する自車両2の旋回の開始直前の期間、すなわち、前記STEP3の判断結果が肯定的となる直前の所定時間の期間において、STEP4の処理により推定された通常時他車位置の時系列を用いる。   Further, in the second contact possibility determination process, the contact avoidance processing unit 9 does not use the estimated value of the other vehicle position at the time of turning in order to predict the future travel route of the other vehicle, but the own vehicle with respect to the other vehicle. In the period immediately before the start of the second turn, that is, the predetermined time period immediately before the determination result in STEP 3 becomes affirmative, the time series of the normal other vehicle position estimated by the process in STEP 4 is used.

より詳しくは、前記STEP3の判断結果が肯定的となる直前の所定時間の期間において、STEP4の処理により推定された通常時他車位置の時系列から、前記STEP3の判断結果が肯定的となった後の他車の車速及びヨーレートを推定し、それらの推定値に基づいて、他車の将来の進行経路を予測する。なお、この場合に予測される他車の進行経路が本発明における第2予測進路に相当するものとなる。   More specifically, in the predetermined time period immediately before the determination result of STEP 3 becomes affirmative, the determination result of STEP 3 becomes affirmative from the time series of the other vehicle positions at normal time estimated by the processing of STEP 4. The vehicle speed and yaw rate of the subsequent other vehicle are estimated, and the future traveling path of the other vehicle is predicted based on the estimated values. Note that the travel path of the other vehicle predicted in this case corresponds to the second predicted travel path in the present invention.

そして、第2接触可能性判断処理では、接触回避処理部9は、このように予測した他車の進行経路(第2予測進路)を、第1接触可能性判断処理で予測した他車の進行経路(第1予測進路)の代わりに用いて、該第1接触可能性判断処理と同様の処理によって、他車と自車両2との将来の接触の可能性を判断する。   In the second contact possibility determination process, the contact avoidance processing unit 9 determines the travel path of the other vehicle predicted in this way (second predicted course) as the other vehicle travel predicted in the first contact possibility determination process. Instead of the route (first predicted route), the possibility of future contact between the other vehicle and the host vehicle 2 is determined by a process similar to the first contact possibility determination process.

さらに、接触回避処理部9は、上記第1接触可能性判断処理の判断結果と、第2接触可能性判断処理の判断結果とから、最終的に他車と自車両2との将来の接触の可能性が有るか否かを決定する。この場合、接触回避処理部9は、上記第1接触可能性判断処理の判断結果と、第2接触可能性判断処理の判断結果とのいずれか一方の判断結果が、他車と自車両2との将来の接触の可能性が有るという判断結果である場合に、最終的に他車と自車両2との将来の接触の可能性が有ると決定する。そして、この場合には、接触回避処理部9は、前記実施形態と同様に、接触回避処理を実行する。   Further, the contact avoidance processing unit 9 finally determines future contact between the other vehicle and the host vehicle 2 based on the determination result of the first contact possibility determination process and the determination result of the second contact possibility determination process. Determine if there is a possibility. In this case, the contact avoidance processing unit 9 determines that one of the determination result of the first contact possibility determination process and the determination result of the second contact possibility determination process indicates that the other vehicle and the host vehicle 2 If it is determined that there is a possibility of future contact, it is finally determined that there is a possibility of future contact between the other vehicle and the host vehicle 2. In this case, the contact avoidance processing unit 9 executes the contact avoidance processing as in the above embodiment.

また、上記第1接触可能性判断処理の判断結果と、第2接触可能性判断処理の判断結果との両方の判断結果が、他車と自車両2との将来の接触の可能性が無いという判断結果である場合に、最終的に他車と自車両2との将来の接触の可能性が無いと決定する。   In addition, both the determination result of the first contact possibility determination process and the determination result of the second contact possibility determination process indicate that there is no possibility of future contact between the other vehicle and the host vehicle 2. If it is the determination result, it is finally determined that there is no possibility of future contact between the other vehicle and the host vehicle 2.

