JP2013068872A - Lens sheet and el light-emitting device - Google Patents

Lens sheet and el light-emitting device Download PDF

Info

Publication number
JP2013068872A
JP2013068872A JP2011208660A JP2011208660A JP2013068872A JP 2013068872 A JP2013068872 A JP 2013068872A JP 2011208660 A JP2011208660 A JP 2011208660A JP 2011208660 A JP2011208660 A JP 2011208660A JP 2013068872 A JP2013068872 A JP 2013068872A
Authority
JP
Japan
Prior art keywords
lens
light
unit
lens sheet
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011208660A
Other languages
Japanese (ja)
Inventor
Yoshinori Yamaguchi
美則 山口
Yorinobu Yamazaki
順伸 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goyo Paper Working Co Ltd
Original Assignee
Goyo Paper Working Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goyo Paper Working Co Ltd filed Critical Goyo Paper Working Co Ltd
Priority to JP2011208660A priority Critical patent/JP2013068872A/en
Publication of JP2013068872A publication Critical patent/JP2013068872A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a lens sheet preventing reduction in brightness increase rate even when a unit lens is downsized, and inconspicuous in change in chromaticity at different view angles; and an EL light-emitting device using the lens sheet.SOLUTION: A lens sheet includes on its front face side a lens array in which unit lenses 2 each having a convex lens shape are arranged in a hexagonal packing arrangement state. A ratio L2/L1 of a length L2 of a portion where the longest diagonal line 4 of a hexagon lattice 3 dividing the lens array into each unit lens 2 is overlapped with the unit lens 2, to a length L1 of the longest diagonal line 4 is 87-93%. An EL light-emitting device has the lens sheet adhered thereto.

Description

本発明はEL発光装置のガラス基板の表面に貼り付けて光の出射効率を上げるためのレンズシート及びこのレンズシートを貼り付けたEL発光装置に係り、特に単位レンズを小型化した場合でも輝度上昇率が低下せず、見る角度を変えた場合の色度の変化も目立たないレンズシート及びこのレンズシートを貼り付けたEL発光装置に関する。   The present invention relates to a lens sheet that is attached to the surface of a glass substrate of an EL light-emitting device and increases the light emission efficiency, and an EL light-emitting device that is attached with this lens sheet, and in particular, even when the unit lens is miniaturized, the luminance is increased. The present invention relates to a lens sheet in which the rate does not decrease and the chromaticity change is not conspicuous when the viewing angle is changed, and an EL light emitting device to which the lens sheet is attached.

従来より、情報機器、特に携帯情報機器のための表示装置としては、液晶表示装置が多用されている。近年、表示装置の軽量化、薄型化、省電力化の要求が厳しくなってきているが、このような要求を満たすために、バックライトとしてEL発光装置の使用が進められている。
EL発光装置は初めから面光源として発光するため、点光源や線光源を面光源に変更するための導光板や拡散板等が不要なので、軽量化や薄型化を進める点で優れている。一方、EL発光装置に通電するための透明電極は屈折率が高いため、透明電極とガラス基板の間、及びガラス基板と大気の間で全反射を起こしやすく、光の出射効率が悪いという欠点がある。従って、EL発光装置は高輝度化や省力化の点で改良の余地が大きい。
2. Description of the Related Art Conventionally, liquid crystal display devices have been widely used as display devices for information devices, particularly portable information devices. In recent years, demands for reducing the weight, thickness, and power consumption of display devices have become stricter. In order to satisfy such demands, the use of EL light-emitting devices as backlights has been promoted.
Since the EL light emitting device emits light as a surface light source from the beginning, a light guide plate or a diffusion plate for changing a point light source or a line light source to a surface light source is unnecessary, which is excellent in terms of weight reduction and thickness reduction. On the other hand, since the transparent electrode for energizing the EL light-emitting device has a high refractive index, there is a drawback that total reflection occurs easily between the transparent electrode and the glass substrate and between the glass substrate and the atmosphere, and the light emission efficiency is poor. is there. Therefore, the EL light-emitting device has much room for improvement in terms of high brightness and labor saving.

光の出射効率を高める技術としては、例えば特許文献1に記載されているように、光学機能を有する立体模様(以下、単位レンズと称することがある)が表面に設けられた光学シートをガラス基板に貼り付ける方法がある。しかしながら、単位レンズがプリズム状、半円柱状、ピラミッド状、三角錐状、六角錐状等、レンズシートの全面を隙間無く埋め尽くすことができる形状の場合は、見る方向によって画面の色度が変化する現象が生じるので、平面視円形の単位レンズが多数配列された、所謂マイクロレンズシートが好ましく使用される。
また、マイクロレンズシートにも単位レンズがランダムに配置されたものと、格子状や六方充填配置状のように規則的に配列されたものがあるが、光を効率よく取り出しやすい点で、規則的に配列されたものが好まれている。
As a technique for increasing the light emission efficiency, for example, as described in Patent Document 1, an optical sheet provided with a three-dimensional pattern (hereinafter sometimes referred to as a unit lens) having an optical function on a glass substrate is used. There is a method to paste. However, if the unit lens has a shape that can fill the entire surface of the lens sheet, such as a prism shape, semi-cylindrical shape, pyramid shape, triangular pyramid shape, hexagonal pyramid shape, etc., the chromaticity of the screen changes depending on the viewing direction. Therefore, a so-called microlens sheet in which a large number of circular unit lenses in a plan view are arranged is preferably used.
In addition, there are microlens sheets with unit lenses randomly arranged and those with regular arrangements such as a lattice or hexagonal packing arrangement. Those arranged in are preferred.