以上の変形態様によれば、例えば、他車の自車側他車端面又は自車側他車側面が凹凸の多い面である場合等のように、前記STEP5の処理では、他車の角部の相対位置を精度よく推定することが困難となるような状況で、前記第1接触可能性判断処理によって、他車と自車両2との将来の接触の可能性が無いと判断された場合であっても、前記第2接触可能性判断処理によって、他車と自車両2との将来の接触の可能性が有ると判断されれば、前記接触回避処理が実行されることとなる。   According to the above modification, in the process of STEP5, for example, when the own vehicle side other vehicle end surface or the other vehicle side surface of the other vehicle is a surface with many irregularities, the corner portion of the other vehicle is When it is difficult to accurately estimate the relative position of the vehicle, it is determined by the first contact possibility determination process that there is no possibility of future contact between the other vehicle and the host vehicle 2. Even if it is determined that there is a possibility of future contact between the other vehicle and the host vehicle 2 by the second contact possibility determination process, the contact avoidance process is executed.

このため、他車と自車両2との将来の接触の可能性が実際上は有るのに、前記接触回避処理が実行されないというような事態が発生するのを極力防止することができる。   For this reason, it is possible to prevent the occurrence of such a situation that the contact avoidance process is not executed even though there is a possibility of future contact between the other vehicle and the host vehicle 2 as much as possible.

1…運転支援装置、2…車両、3…レーザレーダ、7…旋回判断部(旋回判断手段)、8…他車位置推定部(他車位置推定手段)、9…接触回避処理部(接触回避処理手段)。   DESCRIPTION OF SYMBOLS 1 ... Driving assistance device, 2 ... Vehicle, 3 ... Laser radar, 7 ... Turning judgment part (turning judgment means), 8 ... Other vehicle position estimation part (Other vehicle position estimation means), 9 ... Contact avoidance processing part (Contact avoidance) Processing means).

Claims (3)