一方、マイクロレンズシートの単位レンズが規則的に配列されている場合、液晶装置の画素が設けられるピッチの大きさとバックライトに用いるマイクロレンズシートの単位レンズの配列ピッチの大きさが同程度であれば、マイクロレンズの単位レンズを通過した光がうまく画素を照射できず、部分的に暗くなってしまう場合がある。この現象を避けるためには液晶装置の画素とマイクロレンズの単位レンズを一対一で対応するように精密に位置あわせをする方法が考えられるが、非常に精密な加工技術が必要になるので、コスト高になる。
そこで、廉価製品用のマイクロレンズシートとして、単位レンズの配列ピッチを液晶装置の画素が設けられるピッチの大きさの数分の一〜数十分の一程度とし、マイクロレンズシートをどの位置に配置しても、いずれかの単位レンズを通過した光で液晶の画素を照射できるようにする方法が考えられる。
On the other hand, if the unit lenses of the microlens sheet are regularly arranged, the size of the pitch in which the pixels of the liquid crystal device are provided and the arrangement pitch of the unit lenses of the microlens sheet used for the backlight are approximately the same. For example, the light that has passed through the unit lens of the microlens may not be able to illuminate the pixel well, and may become partially dark. In order to avoid this phenomenon, a method of precisely aligning the pixels of the liquid crystal device and the unit lens of the microlens in a one-to-one correspondence can be considered. Become high.
Therefore, as a microlens sheet for low-priced products, the arrangement pitch of unit lenses is set to a fraction to a fraction of the pitch of the liquid crystal device pixels, and the microlens sheet is arranged at any position. Even so, a method of enabling the liquid crystal pixels to be irradiated with the light passing through one of the unit lenses is conceivable.

特開2003−197364号公報JP 2003-197364 A

上記のようなマイクロレンズシートは、通常、単位レンズの形状の雌型が刻設された原版の上に樹脂を供給し、必要に応じてロール等による押圧力をかけて厚さを均一にし、供給した樹脂に適した方法(例えば、紫外線硬化樹脂の場合は紫外線照射、熱可塑性樹脂の場合は冷却)で硬化することにより製造されるが、樹脂の肉回り性や原版の加工精度の問題で、配列した単位レンズの間には、1〜数ミクロン程度の隙間が生じる。   The microlens sheet as described above usually supplies a resin on an original plate in which a female mold in the shape of a unit lens is engraved, and if necessary, applies a pressing force with a roll or the like to make the thickness uniform, It is manufactured by curing by a method suitable for the supplied resin (for example, UV irradiation in the case of UV curable resin, cooling in the case of thermoplastic resin). A gap of about 1 to several microns is generated between the arranged unit lenses.

一方、液晶表示装置の高解像度化や小型化が進む中、マイクロレンズシートの単位レンズの配列ピッチも一層小さくすることが望まれるが、上記したような単位レンズ間に生じる隙間の幅は一定なので、配列ピッチを小さくすればするほど当該隙間が占める割合が大きくなり、輝度が低下する傾向が生じる。単位レンズの形状を正三角形、正四角形、正六角形のように隙間無く敷き詰めることができる形状にすれば、輝度の低下は抑えられるが、上述の通り、見る角度によって色度が変化する現象が目立つようになる。   On the other hand, as the resolution and miniaturization of liquid crystal display devices progress, it is desirable to further reduce the arrangement pitch of the unit lenses of the microlens sheet, but the width of the gap generated between the unit lenses as described above is constant. The smaller the arrangement pitch is, the larger the proportion of the gap is, and the lower the luminance tends to be. If the unit lens is shaped like a regular triangle, regular square, or regular hexagon so that it can be spread without gaps, the decrease in luminance can be suppressed, but as described above, the phenomenon of chromaticity changing depending on the viewing angle is conspicuous. It becomes like this.

このような現状に鑑み、本発明は配列ピッチを小さくしても効率よく光を取り出すことができ、且つ見る角度を変えた場合の色度の変化も目立たないEL発光装置を得ることができるレンズシート及びこのレンズシートを貼り付けたEL発光装置を提供することを目的とする。   In view of such a current situation, the present invention can efficiently extract light even if the arrangement pitch is reduced, and can obtain an EL light emitting device in which change in chromaticity is not noticeable when the viewing angle is changed. An object of the present invention is to provide a sheet and an EL light emitting device to which the lens sheet is attached.

上記課題を解決するために、本発明の特徴の第1は、EL発光装置の光の出射面に貼着するレンズシートであって、凸レンズ状の単位レンズを六方充填配置状に配列したレンズアレイが表面側に設けられており、レンズアレイを各単位レンズに区切る六角格子の最長の対角線の長さL1に対する、該最長の対角線が単位レンズと重複する部分の長さL2の割合L2/L1が87〜93%であるレンズシートを内容とする。   In order to solve the above-described problem, a first feature of the present invention is a lens sheet that is attached to a light emission surface of an EL light-emitting device, in which convex lens-shaped unit lenses are arranged in a hexagonal filling arrangement. Is provided on the surface side, and the ratio L2 / L1 of the length L2 of the portion where the longest diagonal line overlaps the unit lens to the longest diagonal length L1 of the hexagonal lattice dividing the lens array into unit lenses is The content of the lens sheet is 87 to 93%.

本発明の特徴の第2は、単位レンズの平面形状における六角格子の頂点に近接する部分の曲率半径が、六角格子の内接円の半径の二分の一以上である上記のレンズシートを内容とする。   The second feature of the present invention is the above lens sheet, in which the radius of curvature of the portion adjacent to the vertex of the hexagonal lattice in the planar shape of the unit lens is one half or more of the radius of the inscribed circle of the hexagonal lattice. To do.

本発明の特徴の第3は、ガラス基板の出光面側に上記のレンズシートが貼着されているEL発光装置を内容とする。   A third feature of the present invention includes an EL light-emitting device in which the lens sheet is attached to the light-emitting surface side of the glass substrate.

本発明のレンズシートによれば、レンズアレイを各単位レンズに区切る六角格子の最長の対角線の長さL1に対する、該最長の対角線が単位レンズと重複する部分の長さL2の割合L2/L1を87%以上とすることにより、単位レンズの大きさを小さくして、隣接する単位レンズ間の隙間が占める割合が大きくなった場合でも、輝度の低下を抑えることができる。
また、この割合が93%以下とすることにより、見る角度が異なることによる色度の変化が目立たない範囲に抑えられる。
更に、六角格子の頂点付近における単位レンズの曲率半径を六角格子の内接円の半径の二分の一以上とすれば、色度の変化は一層抑えられる。
According to the lens sheet of the present invention, the ratio L2 / L1 of the length L2 of the portion where the longest diagonal line overlaps the unit lens with respect to the longest diagonal line length L1 of the hexagonal lattice that divides the lens array into unit lenses. By setting the ratio to 87% or more, even when the size of the unit lens is reduced and the ratio of the gap between the adjacent unit lenses is increased, it is possible to suppress a decrease in luminance.
In addition, by setting the ratio to 93% or less, a change in chromaticity due to a different viewing angle can be suppressed in an inconspicuous range.
Furthermore, if the radius of curvature of the unit lens near the apex of the hexagonal lattice is set to half or more of the radius of the inscribed circle of the hexagonal lattice, the change in chromaticity can be further suppressed.

図1は本発明のレンズシートに設けられたレンズアレイを示す概略説明図である。FIG. 1 is a schematic explanatory view showing a lens array provided on the lens sheet of the present invention. 図2は本発明のレンズシートに配列された単位レンズの形状を示す概略説明図である。FIG. 2 is a schematic explanatory view showing the shape of unit lenses arranged on the lens sheet of the present invention. 図3は本発明のレンズシートに配列可能な単位レンズの別の例を示す概略説明図である。FIG. 3 is a schematic explanatory view showing another example of unit lenses that can be arranged on the lens sheet of the present invention. 図4は本発明のレンズシートに配列可能な単位レンズのさらに別の例を示す概略説明図である。FIG. 4 is a schematic explanatory view showing still another example of unit lenses that can be arranged on the lens sheet of the present invention. 図5は本明細書において使用する寸法関係を示す語の示す場所を説明する概略説明図である。FIG. 5 is a schematic explanatory diagram for explaining a place indicated by a word indicating a dimensional relationship used in this specification.

本発明のレンズシートは、EL発光装置の光の出射面に貼着するものであって、図1、図2及び図5に示すとおり、凸レンズ状の単位レンズ2を六方充填配置状に配列したレンズアレイ1が表面側に設けられており、レンズアレイ1を各単位レンズ2に区切る六角格子3の最長の対角線4の長さL1に対する、該最長の対角線4が単位レンズ2と重複する部分の長さL2の割合L2/L1が87〜93%であることを特徴とする。
また、本発明のEL発光装置は、ガラス基板の出光面側に上記のレンズシートが貼着されていることを特徴とする。
The lens sheet of the present invention is affixed to the light emission surface of an EL light emitting device, and as shown in FIGS. 1, 2, and 5, the convex lens unit lenses 2 are arranged in a hexagonal filling arrangement. The lens array 1 is provided on the surface side, and the portion of the hexagonal lattice 3 that divides the lens array 1 into each unit lens 2 with respect to the length L1 of the longest diagonal 4 is overlapped with the unit lens 2. The ratio L2 / L1 of the length L2 is 87 to 93%.
Moreover, the EL light-emitting device of the present invention is characterized in that the lens sheet is attached to the light-emitting surface side of the glass substrate.

本発明において、レンズシートの表面側にはレンズアレイ1が設けられている。このレンズアレイ1は、図1に示したように、凸レンズ状の単位レンズ2を六方充填配置状に配置したものである。各単位レンズ2間の間隔は狭い方が好ましく、理想的にはレンズ間の間隔がゼロであれば最も好ましいが、現実的には、樹脂の肉回り性や原版の加工精度により1〜数μm程度の隙間が生じる。しかし、本発明において、この程度の隙間であれば許容される。   In the present invention, the lens array 1 is provided on the surface side of the lens sheet. In this lens array 1, as shown in FIG. 1, convex lens-like unit lenses 2 are arranged in a hexagonal filling arrangement. The distance between the unit lenses 2 is preferably narrow, and ideally, it is most preferable if the distance between the lenses is zero. However, in reality, the distance between the unit lenses 2 is 1 to several μm depending on the resin roundness and the processing accuracy of the original. A gap of a degree is generated. However, in the present invention, such a gap is permissible.

単位レンズ2の形状は凸レンズ状であり、即ち、平面視が円形に近い形状で、断面視が頂点の部分で水平であり、縁の部分に近づくほど勾配が急になる形状である。
但し、平面視の形状は完全な円形でなく、レンズアレイ1を単位レンズ2に区切る六角格子3の理想的な内接円5に対して、当該六角格子3の頂点に近い部分で外側に突出した部分が6箇所ある正六角形にも近い形状でもある。即ち、図2に示すように、六角格子3の最長の対角線4の長さL1に対する、該最長の対角線4が単位レンズ2と重複する部分の長さL2の割合L2/L1(図5参照。以下、対角部におけるレンズの割合と称する)が87〜93%とされている。
なお、ここで言う最長の対角線4とは、図5に示すように、六角格子3の9本の対角線のうち、六角形の中心点を通る3本の対角線のことをいう。
The shape of the unit lens 2 is a convex lens shape, that is, a shape in which the plan view is close to a circle, a cross-sectional view is horizontal at the apex portion, and the gradient becomes steeper as it approaches the edge portion.
However, the shape in plan view is not a perfect circle, and protrudes outward from the ideal inscribed circle 5 of the hexagonal lattice 3 that divides the lens array 1 into unit lenses 2 at a portion near the vertex of the hexagonal lattice 3. It is also a shape close to a regular hexagon with six parts. That is, as shown in FIG. 2, the ratio L2 / L1 of the length L2 of the portion where the longest diagonal 4 overlaps the unit lens 2 with respect to the length L1 of the longest diagonal 4 of the hexagonal lattice 3 (see FIG. 5). Hereinafter, the ratio of the lens in the diagonal portion is 87 to 93%.
In addition, the longest diagonal line 4 said here means three diagonal lines which pass through the hexagonal center point among the nine diagonal lines of the hexagonal lattice 3, as shown in FIG.

本発明において、対角部におけるレンズの割合が87%未満であれば、通常の断面視で円形の凸レンズを配列したマイクロレンズシートと輝度上昇率の点で大差がなく、また、単位レンズ2を小さくして各単位レンズ2の間隔の割合が単位レンズ2の大きさに対して大きくなった場合でも、輝度の低下を防ぐ効果は薄い。一方、対角部におけるレンズの割合が93%を超えると六角格子3の頂点に近い部分の曲率半径が小さくなりすぎ、見る角度による色度の変化が目立ち始めるので、好ましくない。
なお、対角部におけるレンズの割合を93%以下にするだけでなく、図3に示すように、六角格子3の頂点に近い部分の単位レンズ2の曲率半径を六角格子3の内接円5の半径の二分の一以上にすれば、見る角度による色度の変化がより目立ち難くなる。
また、図4に示すように、単位レンズ2の縁部であって、六角格子3の辺と近接する部分に浅い窪みを設ければ、見る角度による色度の変化が一層目立ち難くなる。
In the present invention, if the ratio of the lenses in the diagonal portion is less than 87%, there is no great difference in luminance increase rate from the microlens sheet in which circular convex lenses are arranged in a normal sectional view, and the unit lens 2 is Even when the ratio of the interval between the unit lenses 2 is increased with respect to the size of the unit lens 2, the effect of preventing the luminance from being lowered is small. On the other hand, if the ratio of the lenses in the diagonal portion exceeds 93%, the radius of curvature of the portion close to the apex of the hexagonal lattice 3 becomes too small, and the change in chromaticity depending on the viewing angle starts to stand out.
Not only the ratio of the lens in the diagonal portion is 93% or less, but also the radius of curvature of the unit lens 2 near the vertex of the hexagonal lattice 3 is set to the inscribed circle 5 of the hexagonal lattice 3 as shown in FIG. If the radius is set to more than half of the radius, the change in chromaticity depending on the viewing angle becomes more inconspicuous.
Also, as shown in FIG. 4, if a shallow depression is provided at the edge of the unit lens 2 and close to the side of the hexagonal lattice 3, the change in chromaticity depending on the viewing angle becomes more inconspicuous.

本発明においてレンズシートの素材として用いる樹脂は、透明な樹脂であれば特に限定されず、例えば、アクリル、ポリカーボネート、ポリスチレン、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリメチルペンテン等のポリオレフィン、環状ポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリアミド、ポリアリレート、ポリイミド等が挙げられる。   The resin used as a material for the lens sheet in the present invention is not particularly limited as long as it is a transparent resin. For example, polyolefins such as acrylic, polycarbonate, polystyrene, polyvinyl chloride, polyethylene, polypropylene, polymethylpentene, cyclic polyolefin, polyethylene Examples thereof include polyesters such as terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyamide, polyarylate, and polyimide.

本発明のレンズシートの表面側にレンズアレイ1を設ける方法は特に限定されず、例えばシート状に押し出された樹脂を2つの金属製冷却ロールで挟圧する方法において、片方の金属製冷却ロールの表面にレンズアレイ1の雌型を刻設しておく方法、シート状に押し出された樹脂を金属製冷却ロールとゴムロールで挟圧する方法において、金属製冷却ロールの表面にレンズアレイ1の雌型を刻設する、或いは、ゴムロール側にレンズアレイ1の雌型が転写された型フィルムを配置する方法等が例示できる。   The method of providing the lens array 1 on the surface side of the lens sheet of the present invention is not particularly limited. For example, in the method of pressing the resin extruded into a sheet shape with two metal cooling rolls, the surface of one metal cooling roll In the method of engraving the female mold of the lens array 1 and the method of pressing the resin extruded into a sheet shape between the metal cooling roll and the rubber roll, the female mold of the lens array 1 is engraved on the surface of the metal cooling roll. For example, a method of placing a mold film on which the female mold of the lens array 1 is transferred on the rubber roll side can be exemplified.

また、レンズアレイ1の雌型が刻設された型の上に放射線硬化型の樹脂を注入又は塗工した後、熱又は紫外線や電子線等、使用する樹脂の特性に合致した活性放射線によって固化して製造する方法でもよい。   In addition, after injecting or coating a radiation curable resin on the mold in which the female mold of the lens array 1 is engraved, it is solidified by heat, active radiation that matches the characteristics of the resin used, such as ultraviolet rays and electron beams. And a manufacturing method may be used.

レンズシートのレンズアレイ1が設けられていない面は、実質的に平面である。しかし、EL発光層を形成したガラス基板との接合面の剥離強度や接着強度の向上等のために、レンズアレイ1が設けられていない面を微細な凹凸構造面としてもよい。   The surface of the lens sheet where the lens array 1 is not provided is substantially a plane. However, the surface on which the lens array 1 is not provided may be a fine concavo-convex structure surface in order to improve the peel strength and adhesive strength of the joint surface with the glass substrate on which the EL light emitting layer is formed.

本発明のレンズシートは、そのレンズアレイ1が設けられた面を光の出射側に向けて、EL発光装置のガラス基板の出射面に光学的に一体化される。これにより、光の出射効率が向上し、輝度が上昇する。
なお、本発明で使用するEL発光装置は、発光層の種類により、無機ELと有機ELに分けられるが、本発明においてはいずれのELも使用できる。その構造は、発光層の種類により若干が異なるが、通常、ガラス基板上のITO透明電極の上に薄膜の発光層が設けられ、その上に背面の金属電極が設けられている。一般に、発光層で発光した光は、ITO透明電極及びガラス基板を通して出射される。
The lens sheet of the present invention is optically integrated with the exit surface of the glass substrate of the EL light emitting device with the surface on which the lens array 1 is provided facing the light exit side. Thereby, the light emission efficiency is improved and the luminance is increased.
In addition, although the EL light-emitting device used by this invention is divided into inorganic EL and organic EL by the kind of light emitting layer, either EL can be used in this invention. Although the structure differs slightly depending on the type of the light emitting layer, a thin light emitting layer is usually provided on the ITO transparent electrode on the glass substrate, and a metal electrode on the back is provided thereon. In general, light emitted from the light emitting layer is emitted through the ITO transparent electrode and the glass substrate.

EL発光装置にレンズシートを貼着する方法としては、レンズシートの裏面とEL発光装置のガラス基板の出光面の間の空気を排除してを密着させることができる方法であれば、他は特に限定されないが、ガラス基板かレンズシートと同等の屈折率を有する粘着剤、接着剤を介して固定すればよい。
具体的には、光学用の接着剤や粘着剤をレンズシートの裏面かEL発光装置のガラス基板の出光面のいずれか一面に塗布して他の面と貼着する方法が例示できる。この場合、離型紙上に用意された両面の接着剤や粘着剤を貼着する面のいずれかに貼合した上で離型紙を除き、他の面と貼合する方法も好適に用いられる。また、レンズシートを貼着したEL発光装置をオートクレーブ中で加圧することにより、貼着の強度を高めるとともに、レンズシートとEL発光装置の間の空気を完全に排除することができる。
As a method for attaching the lens sheet to the EL light emitting device, other methods are particularly applicable as long as the method can eliminate the air between the back surface of the lens sheet and the light emitting surface of the glass substrate of the EL light emitting device. Although it is not limited, what is necessary is just to fix through the adhesive and adhesive agent which have a refractive index equivalent to a glass substrate or a lens sheet.
Specifically, there can be exemplified a method in which an optical adhesive or pressure-sensitive adhesive is applied to any one of the rear surface of the lens sheet or the light-emitting surface of the glass substrate of the EL light-emitting device and attached to the other surface. In this case, a method in which the release paper is removed after being bonded to one of the surfaces on which the adhesive or pressure-sensitive adhesive on both sides prepared on the release paper is bonded is also preferably used. Moreover, by pressurizing the EL light emitting device with the lens sheet attached in an autoclave, the strength of the attachment can be increased and air between the lens sheet and the EL light emitting device can be completely eliminated.

EL発光装置にレンズシートを貼着するための接着剤や粘着剤は、光学用で透明度の高いものが好ましい。屈折率については特に限定されず、通常の高分子材料であれば使用可能であるが、EL発光層のガラス基板の屈折率と同等かまたはより高く、且つレンズシートを構成する材料の屈折率と同等かまたはより低くすれば、接合面における全反射によるロスを最小限にできるため好ましい。   The adhesive and pressure-sensitive adhesive for attaching the lens sheet to the EL light emitting device are preferably optical and highly transparent. The refractive index is not particularly limited and can be used as long as it is an ordinary polymer material. However, the refractive index of the material constituting the lens sheet is equal to or higher than the refractive index of the glass substrate of the EL light emitting layer. It is preferable to make them equal or lower because loss due to total reflection at the joint surface can be minimized.

以下、本発明を実施例を挙げて更に詳細に説明するが、本発明はこの実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited only to this Example.

(実施例1)
レンズシートの素材として帝人化成株式会社製のポリカーボネートの透明樹脂「パンライトL−1225Y(商品名)」を用い、これを樹脂温度300℃でTダイよりシート状に押し出し、押し出されたシート状溶融樹脂を、金属製の冷却ロールとゴムロールの間に狭圧する方法でレンズシートを製造した。冷却ロールとしては、単位レンズが六方充填配列状に配列されたレンズアレイの雌型が刻設されたものを使用した。
レンズアレイ1を構成する単位レンズ2の形状は、最長の対角線の長さL1が12.13μmで内接円5の直径が10.51μmである六角格子に収まる凸レンズ状であるが、六角格子の理想的な内接円に対して、当該六角格子の頂点に近い部分で外側に出っ張り、辺に近い部分で内側に引っ込んだ、六角形に近い形状であった。具体的には、六角形の中心点と辺の中点を結ぶ線6と単位レンズの重複部分(以後、この部分を横断線と称することがある)の長さL3(図5参照)は9.49μmであり、最長の対角線L1と単位レンズ2の重複部分の長さL2が10.84μm(最長の対角線の長さL1の89.37%、即ちL2/L1=89.37%)であった。
なお、得られたレンズシートの厚さは240μmであり、そのうちレンズアレイの高さ(高低差)は5.2μmであった。
Example 1
A polycarbonate transparent resin “Panlite L-1225Y (trade name)” manufactured by Teijin Chemicals Ltd. is used as a material for the lens sheet, and this is extruded into a sheet form from a T-die at a resin temperature of 300 ° C. A lens sheet was manufactured by a method in which the resin was compressed between a metal cooling roll and a rubber roll. As the cooling roll, one in which a female mold of a lens array in which unit lenses are arranged in a hexagonal filling array was engraved was used.
The shape of the unit lens 2 constituting the lens array 1 is a convex lens shape that fits in a hexagonal lattice in which the length L1 of the longest diagonal is 12.13 μm and the diameter of the inscribed circle 5 is 10.51 μm. With respect to the ideal inscribed circle, it was a shape close to a hexagon, protruding outward at a portion near the vertex of the hexagonal lattice and retracted inward at a portion close to the side. Specifically, the length L3 (see FIG. 5) of the overlapping portion of the line 6 connecting the hexagonal center point and the midpoint of the side and the unit lens (hereinafter this portion may be referred to as a transverse line) is 9 .49 μm, and the length L2 of the overlapping portion of the longest diagonal L1 and the unit lens 2 is 10.84 μm (89.37% of the longest diagonal L1, that is, L2 / L1 = 89.37%). It was.
The thickness of the obtained lens sheet was 240 μm, and the height (difference in height) of the lens array was 5.2 μm.

(比較例1)
直径10〜20μmの樹脂ビーズを樹脂シートにバインダーで接着した市販の拡散シート(恵和株式会社製、型番:BS−702)を比較例1のレンズシートとした。
(Comparative Example 1)
A commercially available diffusion sheet (manufactured by Keiwa Co., Ltd., model number: BS-702) in which resin beads having a diameter of 10 to 20 μm were bonded to a resin sheet with a binder was used as the lens sheet of Comparative Example 1.

(比較例2)
単位レンズ2の形状を直径9.50μmの真円形とした他は、実施例1と同様にして比較例2のレンズシートを得た。
(Comparative Example 2)
A lens sheet of Comparative Example 2 was obtained in the same manner as in Example 1 except that the unit lens 2 had a true circle shape with a diameter of 9.50 μm.

(比較例3)
単位レンズ2の形状を、L2に相当する最長の対角線の長さが11.53μm(L2/L1=95.05%)、横断線の長さが9.50μmの六角形状とした他は、実施例1と同様にして比較例3のレンズシートを得た。
(Comparative Example 3)
The unit lens 2 is formed in a hexagonal shape with the longest diagonal corresponding to L2 having a length of 11.53 μm (L2 / L1 = 95.05%) and a transverse line having a length of 9.50 μm. The lens sheet of Comparative Example 3 was obtained in the same manner as Example 1.

(参考例)
六角格子の大きさを、最長の対角線の長さL1が93.0μmで内接円5の直径を80.5μmとし、単位レンズ2の形状を直径79.5μmの真円形とした他は、実施例1と同様にして参考例のレンズシートを得た。
なお、参考例は、単位レンズ2が十分に大きいため、単位レンズ2間に1〜数μm程度の隙間が生じても輝度低下などの問題が殆ど目立たないレンズシートの例であり、その正面輝度の高さや見る角度による色調の安定性は本発明の目標となる。
(Reference example)
Except for the size of the hexagonal lattice, the length L1 of the longest diagonal is 93.0 μm, the diameter of the inscribed circle 5 is 80.5 μm, and the shape of the unit lens 2 is a true circle with a diameter of 79.5 μm. A lens sheet of a reference example was obtained in the same manner as Example 1.
Note that the reference example is an example of a lens sheet in which the unit lens 2 is sufficiently large, and even if a gap of about 1 to several μm occurs between the unit lenses 2, a problem such as a decrease in luminance is hardly noticeable. The stability of the color tone depending on the height and viewing angle is a goal of the present invention.

(特性の評価)
2.8インチで2波長白色のEL発光装置(東北デバイス社製)の表面にエアギャップを埋めるための接触液(屈折率1.53)を介して上記実施例、比較例、参考例のレンズシートを貼着し、目視で評価した。
評価の結果、実施例のレンズシートについては、レンズアレイの大きさが参考例の場合よりも非常に小さいにもかかわらず、正面の明るさ及び見る角度による色調の変化も参考例の場合と遜色が無かった。
これに対し、比較例1のレンズシートについては、色調の変化については参考例と大差無かったが、正面の明るさで非常に劣っていた。これは、比較例1のレンズアレイがランダムに設けられているのでレンズアレイの間隔が非常に広く、レンズアレイを通る光の割合が減って集光能率が下がるのが原因であると考えられる。
また、比較例2については、色調の変化については参考例と大差無かったが、正面の明るさで劣っていた。これは、レンズアレイの間の間隔は参考例と同程度であるが、レンズアレイが参考例のものよりも小さいので、レンズアレイ間の間隔の比率が大きくなり、その分、集光能率が下がったのが原因と考えられる。
比較例3については、正面の明るさについては参考例と大差なかったが、見る角度による色調の変化が目立っていた。これは、レンズアレイ間の隙間の比率が大きくなった分については、六角形の角の部分が参考例の場合より張り出しているので相殺され、集光能率の低下は抑えられているが、角の部分で屈折した光が不均一に拡散されるので色調の変化が大きくなると考えられる。
実施例、比較例1、参考例、及びレンズシートを貼着しないEL発光装置(対照例)については、以下の方法で輝度及び色度を測定した。
(Characteristic evaluation)
Lenses of the above-mentioned Examples, Comparative Examples, and Reference Examples through a contact liquid (refractive index of 1.53) for filling an air gap on the surface of a 2.8-inch two-wavelength white EL light emitting device (Tohoku Device Co., Ltd.) A sheet was attached and visually evaluated.
As a result of the evaluation, regarding the lens sheet of the example, although the size of the lens array is much smaller than that of the reference example, the change in color tone depending on the brightness of the front and the viewing angle is also inferior to that of the reference example. There was no.
On the other hand, the lens sheet of Comparative Example 1 was not much different from the reference example with respect to the change in color tone, but was very inferior in frontal brightness. This is thought to be because the lens array of Comparative Example 1 is randomly provided, so that the distance between the lens arrays is very wide, the ratio of light passing through the lens array is reduced, and the light collection efficiency is lowered.
Moreover, about the comparative example 2, although the change of the color tone was not very different from the reference example, it was inferior in the brightness of the front. This is because the distance between the lens arrays is the same as that of the reference example, but the lens array is smaller than that of the reference example, so the ratio of the distance between the lens arrays increases, and the light collection efficiency decreases accordingly. The cause is considered.
In Comparative Example 3, the brightness of the front was not much different from that in the Reference Example, but the change in color tone depending on the viewing angle was conspicuous. This is offset by the increase in the gap ratio between the lens arrays, because the corners of the hexagons overhang the case of the reference example, and the decrease in light collection efficiency is suppressed. Since the light refracted in this part is diffused non-uniformly, it is considered that the color tone changes greatly.
About an Example, the comparative example 1, a reference example, and the EL light-emitting device (control example) which does not stick a lens sheet, the brightness | luminance and chromaticity were measured with the following method.

(輝度の測定)
色彩輝度計(株式会社トプコンテクノハウス製、型番:TOPCON BM−5A)をEL発光装置の正面600mmの位置に設置し、輝度を測定した。輝度、及び対照例を基準とした輝度上昇率を表1に示す。
(Measurement of brightness)
A color luminance meter (manufactured by Topcon Techno House Co., Ltd., model number: TOPCON BM-5A) was installed at a position 600 mm in front of the EL light emitting device, and the luminance was measured. Table 1 shows the luminance and the luminance increase rate based on the control example.

色彩輝度計(株式会社トプコンテクノハウス製、型番:TOPCON BM−5A)をEL発光装置の正面600mmの位置に設置し、色度を測定した。結果を表1に示す。なお、色度はCIE Yxy表色系によるxの値とyの値により示す。
また、色彩輝度計を上記の位置から動かさず、EL発光装置の向きを左右に10°刻みで60°まで傾けて、それぞれの角度で色度を測定し、x値及びy値のそれぞれについて、正面での測定値と、該正面での測定値からの差(変化量)の最大値及び最小値を算定した。結果を表1に示す。
A color luminance meter (manufactured by Topcon Techno House Co., Ltd., model number: TOPCON BM-5A) was installed at a position 600 mm in front of the EL light emitting device, and chromaticity was measured. The results are shown in Table 1. Note that the chromaticity is indicated by an x value and a y value in the CIE Yxy color system.
In addition, without moving the color luminance meter from the above position, the direction of the EL light emitting device is tilted left and right to 60 ° in 10 ° increments, and the chromaticity is measured at each angle, and for each of the x value and the y value, The maximum value and the minimum value of the measured value at the front and the difference (change amount) from the measured value at the front were calculated. The results are shown in Table 1.

Figure 2013068872
Figure 2013068872

以上説明したように、本発明のレンズシート及びこれを用いたEL発光装置によれば、単位レンズを小さくした場合でも輝度は単位レンズが大きい場合と比較して低下せず、見る角度を変えた場合の色度の変化も小さいので、例えば、液晶表示装置のバックライト等として用いるEL発光装置及びこれに用いるレンズシートとして頗る有用である。   As described above, according to the lens sheet of the present invention and the EL light emitting device using the same, even when the unit lens is made smaller, the luminance is not lowered as compared with the case where the unit lens is large, and the viewing angle is changed. Since the change in chromaticity in the case is small, it is useful as an EL light emitting device used as a backlight of a liquid crystal display device and a lens sheet used therefor.

1 レンズアレイ
2 単位レンズ
3 六角格子
4 最長の対角線
4h 対角部における単位レンズの上限
4l 対角部における単位レンズの下限
5 内接円
5’ 半径が内接円の半径の二分の一以上の円
6 六角形の中心点と辺の中点を結ぶ線
L1 六角格子の最長の対角線の長さ
L2 最長の対角線が単位レンズと重複する部分の長さ
L3 六角形の中心点と辺の中点を結ぶ線と単位レンズの重複部分の長さ
DESCRIPTION OF SYMBOLS 1 Lens array 2 Unit lens 3 Hexagonal lattice 4 Longest diagonal 4h The upper limit of the unit lens in a diagonal part 4l The lower limit of the unit lens in a diagonal part 5 Inscribed circle 5 'Radius is more than half of the radius of an inscribed circle Circle 6 Line connecting the center point of the hexagon and the middle point of the side L1 Length of the longest diagonal line of the hexagonal lattice L2 Length of the part where the longest diagonal line overlaps the unit lens L3 Center point of the hexagon and the midpoint of the side The length of the overlap between the unit lens and the unit lens

Claims (3)

EL発光装置の光の出射面に貼着するレンズシートであって、
凸レンズ状の単位レンズを六方充填配置状に配列したレンズアレイが表面側に設けられており、
レンズアレイを各単位レンズに区切る六角格子の最長の対角線の長さL1に対する、該最長の対角線が単位レンズと重複する部分の長さL2の割合L2/L1が87〜93%であることを特徴とするレンズシート。
A lens sheet to be attached to the light emitting surface of the EL light emitting device,
A lens array in which convex lens-shaped unit lenses are arranged in a hexagonal filling arrangement is provided on the surface side,
The ratio L2 / L1 of the length L2 of the portion where the longest diagonal line overlaps the unit lens with respect to the longest diagonal length L1 of the hexagonal lattice dividing the lens array into the unit lenses is 87 to 93%. Lens sheet.
単位レンズの平面形状における六角格子の頂点に近接する部分の曲率半径が、六角格子の内接円の半径の二分の一以上であることを特徴とする請求項1に記載のレンズシート。   2. The lens sheet according to claim 1, wherein a radius of curvature of a portion adjacent to the vertex of the hexagonal lattice in the planar shape of the unit lens is at least half of the radius of the inscribed circle of the hexagonal lattice. ガラス基板の出光面側に請求項1又は2に記載のレンズシートが貼着されていることを特徴とするEL発光装置。   An EL light-emitting device, wherein the lens sheet according to claim 1 or 2 is attached to a light-emitting surface side of a glass substrate.
JP2011208660A 2011-09-26 2011-09-26 Lens sheet and el light-emitting device Pending JP2013068872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011208660A JP2013068872A (en) 2011-09-26 2011-09-26 Lens sheet and el light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011208660A JP2013068872A (en) 2011-09-26 2011-09-26 Lens sheet and el light-emitting device

Publications (1)

Publication Number Publication Date
JP2013068872A true JP2013068872A (en) 2013-04-18

Family

ID=48474600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011208660A Pending JP2013068872A (en) 2011-09-26 2011-09-26 Lens sheet and el light-emitting device

Country Status (1)

Country Link
JP (1) JP2013068872A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150226880A1 (en) * 2014-02-07 2015-08-13 Insight Equity A.P.X., Lp (Dba Vision-Ease Lens) Cut Pattern For Film
WO2017099086A1 (en) * 2015-12-10 2017-06-15 王子ホールディングス株式会社 Substrate, optical element, mold, organic light-emitting element, organic thin-film solar cell, and method for producing substrate
CN115494566A (en) * 2022-09-15 2022-12-20 中国科学院光电技术研究所 Spherical arrangement method of micro-lens array based on regular hexagon approximation
JP7490456B2 (en) 2019-06-05 2024-05-27 株式会社半導体エネルギー研究所 Function Panel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121609A (en) * 2001-10-11 2003-04-23 Hitachi Ltd Optical sheet and display device equipped with the same
JP2007514188A (en) * 2003-11-21 2007-05-31 ナノヴェンションズ インコーポレイテッド Micro optical security and image display system
JP2007207633A (en) * 2006-02-03 2007-08-16 Hitachi Ltd Light emitting element and display device
JP2010539653A (en) * 2007-09-17 2010-12-16 グローバル オーエルイーディー テクノロジー リミティド ライアビリティ カンパニー LED device with improved light output
WO2010147414A2 (en) * 2009-06-17 2010-12-23 Lg Chem, Ltd. Light extraction member and organic light emitting diode including the same
JP2011086616A (en) * 2009-09-17 2011-04-28 Semiconductor Energy Lab Co Ltd Lighting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121609A (en) * 2001-10-11 2003-04-23 Hitachi Ltd Optical sheet and display device equipped with the same
JP2007514188A (en) * 2003-11-21 2007-05-31 ナノヴェンションズ インコーポレイテッド Micro optical security and image display system
JP2007207633A (en) * 2006-02-03 2007-08-16 Hitachi Ltd Light emitting element and display device
JP2010539653A (en) * 2007-09-17 2010-12-16 グローバル オーエルイーディー テクノロジー リミティド ライアビリティ カンパニー LED device with improved light output
WO2010147414A2 (en) * 2009-06-17 2010-12-23 Lg Chem, Ltd. Light extraction member and organic light emitting diode including the same
JP2012530932A (en) * 2009-06-17 2012-12-06 エルジー・ケム・リミテッド Light extraction member and organic light emitting device including the same
JP2011086616A (en) * 2009-09-17 2011-04-28 Semiconductor Energy Lab Co Ltd Lighting device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150226880A1 (en) * 2014-02-07 2015-08-13 Insight Equity A.P.X., Lp (Dba Vision-Ease Lens) Cut Pattern For Film
CN114131971A (en) * 2014-02-07 2022-03-04 视觉缓解公司 Cutting pattern of film
US11650353B2 (en) 2014-02-07 2023-05-16 Hoya Optical Labs Of America, Inc. Cut pattern for film
WO2017099086A1 (en) * 2015-12-10 2017-06-15 王子ホールディングス株式会社 Substrate, optical element, mold, organic light-emitting element, organic thin-film solar cell, and method for producing substrate
JPWO2017099086A1 (en) * 2015-12-10 2018-10-04 王子ホールディングス株式会社 Substrate, optical element, mold, organic light emitting element, organic thin film solar cell, and method for manufacturing substrate
US10446773B2 (en) 2015-12-10 2019-10-15 Oji Holdings Corporation Substrate, optical element, mold, organic light-emitting element, organic thin-film solar cell, and method for producing substrate
JP7490456B2 (en) 2019-06-05 2024-05-27 株式会社半導体エネルギー研究所 Function Panel
CN115494566A (en) * 2022-09-15 2022-12-20 中国科学院光电技术研究所 Spherical arrangement method of micro-lens array based on regular hexagon approximation
CN115494566B (en) * 2022-09-15 2023-06-30 中国科学院光电技术研究所 Micro-lens array spherical surface arrangement method based on regular hexagon approximation

Similar Documents

Publication Publication Date Title
EP3264146B1 (en) Display device and television receiver with laminated optical member.
JP2007286261A (en) Optical sheet, backlight device and liquid crystal display
JP2013015833A (en) Optical sheet and manufacturing method thereof, liquid cristal display apparatus using optical sheet
JP2009150981A (en) Optical sheet, backlight unit and display device
KR101219591B1 (en) Back light guide plate and manufacturing method for the same
TWI790561B (en) Diffusion sheet, backlight unit, liquid crystal display device and information equipment
KR101813753B1 (en) Liquid crystal display apparatus
JP6201684B2 (en) EL element, illumination device, display device, and liquid crystal display device
JP5003298B2 (en) Optical sheet, backlight unit using the same, and display device
JP5724527B2 (en) Light guide plate laminate and manufacturing method thereof
JP2013068872A (en) Lens sheet and el light-emitting device
KR100932606B1 (en) Optical film and backlight unit including same
KR100898047B1 (en) Optical member and method of manufacturing the same
JP7037624B2 (en) Optical sheet, backlight unit, liquid crystal display device and information equipment
KR100980068B1 (en) Multi-functional optic film
JP5771989B2 (en) EL element, and illumination device, display device, and liquid crystal display device including the same
KR20160091179A (en) Optical sheet for back light unit and manufacturing method thereof
TW201407201A (en) Optical sheet and display device including the same
KR20140002223A (en) Condensing type optical sheet
WO2023210614A1 (en) Light diffusion sheet, backlight unit, liquid crystal display device, and information equipment
KR101297902B1 (en) Optical composite sheet comprising prism pattern with pin protrusion
CN208969260U (en) Optical component
KR101370167B1 (en) Backlight unit assembly
KR101069934B1 (en) Diffuser sheet with multi-function
KR101897323B1 (en) Transparent display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160209