車両の前方側の所定の監視領域を少なくとも該車両の車幅方向で走査するようにレーザ光を送信し、該レーザ光の各送信方向の位置に存在する該レーザ光の反射物体と前記車両である自車両との間の距離の計測データを生成するレーザレーダと、少なくとも前記監視領域に前記反射物体としての他車が存在する場合に、該他車と自車両との将来の接触の可能性を判断し、該接触の可能性が有ると判断した場合に該接触を回避するための接触回避処理を実行する接触回避処理手段とを備える運転支援装置において、
前記監視領域に前記他車が存在する場合に、前記自車両が前記他車に対して旋回中であるか否かを判断する旋回判断手段と、
前記旋回判断手段の判断結果が肯定的である場合に、前記他車に対応して前記レーザレーダが生成した計測データに基づいて、該他車の前端面及び後端面のうちの自車両に臨む端面と該他車の両側面のうちの自車両に臨む側面とが交差する角部の自車両に対する相対位置を、自車両に対する前記他車の代表位置として逐次推定する他車位置推定手段とを備え、
前記接触回避処理手段は、前記旋回判断手段の判断結果が肯定的である場合に、前記他車位置推定手段により推定された前記他車の代表位置を用いて前記他車と自車両との将来の接触の可能性を判断することを特徴とする車両の運転支援装置。
A laser beam is transmitted so as to scan a predetermined monitoring area on the front side of the vehicle at least in the vehicle width direction of the vehicle, and the reflected object of the laser beam present at a position in the transmission direction of the laser beam and the vehicle The possibility of future contact between the other vehicle and the host vehicle when there is a laser radar that generates measurement data of the distance between the host vehicle and the other vehicle as the reflecting object at least in the monitoring area In a driving assistance device comprising contact avoidance processing means for executing contact avoidance processing for avoiding the contact when it is determined that there is a possibility of the contact,
Turn determination means for determining whether or not the own vehicle is turning with respect to the other vehicle when the other vehicle exists in the monitoring area;
When the judgment result of the turning judgment means is affirmative, it faces the host vehicle on the front end surface and the rear end surface of the other vehicle based on the measurement data generated by the laser radar corresponding to the other vehicle. Other vehicle position estimating means for sequentially estimating the relative position of the corner portion where the end surface and the side surface facing the host vehicle of both side surfaces of the other vehicle intersect with the host vehicle as the representative position of the other vehicle with respect to the host vehicle. Prepared,
The contact avoidance processing unit uses the representative position of the other vehicle estimated by the other vehicle position estimating unit when the determination result of the turning determination unit is affirmative. A vehicle driving support device that determines the possibility of contact with the vehicle.
請求項1記載の車両の運転支援装置において、
前記他車位置推定手段は、前記旋回判断手段の判断結果が肯定的である場合に、前記他車の前端面及び後端面のうちの自車両に臨む端面と該他車の両側面のうちの自車両に臨む側面とを互いに直角に交差する2つの仮想平坦面で近似して、当該2つの仮想平坦面の自車両に対する相対的な配置位置を、前記他車に対応して前記レーザレーダが生成した計測データに基づいて決定し、その決定した配置位置に配置した当該2つの仮想平坦面が交差する角部の自車両に対する相対位置を、前記他車の角部の相対位置として算出することを特徴とする車両の運転支援装置。
The vehicle driving support device according to claim 1,
The other vehicle position estimation means, when the judgment result of the turning judgment means is affirmative, of the front end face and the rear end face of the other vehicle facing the host vehicle and the side faces of the other vehicle The side surface facing the host vehicle is approximated by two virtual flat surfaces intersecting at right angles to each other, and the relative position of the two virtual flat surfaces with respect to the host vehicle is determined by the laser radar corresponding to the other vehicle. A determination is made based on the generated measurement data, and a relative position of the corner where the two virtual flat surfaces arranged at the determined arrangement position intersect with the host vehicle is calculated as a relative position of the corner of the other vehicle. A vehicle driving support device characterized by the above.
請求項1又は2記載の車両の運転支援装置において、
前記他車位置推定手段は、前記旋回判断手段の判断結果が否定的である場合に、前記他車の前端面及び後端面のうちの自車両に臨む端面を自車両の車幅方向と平行な1つの仮想平坦面で近似して、前記他車に対応して前記レーザレーダが生成した計測データに基づいて、当該1つの仮想平坦面上の部分の自車両に対する相対位置を自車両に対する前記他車の代表位置として推定する手段を備えており、
前記接触回避処理手段は、前記旋回判断手段の判断結果が肯定的である場合に前記他車と自車両との将来の接触の可能性を判断するために、現在時刻の直前において前記他車位置推定手段により推定された前記他車の代表位置の時系列に基づいて該他車の将来の第1予測進路を推定すると共に、該他車の第1予測進路と自車両の運動状態から推定した自車両の将来の予測進路とに基づいて前記他車と自車両との将来の接触の可能性を判断する第1接触可能性判断処理と、前記旋回判断手段の判断結果が肯定的となる直前において前記他車位置推定手段により推定された前記他車の代表位置の時系列に基づいて前記他車の将来の第2予測進路を推定すると共に、該他車の第2予測進路と自車両の将来の前記予測進路とに基づいて前記他車と自車両との将来の接触の可能性を判断する第2接触可能性判断処理とを実行し、該第1接触可能性判断処理による判断結果と第2接触可能性判断処理による判断結果とのいずれかが、前記他車と自車両との将来の接触の可能性が有るという判断結果である場合に、前記接触回避処理を実行することを特徴とする車両の運転支援装置。
In the vehicle driving support device according to claim 1 or 2,
When the determination result of the turning determination unit is negative, the other vehicle position estimating unit has an end surface facing the host vehicle out of the front end surface and the rear end surface of the other vehicle parallel to the vehicle width direction of the host vehicle. Based on the measurement data generated by the laser radar corresponding to the other vehicle by approximating with one virtual flat surface, the relative position of the portion on the one virtual flat surface with respect to the own vehicle is determined with respect to the other vehicle. It has means to estimate as the representative position of the car,
The contact avoidance processing unit determines the possibility of future contact between the other vehicle and the host vehicle when the determination result of the turning determination unit is positive. Based on the time series of the representative position of the other vehicle estimated by the estimating means, the future first predicted course of the other vehicle is estimated and estimated from the first predicted course of the other vehicle and the motion state of the host vehicle. First contact possibility determination processing for determining the possibility of future contact between the other vehicle and the own vehicle based on the predicted future course of the own vehicle, and immediately before the determination result of the turning determination means becomes positive And estimating the future second predicted course of the other vehicle based on the time series of the representative position of the other vehicle estimated by the other vehicle position estimating means at The other vehicle and the vehicle based on the predicted course in the future A second contact possibility determination process for determining the possibility of future contact with the user, and one of the determination result by the first contact possibility determination process and the determination result by the second contact possibility determination process is The vehicle driving support device that executes the contact avoidance process when it is determined that there is a possibility of future contact between the other vehicle and the host vehicle.
JP2011249042A 2011-11-14 2011-11-14 Vehicle driving support device Expired - Fee Related JP5658125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011249042A JP5658125B2 (en) 2011-11-14 2011-11-14 Vehicle driving support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011249042A JP5658125B2 (en) 2011-11-14 2011-11-14 Vehicle driving support device

Publications (2)

Publication Number Publication Date
JP2013105335A true JP2013105335A (en) 2013-05-30
JP5658125B2 JP5658125B2 (en) 2015-01-21

Family

ID=48624821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011249042A Expired - Fee Related JP5658125B2 (en) 2011-11-14 2011-11-14 Vehicle driving support device

Country Status (1)

Country Link
JP (1) JP5658125B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148514A (en) * 2015-02-10 2016-08-18 国立大学法人金沢大学 Mobile object tracking method and mobile object tracking device
JP2019079242A (en) * 2017-10-24 2019-05-23 株式会社デンソー Traveling assist system
US11906967B1 (en) * 2020-03-31 2024-02-20 Zoox, Inc. Determining yaw with learned motion model

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000062553A (en) * 1998-08-19 2000-02-29 Honda Motor Co Ltd Running safety device for vehicle
JP2000121730A (en) * 1998-10-19 2000-04-28 Honda Motor Co Ltd Obstacle detecting device for vehicle
JP2004199494A (en) * 2002-12-19 2004-07-15 Nissan Motor Co Ltd Contact judgment device for vehicles
JP2008267826A (en) * 2007-04-16 2008-11-06 Toyota Motor Corp Object detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000062553A (en) * 1998-08-19 2000-02-29 Honda Motor Co Ltd Running safety device for vehicle
JP2000121730A (en) * 1998-10-19 2000-04-28 Honda Motor Co Ltd Obstacle detecting device for vehicle
JP2004199494A (en) * 2002-12-19 2004-07-15 Nissan Motor Co Ltd Contact judgment device for vehicles
JP2008267826A (en) * 2007-04-16 2008-11-06 Toyota Motor Corp Object detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148514A (en) * 2015-02-10 2016-08-18 国立大学法人金沢大学 Mobile object tracking method and mobile object tracking device
JP2019079242A (en) * 2017-10-24 2019-05-23 株式会社デンソー Traveling assist system
US11906967B1 (en) * 2020-03-31 2024-02-20 Zoox, Inc. Determining yaw with learned motion model

Also Published As

Publication number Publication date
JP5658125B2 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
JP7103753B2 (en) Collision avoidance device
US20150353078A1 (en) Driving assistance apparatus
WO2014064831A1 (en) Driving assistance device and driving assistance method
US9451380B2 (en) Apparatus and method for localizing sound image for vehicle's driver
WO2015174178A1 (en) Movement-assisting device
JP2012123495A (en) Traveling environment recognition device
JP2009012493A (en) Vehicle driving assist apparatus
JP4442520B2 (en) Course estimation device for vehicle
JP2007290558A (en) Parking support device and parking support method
JP5120140B2 (en) Collision estimation device and collision estimation program
JP2007091025A (en) Forward monitoring device for vehicle
JP2013054614A (en) Drive assisting device
JP2017091176A (en) Driving support device of vehicle
JP4297045B2 (en) Display control apparatus and program for head-up display
JP2006193011A (en) Parking supporting device
JP5658125B2 (en) Vehicle driving support device
JP2013161202A (en) Vehicle periphery monitoring device
JP4864450B2 (en) Vehicle driving support device
KR20190078944A (en) Augmented reality head up display system for railway train
JP2009230455A (en) Collision determination device
JP2015014948A (en) Driving support device for vehicle
JP2007069728A (en) Traveling controller
JP2011008699A (en) Driving operation evaluation device
JP5459002B2 (en) Vehicle control device
JP6361347B2 (en) Vehicle display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141127

R150 Certificate of patent or registration of utility model

Ref document number: 5658125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees