JP2013055058A - Circuit connection material and connection structure of circuit member - Google Patents

Circuit connection material and connection structure of circuit member Download PDF

Info

Publication number
JP2013055058A
JP2013055058A JP2012226010A JP2012226010A JP2013055058A JP 2013055058 A JP2013055058 A JP 2013055058A JP 2012226010 A JP2012226010 A JP 2012226010A JP 2012226010 A JP2012226010 A JP 2012226010A JP 2013055058 A JP2013055058 A JP 2013055058A
Authority
JP
Japan
Prior art keywords
circuit
connection
conductive particles
circuit member
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012226010A
Other languages
Japanese (ja)
Inventor
Sunao Kudo
直 工藤
Koji Kobayashi
宏治 小林
Masahiro Arifuku
征宏 有福
Kazuyoshi Kojima
和良 小島
Akiomi Mochizuki
日臣 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012226010A priority Critical patent/JP2013055058A/en
Publication of JP2013055058A publication Critical patent/JP2013055058A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13016Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/2939Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/2954Coating
    • H01L2224/29599Material
    • H01L2224/29698Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29798Fillers
    • H01L2224/29799Base material
    • H01L2224/2989Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/819Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector with the bump connector not providing any mechanical bonding
    • H01L2224/81901Pressing the bump connector against the bonding areas by means of another connector
    • H01L2224/81903Pressing the bump connector against the bonding areas by means of another connector by means of a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0221Insulating particles having an electrically conductive coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)
  • Wire Bonding (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Multi-Conductor Connections (AREA)
  • Adhesive Tapes (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a circuit connection material and a connection structure of a circuit member which achieve good electrical connection between facing circuit electrodes even if surfaces of the circuit electrodes are flat and sufficiently improve the long term reliability of electric characteristics between the circuit electrodes.SOLUTION: A circuit connection material is disposed between a first circuit member 30 having a first circuit electrode 32 and a second circuit member 40, which faces the first circuit member 30 and has a second circuit electrode 42, and establishes electrical continuity between the first circuit electrode 32 and the second circuit electrode 42. The circuit connection material includes: an adhesive composition and a conductive particle 12 having a diameter ranging from 0.5 μm to 4 μm. The outermost layer 22 of the conductive particle 12 is made of Ni or Ni alloy which has Vickers hardness of 300 Hv or higher. A part of the outermost layer 22 protrudes outwardly to form a protruding part 14, and a specific relationship is established between the diameter and the hardness of the conductive particle 12.

Description

本発明は、回路接続材料、及び回路部材の接続構造に関する。   The present invention relates to a circuit connection material and a circuit member connection structure.

液晶ディスプレイとテープキャリアパッケージ(Tape Carrier Package:TCP)との接続、フレキシブル回路基板(Flexible Printed Circuit:FPC)とTCPとの接続、又はFPCとプリント配線板との接続といった回路部材同士の接続には、接着剤中に導電粒子を分散させた回路接続材料(例えば、異方導電性接着剤)が使用されている。また、最近では半導体シリコンチップを基板に実装する場合、回路部材同士の接続のためにワイヤボンドを使用することなく、半導体シリコンチップをフェイスダウンして基板に直接実装する、いわゆるフリップチップ実装が行われている。このフリップチップ実装においても、回路部材同士の接続には異方導電性接着剤等の回路接続材料が使用されている(例えば、特許文献1〜5参照)。   For connection between circuit members such as connection between liquid crystal display and tape carrier package (TCP), connection between flexible printed circuit (FPC) and TCP, or connection between FPC and printed wiring board A circuit connection material (for example, anisotropic conductive adhesive) in which conductive particles are dispersed in an adhesive is used. Recently, when a semiconductor silicon chip is mounted on a substrate, so-called flip chip mounting, in which the semiconductor silicon chip is directly mounted on the substrate face down without using a wire bond to connect circuit members, is performed. It has been broken. Also in this flip chip mounting, a circuit connection material such as an anisotropic conductive adhesive is used for connection between circuit members (see, for example, Patent Documents 1 to 5).

特開昭59−120436号公報JP 59-120436 A 特開昭60−191228号公報JP-A-60-191228 特開平1−251787号公報JP-A-1-251787 特開平7−90237号公報JP-A-7-90237 特開2001−189171号公報JP 2001-189171 A 特開2005−166438号公報JP 2005-166438 A

ところで、近年、電子機器の小型化、薄型化に伴い、回路部材に形成された回路の高密度化が進展し、隣接する電極同士の間隔や電極の幅が非常に狭くなる傾向がある。回路電極は、回路の元となる金属を基板全面に形成し、回路電極部にレジストを塗布、硬化し、それ以外の部分を酸又は塩基でエッチングすることによって形成されるが、上述した高密度化された回路の場合には、基板全面に形成した金属の凹凸が大きいと凹部と凸部でエッチング時間が異なるために、精密なエッチングを行えず、隣接回路間のショートや断線が発生するという問題があった。 このため、高密度回路の金属(回路電極表面)では凹凸が小さいこと、すなわち電極表面が平坦であることが望まれていた。   By the way, in recent years, with the miniaturization and thinning of electronic devices, the density of circuits formed on circuit members has progressed, and the distance between adjacent electrodes and the width of electrodes tend to be very narrow. A circuit electrode is formed by forming a base metal of the circuit on the entire surface of the substrate, applying and curing a resist on the circuit electrode portion, and etching the other portions with acid or base. In the case of an integrated circuit, if the metal unevenness formed on the entire surface of the substrate is large, the etching time differs between the concave portion and the convex portion, so that precise etching cannot be performed, and a short circuit or disconnection between adjacent circuits occurs. There was a problem. For this reason, it has been desired that the metal (circuit electrode surface) of the high-density circuit has small unevenness, that is, the electrode surface is flat.

しかし、表面が平坦な回路電極同士を、相対向させ、その間に従来の回路接続材料を介在させて接続した場合には、回路接続材料中に含まれる導電粒子と平坦な回路電極表面との間に接着剤樹脂が残って導電粒子と回路電極とが十分に接触せず、回路電極間において十分な電気的接続及び電気特性の長期信頼性を確保できないという問題があった。   However, when circuit electrodes with flat surfaces are made to face each other and a conventional circuit connection material is interposed between them, the conductive particles contained in the circuit connection material and the surface of the flat circuit electrode are between them. In other words, the adhesive resin remains and the conductive particles and the circuit electrodes are not sufficiently in contact with each other, so that sufficient electrical connection and long-term reliability of the electrical characteristics cannot be secured between the circuit electrodes.

そこで、回路電極間の電気的接続及び電気特性の長期信頼性を確保するために、導電粒子の表面に複数の突起部を設け、回路接続時に導電粒子と回路電極との間の接着剤組成物を突起部で貫通させることによって、導電粒子を回路電極に接触させる方法が考案されている(上記特許文献6参照)。しかし、この方法を用いても回路電極の仕様(材質等)によっては、回路電極間の電気的接続及び電気特性の長期信頼性を確保する効果が小さい場合があった。   Therefore, in order to ensure the long-term reliability of the electrical connection and electrical characteristics between the circuit electrodes, a plurality of protrusions are provided on the surface of the conductive particles, and the adhesive composition between the conductive particles and the circuit electrodes at the time of circuit connection A method has been devised in which the conductive particles are brought into contact with the circuit electrodes by penetrating through the protrusions (see Patent Document 6). However, even if this method is used, depending on the specifications (material, etc.) of the circuit electrodes, there are cases where the effect of ensuring the electrical connection between the circuit electrodes and the long-term reliability of the electrical characteristics is small.

本発明は、上記事情に鑑みてなされたものであり、回路電極の表面が平坦であっても、対向する回路電極同士間の良好な電気的接続を達成できると共に回路電極間の電気特性の長期信頼性を十分に高めることができる回路接続材料及び回路部材の接続構造を提供することを目的とする。   The present invention has been made in view of the above circumstances, and even if the surface of the circuit electrode is flat, it is possible to achieve good electrical connection between the facing circuit electrodes and to achieve a long-term electrical property between the circuit electrodes. It is an object of the present invention to provide a circuit connection material and a circuit member connection structure that can sufficiently enhance reliability.

本発明者は、上記課題を解決すべく鋭意研究した結果、従来の回路接続材料では回路電極間の電気的接続及び電気特性の長期信頼性を十分に確保できない原因が、導電粒子の最外層の材質にあることを見出した。すなわち、従来の回路接続材料に含まれる導電粒子の最外層は、比較的軟らかい金属であるAuからなるため、導電粒子と回路電極との間の接着剤組成物を、導電粒子表面に形成されたAuの突起部で貫通しても、Auの突起部が変形して、回路電極へくい込み難いことを本発明者は見出した。さらに、本発明者は、導電粒子の最外層の材質をAuよりも硬い金属に変更し、さらに導電粒子の粒径に応じて導電粒子の硬度を最適化することによって、回路電極間の電気的接続及び電気特性の長期信頼性が向上することを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventor has found that the long-term reliability of the electrical connection between the circuit electrodes and the electrical characteristics cannot be sufficiently secured with the conventional circuit connection material. I found out that it is in the material. That is, since the outermost layer of the conductive particles included in the conventional circuit connection material is made of Au, which is a relatively soft metal, an adhesive composition between the conductive particles and the circuit electrode is formed on the surface of the conductive particles. The present inventor has found that even if the Au protrusion is penetrated, the Au protrusion is deformed and is difficult to bite into the circuit electrode. Furthermore, the present inventor changed the material of the outermost layer of the conductive particles to a metal harder than Au, and further optimized the hardness of the conductive particles according to the particle size of the conductive particles, thereby electrically connecting the circuit electrodes. It has been found that the long-term reliability of connection and electrical characteristics is improved, and the present invention has been completed.

本発明の回路接続材料は、第1の回路電極を有する第1の回路部材と、第1の回路部材に対向し、第2の回路電極を有する第2の回路部材との間に介在して、第1の回路電極と第2の回路電極とを電気的に導通させる回路接続材料において、接着剤組成物と、直径が0.5〜7μmである導電粒子と、を含有し、導電粒子の最外層は、ビッカス硬度が300Hv以上である金属からなり、最外層の一部が外側に突出して突起部が形成されており、導電粒子の直径が5μm以上7μm以下の時、導電粒子の硬度が200〜1200kgf/mmであり、導電粒子の直径が4μm以上5μm未満の時、導電粒子の硬度が300〜1300kgf/mmであり、導電粒子の直径が3μm以上4μm未満の時、導電粒子の硬度が400〜1400kgf/mmであり、導電粒子の直径が2μm以上3μm未満の時、導電粒子の硬度が450〜1700kgf/mmであり、導電粒子の直径が0.5μm以上2μm未満の時、導電粒子の硬度が500〜2000kgf/mmであることを特徴とする。 The circuit connection material of the present invention is interposed between a first circuit member having a first circuit electrode and a second circuit member having a second circuit electrode facing the first circuit member. In the circuit connection material for electrically connecting the first circuit electrode and the second circuit electrode, the adhesive composition and conductive particles having a diameter of 0.5 to 7 μm are contained. The outermost layer is made of a metal having a Bickers hardness of 300 Hv or more, and a part of the outermost layer protrudes outward to form a protrusion. When the diameter of the conductive particles is 5 μm or more and 7 μm or less, the hardness of the conductive particles is 200 to 1200 kgf / mm 2 , when the diameter of the conductive particles is 4 μm or more and less than 5 μm, the hardness of the conductive particles is 300 to 1300 kgf / mm 2 , and when the diameter of the conductive particles is 3 μm or more and less than 4 μm, Hardness is 400-1400kgf / a mm 2, when the diameter of the conductive particles is less than 3μm than 2 [mu] m, the hardness of the conductive particles are 450~1700kgf / mm 2, when the diameter of the conductive particles is less than 2 [mu] m or more 0.5 [mu] m, the hardness of the conductive particles 500 to 2000 kgf / mm 2 .

なお、本発明における導電粒子の硬度の範囲は上記単位で定義されるが、現在主流になっているSI単位に換算すれば、200〜1200kgf/mmは1.961〜11.768GPaという値となり、300〜1300kgf/mmは2.942〜12.749GPaという値となり、400〜1400kgf/mmは3.923〜13.729GPaという値となり、450〜1700kgf/mmは4.413〜16.671GPaという値となり、500〜2000kgf/mmは4.903〜19.613GPaという値となる。 In addition, although the range of the hardness of the electroconductive particle in this invention is defined by the said unit, if converted into SI unit which is mainstream now, 200-1200 kgf / mm < 2 > will be a value of 1.961-1.768 GPa. , 300~1300kgf / mm 2 is the value of 2.942~12.749GPa, 400~1400kgf / mm 2 is the value of 3.923~13.729GPa, 450~1700kgf / mm 2 is 4.413 to 16. A value of 671 GPa is obtained, and 500 to 2000 kgf / mm 2 is a value of 4.903 to 19.613 GPa.

本発明では、導電粒子の直径に対応して導電粒子の硬度を最適化し、且つ、ビッカス硬度が300Hv以上である金属からなる最外層の一部を外側に突出させて突起部を形成させるため、第1及び第2の回路部材の圧着時に、突起部が第1及び第2の回路電極に深く食い込み、また導電粒子が適度に扁平する。その結果、回路と個々の導電粒子との接触面積が大きくなり、導電粒子と第1及び第2の回路電極とが確実に接触した状態で回路部材同士が接着されるため、両電極間の接続抵抗が小さい状態が長期間にわたって保持される。
すなわち、対向する回路電極同士間の良好な電気的接続を達成できると共に回路電極間の電気特性の長期信頼性を十分に高めることができる。なお、導電粒子が「扁平する」とは、導電粒子が、回路電極表面に対して略垂直な方向につぶれ、略平行な方向に歪むことを意味する。
In the present invention, in order to optimize the hardness of the conductive particles corresponding to the diameter of the conductive particles, and to project a part of the outermost layer made of a metal having a Bickers hardness of 300 Hv or more to the outside, to form a protrusion, When the first and second circuit members are pressure-bonded, the protrusions deeply bite into the first and second circuit electrodes, and the conductive particles are appropriately flattened. As a result, the contact area between the circuit and the individual conductive particles is increased, and the circuit members are bonded together in a state where the conductive particles and the first and second circuit electrodes are securely in contact with each other. A state in which the resistance is low is maintained for a long time.
That is, it is possible to achieve good electrical connection between the circuit electrodes facing each other and sufficiently increase the long-term reliability of the electrical characteristics between the circuit electrodes. The term “flattened” of the conductive particles means that the conductive particles are crushed in a direction substantially perpendicular to the circuit electrode surface and distorted in a substantially parallel direction.

上記本発明の回路接続材料では、突起部の高さが50〜500nmであり、最外層の一部が外側に突出して複数の突起部が形成されており、隣接する突起部間の距離が1000nm以下であることが好ましい。   In the circuit connection material of the present invention, the height of the protrusion is 50 to 500 nm, a part of the outermost layer protrudes outward to form a plurality of protrusions, and the distance between adjacent protrusions is 1000 nm. The following is preferable.

突起部の高さが50nm未満の場合、回路接続材料を用いた第1の回路部材と第2の回路部材との接続構造体を高温高湿処理した後に、接続抵抗値が高くなる傾向があり、500nmより大きい場合には、導電粒子と第1及び第2の回路電極との接触面積が小さくなるため接続抵抗値が高くなる傾向がある。   When the height of the protrusion is less than 50 nm, the connection resistance value tends to increase after the high temperature and high humidity treatment of the connection structure of the first circuit member and the second circuit member using the circuit connection material. If it is larger than 500 nm, the contact area between the conductive particles and the first and second circuit electrodes becomes small, so that the connection resistance value tends to increase.

上記本発明の回路接続材料では、最外層がNiからなることが好ましい。   In the circuit connection material of the present invention, the outermost layer is preferably made of Ni.

最外層を、ビッカス硬度が300Hv以上の金属であるNiで構成することによって、本発明の効果を得やすくなる。   By configuring the outermost layer with Ni, which is a metal having a Bickers hardness of 300 Hv or more, the effect of the present invention can be easily obtained.

上記本発明の回路接続材料はフィルム状であることが好ましい。   The circuit connecting material of the present invention is preferably in the form of a film.

本発明の回路部材の接続構造(接続構造体)は、上記本発明の回路接続材料を、第1の回路部材と第2の回路部材との間に介在させて、第1の回路電極と第2の回路電極とを電気的に導通させることを特徴とする。   A circuit member connection structure (connection structure) according to the present invention includes a circuit connection material according to the present invention interposed between a first circuit member and a second circuit member. The second circuit electrode is electrically connected.

本発明の回路接続材料を用いた回路部材の接続構造においては、第1及び第2電極間の接続抵抗が小さい状態が長期間にわたって保持される。すなわち、対向する回路電極同士間の良好な電気的接続を達成できると共に回路電極間の電気特性の長期信頼性を十分に高めることができる。   In the circuit member connection structure using the circuit connection material of the present invention, a state in which the connection resistance between the first and second electrodes is small is maintained for a long period of time. That is, it is possible to achieve good electrical connection between the circuit electrodes facing each other and sufficiently increase the long-term reliability of the electrical characteristics between the circuit electrodes.

上記本発明の回路部材の接続構造では、第1又は第2の回路電極が、インジウム−錫酸化物又はインジウム−亜鉛酸化物であることが好ましい。   In the circuit member connection structure of the present invention, the first or second circuit electrode is preferably indium-tin oxide or indium-zinc oxide.

本発明では、回路電極がインジウム−錫酸化物又はインジウム−亜鉛酸化物からなる場合、回路電極間の電気的接続及び電気特性の長期信頼性を向上させる効果が顕著となる。   In the present invention, when the circuit electrode is made of indium-tin oxide or indium-zinc oxide, the effect of improving the electrical connection between the circuit electrodes and the long-term reliability of the electrical characteristics becomes significant.

上記本発明の回路部材の接続構造では、第1又は第2の回路電極の厚みが50nm以上であることが好ましい。 In the circuit member connection structure of the present invention, the thickness of the first or second circuit electrode is preferably 50 nm or more.

第1又は第2の回路電極の厚さが50nm未満の場合、回路部材同士の圧着時に、回路接続材料中に含まれる導電粒子表面の突起部が、第1又は第2の回路電極を貫通し回路部材と接触してしまう恐れがあり、第1又は第2の回路電極と導電粒子との接触面積が減少し接続抵抗が上昇する傾向にある。   When the thickness of the first or second circuit electrode is less than 50 nm, the protrusion on the surface of the conductive particles contained in the circuit connection material penetrates the first or second circuit electrode when the circuit members are pressed together. There is a risk of contact with the circuit member, and the contact area between the first or second circuit electrode and the conductive particles tends to decrease and the connection resistance tends to increase.

本発明の回路接続材料及び回路部材の接続構造によれば、回路電極の表面が平坦であっても、対向する回路電極同士間の良好な電気的接続を達成できると共に回路電極間の電気特性の長期信頼性を十分に高めることができる。   According to the circuit connection material and the circuit member connection structure of the present invention, even if the surface of the circuit electrode is flat, it is possible to achieve good electrical connection between the facing circuit electrodes and to improve the electrical characteristics between the circuit electrodes. Long-term reliability can be sufficiently increased.

本発明に係る回路部材の接続構造の好適な一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows suitable one Embodiment of the connection structure of the circuit member which concerns on this invention. 図2(a)、図2(b)は、それぞれ本発明に係る回路接続材料の好適な一実施形態における導電粒子の概略断面図である。FIG. 2A and FIG. 2B are schematic cross-sectional views of conductive particles in a preferred embodiment of the circuit connection material according to the present invention.

以下、添付図面を参照しながら本発明の好適な実施形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図示の便宜上、図面の寸法比率は説明のものと必ずしも一致しない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. For the convenience of illustration, the dimensional ratios in the drawings do not necessarily match those described.

[回路接続材料]
本発明の回路接続材料は、接着剤組成物と導電性粒子を含有するが、その形態としては、ペースト状、フィルム状等の形態が挙げられる。以下では、本発明の回路接続材料の一実施形態であるフィルム状回路接続材料について詳細に説明する。フィルム状回路接続材料は、回路接続材料をフィルム状に成形してなるものであり、例えば、回路接続材料を、塗工装置を用いて支持体(PET(ポリエチレンテレフタレート)フィルム等)上に塗布し、所定時間熱風乾燥することにより作製することができる。
[Circuit connection material]
Although the circuit connection material of this invention contains an adhesive composition and electroconductive particle, forms, such as a paste form and a film form, are mentioned as the form. Below, the film-form circuit connection material which is one Embodiment of the circuit connection material of this invention is demonstrated in detail. The film-like circuit connection material is formed by forming the circuit connection material into a film shape. For example, the circuit connection material is applied on a support (PET (polyethylene terephthalate) film or the like) using a coating apparatus. It can be prepared by drying with hot air for a predetermined time.

フィルム状回路接続材料は、導電粒子12と、接着剤組成物とを含有するものであり、接着剤組成物は接着性を有し、硬化処理により硬化する(図1、2参照)。その結果、フィルム状回路接続材料は、第1及び第2の回路部材30、40の間に介在して、第1の回路部材30が有する第1の回路電極32と、第2の回路部材40が有する第2の回路電極42とを電気的に導通させる。   The film-like circuit connecting material contains conductive particles 12 and an adhesive composition, and the adhesive composition has adhesiveness and is cured by a curing process (see FIGS. 1 and 2). As a result, the film-like circuit connecting material is interposed between the first and second circuit members 30 and 40, and the first circuit electrode 32 included in the first circuit member 30 and the second circuit member 40. Is electrically connected to the second circuit electrode 42 of the.

フィルム状回路接続材料は、フィルム状であり、取扱いが容易であるため、第1の回路部材30と第2の回路部材40とを接続する際に、それらの間に容易に介在させることができ、第1の回路部材30と第2の回路部材40との接続作業を容易に行うことができる。   Since the film-like circuit connection material is film-like and easy to handle, when connecting the first circuit member 30 and the second circuit member 40, they can be easily interposed between them. The connection work between the first circuit member 30 and the second circuit member 40 can be easily performed.

(導電粒子)
フィルム状回路接続材料が含有する導電粒子12は、図2(a)に示すように、一般に有機高分子化合物からなる核体21と、核体21の表面上に形成される最外層(金属層22)とで構成されることが、導電粒子に突起部を形成する上で好ましい。核体21は、中核部21aと、中核部21aの表面上に形成される核側突起部21bとで構成される。核体21は、中核部21aの表面に中核部21aよりも小さな径を有する核側突起部21bを複数個吸着させることにより形成することができる。金属層22の一部は、外側に突出して複数の突起部14を形成している。金属層22は、導電性を有し、ビッカス硬度が300Hv以上である金属で構成されている。なお、本発明において、導電粒子の直径は0.5μm以上7μm以下である。直径が0.5μm未満であると、望ましい導通が得られない傾向があり、7μmを超えると液晶パネル用途等の電極間距離が短い箇所における接続時に短絡が生ずる傾向がある。なお、導電粒子の直径とは、突起部14を含めた導電粒子12全体の粒径であり、その測定は、電子顕微鏡観察により行うことができる。
(Conductive particles)
As shown in FIG. 2A, the conductive particles 12 contained in the film-like circuit connecting material are generally composed of a core body 21 made of an organic polymer compound and an outermost layer (metal layer) formed on the surface of the core body 21. 22) is preferable in forming the protrusions on the conductive particles. The core body 21 includes a core portion 21a and a core-side protrusion portion 21b formed on the surface of the core portion 21a. The core body 21 can be formed by adsorbing a plurality of core side projections 21b having a smaller diameter than the core part 21a on the surface of the core part 21a. A part of the metal layer 22 protrudes outward to form a plurality of protrusions 14. The metal layer 22 is made of a metal having conductivity and having a Bickers hardness of 300 Hv or more. In the present invention, the diameter of the conductive particles is not less than 0.5 μm and not more than 7 μm. If the diameter is less than 0.5 μm, desirable continuity tends not to be obtained, and if it exceeds 7 μm, a short circuit tends to occur at the time of connection at a location where the distance between electrodes is short, such as for liquid crystal panel applications. The diameter of the conductive particles is the particle size of the entire conductive particles 12 including the protrusions 14 and can be measured by observation with an electron microscope.

導電粒子の直径が5μm以上7μm以下の時、導電粒子の硬度は200〜1200kgf/mm(1.961〜11.768GPa)である。導電粒子の直径が4μm以上5μm未満の時、導電粒子の硬度は300〜1300kgf/mm(2.942〜12.749GPa)である。導電粒子の直径が3μm以上4μm未満の時、導電粒子の硬度は400〜1400kgf/mm(3.923〜13.729GPa)である。導電粒子の直径が2μm以上3μm未満の時、導電粒子の硬度は450〜1700kgf/mm(4.413〜16.671GPa)である。導電粒子の直径が0.5μm以上2μm未満の時、導電粒子の硬度は500〜2000kgf/mm(4.903〜19.613GPa)である。 When the diameter of the conductive particles is 5 μm or more and 7 μm or less, the hardness of the conductive particles is 200 to 1200 kgf / mm 2 (1.961 to 11.768 GPa). When the diameter of the conductive particles is 4 μm or more and less than 5 μm, the hardness of the conductive particles is 300 to 1300 kgf / mm 2 (2.942 to 12.749 GPa). When the diameter of the conductive particles is 3 μm or more and less than 4 μm, the hardness of the conductive particles is 400 to 1400 kgf / mm 2 (3.923 to 13.729 GPa). When the diameter of the conductive particles is 2 μm or more and less than 3 μm, the hardness of the conductive particles is 450 to 1700 kgf / mm 2 (4.413 to 16.671 GPa). When the diameter of the conductive particles is 0.5 μm or more and less than 2 μm, the hardness of the conductive particles is 500 to 2000 kgf / mm 2 (4.903 to 19.613 GPa).

本実施形態では、導電粒子12の直径に対応して導電粒子12の硬度を上記のように最適化し、且つ、ビッカス硬度が300Hv以上である金属からなる最外層の一部を外側に突出させて突起部を形成させることによってはじめて、対向する回路電極32、42同士間の良好な電気的接続を達成できると共に回路電極32、42間の電気特性の長期信頼性を十分に高めることができる。以下に、導電粒子12の直径、硬度、及び突起部と、回路電極32、42同士間の電気的接続及び電気特性の長期信頼性との関係について説明する。   In the present embodiment, the hardness of the conductive particles 12 is optimized as described above corresponding to the diameter of the conductive particles 12, and a part of the outermost layer made of a metal having a Bickers hardness of 300 Hv or more is projected outward. Only when the protrusions are formed can a good electrical connection between the opposing circuit electrodes 32 and 42 be achieved, and the long-term reliability of the electrical characteristics between the circuit electrodes 32 and 42 can be sufficiently enhanced. Below, the relationship between the diameter, the hardness, and the protrusion of the conductive particles 12, the electrical connection between the circuit electrodes 32 and 42, and the long-term reliability of the electrical characteristics will be described.

対向する回路電極32、42間を回路接続材料で電気的に接続する際、その接続抵抗は回路電極32、42間に存在する導電粒子12の数と、回路電極と個々の導電粒子12との接触面積とに依存し、この接触面積は導電粒子12の扁平率によって変化する。すなわち、回路電極32、42間に存在する導電粒子12の数が多いほど接続抵抗は低くなり、導電粒子12の扁平率が大きくなるほど回路電極32、42と導電粒子12との接触面積が広くなり、接続抵抗が低くなる。   When the circuit electrodes 32 and 42 facing each other are electrically connected with a circuit connecting material, the connection resistance is determined by the number of the conductive particles 12 existing between the circuit electrodes 32 and 42 and the circuit electrodes and the individual conductive particles 12. Depending on the contact area, the contact area varies depending on the flatness of the conductive particles 12. That is, the larger the number of conductive particles 12 present between the circuit electrodes 32 and 42, the lower the connection resistance, and the greater the flatness of the conductive particles 12, the wider the contact area between the circuit electrodes 32 and 42 and the conductive particles 12. , The connection resistance is lowered.

回路電極32、42間に存在する導電粒子12の数は、回路接続材料の単位体積に含まれる導電粒子12の個数が多いほど多くなる。回路接続材料の単位体積に含まれる導電粒子12の個数は、導電粒子12の直径が小さくなるほど多くなる。また、回路電極32、42と接して、回路電極32、42間の電気的接続に寄与する導電粒子12の数は、回路電極32、42の面積が限られているため、回路電極32、42と個々の導電粒子12との接触面積が狭いほど多くなる。回路電極32、42と導電粒子12との接触面積は、導電粒子13の扁平率が小さいほど、狭くなる。導電粒子12の扁平率は、導電粒子12の硬度に依存し、導電粒子12の硬度が大きいほど小さくなる。   The number of the conductive particles 12 existing between the circuit electrodes 32 and 42 increases as the number of the conductive particles 12 included in the unit volume of the circuit connection material increases. The number of conductive particles 12 included in the unit volume of the circuit connecting material increases as the diameter of the conductive particles 12 decreases. Further, the number of the conductive particles 12 that are in contact with the circuit electrodes 32 and 42 and contribute to the electrical connection between the circuit electrodes 32 and 42 is limited by the area of the circuit electrodes 32 and 42. And the contact area between the conductive particles 12 and the individual conductive particles 12 are smaller. The contact area between the circuit electrodes 32 and 42 and the conductive particles 12 becomes narrower as the flatness of the conductive particles 13 is smaller. The flatness of the conductive particles 12 depends on the hardness of the conductive particles 12, and decreases as the hardness of the conductive particles 12 increases.

このように、導電粒子12の直径が小さい場合は、導電粒子12の硬度が大きいほど、回路部材30、40間の接続抵抗が小さくなる傾向がある。   Thus, when the diameter of the conductive particles 12 is small, the connection resistance between the circuit members 30 and 40 tends to decrease as the hardness of the conductive particles 12 increases.

一方、導電粒子12の直径が大きい場合は、回路電極32、42間に存在する導電粒子12の数は少なくなるため、回路部材30、40間の接続抵抗を小さくするためには、回路電極32、42と個々の導電粒子12との接触面積を広くする必要がある。回路電極32、42と個々の導電粒子12との接触面積は、導電粒子12の扁平率が大きいほど広くなる。導電粒子12の扁平率は、導電粒子の硬度が小さいほど大きくなる。   On the other hand, when the diameter of the conductive particles 12 is large, the number of the conductive particles 12 existing between the circuit electrodes 32 and 42 is reduced. Therefore, in order to reduce the connection resistance between the circuit members 30 and 40, the circuit electrode 32. , 42 and the individual conductive particles 12 need to be widened. The contact area between the circuit electrodes 32 and 42 and the individual conductive particles 12 increases as the flatness of the conductive particles 12 increases. The flatness of the conductive particles 12 increases as the hardness of the conductive particles decreases.

このように、導電粒子12の粒子径が大きい場合は、導電粒子12の硬度が小さいほど、回路部材30、40間の接続抵抗が小さくなる傾向がある。   Thus, when the particle diameter of the conductive particles 12 is large, the connection resistance between the circuit members 30 and 40 tends to decrease as the hardness of the conductive particles 12 decreases.

以上のように、回路部材30、40間の良好な接続抵抗が得られる導電粒子の硬度は、導電粒子12の直径に応じて異なる。したがって、本実施形態では、導電粒子12の直径と硬度とが上記の関係を満たす導電粒子12を用いることで、高温高湿試験等の信頼性試験後においても良好な接続抵抗が得られる。導電粒子12の硬度が、各導電粒子の直径に対応する硬度の下限値を下回った場合、導電粒子12の復元力が弱く、高温高湿試験等の信頼性試験後に接続抵抗が上昇する傾向がある。また、導電粒子12の硬度が、各導電粒子の直径に対応する硬度の上限値を上回った場合、導電粒子12が十分に扁平な形状にならないため、導電粒子12と回路電極32、42との接触面積の減少等により高温高湿試験等の信頼性試験後に接続抵抗が上昇してしまう傾向がある。   As described above, the hardness of the conductive particles that provide a good connection resistance between the circuit members 30 and 40 varies depending on the diameter of the conductive particles 12. Therefore, in this embodiment, by using the conductive particles 12 in which the diameter and hardness of the conductive particles 12 satisfy the above relationship, a good connection resistance can be obtained even after a reliability test such as a high-temperature and high-humidity test. When the hardness of the conductive particles 12 is below the lower limit value of the hardness corresponding to the diameter of each conductive particle, the restoring force of the conductive particles 12 is weak, and the connection resistance tends to increase after a reliability test such as a high-temperature and high-humidity test. is there. In addition, when the hardness of the conductive particles 12 exceeds the upper limit value of the hardness corresponding to the diameter of each conductive particle, the conductive particles 12 do not have a sufficiently flat shape. The connection resistance tends to increase after a reliability test such as a high-temperature and high-humidity test due to a decrease in the contact area.

また、ビッカス硬度が300Hv以上である金属から構成した金属層22は、従来のようなAuからなる最外層よりも硬いため、金属層22から突出した突起部14は、従来よりも回路電極32、42に食い込み易くなるため、導電粒子12と回路電極32、42との接触面積は増加する。そして、回路接続材料が硬化処理されることによって、導電粒子12と回路電極32、42とが接触し、導電粒子12と回路電極32、42との接触面積が十分に確保された状態が長期間にわたって保持される。   Further, since the metal layer 22 made of metal having a Bickus hardness of 300 Hv or higher is harder than the outermost layer made of conventional Au, the protruding portion 14 protruding from the metal layer 22 has a circuit electrode 32, Since it becomes easy to bite into 42, the contact area between the conductive particles 12 and the circuit electrodes 32 and 42 increases. Then, by curing the circuit connecting material, the conductive particles 12 and the circuit electrodes 32 and 42 are in contact with each other, and the contact area between the conductive particles 12 and the circuit electrodes 32 and 42 is sufficiently secured for a long time. Held over.

核体21の中核部21aを構成する有機高分子化合物としては、例えばアクリル樹脂、スチレン樹脂、ベンゾグアナミン樹脂、シリコーン樹脂、ポリブタジエン樹脂又はこれらの共重合体が挙げられ、これらを架橋したものを使用してもよい。なお、核体21の中核部21aの平均粒径は0.5以上7μm以下であることが好ましい。核体21の核側突起部21bを構成する有機高分子化合物としては、例えばアクリル樹脂、スチレン樹脂、ベンゾグアナミン樹脂、シリコーン樹脂、ポリブタジエン樹脂又はこれらの共重合体が挙げられ、これらを架橋したものを使用してもよい。核側突起部21bを構成する有機高分子化合物は、中核部21aを構成する有機高分子化合物と同一であっても異なっていてもよい。なお、核側突起部21bの平均粒径は50〜500nmであることが好ましい。   Examples of the organic polymer compound constituting the core portion 21a of the core body 21 include acrylic resin, styrene resin, benzoguanamine resin, silicone resin, polybutadiene resin, or a copolymer thereof. May be. In addition, it is preferable that the average particle diameter of the core part 21a of the core 21 is not less than 0.5 and not more than 7 μm. Examples of the organic polymer compound constituting the core-side protruding portion 21b of the core body 21 include an acrylic resin, a styrene resin, a benzoguanamine resin, a silicone resin, a polybutadiene resin, or a copolymer thereof. May be used. The organic polymer compound that constitutes the core-side protruding portion 21b may be the same as or different from the organic polymer compound that constitutes the core portion 21a. In addition, it is preferable that the average particle diameter of the nucleus side projection part 21b is 50-500 nm.

導電粒子12の硬度は導電粒子12の核体21の硬度にほぼ支配される。導電粒子12の硬度は核体21を構成する分子の構造とその架橋点間距離、及び架橋度に依存する。ベンゾグアナミン等は分子中に剛直な構造を有し、その架橋点間距離も短いため、核体21を構成する全分子に占めるベンゾグアナミン等の割合が高くなるほど、硬い導電粒子12が得られ、また、導電粒子12の核体21の架橋度を高くすることで硬い導電粒子12が得られる。アクリル酸エステル、ジアリルフタレート等は架橋点間距離が長くなるため、核体21を構成する全分子に占めるアクリル酸エステル、ジアリルフタレート等の割合が高くなるほど、柔らかい導電粒子12が得られ、また、架橋度を低くすることで柔らかい導電粒子12を得ることが出来る。   The hardness of the conductive particles 12 is almost governed by the hardness of the core 21 of the conductive particles 12. The hardness of the conductive particles 12 depends on the structure of the molecules constituting the core 21, the distance between the crosslinking points, and the degree of crosslinking. Since benzoguanamine and the like have a rigid structure in the molecule and the distance between the crosslinking points is short, the harder conductive particles 12 are obtained as the proportion of benzoguanamine and the like occupying in all the molecules constituting the core 21 increases. Hard conductive particles 12 can be obtained by increasing the degree of crosslinking of the core 21 of the conductive particles 12. Since acrylic ester, diallyl phthalate and the like have a long distance between cross-linking points, the softer conductive particles 12 are obtained as the proportion of acrylic ester, diallyl phthalate, etc. occupying all the molecules constituting the core 21 increases. Soft conductive particles 12 can be obtained by reducing the degree of crosslinking.

金属層22は、ビッカス硬度が300Hv以上の金属、例えば、Cu、Ni又はNi合金、Ag又はAg合金等からなり、特にNiからなることが好ましい。金属層22は、例えば、ビッカス硬度が300Hv以上の金属を核体21に対して無電解メッキ法を用いてメッキすることにより形成することができる。   The metal layer 22 is made of a metal having a Bickers hardness of 300 Hv or more, such as Cu, Ni, a Ni alloy, Ag, an Ag alloy, or the like, and particularly preferably made of Ni. The metal layer 22 can be formed, for example, by plating a metal having a Bickus hardness of 300 Hv or more on the core 21 using an electroless plating method.

金属層22の厚さ(メッキの厚さ)は50〜170nmであることが好ましく、50〜150nmであることがより好ましい。金属層22の厚さをこのような範囲とすることで、回路電極32、42間の接続抵抗がより一層低下し易くなる。金属層22の厚さが50nm未満ではメッキの欠損等が発生して接続抵抗が大きくなる傾向があり、170nmを超えると導電粒子間で凝結が発生して隣接する回路電極間で短絡が生じる傾向がある。なお、金属層22の厚さとは、突起部14を除いた金属層22の平均厚さである。   The thickness of the metal layer 22 (plating thickness) is preferably 50 to 170 nm, and more preferably 50 to 150 nm. By setting the thickness of the metal layer 22 in such a range, the connection resistance between the circuit electrodes 32 and 42 can be further reduced. If the thickness of the metal layer 22 is less than 50 nm, plating defects tend to occur and the connection resistance tends to increase. If the thickness exceeds 170 nm, condensation occurs between the conductive particles and a short circuit occurs between adjacent circuit electrodes. There is. The thickness of the metal layer 22 is the average thickness of the metal layer 22 excluding the protrusions 14.

突起部14の高さHは50〜500nmであることが好ましく、75〜300nmであることがより好ましい。突起部の高さが50nm未満の場合、高温高湿処理後に接続抵抗値が高くなる傾向があり、500nmより大きい場合には、導電粒子12と回路電極32、42との接触面積が小さくなるため接続抵抗値が高くなる傾向がある。   The height H of the protrusion 14 is preferably 50 to 500 nm, and more preferably 75 to 300 nm. When the height of the protrusion is less than 50 nm, the connection resistance value tends to increase after the high-temperature and high-humidity treatment. When the height is greater than 500 nm, the contact area between the conductive particles 12 and the circuit electrodes 32 and 42 is small. The connection resistance value tends to increase.

隣接する突起部14間の距離Sは1000nm以下であることが好ましく、500nm以下であることがより好ましい。また、隣接する突起部14間の距離Sは、導電粒子12と回路電極32、42との間に接着剤組成物が入り込まず、十分に導電粒子12と回路電極32、42とを接触させるためには、少なくとも50nm以上であることが好ましい。   The distance S between the adjacent protrusions 14 is preferably 1000 nm or less, and more preferably 500 nm or less. Further, the distance S between the adjacent protrusions 14 is sufficient to bring the conductive particles 12 into contact with the circuit electrodes 32 and 42 without the adhesive composition entering between the conductive particles 12 and the circuit electrodes 32 and 42. Is preferably at least 50 nm or more.

なお、導電粒子12の突起部14の高さH及び隣接する突起部14間の距離Sは、電子顕微鏡により測定することができる。具体的には、視野に10個以上50個未満の導電粒子が入るよう電子顕微鏡の倍率を調整し、任意に選び出した3個の導電粒子について、突起部の高さ及び隣接する突起部間の距離をそれぞれ5点測定し、得られた15個のデータの平均値を求める。   The height H of the protrusions 14 of the conductive particles 12 and the distance S between the adjacent protrusions 14 can be measured with an electron microscope. Specifically, the magnification of the electron microscope is adjusted so that 10 or more and less than 50 conductive particles enter the visual field, and the height of the protrusions and the distance between adjacent protrusions are selected for the three conductive particles selected arbitrarily. The distance is measured at five points, and the average value of the obtained 15 data is obtained.

フィルム状回路接続材料における導電粒子12の配合量は、接着剤組成物100体積部に対して0.1〜30体積部であることが好ましく、その配合量は用途により使い分けることができる。過剰な導電粒子12による回路電極32、42の短絡等を防止する観点から、導電粒子12の配合量は0.1〜10体積部であることがより好ましい。   The blending amount of the conductive particles 12 in the film-like circuit connecting material is preferably 0.1 to 30 parts by volume with respect to 100 parts by volume of the adhesive composition, and the blending amount can be properly used depending on the application. From the viewpoint of preventing short circuit of the circuit electrodes 32 and 42 due to excessive conductive particles 12, the blending amount of the conductive particles 12 is more preferably 0.1 to 10 parts by volume.

なお、導電粒子12は、図2(b)に示すように、核体21が中核部21aのみで構成されてもよい。この導電粒子12は、核体21の表面を金属メッキし、核体21の表面上に金属層22を形成することにより得ることができる。また、突起部14は、金属メッキの際、メッキ条件を変更して金属層22の厚さを変化させることで形成することができる。なお、メッキ条件の変更は、例えば、最初に使用したメッキ液に、これよりも濃度の高いメッキ液を追加することでメッキ液濃度を不均一にすることにより、行うことができる。   In addition, as shown in FIG.2 (b), as for the electrically-conductive particle 12, the nucleus 21 may be comprised only in the core part 21a. The conductive particles 12 can be obtained by metal plating the surface of the core 21 and forming a metal layer 22 on the surface of the core 21. Further, the protrusion 14 can be formed by changing the thickness of the metal layer 22 by changing the plating conditions during metal plating. The plating conditions can be changed, for example, by making the plating solution concentration non-uniform by adding a plating solution having a higher concentration to the plating solution used first.

(接着剤組成物)
フィルム状回路接続材料が含有する接着剤組成物としては、エポキシ樹脂と、エポキシ樹脂の潜在性硬化剤とを含有する組成物(以下、「第1組成物」という。)、ラジカル重合性物質と、加熱により遊離ラジカルを発生する硬化剤とを含有する組成物(以下、「第2組成物」)、又は第1組成物と第2組成物との混合組成物が好ましい。
(Adhesive composition)
The adhesive composition contained in the film-like circuit connecting material includes a composition containing an epoxy resin and a latent curing agent for the epoxy resin (hereinafter referred to as “first composition”), a radical polymerizable substance, A composition containing a curing agent that generates free radicals upon heating (hereinafter, “second composition”), or a mixed composition of the first composition and the second composition is preferable.

第1組成物が含有するエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、脂肪族鎖状エポキシ樹脂等が挙げられる。これらのエポキシ樹脂は、ハロゲン化されていてもよく、水素添加されていてもよい。これらのエポキシ樹脂は、2種以上を併用してもよい。   The epoxy resin contained in the first composition is bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol. Examples thereof include F novolac type epoxy resins, alicyclic epoxy resins, glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, hydantoin type epoxy resins, isocyanurate type epoxy resins, and aliphatic chain epoxy resins. These epoxy resins may be halogenated or hydrogenated. Two or more of these epoxy resins may be used in combination.

第1組成物が含有する潜在性硬化剤としては、エポキシ樹脂を硬化させることができるものであればよく、このような潜在性硬化剤としては、アニオン重合性の触媒型硬化剤、カチオン重合性の触媒型硬化剤、重付加型の硬化剤等が挙げられる。これらは、単独又は2種以上の混合物として使用できる。これらのうち、速硬化性において優れ、化学当量的な考慮が不要である点からは、アニオン又はカチオン重合性の触媒型硬化剤が好ましい。   The latent curing agent contained in the first composition is not particularly limited as long as it can cure the epoxy resin. Examples of such latent curing agents include anionic polymerizable catalyst-type curing agents and cationic polymerizable agents. Catalyst-type curing agents, polyaddition-type curing agents, and the like. These can be used alone or as a mixture of two or more. Of these, anionic or cationic polymerizable catalyst-type curing agents are preferred because they are excellent in rapid curability and do not require chemical equivalent considerations.

アニオン又はカチオン重合性の触媒型硬化剤としては、イミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、スルホニウム塩、アミンイミド、ジアミノマレオニトリル、メラミン及びその誘導体、ポリアミンの塩、ジシアンジアミド等が挙げられ、これらの変成物も使用することができる。重付加型の硬化剤としては、ポリアミン類、ポリメルカプタン、ポリフェノール、酸無水物等が挙げられる。   Examples of the anionic or cationic polymerizable catalyst-type curing agent include imidazole, hydrazide, boron trifluoride-amine complex, sulfonium salt, amine imide, diaminomaleonitrile, melamine and derivatives thereof, polyamine salt, dicyandiamide and the like. These modifications can also be used. Examples of the polyaddition type curing agent include polyamines, polymercaptans, polyphenols, and acid anhydrides.

アニオン重合型の触媒型硬化剤として第3級アミン類やイミダゾール類を配合した場合、エポキシ樹脂は160℃〜200℃程度の中温で数10秒〜数時間程度の加熱により硬化する。このため、可使時間(ポットライフ)が比較的長くなるので好ましい。カチオン重合型の触媒型硬化剤としては、例えば、エネルギー線照射によりエポキシ樹脂を硬化させる感光性オニウム塩(芳香族ジアゾニウム塩、芳香族スルホニウム塩等が主として用いられる)が好ましい。また、エネルギー線照射以外に加熱によって活性化しエポキシ樹脂を硬化させるものとして、脂肪族スルホニウム塩等がある。この種の硬化剤は、速硬化性という特徴を有することから好ましい。   When a tertiary amine or imidazole is blended as an anionic polymerization type catalyst curing agent, the epoxy resin is cured by heating at a medium temperature of about 160 ° C. to 200 ° C. for several tens of seconds to several hours. For this reason, the pot life is relatively long, which is preferable. As the cationic polymerization type catalyst-type curing agent, for example, a photosensitive onium salt (an aromatic diazonium salt, an aromatic sulfonium salt or the like is mainly used) that cures an epoxy resin by irradiation with energy rays is preferable. In addition to irradiation with energy rays, there are aliphatic sulfonium salts and the like that are activated by heating to cure the epoxy resin. This type of curing agent is preferable because it has a feature of fast curing.

これらの潜在性硬化剤を、ポリウレタン系又はポリエステル系等の高分子物質や、ニッケル、銅等の金属薄膜及びケイ酸カルシウム等の無機物で被覆してマイクロカプセル化したものは、可使時間が延長できるため好ましい。   When these latent hardeners are coated with polymer materials such as polyurethane or polyester, metal thin films such as nickel or copper, and inorganic materials such as calcium silicate, the pot life is extended. This is preferable because it is possible.

第2組成物が含有するラジカル重合性物質は、ラジカルにより重合する官能基を有する物質である。このようなラジカル重合性物質としては、アクリレート(対応するメタクリレートも含む。以下同じ。)化合物、アクリロキシ(対応するメタアクリロキシも含む。以下同じ。)化合物、マレイミド化合物、シトラコンイミド樹脂、ナジイミド樹脂等が挙げられる。ラジカル重合性物質は、モノマー又はオリゴマーの状態で用いてもよく、モノマーとオリゴマーを併用することも可能である。上記アクリレート化合物の具体例としては、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、2−ヒドロキシ−1,3−ジアクリロキシプロパン、2,2−ビス[4−(アクリロキシメトキシ)フェニル]プロパン、2,2−ビス[4−(アクリロキシポリエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロイロキシエチル)イソシアヌレート、ウレタンアクリレート等が挙げられる。これらは単独で又は2種以上を混合して用いることができる。また、必要によりハドロキノン、メチルエーテルハイドロキノン類などの重合禁止剤を適宜用いてもよい。またさらに、耐熱性の向上の観点から、アクリレート化合物がジシクロペンテニル基、トリシクロデカニル基及びトリアジン環からなる群より選ばれる少なくとも1種の置換基を有することが好ましい。   The radically polymerizable substance contained in the second composition is a substance having a functional group that is polymerized by radicals. Examples of such radically polymerizable substances include acrylate (including corresponding methacrylates; the same shall apply hereinafter) compounds, acryloxy (including corresponding methacryloxy; the same shall apply hereinafter) compounds, maleimide compounds, citraconic imide resins, nadiimide resins, and the like. It is done. The radically polymerizable substance may be used in a monomer or oligomer state, and the monomer and oligomer may be used in combination. Specific examples of the acrylate compound include methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate, 2-hydroxy-1,3- Diacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2,2-bis [4- (acryloxypolyethoxy) phenyl] propane, dicyclopentenyl acrylate, tricyclodecanyl acrylate , Tris (acryloyloxyethyl) isocyanurate, urethane acrylate and the like. These can be used alone or in admixture of two or more. Moreover, you may use polymerization inhibitors, such as a hydroquinone and methyl ether hydroquinones, suitably if needed. Furthermore, from the viewpoint of improving heat resistance, the acrylate compound preferably has at least one substituent selected from the group consisting of a dicyclopentenyl group, a tricyclodecanyl group, and a triazine ring.

上記マレイミド化合物は、分子中にマレイミド基を少なくとも2個以上含有するものである。このようなマレイミド化合物としては、例えば、1−メチル−2,4−ビスマレイミドベンゼン、N,N’−m−フェニレンビスマレイミド、N,N’−p−フェニレンビスマレイミド、N,N’−m−トルイレンビスマレイミド、N,N’−4,4−ビフェニレンビスマレイミド、N,N’−4,4−(3,3’−ジメチルビフェニレン)ビスマレイミド、N,N’−4,4−(3,3’−ジメチルジフェニルメタン)ビスマレイミド、N,N’−4,4−(3,3’−ジエチルジフェニルメタン)ビスマレイミド、N,N’−4,4−ジフェニルメタンビスマレイミド、N,N’−4,4−ジフェニルプロパンビスマレイミド、N,N’−3,3’−ジフェニルスルホンビスマレイミド、N,N’−4,4−ジフェニルエーテルビスマレイミド、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン、2,2−ビス(3−s−ブチル−4,8−(4−マレイミドフェノキシ)フェニル)プロパン、1,1−ビス(4−(4−マレイミドフェノキシ)フェニル)デカン、4,4’−シクロヘキシリデン−ビス(1−(4−マレイミドフェノキシ)−2−シクロヘキシルベンゼン、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)ヘキサフルオロプロパンを挙げることができる。これらは単独で又は2種以上を混合して使用できる。   The maleimide compound contains at least two maleimide groups in the molecule. Examples of such maleimide compounds include 1-methyl-2,4-bismaleimide benzene, N, N′-m-phenylene bismaleimide, N, N′-p-phenylene bismaleimide, N, N′-m. -Toluylene bismaleimide, N, N'-4,4-biphenylene bismaleimide, N, N'-4,4- (3,3'-dimethylbiphenylene) bismaleimide, N, N'-4,4- ( 3,3′-dimethyldiphenylmethane) bismaleimide, N, N′-4,4- (3,3′-diethyldiphenylmethane) bismaleimide, N, N′-4,4-diphenylmethane bismaleimide, N, N′- 4,4-diphenylpropane bismaleimide, N, N′-3,3′-diphenylsulfone bismaleimide, N, N′-4,4-diphenyl ether bismale 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane, 2,2-bis (3-s-butyl-4,8- (4-maleimidophenoxy) phenyl) propane, 1,1- Bis (4- (4-maleimidophenoxy) phenyl) decane, 4,4′-cyclohexylidene-bis (1- (4-maleimidophenoxy) -2-cyclohexylbenzene, 2,2-bis (4- (4- And maleimidephenoxy) phenyl) hexafluoropropane, which can be used alone or in admixture of two or more.

上記シトラコンイミド樹脂は、分子中にシトラコンイミド基を少なくとも1個有するシトラコンイミド化合物を重合させてなるものである。シトラコンイミド化合物としては、例えば、フェニルシトラコンイミド、1−メチル−2,4−ビスシトラコンイミドベンゼン、N,N’−m−フェニレンビスシトラコンイミド、N,N’−p−フェニレンビスシトラコンイミド、N,N’−4,4−ビフェニレンビスシトラコンイミド、N,N’−4,4−(3,3−ジメチルビフェニレン)ビスシトラコンイミド、N,N’−4,4−(3,3−ジメチルジフェニルメタン)ビスシトラコンイミド、N,N’−4,4−(3,3−ジエチルジフェニルメタン)ビスシトラコンイミド、N,N’−4,4−ジフェニルメタンビスシトラコンイミド、N,N’−4,4−ジフェニルプロパンビスシトラコンイミド、N,N’−4,4−ジフェニルエーテルビスシトラコンイミド、N,N’−4,4−ジフェニルスルホンビスシトラコンイミド、2,2−ビス(4−(4−シトラコンイミドフェノキシ)フェニル)プロパン、2,2−ビス(3−s−ブチル−3,4−(4−シトラコンイミドフェノキシ)フェニル)プロパン、1,1−ビス(4−(4−シトラコンイミドフェノキシ)フェニル)デカン、4,4’−シクロヘキシリデン−ビス(1−(4−シトラコンイミドフェノキシ)フェノキシ)−2−シクロヘキシルベンゼン、2,2−ビス(4−(4−シトラコンイミドフェノキシ)フェニル)ヘキサフルオロプロパンが挙げられる。これらは単独で又は2種以上を混合して使用できる。   The citraconic imide resin is obtained by polymerizing a citraconic imide compound having at least one citraconic imide group in the molecule. Examples of the citraconimide compound include phenyl citraconimide, 1-methyl-2,4-biscitraconimide benzene, N, N′-m-phenylene biscitraconimide, N, N′-p-phenylene biscitraconimide, N , N′-4,4-biphenylenebiscitraconimide, N, N′-4,4- (3,3-dimethylbiphenylene) biscitraconimide, N, N′-4,4- (3,3-dimethyldiphenylmethane ) Biscitraconimide, N, N′-4,4- (3,3-diethyldiphenylmethane) biscitraconimide, N, N′-4,4-diphenylmethane biscitraconimide, N, N′-4,4-diphenyl Propane biscitraconimide, N, N'-4,4-diphenyl ether biscitraconimide, N, N'- , 4-Diphenylsulfonebiscitraconimide, 2,2-bis (4- (4-citraconimidophenoxy) phenyl) propane, 2,2-bis (3-s-butyl-3,4- (4-citraconimidephenoxy) ) Phenyl) propane, 1,1-bis (4- (4-citraconimidophenoxy) phenyl) decane, 4,4′-cyclohexylidene-bis (1- (4-citraconimidophenoxy) phenoxy) -2-cyclohexyl Examples include benzene and 2,2-bis (4- (4-citraconimidophenoxy) phenyl) hexafluoropropane. These can be used alone or in admixture of two or more.

上記ナジイミド樹脂は、分子中にナジイミド基を少なくとも1個有しているナジイミド化合物を重合してなるものである。ナジイミド化合物としては、例えば、フェニルナジイミド、1−メチル−2,4−ビスナジイミドベンゼン、N,N’−m−フェニレンビスナジイミド、N,N’−p−フェニレンビスナジイミド、N,N’−4,4−ビフェニレンビスナジイミド、N,N’−4,4−(3,3−ジメチルビフェニレン)ビスナジイミド、N,N’−4,4−(3,3−ジメチルジフェニルメタン)ビスナジイミド、N,N’−4,4−(3,3−ジエチルジフェニルメタン)ビスナジイミド、N,N’−4,4−ジフェニルメタンビスナジイミド、N,N’−4,4−ジフェニルプロパンビスナジイミド、N,N’−4,4−ジフェニルエーテルビスナジイミド、N,N’−4,4−ジフェニルスルホンビスナジイミド、2,2−ビス(4−(4−ナジイミドフェノキシ)フェニル)プロパン、2,2−ビス(3−s−ブチル−3,4−(4−ナジイミドフェノキシ)フェニル)プロパン、1,1−ビス(4−(4−ナジイミドフェノキシ)フェニル)デカン、4,4’−シクロヘキシリデン−ビス(1−(4−ナジイミドフェノキシ)フェノキシ)−2−シクロヘキシルベンゼン、2,2−ビス(4−(4−ナジイミドフェノキシ)フェニル)ヘキサフルオロプロパンが挙げられる。これらは単独で又は2種以上を混合して使用できる。   The nadiimide resin is obtained by polymerizing a nadiimide compound having at least one nadiimide group in the molecule. Examples of the nadiimide compound include phenyl nadiimide, 1-methyl-2,4-bisnadiimidebenzene, N, N′-m-phenylenebisnadiimide, N, N′-p-phenylenebisnadiimide, N, N′— 4,4-biphenylenebisnadiimide, N, N′-4,4- (3,3-dimethylbiphenylene) bisnadiimide, N, N′-4,4- (3,3-dimethyldiphenylmethane) bisnadiimide, N, N ′ -4,4- (3,3-diethyldiphenylmethane) bisnadiimide, N, N'-4,4-diphenylmethane bisnadiimide, N, N'-4,4-diphenylpropane bisnadiimide, N, N'-4,4 -Diphenyl ether bisnadiimide, N, N'-4,4-diphenylsulfone bisnadiimide, 2,2-bis (4- (4-nazii Dophenoxy) phenyl) propane, 2,2-bis (3-s-butyl-3,4- (4-nadiimidophenoxy) phenyl) propane, 1,1-bis (4- (4-nadiimidophenoxy) phenyl ) Decane, 4,4′-cyclohexylidene-bis (1- (4-nadiimidophenoxy) phenoxy) -2-cyclohexylbenzene, 2,2-bis (4- (4-nadiimidophenoxy) phenyl) hexafluoro Propane is mentioned. These can be used alone or in admixture of two or more.

また、上記ラジカル重合性物質に下記一般式(I)で示されるリン酸エステル構造を有するラジカル重合性物質を併用することが好ましい。この場合、金属等の無機物表面に対する接着強度が向上するため、回路電極32、42同士の接着に好適である。   Moreover, it is preferable to use together the radical polymerizable substance which has the phosphate ester structure shown by the following general formula (I) with the said radical polymerizable substance. In this case, since the adhesive strength to the surface of an inorganic substance such as metal is improved, it is suitable for bonding the circuit electrodes 32 and 42 to each other.

Figure 2013055058

[上記式中、nは1〜3の整数を示す。]
Figure 2013055058

[In the above formula, n represents an integer of 1 to 3. ]

リン酸エステル構造を有するラジカル重合性物質は、無水リン酸と2−ヒドロキシエチル(メタ)アクリレートとを反応させることにより得られる。リン酸エステル構造を有するラジカル重合性物質として、具体的には、モノ(2−メタクリロイルオキシエチル)アシッドフォスフェート、ジ(2−メタクリロイルオキシエチル)アシッドフォスフェート等がある。これらは単独で又は2種以上を混合して使用できる。   The radically polymerizable substance having a phosphoric ester structure is obtained by reacting phosphoric anhydride with 2-hydroxyethyl (meth) acrylate. Specific examples of the radical polymerizable substance having a phosphate structure include mono (2-methacryloyloxyethyl) acid phosphate, di (2-methacryloyloxyethyl) acid phosphate, and the like. These can be used alone or in admixture of two or more.

上記一般式(I)で示されるリン酸エステル構造を有するラジカル重合性物質の配合量は、ラジカル重合性物質と必要により配合するフィルム形成材との合計100質量部に対して、0.01〜50質量部であることが好ましく、0.5〜5質量部がより好ましい。   The blending amount of the radical polymerizable substance having the phosphate ester structure represented by the general formula (I) is 0.01 to 100 parts by mass with respect to a total of 100 parts by mass of the radical polymerizable substance and the film forming material to be blended as necessary. It is preferable that it is 50 mass parts, and 0.5-5 mass parts is more preferable.

上記ラジカル重合性物質は、アリルアクリレートと併用することもができる。この場合、アリルアクリレートの配合量は、ラジカル重合性物質と、必要により配合されるフィルム形成材との合計100質量部に対して、0.1〜10質量部であることが好ましく、0.5〜5質量部がより好ましい。   The radical polymerizable substance can be used in combination with allyl acrylate. In this case, it is preferable that the compounding quantity of allyl acrylate is 0.1-10 mass parts with respect to 100 mass parts in total of a radically polymerizable substance and the film formation material mix | blended if necessary, 0.5 -5 mass parts is more preferable.

第2組成物が含有する、加熱により遊離ラジカルを発生する硬化剤とは、加熱により分解して遊離ラジカルを発生する硬化剤である。このような硬化剤としては、過酸化化合物、アゾ系化合物等が挙げられる。このような硬化剤は、目的とする接続温度、接続時間、ポットライフ等により適宜選定される。高反応性とポットライフの向上の観点から、半減期10時間の温度が40℃以上、かつ、半減期1分の温度が180℃以下の有機過酸化物が好ましく、半減期10時間の温度が60℃以上、かつ、半減期1分の温度が170℃以下の有機過酸化物がより好ましい。   The hardening | curing agent which generate | occur | produces a free radical by heating which a 2nd composition contains is a hardening | curing agent which decomposes | disassembles by heating and generate | occur | produces a free radical. Examples of such curing agents include peroxide compounds and azo compounds. Such a curing agent is appropriately selected depending on the intended connection temperature, connection time, pot life, and the like. From the viewpoint of high reactivity and improvement in pot life, organic peroxides having a half-life of 10 hours at a temperature of 40 ° C. or more and a half-life of 1 minute at a temperature of 180 ° C. or less are preferred. An organic peroxide having a temperature of 60 ° C. or higher and a half-life of 1 minute is 170 ° C. or lower is more preferable.

上記硬化剤の配合量は、接続時間を25秒以下とする場合、ラジカル重合性物質と必要により配合されるフィルム形成材との合計100質量部に対して、2〜10質量部であることが好ましく、4〜8質量部であることがより好ましい。これにより、充分な反応率を得ることができる。なお、接続時間を限定しない場合の硬化剤の配合量は、ラジカル重合性物質と必要により配合されるフィルム形成材との合計100質量部に対して、0.05〜20質量部であることが好ましく、0.1〜10質量部であることがより好ましい。   When the connection time is 25 seconds or less, the amount of the curing agent is 2 to 10 parts by mass with respect to 100 parts by mass in total of the radical polymerizable substance and the film-forming material to be blended as necessary. It is preferably 4 to 8 parts by mass. Thereby, sufficient reaction rate can be obtained. In addition, the compounding quantity of the hardening | curing agent in the case where connection time is not limited may be 0.05-20 mass parts with respect to a total of 100 mass parts of a radically polymerizable substance and the film formation material mix | blended as needed. Preferably, it is 0.1-10 mass parts.

第2組成物が含有する、加熱により遊離ラジカルを発生する硬化剤の具体例としては、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステルパーオキシケタール、ジアルキルパーオキサイド、ハイドロパーオキサイド、シリルパーオキサイド等が挙げられる。また、回路電極32、42の腐食を抑えるという観点から、含有される塩素イオンや有機酸の濃度が5000ppm以下である硬化剤が好ましく、さらに、加熱分解後に発生する有機酸が少ない硬化剤がより好ましい。このような硬化剤の具体例としては、パーオキシエステル、ジアルキルパーオキサイド、ハイドロパーオキサイド、シリルパーオキサイド等が挙げられ、高反応性が得られるパーオキシエステルから選定された硬化剤がより好ましい。なお、上記硬化剤は、適宜混合して用いることができる。   Specific examples of curing agents that generate free radicals upon heating contained in the second composition are diacyl peroxide, peroxydicarbonate, peroxyester peroxyketal, dialkyl peroxide, hydroperoxide, silyl peroxide. Etc. Further, from the viewpoint of suppressing the corrosion of the circuit electrodes 32 and 42, a curing agent having a concentration of contained chlorine ions or organic acids of 5000 ppm or less is preferable, and a curing agent with less organic acid generated after thermal decomposition is more preferable. preferable. Specific examples of such curing agents include peroxyesters, dialkyl peroxides, hydroperoxides, silyl peroxides, and the like, and curing agents selected from peroxyesters that provide high reactivity are more preferable. In addition, the said hardening | curing agent can be mixed and used suitably.

パーオキシエステルとしては、クミルパーオキシネオデカノエート、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、1−シクロヘキシル−1−メチルエチルパーオキシノエデカノエート、t−ヘキシルパーオキシネオデカノデート、t−ブチルパーオキシピバレート、1,1,3,3−テトラメチルブチルパーオキシ2−エチルヘキサノネート、2,5−ジメチル−2,5−ジ(2−エチルヘキサノイルパーオキシ)ヘキサン、1−シクロヘキシル−1−メチルエチルパーオキシ−2−エチルヘキサノネート、t−ヘキシルパーオキシ−2−エチルヘキサノネート、t−ブチルパーオキシ−2−エチルヘキサノネート、t−ブチルパーオキシイソブチレート、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノネート、t−ブチルパーオキシラウレート、2,5−ジメチル−2,5−ジ(m−トルオイルパーオキシ)ヘキサン、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、t−ヘキシルパーオキシベンゾエート、t−ブチルパーオキシアセテート等が挙げられる。   Peroxyesters include cumylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxynoedecanoate, and t-hexyl. Peroxyneodecanodate, t-butyl peroxypivalate, 1,1,3,3-tetramethylbutylperoxy 2-ethylhexanate, 2,5-dimethyl-2,5-di (2-ethyl) Hexanoylperoxy) hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanate, t-hexylperoxy-2-ethylhexanate, t-butylperoxy-2-ethylhexanate T-butylperoxyisobutyrate, 1,1-bis (t-butylperoxy) cyclohexane, t Hexylperoxyisopropyl monocarbonate, t-butylperoxy-3,5,5-trimethylhexanonate, t-butylperoxylaurate, 2,5-dimethyl-2,5-di (m-toluoylperoxy ) Hexane, t-butyl peroxyisopropyl monocarbonate, t-butyl peroxy-2-ethylhexyl monocarbonate, t-hexyl peroxybenzoate, t-butyl peroxyacetate and the like.

ジアルキルパーオキサイドとしては、α,α’ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、t−ブチルクミルパーオキサイド等が挙げられる。   Dialkyl peroxides include α, α ′ bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, and t-butylcumi. Examples include ruperoxide.

ハイドロパーオキサイドとして、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド等が挙げられる。   Examples of the hydroperoxide include diisopropylbenzene hydroperoxide and cumene hydroperoxide.

ジアシルパーオキサイドとしては、イソブチルパーオキサイド、2,4―ジクロロベンゾイルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシニックパーオキサイド、ベンゾイルパーオキシトルエン、ベンゾイルパーオキサイド等が挙げられる。   Diacyl peroxides include isobutyl peroxide, 2,4-dichlorobenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, succinic peroxide, benzoyl Examples include peroxytoluene and benzoyl peroxide.

パーオキシジカーボネートとしては、ジ−n−プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ−2−エトキシメトキシパーオキシジカーボネート、ジ(2−エチルヘキシルパーオキシ)ジカーボネート、ジメトキシブチルパーオキシジカーボネート、ジ(3−メチル−3−メトキシブチルパーオキシ)ジカーボネート等が挙げられる。   Examples of peroxydicarbonate include di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, di-2-ethoxymethoxyperoxydicarbonate, di ( 2-ethylhexyl peroxy) dicarbonate, dimethoxybutyl peroxydicarbonate, di (3-methyl-3-methoxybutylperoxy) dicarbonate and the like.

パーオキシケタールとしては、1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1―(t−ブチルパーオキシ)シクロドデカン、2,2−ビス(t−ブチルパーオキシ)デカン等が挙げられる。   Peroxyketals include 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis (t- Butyl peroxy) -3,3,5-trimethylcyclohexane, 1,1- (t-butylperoxy) cyclododecane, 2,2-bis (t-butylperoxy) decane and the like.

シリルパーオキサイドとしては、t−ブチルトリメチルシリルパーオキサイド、ビス(t−ブチル)ジメチルシリルパーオキサイド、t−ブチルトリビニルシリルパーオキサイド、ビス(t−ブチル)ジビニルシリルパーオキサイド、トリス(t−ブチル)ビニルシリルパーオキサイド、t−ブチルトリアリルシリルパーオキサイド、ビス(t−ブチル)ジアリルシリルパーオキサイド、トリス(t−ブチル)アリルシリルパーオキサイド等が挙げられる。   Examples of silyl peroxides include t-butyltrimethylsilyl peroxide, bis (t-butyl) dimethylsilyl peroxide, t-butyltrivinylsilyl peroxide, bis (t-butyl) divinylsilyl peroxide, and tris (t-butyl). Examples thereof include vinylsilyl peroxide, t-butyltriallylsilyl peroxide, bis (t-butyl) diallylsilyl peroxide, and tris (t-butyl) allylsilyl peroxide.

これらの硬化剤は、単独で又は2種以上を混合して使用することができ、分解促進剤、抑制剤等を混合して用いてもよい。また、これらの硬化剤をポリウレタン系、ポリエステル系の高分子物質等で被覆してマイクロカプセル化してもよい。マイクロカプセル化した硬化剤は、可使時間が延長されるために好ましい。   These curing agents can be used alone or in admixture of two or more, and may be used by mixing a decomposition accelerator, an inhibitor and the like. Further, these curing agents may be coated with a polyurethane-based or polyester-based polymer substance to form microcapsules. A microencapsulated curing agent is preferred because the pot life is extended.

本実施形態のフィルム状回路接続材料には、必要に応じて、フィルム形成材を添加して用いてもよい。フィルム形成材とは、液状物を固形化し構成組成物をフィルム形状とした場合に、そのフィルムの取扱いを容易とし、容易に裂けたり、割れたり、べたついたりしない機械的特性等を付与するものであり、通常の状態(常温常圧)でフィルムとしての取扱いができるものである。フィルム形成材としては、フェノキシ樹脂、ポリビニルホルマール樹脂、ポリスチレン樹脂、ポリビニルブチラール樹脂、ポリエステル樹脂、ポリアミド樹脂、キシレン樹脂、ポリウレタン樹脂等が挙げられる。これらの中でも、接着性、相溶性、耐熱性、機械的強度に優れることからフェノキシ樹脂が好ましい。   You may add and use a film forming material for the film-form circuit connection material of this embodiment as needed. The film-forming material is a material that solidifies a liquid material and forms a composition composition into a film shape to facilitate the handling of the film and impart mechanical properties that do not easily tear, break, or stick. Yes, it can be handled as a film in a normal state (normal temperature and normal pressure). Examples of the film forming material include phenoxy resin, polyvinyl formal resin, polystyrene resin, polyvinyl butyral resin, polyester resin, polyamide resin, xylene resin, polyurethane resin and the like. Among these, a phenoxy resin is preferable because of excellent adhesiveness, compatibility, heat resistance, and mechanical strength.

フェノキシ樹脂は、2官能フェノール類とエピハロヒドリンを高分子化するまで反応させるか、又は2官能エポキシ樹脂と2官能フェノール類を重付加させることにより得られる樹脂である。フェノキシ樹脂は、例えば2官能フェノール類1モルとエピハロヒドリン0.985〜1.015モルとをアルカリ金属水酸化物等の触媒の存在下、非反応性溶媒中で40〜120℃の温度で反応させることにより得ることができる。また、フェノキシ樹脂としては、樹脂の機械的特性や熱的特性の観点からは、特に2官能性エポキシ樹脂と2官能性フェノール類の配合当量比をエポキシ基/フェノール水酸基=1/0.9〜1/1.1とし、アルカリ金属化合物、有機リン系化合物、環状アミン系化合物等の触媒の存在下、沸点が120℃以上のアミド系、エーテル系、ケトン系、ラクトン系、アルコール系等の有機溶剤中で、反応固形分が50質量%以下の条件で50〜200℃に加熱して重付加反応させて得たものが好ましい。   A phenoxy resin is a resin obtained by reacting a bifunctional phenol and epihalohydrin until they are polymerized or by polyaddition of a bifunctional epoxy resin and a bifunctional phenol. The phenoxy resin, for example, reacts 1 mol of a bifunctional phenol with 0.985 to 1.015 mol of epihalohydrin in a non-reactive solvent at a temperature of 40 to 120 ° C. in the presence of a catalyst such as an alkali metal hydroxide. Can be obtained. Moreover, as a phenoxy resin, especially from the viewpoint of the mechanical characteristics and thermal characteristics of the resin, the mixing equivalent ratio of the bifunctional epoxy resin and the bifunctional phenols is epoxy group / phenol hydroxyl group = 1 / 0.9- 1/1, organic amides, ethers, ketones, lactones, alcohols, etc. having a boiling point of 120 ° C. or higher in the presence of catalysts such as alkali metal compounds, organophosphorus compounds, cyclic amine compounds, etc. What was obtained by heating to 50-200 degreeC on the conditions whose reaction solid content is 50 mass% or less in a solvent was made to carry out a polyaddition reaction.

上記2官能エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニルジグリシジルエーテル、メチル置換ビフェニルジグリシジルエーテル等が挙げられる。2官能フェノール類は、2個のフェノール性水酸基を有するものである。2官能フェノール類としては、例えば、ハイドロキノン類、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、ビスフェノールフルオレン、メチル置換ビスフェノールフルオレン、ジヒドロキシビフェニル、メチル置換ジヒドロキシビフェニル等のビスフェノール類等が挙げられる。フェノキシ樹脂は、ラジカル重合性の官能基や、その他の反応性化合物により変性(例えば、エポキシ変性)されていてもよい。フェノキシ樹脂は、単独で又は2種以上を混合して用いてもよい。   Examples of the bifunctional epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin, biphenyl diglycidyl ether, and methyl-substituted biphenyl diglycidyl ether. Bifunctional phenols have two phenolic hydroxyl groups. Examples of the bifunctional phenols include hydroquinones, bisphenol A, bisphenol F, bisphenol AD, bisphenol S, bisphenol fluorene, methyl-substituted bisphenol fluorene, bisphenols such as dihydroxybiphenyl and methyl-substituted dihydroxybiphenyl. The phenoxy resin may be modified (for example, epoxy-modified) with a radical polymerizable functional group or other reactive compound. You may use a phenoxy resin individually or in mixture of 2 or more types.

本実施形態のフィルム状回路接続材料は、更に、アクリル酸、アクリル酸エステル、メタクリル酸エステル及びアクリロニトリルのうち少なくとも一つをモノマー成分とした重合体又は共重合体を含んでいてもよい。ここで、応力緩和に優れることから、グリシジルエーテル基を含有するグリシジルアクリレートやグリシジルメタクリレートを含む共重合体系アクリルゴムを併用することが好ましい。これらのアクリルゴムの重量平均分子量は、接着剤の凝集力を高める点から20万以上が好ましい。   The film-like circuit connecting material of this embodiment may further contain a polymer or copolymer containing at least one of acrylic acid, acrylic acid ester, methacrylic acid ester and acrylonitrile as a monomer component. Here, since it is excellent in stress relaxation, it is preferable to use together the copolymer type acrylic rubber containing glycidyl acrylate and glycidyl methacrylate containing a glycidyl ether group. The weight average molecular weight of these acrylic rubbers is preferably 200,000 or more from the viewpoint of increasing the cohesive strength of the adhesive.

本実施形態のフィルム状回路接続材料は、更に、ゴム微粒子、充填剤、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤、フェノール樹脂、メラミン樹脂、イソシアネート類等を含有することもできる。   The film-like circuit connecting material of the present embodiment further comprises rubber fine particles, fillers, softeners, accelerators, anti-aging agents, colorants, flame retardants, thixotropic agents, coupling agents, phenol resins, melamine resins. , Isocyanates and the like can also be contained.

ゴム微粒子は、その平均粒径が、配合する導電粒子12の平均粒径の2倍以下であり、且つ室温(25℃)での貯蔵弾性率が導電粒子12及び接着剤組成物の室温での貯蔵弾性率の1/2以下であるものであればよい。特に、ゴム微粒子の材質が、シリコーン、アクリルエマルジョン、SBR、NBR、ポリブタジエンゴムである微粒子は、単独で又は2種以上を混合して用いることが好適である。3次元架橋したこれらゴム微粒子は、耐溶剤性が優れており、接着剤組成物中に容易に分散される。   The rubber fine particles have an average particle size of not more than twice the average particle size of the conductive particles 12 to be blended, and the storage elastic modulus at room temperature (25 ° C.) at the room temperature of the conductive particles 12 and the adhesive composition. What is necessary is just to be 1/2 or less of storage elastic modulus. In particular, it is preferable that the fine particles whose material of the rubber fine particles is silicone, acrylic emulsion, SBR, NBR, or polybutadiene rubber are used alone or in admixture of two or more. These three-dimensionally crosslinked rubber fine particles have excellent solvent resistance and are easily dispersed in the adhesive composition.

回路接続材料に充填剤を含有させてもよい。これにより、回路電極32、42間の電気特性の接続信頼性等が向上する。充填剤は、その最大径が導電粒子12の粒径の1/2以下であれば使用できる。また、導電性を持たない粒子を併用する場合には、導電性を持たない粒子の直径以下であれば使用できる。充填剤の配合量は、接着剤組成物100体積部に対して5〜60体積部であることが好ましい。配合量が60体積部を超えると、接続信頼性向上効果が飽和する傾向があり、他方、5体積部未満では充填剤添加の効果が不充分となる傾向がある。   The circuit connecting material may contain a filler. Thereby, the connection reliability of the electrical characteristics between the circuit electrodes 32 and 42, etc. improve. The filler can be used if its maximum diameter is ½ or less of the particle diameter of the conductive particles 12. Moreover, when using together the particle | grains which do not have electroconductivity, if it is below the diameter of the particle | grains which do not have electroconductivity, it can be used. It is preferable that the compounding quantity of a filler is 5-60 volume parts with respect to 100 volume parts of adhesive compositions. If the blending amount exceeds 60 parts by volume, the effect of improving the connection reliability tends to be saturated, and if it is less than 5 parts by volume, the effect of adding the filler tends to be insufficient.

上記カップリング剤としては、ビニル基、アクリル基、エポキシ基又はイソシアネート基を含有する化合物が、接着性が向上するので好ましい。   As said coupling agent, the compound containing a vinyl group, an acryl group, an epoxy group, or an isocyanate group is preferable since adhesiveness improves.

[回路部材の接続構造]
本発明に係る回路部材の接続構造の一実施形態について詳細に説明する。図1に示すように、本実施形態の回路部材の接続構造1は、相互に対向する第1の回路部材30及び第2の回路部材40を備える。第1の回路部材30と第2の回路部材40との間には、これらを接続する回路接続部材10が設けられている。回路接続部材10は、上述した本実施形態のフィルム状回路接続材料を硬化処理することによって形成される。
[Circuit member connection structure]
An embodiment of a circuit member connection structure according to the present invention will be described in detail. As shown in FIG. 1, the circuit member connection structure 1 of this embodiment includes a first circuit member 30 and a second circuit member 40 that face each other. Between the 1st circuit member 30 and the 2nd circuit member 40, the circuit connection member 10 which connects these is provided. The circuit connecting member 10 is formed by curing the film-like circuit connecting material of the present embodiment described above.

第1の回路部材30は、第1の回路基板31と、回路基板31の主面31a上に形成される第1の回路電極32とを備えている。第2の回路部材40は、回路基板41と、第2の回路基板41の主面41a上に形成される第2の回路電極42とを備えている。第1の回路基板31の主面31aに形成された第1の回路電極32と、第2の回路基板41の主面41aに形成された第2の回路電極42とは互いに対向している。また、回路基板31、41において、回路電極32、42の表面は平坦になっている。なお、本発明において「回路電極の表面が平坦」とは、回路電極の表面の凹凸が20nm以下であることをいう。   The first circuit member 30 includes a first circuit board 31 and a first circuit electrode 32 formed on the main surface 31 a of the circuit board 31. The second circuit member 40 includes a circuit board 41 and a second circuit electrode 42 formed on the main surface 41 a of the second circuit board 41. The first circuit electrode 32 formed on the main surface 31a of the first circuit board 31 and the second circuit electrode 42 formed on the main surface 41a of the second circuit board 41 face each other. In the circuit boards 31 and 41, the surfaces of the circuit electrodes 32 and 42 are flat. In the present invention, “the surface of the circuit electrode is flat” means that the unevenness of the surface of the circuit electrode is 20 nm or less.

回路接続部材10は、接着剤樹脂組成物が硬化することで形成された絶縁性物質11と導電粒子12とを含有している。回路部材の接続構造1では、対向する第1の回路電極32と第2の回路電極42とが、回路接続部材10に含有される導電粒子12を介して電気的に接続されている。即ち、導電粒子12が、第1の回路電極32及び第2の回路電極42の双方に直接接触している。具体的には、導電粒子12の金属層22(最外層)に形成された突起部14が、絶縁性物質11を貫通して第1の回路電極32及び第2の回路電極42の双方に接触している。さらに、突起部14が回路電極32、42に食い込むため、導電粒子12と回路電極32、42との接触面積が増加する。このため、回路電極32、42間の接続抵抗が十分に低減され、回路電極32、42間の良好な電気的接続が可能となる。従って、回路電極32、42間の電流の流れを円滑にすることができ、回路の持つ機能を十分に発揮することができる。   The circuit connecting member 10 contains an insulating material 11 and conductive particles 12 formed by curing the adhesive resin composition. In the circuit member connection structure 1, the first circuit electrode 32 and the second circuit electrode 42 facing each other are electrically connected via the conductive particles 12 contained in the circuit connection member 10. That is, the conductive particles 12 are in direct contact with both the first circuit electrode 32 and the second circuit electrode 42. Specifically, the protrusion 14 formed on the metal layer 22 (outermost layer) of the conductive particles 12 penetrates the insulating substance 11 and contacts both the first circuit electrode 32 and the second circuit electrode 42. doing. Furthermore, since the protrusion 14 bites into the circuit electrodes 32 and 42, the contact area between the conductive particles 12 and the circuit electrodes 32 and 42 increases. For this reason, the connection resistance between the circuit electrodes 32 and 42 is sufficiently reduced, and a good electrical connection between the circuit electrodes 32 and 42 becomes possible. Therefore, the flow of current between the circuit electrodes 32 and 42 can be made smooth, and the functions of the circuit can be fully exhibited.

第1の回路電極32又は第2の回路電極42の厚さは、50nm以上であることが好ましい。厚さが50nm未満の場合、回路接続材料中に含まれる導電粒子表面の突起部14が、回路部材同士の圧着時に回路電極32、42を貫通し回路基板31、41と接触してしまう恐れがあり、回路電極32、42と導電粒子12との接触面積が減少し接続抵抗が上昇する傾向にある。   The thickness of the first circuit electrode 32 or the second circuit electrode 42 is preferably 50 nm or more. When the thickness is less than 50 nm, the protrusions 14 on the surface of the conductive particles contained in the circuit connecting material may pass through the circuit electrodes 32 and 42 and come into contact with the circuit boards 31 and 41 when the circuit members are pressed together. In other words, the contact area between the circuit electrodes 32 and 42 and the conductive particles 12 tends to decrease and the connection resistance tends to increase.

回路電極32、42の材質としては、Au、Ag、Sn、Pt族の金属又はインジウム−錫酸化物(ITO)、インジウム−亜鉛酸化物(IZO)、Al、Crが挙げられるが、ITO又はIZOが好ましい。回路電極32、42がITO又はIZOからなる場合、回路電極間の電気的接続及び電気特性の長期信頼性を向上させる効果が顕著となる。なお、回路電極32、42は、その全体を上記物質で構成されているが、回路電極表面のみを上記物質で構成されていてもよい。   Examples of the material of the circuit electrodes 32 and 42 include Au, Ag, Sn, Pt group metal, indium-tin oxide (ITO), indium-zinc oxide (IZO), Al, and Cr, but ITO or IZO. Is preferred. When the circuit electrodes 32 and 42 are made of ITO or IZO, the effect of improving the electrical connection between the circuit electrodes and the long-term reliability of the electrical characteristics becomes significant. In addition, although the circuit electrodes 32 and 42 are entirely composed of the above substance, only the surface of the circuit electrode may be composed of the above substance.

回路基板31、41の材質は特に制限されないが、通常は有機絶縁性物質、ガラス、又はシリコンである。   The material of the circuit boards 31 and 41 is not particularly limited, but is usually an organic insulating material, glass, or silicon.

第1の回路部材30及び第2の回路部材40の具体例としては、半導体チップ、抵抗体チップ、コンデンサチップ等のチップ部品、プリント基板等の基板が挙げられる。これらの回路部材には、回路電極(回路端子)が通常は多数設けられている。なお、場合によっては、回路部材に回路電極が単数設けられていても良い。   Specific examples of the first circuit member 30 and the second circuit member 40 include chip components such as a semiconductor chip, a resistor chip, and a capacitor chip, and a substrate such as a printed circuit board. These circuit members are usually provided with a large number of circuit electrodes (circuit terminals). In some cases, a single circuit electrode may be provided on the circuit member.

回路部材の接続構造1の形態としては、ICチップとチップ搭載基板との接続構造、電気回路相互の接続構造の形態もある。   As the form of the circuit member connection structure 1, there are also a connection structure between an IC chip and a chip mounting substrate and a connection structure between electrical circuits.

第1の回路電極32又は第2の回路電極42の少なくとも一方の表面積は15000μm以下であり、且つ、第1の回路電極32と第2の回路電極42との間における平均導電粒子数が3個以上であることが好ましい。ここで、平均導電粒子数とは、回路電極1つあたりの導電粒子12の数の平均値を言う。この場合、対向する回路電極32、42間の接続抵抗をより十分に低減することができる。また、平均導電粒子数が6個以上である場合には、さらに良好な接続抵抗を達成できる。これは、対向する回路電極32、42間の接続抵抗が十分に低くなるからである。また回路電極32,42間における平均導電粒子数が2個以下の場合には、接続抵抗が高くなりすぎ、電子回路が正常に動作しなくなる傾向ある。 The surface area of at least one of the first circuit electrode 32 or the second circuit electrode 42 is 15000 μm 2 or less, and the average number of conductive particles between the first circuit electrode 32 and the second circuit electrode 42 is 3 It is preferable that the number is at least. Here, the average number of conductive particles refers to the average value of the number of conductive particles 12 per circuit electrode. In this case, the connection resistance between the circuit electrodes 32 and 42 facing each other can be more sufficiently reduced. Further, when the average number of conductive particles is 6 or more, even better connection resistance can be achieved. This is because the connection resistance between the circuit electrodes 32 and 42 facing each other is sufficiently low. Further, when the average number of conductive particles between the circuit electrodes 32 and 42 is 2 or less, the connection resistance becomes too high, and the electronic circuit tends not to operate normally.

[回路部材の接続構造の製造方法]
次に、上述した回路部材の接続構造1の製造方法について説明する。先ず、第1の回路部材30と、第2の回路部材40と、回路接続材料とを準備する。
[Method of manufacturing circuit member connection structure]
Next, the manufacturing method of the circuit member connection structure 1 described above will be described. First, the first circuit member 30, the second circuit member 40, and a circuit connection material are prepared.

回路接続材料として、フィルム状回路接続材料を準備する。フィルム状回路接続材料の厚さは、10〜50μmであることが好ましい。   A film-like circuit connection material is prepared as a circuit connection material. The thickness of the film-like circuit connecting material is preferably 10 to 50 μm.

次に、第1の回路部材30の上に、フィルム状回路接続材料を載せる。そして、第1の回路部材30の回路電極32と、第2の回路部材40の回路電極42とが重なるように、第2の回路部材40をフィルム状回路接続材料の上に載せる。このようにして、第1の回路部材30と第2の回路部材40との間にフィルム状回路接続材料を介在させる。このとき、フィルム状回路接続材料はフィルム状で、取扱いが容易であるため、第1の回路部材30と第2の回路部材40とを接続する際に、それらの間に容易に介在させることができ、第1の回路部材30と第2の回路部材40との接続作業を容易に行うことができる。   Next, a film-like circuit connecting material is placed on the first circuit member 30. And the 2nd circuit member 40 is mounted on a film-form circuit connection material so that the circuit electrode 32 of the 1st circuit member 30 and the circuit electrode 42 of the 2nd circuit member 40 may overlap. In this way, the film-like circuit connecting material is interposed between the first circuit member 30 and the second circuit member 40. At this time, since the film-like circuit connecting material is film-like and easy to handle, when the first circuit member 30 and the second circuit member 40 are connected, they can be easily interposed between them. The connection work of the 1st circuit member 30 and the 2nd circuit member 40 can be performed easily.

次に、第1の回路部材30及び第2の回路部材40を介してフィルム状回路接続材料を加熱しながら加圧して硬化処理を施し、第1の回路部材30と第2の回路部材40との間に回路接続部材10を形成する。硬化処理は、一般的な方法により行うことが可能であり、その方法は接着剤組成物により適宜選択される。   Next, the film-like circuit connecting material is heated and pressurized through the first circuit member 30 and the second circuit member 40 to perform a curing treatment, and the first circuit member 30 and the second circuit member 40 The circuit connection member 10 is formed between the two. The curing treatment can be performed by a general method, and the method is appropriately selected depending on the adhesive composition.

本実施形態では、フィルム状回路接続材料中の導電粒子12の最外層(金属層22)は、ビッカス硬度が300Hv以上である金属で構成されているため、従来の導電粒子の最外層を構成するAuよりも硬い。そのため、フィルム状回路接続材料の硬化処理において、導電粒子12の金属層22から突出した突起部14は、従来の導電粒子の場合に比べて、第1又は第2の回路電極32、42の最外層(電極表面)により深く食い込み、導電粒子12と回路電極32、42との接触面積が増加する。また、導電粒子12の直径に応じて導電粒子12の硬度が最適化されているため、導電粒子12が適度に扁平し、回路電極32、42と導電粒子12との接触面積が大きくなり、第1及び第2回路電極32,42間の接続抵抗が小さくなる。このように、導電粒子12と第1及び第2回路電極32、42とが確実に接触した状態でフィルム状回路接続材料中の接着剤組成物を硬化すると、第1の回路部材30と第2の回路部材40との高い接着強度が実現されると共に、回路電極32、42間の接続抵抗が小さい状態が長期間にわたって保持される。   In the present embodiment, the outermost layer (metal layer 22) of the conductive particles 12 in the film-like circuit connecting material is made of a metal having a Bickers hardness of 300 Hv or more, and thus constitutes the outermost layer of conventional conductive particles. Harder than Au. Therefore, in the curing process of the film-like circuit connecting material, the protrusions 14 protruding from the metal layer 22 of the conductive particles 12 are the outermost portions of the first or second circuit electrodes 32 and 42 as compared with the case of the conventional conductive particles. The outer layer (electrode surface) bites deeper, and the contact area between the conductive particles 12 and the circuit electrodes 32 and 42 increases. In addition, since the hardness of the conductive particles 12 is optimized according to the diameter of the conductive particles 12, the conductive particles 12 are appropriately flattened, and the contact area between the circuit electrodes 32 and 42 and the conductive particles 12 is increased. The connection resistance between the first and second circuit electrodes 32 and 42 is reduced. Thus, when the adhesive composition in the film-like circuit connecting material is cured in a state where the conductive particles 12 and the first and second circuit electrodes 32 and 42 are in reliable contact with each other, the first circuit member 30 and the second circuit member 30 are formed. A high adhesive strength with the circuit member 40 is realized, and a state in which the connection resistance between the circuit electrodes 32 and 42 is small is maintained for a long period of time.

すなわち、本実施形態では、導電粒子12の直径に対応して導電粒子12の硬度を最適化し、且つ、ビッカス硬度が300Hv以上である金属からなる最外層の一部を外側に突出させて突起部を形成させることによってはじめて、第1又は第2の回路電極32、42の表面における凹凸の有無に拘わらず、対向する回路電極32、42間の接続抵抗を充分に低減し、回路電極32、42間の良好な電気的接続を達成できると共に回路電極32、42間の電気特性の長期信頼性を十分に高めることができる。   That is, in the present embodiment, the hardness of the conductive particles 12 is optimized corresponding to the diameter of the conductive particles 12, and a part of the outermost layer made of a metal having a Bickers hardness of 300 Hv or more protrudes outward to project the protrusions. Only when the first and second circuit electrodes 32 and 42 are formed, the connection resistance between the circuit electrodes 32 and 42 facing each other is sufficiently reduced regardless of whether the surface of the first or second circuit electrodes 32 and 42 is uneven. A good electrical connection between them can be achieved, and the long-term reliability of the electrical characteristics between the circuit electrodes 32 and 42 can be sufficiently enhanced.

以上、本発明に係るフィルム状回路接続材料の好適な実施形態について説明したが、本発明は必ずしも上述した実施形態に限定されるものではない。   As mentioned above, although preferred embodiment of the film-form circuit connection material which concerns on this invention was described, this invention is not necessarily limited to embodiment mentioned above.

例えば、上記実施形態では、フィルム状回路接続材料を用いて回路部材の接続構造を製造しているが、フィルム状でない回路接続材料を用いてもよい。例えば、回路接続材料を溶媒に溶解させた溶液を、第1の回路部材30又は第2の回路部材40の一方に塗布し乾燥させ、乾燥後の塗布物上に他方の回路部材を載せることによって、第1及び第2の回路部材30、40間に回路接続材料を介在させることができる。   For example, in the said embodiment, although the connection structure of a circuit member is manufactured using a film-form circuit connection material, you may use the circuit connection material which is not a film form. For example, by applying a solution obtained by dissolving a circuit connecting material in a solvent to one of the first circuit member 30 or the second circuit member 40 and drying, and placing the other circuit member on the dried coated material The circuit connecting material can be interposed between the first and second circuit members 30 and 40.

また、回路部材の接続構造1には絶縁層が設けられていないが、第1の回路部材30において、第1の回路電極32に隣接して第1の絶縁層が形成されてもよいし、第2の回路部材40において、第2の回路電極42に隣接して第2の絶縁層が形成されていてもよい。絶縁層は、絶縁材料で構成されていれば特に制限されないが、通常は有機絶縁性物質、二酸化珪素又は窒化珪素から構成される。   In addition, the circuit member connection structure 1 is not provided with an insulating layer, but in the first circuit member 30, a first insulating layer may be formed adjacent to the first circuit electrode 32, In the second circuit member 40, a second insulating layer may be formed adjacent to the second circuit electrode 42. The insulating layer is not particularly limited as long as it is made of an insulating material, but is usually made of an organic insulating material, silicon dioxide or silicon nitride.

(導電粒子の作製)
テトラメチロールメタンテトラアクリレート、ジビニルベンゼン及びスチレンモノマーの混合比を変えて、重合開始剤としてベンゾイルパーオキサイドを用いて懸濁重合し、分級することによって、粒径及び硬度の異なる26種類の核体を得た。得られた各核体を無電解Niメッキ処理することで表1に示す導電粒子No.1〜26を得た。なお、Niメッキ処理の際、メッキ液の仕込み量、処理温度及び処理時間を適宜調整してメッキ厚を変更することにより、導電粒子No.1〜25の表面(最外層)にNiからなる突起部を形成した。導電粒子No.26には突起部を形成しなかった。
(Preparation of conductive particles)
By changing the mixing ratio of tetramethylol methane tetraacrylate, divinyl benzene and styrene monomer, suspension polymerization using benzoyl peroxide as a polymerization initiator and classification, 26 types of nuclei with different particle sizes and hardnesses were obtained. Obtained. Conductive particle Nos. Shown in Table 1 were obtained by subjecting each of the obtained nuclei to electroless Ni plating. 1-26 were obtained. In addition, in the Ni plating process, the conductive particle No. is changed by changing the plating thickness by appropriately adjusting the charging amount of the plating solution, the processing temperature and the processing time. The protrusion part which consists of Ni was formed in the surface (outermost layer) of 1-25. Conductive particle No. No protrusion was formed on 26.

また、突起部を有するNi粒子上にAuを置換メッキすることにより、Auからなる複数の突起部を有するAu層を形成し、導電粒子No.27を得た。   In addition, Au plating is performed on Ni particles having protrusions to form an Au layer having a plurality of protrusions made of Au. 27 was obtained.

さらに、導電粒子No.1〜26の場合と同様に核体にNiメッキを行って得た導電粒子の表面に対して、さらにAuを25nm厚で置換メッキすることによって、均一な厚さを有し、Auからなる最外層を有する導電粒子No.28を得た。   Further, conductive particle No. Similarly to the case of 1 to 26, the surface of the conductive particles obtained by performing Ni plating on the core is further subjected to substitution plating of Au with a thickness of 25 nm, so that it has a uniform thickness and is made of Au. Conductive particles having outer layers 28 was obtained.

導電粒子の硬度は、微少圧縮試験器(株式会社島津製作所製)を用いて導電粒子の直径から導電粒子を10%変形させたときの加重P(単位:MPa又はKgf)、導電粒子の半径r(単位:mm)、及び圧縮の際の変位Δ(単位:mm)から下記式1により求めた。
導電粒子の硬度=3×2(−1/2)×P×Δ(−3/2)×r(−1/2)・・・(式1)
The hardness of the conductive particles is the weight P (unit: MPa or Kgf) when the conductive particles are deformed by 10% from the diameter of the conductive particles using a micro compression tester (manufactured by Shimadzu Corporation), the radius r of the conductive particles (Unit: mm) and displacement Δ during compression (unit: mm) were obtained by the following formula 1.
Hardness of conductive particles = 3 × 2 (−1/2) × P × Δ (−3/2) × r (−1/2) (Formula 1)

また、複数の導電粒子No.1を、カーボン両面テープを貼った試料台に均一に載せ、電子顕微鏡(日立製作所製、S−800)を用いて視野に10個以上50個以下の導電粒子が入るよう倍率を調整し、導電粒子No.1の粒径、突起部の高さ、隣接する突起間距離を測定した。ここで、粒径については、任意に選び出した10個の導電粒子の直径の平均値とした。突起部の高さ及び隣接する突起間の距離については、任意に選び出した3個の導電粒子の突起高さ及び突起間距離を任意にそれぞれ5点測定し、得られた15個のデータの平均値とした。また、導電粒子No.2〜28の粒径、突起部の高さ、隣接する突起間距離も、導電粒子No.1と同様の方法で測定した。   In addition, a plurality of conductive particles No. 1 is placed evenly on a sample table with carbon double-sided tape, and the magnification is adjusted using an electron microscope (S-800, manufactured by Hitachi, Ltd.) so that 10 or more and 50 or less conductive particles enter the field of view. Particle No. The particle size of 1, the height of the protrusions, and the distance between adjacent protrusions were measured. Here, the particle diameter was an average value of the diameters of 10 conductive particles arbitrarily selected. For the height of the protrusion and the distance between adjacent protrusions, the protrusion height and the distance between the protrusions of three arbitrarily selected conductive particles were arbitrarily measured at five points, respectively, and the average of the obtained 15 data Value. In addition, conductive particle No. The particle size of 2 to 28, the height of the protrusions, and the distance between adjacent protrusions are also shown in the conductive particle Nos. Measurement was performed in the same manner as in 1.

Figure 2013055058
Figure 2013055058

(回路接続材料1の作製)
ビスフェノールA型エポキシ樹脂と、分子内にフルオレン環構造を有するフェノール化合物(4,4’−(9−フルオレニリデン)−ジフェニール)とからフェノキシ樹脂を合成し、この樹脂を質量比でトルエン/酢酸エチル=50/50の混合溶剤に溶解して、固形分40質量%の溶液とした。次に、ゴム成分としてアクリルゴム(ブチルアクリレート40重量部−エチルアクリレート30重量部−アクリロニトリル30重量部−グリシジルメタクリレート3重量部の共重合体、重量平均分子量80万)を用意し、このアクリルゴムを質量比でトルエン/酢酸エチル=50/50の混合溶剤に溶解して、固形分15質量%の溶液とした。また、マイクロカプセル型潜在性硬化剤(マイクロカプセル化されたアミン系硬化剤)と、ビスフェノールF型エポキシ樹脂と、ナフタレン型エポキシ樹脂とを、質量比34:49:17で含有する液状の硬化剤含有エポキシ樹脂(エポキシ当量:202)を用意した。
(Production of circuit connection material 1)
A phenoxy resin was synthesized from a bisphenol A-type epoxy resin and a phenol compound having a fluorene ring structure in the molecule (4,4 ′-(9-fluorenylidene) -diphenyl), and this resin was combined with toluene / ethyl acetate = It melt | dissolved in the 50/50 mixed solvent, and was set as the solution of 40 mass% of solid content. Next, acrylic rubber (40 parts by weight of butyl acrylate, 30 parts by weight of ethyl acrylate, 30 parts by weight of acrylonitrile, 3 parts by weight of glycidyl methacrylate, and a weight average molecular weight of 800,000) is prepared as a rubber component. It melt | dissolved in the mixed solvent of toluene / ethyl acetate = 50/50 by mass ratio, and it was set as the solution of 15 mass% of solid content. Further, a liquid curing agent containing a microcapsule type latent curing agent (a microencapsulated amine curing agent), a bisphenol F type epoxy resin, and a naphthalene type epoxy resin in a mass ratio of 34:49:17. A contained epoxy resin (epoxy equivalent: 202) was prepared.

上記材料を固形分質量でフェノキシ樹脂/アクリルゴム/硬化剤含有エポキシ樹脂=20g/30g/50gの割合で配合し、接着剤組成物含有液を作製した。この接着剤組成物含有液100質量部に対して導電粒子No.1を5質量部分散させて回路接続材料含有液を調製した。この回路接続材料含有液を、片面を表面処理した厚み50μmのポリエチレンテレフタレート(PET)フィルムに塗工装置を用いて塗布し、70℃で3分の熱風乾燥により、PETフィルム上に厚みが20μmのフィルム状の回路接続材料1を得た。   The above materials were blended in a mass ratio of phenoxy resin / acrylic rubber / curing agent-containing epoxy resin = 20 g / 30 g / 50 g to prepare an adhesive composition-containing liquid. With respect to 100 parts by mass of the adhesive composition-containing liquid, the conductive particle No. 5 parts by mass of 1 was dispersed to prepare a circuit connecting material-containing liquid. This circuit connection material-containing liquid is applied to a polyethylene terephthalate (PET) film having a thickness of 50 μm with a surface treated on one side using a coating apparatus, and dried with hot air at 70 ° C. for 3 minutes to have a thickness of 20 μm on the PET film. A film-like circuit connecting material 1 was obtained.

(回路接続材料2の作製)
フェノキシ樹脂(ユニオンカーバイド株式会社製、商品名PKHC、平均重量分子量5000)50gを、トルエン/酢酸エチル=50/50(質量比)の混合溶剤に溶解して、固形分40質量%のフェノキシ樹脂溶液とした。平均重量分子量800のポリカプロラクトンジオール400質量部、2−ヒドロキシプロピルアクリレート131質量部、触媒としてのジブチル錫ジラウレート0.5質量部および重合禁止剤としてのハイドロキノンモノメチルエーテル1.0質量部を攪拌しながら50℃に加熱して混合した。次いで、この混合液に、イソホロンジイソシアネート222質量部を滴下し更に攪拌しながら80℃に昇温してウレタン化反応を行った。イソシアネート基の反応率が99%以上になったことを確認した後、反応温度を下げてウレタンアクリレートを得た。
(Production of circuit connection material 2)
50 g of phenoxy resin (trade name PKHC, manufactured by Union Carbide Co., Ltd., average weight molecular weight 5000) is dissolved in a mixed solvent of toluene / ethyl acetate = 50/50 (mass ratio) to obtain a phenoxy resin solution having a solid content of 40% by mass. It was. While stirring 400 parts by mass of polycaprolactone diol having an average weight molecular weight of 800, 131 parts by mass of 2-hydroxypropyl acrylate, 0.5 parts by mass of dibutyltin dilaurate as a catalyst and 1.0 part by mass of hydroquinone monomethyl ether as a polymerization inhibitor Heat to 50 ° C. and mix. Next, 222 parts by mass of isophorone diisocyanate was dropped into this mixed solution, and the mixture was further heated to 80 ° C. while stirring to carry out a urethanization reaction. After confirming that the reaction rate of the isocyanate group was 99% or more, the reaction temperature was lowered to obtain urethane acrylate.

次いで、上記フェノキシ樹脂溶液から固形分が50g含まれるように量り取ったフェノキシ樹脂溶液と、上記ウレタンアクリレート49gと、リン酸エステル型アクリレート1gと、加熱により遊離ラジカルを発生する硬化剤としてのt−ヘキシルパーオキシ−2−エチルヘキサノネート5gとを混合して接着剤組成物含有液を得た。そして、この接着剤組成物含有液100質量部に対して導電粒子No.1を5質量部分散させて回路接続材料含有液を調製した。そして、この回路接続材料含有液を、片面を表面処理した厚み50μmのPETフィルムに塗工装置を用いて塗布し、70℃で3分の熱風乾燥により、PETフィルム上に厚みが20μmのフィルム状の回路接続材料2を得た。   Next, the phenoxy resin solution weighed out from the phenoxy resin solution so as to contain 50 g of solid content, 49 g of the urethane acrylate, 1 g of phosphate ester acrylate, and t- as a curing agent that generates free radicals by heating. An adhesive composition-containing liquid was obtained by mixing 5 g of hexylperoxy-2-ethylhexanoate. And conductive particle No. with respect to 100 mass parts of this adhesive composition containing liquid. 5 parts by mass of 1 was dispersed to prepare a circuit connecting material-containing liquid. And this circuit connection material containing liquid is apply | coated to a 50-micrometer-thick PET film which surface-treated one side using a coating apparatus, and it dried by hot air for 3 minutes at 70 degreeC, and the film-like thickness of 20 micrometers on a PET film Circuit connection material 2 was obtained.

(回路接続材料3〜29の作製)
前記回路接続材料1における導電粒子No.1の代わりに導電粒子No.2から28を用いた他は、回路接続材料1と同様の方法によりフィルム状の回路接続材料3〜29をそれぞれ得た。それぞれの回路接続材料に含まれる導電粒子の特性は、表2に示すとおりであった。
(Production of circuit connection materials 3 to 29)
In the circuit connection material 1, conductive particles No. In place of conductive particles No. 1 Film-like circuit connection materials 3 to 29 were obtained in the same manner as the circuit connection material 1 except that 2 to 28 were used. Table 2 shows the characteristics of the conductive particles contained in each circuit connection material.

(実施例1)
第1の回路部材として、ポリイミドフィルム(厚さ38μm)と、SnめっきCu箔(厚さ8μm)からなる2層構造を有するフレキシブル回路板(以下、「FPC」と記す。)を準備した。このFPCの回路については、ライン幅18μm、ピッチ50μmとした。
Example 1
As a first circuit member, a flexible circuit board (hereinafter referred to as “FPC”) having a two-layer structure composed of a polyimide film (thickness: 38 μm) and Sn-plated Cu foil (thickness: 8 μm) was prepared. The FPC circuit has a line width of 18 μm and a pitch of 50 μm.

第2の回路部材として、表面上にITO回路電極(電極膜厚:50nm、表面抵抗<20Ω)を備えるガラス基板(厚さ1.1mm)を用意した。この第2の回路部材の回路については、ライン幅25μm、ピッチ50μmとした。   As a second circuit member, a glass substrate (thickness 1.1 mm) having an ITO circuit electrode (electrode film thickness: 50 nm, surface resistance <20Ω) on the surface was prepared. The circuit of the second circuit member has a line width of 25 μm and a pitch of 50 μm.

次に、第2の回路部材上に所定のサイズ(1.5×30mm)に裁断した回路接続材料1を貼付け、70℃、1.0MPaで5秒間加熱、加圧を行い仮接続した。次いで、PETフィルムを剥離した後、FPCと第2の回路部材とで回路接続材料1を挟むようにFPCを配置し、FPCの回路と第2の回路部材の回路の位置合わせを行った。次いで、180℃、3MPa、15秒の条件で、FPC上方から加熱、加圧を行い、FPCと第2の回路部材とを本接続した。こうして、実施例1の回路部材の接続構造を得た。   Next, the circuit connection material 1 cut into a predetermined size (1.5 × 30 mm) was pasted on the second circuit member, and was temporarily connected by heating and pressing at 70 ° C. and 1.0 MPa for 5 seconds. Next, after the PET film was peeled off, the FPC was arranged so that the circuit connecting material 1 was sandwiched between the FPC and the second circuit member, and the circuit of the FPC and the circuit of the second circuit member were aligned. Next, heating and pressurization were performed from above the FPC under the conditions of 180 ° C., 3 MPa, and 15 seconds, and the FPC and the second circuit member were permanently connected. Thus, a circuit member connection structure of Example 1 was obtained.

(実施例2)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として表面上にIZO回路電極(電極膜厚:50nm、表面抵抗<20Ω)を備えるガラス基板(厚さ1.1mm)を用意した。この第2の回路部材の回路については、ライン幅25μm、ピッチ50μmとした。そして、実施例1の接続方法と同様に回路接続材料1による仮接続、本接続を行い、実施例2の回路部材の接続構造を得た。
(Example 2)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, a glass substrate (thickness: 1.1 mm) provided with an IZO circuit electrode (electrode film thickness: 50 nm, surface resistance <20Ω) on the surface was prepared as a second circuit member. The circuit of the second circuit member has a line width of 25 μm and a pitch of 50 μm. And the temporary connection by the circuit connection material 1 and this connection were made like the connection method of Example 1, and the connection structure of the circuit member of Example 2 was obtained.

(実施例3)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例1と同様のITO回路電極(電極膜厚:50nm)を備えるガラス基板を用意した。そして、第2の回路部材上に所定のサイズ(1.5×30mm)に裁断した回路接続材料2を貼付け、70℃、1.0MPaで3秒間加熱、加圧を行い仮接続した。次いで、PETフィルムを剥離した後、FPCと第2の回路部材とで回路接続材料2を挟むようにFPCを配置し、FPCの回路と第2の回路部材の回路の位置合わせを行った。次いで、170℃、3MPa、10秒の条件でFPC上方から加熱、加圧を行いFPCと第2の回路部材とを本接続して、実施例3の回路部材の接続構造を得た。
(Example 3)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the ITO circuit electrode (electrode film thickness: 50 nm) similar to Example 1 as a 2nd circuit member was prepared. And the circuit connection material 2 cut | judged to the predetermined | prescribed size (1.5x30 mm) was affixed on the 2nd circuit member, and it heated and pressurized for 3 seconds at 70 degreeC and 1.0 MPa, and temporarily connected. Next, after the PET film was peeled off, the FPC was arranged so that the circuit connecting material 2 was sandwiched between the FPC and the second circuit member, and the circuit of the FPC and the circuit of the second circuit member were aligned. Next, heating and pressurization were performed from above the FPC under the conditions of 170 ° C., 3 MPa, and 10 seconds to make a main connection between the FPC and the second circuit member, whereby a circuit member connection structure of Example 3 was obtained.

(実施例4)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例2と同様のIZO回路電極を備えるガラス基板を用意した。そして、実施例3の接続方法と同様に回路接続材料2による仮接続、本接続を行い、実施例4の回路部材の接続構造を得た。
Example 4
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the same IZO circuit electrode as Example 2 was prepared as a 2nd circuit member. And the temporary connection by the circuit connection material 2 and this connection were made like the connection method of Example 3, and the connection structure of the circuit member of Example 4 was obtained.

(実施例5)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例1と同様のITO回路電極(電極膜厚:50nm)を備えるガラス基板を用意した。そして、実施例1の接続方法と同様に回路接続材料3による仮接続、本接続を行い、実施例5の回路部材の接続構造を得た。
(Example 5)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the ITO circuit electrode (electrode film thickness: 50 nm) similar to Example 1 as a 2nd circuit member was prepared. And the temporary connection by the circuit connection material 3 and this connection were made like the connection method of Example 1, and the connection structure of the circuit member of Example 5 was obtained.

(実施例6)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例2と同様のIZO回路電極を備えるガラス基板を用意した。そして、実施例2の接続方法と同様に回路接続材料3による仮接続、本接続を行い、実施例6の回路部材の接続構造を得た。
(Example 6)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the same IZO circuit electrode as Example 2 was prepared as a 2nd circuit member. And the temporary connection by the circuit connection material 3 and this connection were made like the connection method of Example 2, and the connection structure of the circuit member of Example 6 was obtained.

(実施例7)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例1と同様のITO回路電極(電極膜厚:50nm)を備えるガラス基板を用意した。そして、実施例1の接続方法と同様に回路接続材料4による仮接続、本接続を行い、実施例7の回路部材の接続構造を得た。
(Example 7)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the ITO circuit electrode (electrode film thickness: 50 nm) similar to Example 1 as a 2nd circuit member was prepared. And the temporary connection by the circuit connection material 4 and this connection were made like the connection method of Example 1, and the connection structure of the circuit member of Example 7 was obtained.

(実施例8)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例2と同様のIZO回路電極を備えるガラス基板を用意した。そして、実施例2の接続方法と同様に回路接続材料4による仮接続、本接続を行い、実施例8の回路部材の接続構造を得た。
(Example 8)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the same IZO circuit electrode as Example 2 was prepared as a 2nd circuit member. And the temporary connection by the circuit connection material 4 and this connection were made like the connection method of Example 2, and the connection structure of the circuit member of Example 8 was obtained.

(実施例9)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例1と同様のITO回路電極(電極膜厚:50nm)を備えるガラス基板を用意した。そして、実施例1の接続方法と同様に回路接続材料7による仮接続、本接続を行い、実施例9の回路部材の接続構造を得た。
Example 9
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the ITO circuit electrode (electrode film thickness: 50 nm) similar to Example 1 as a 2nd circuit member was prepared. And the temporary connection by the circuit connection material 7 and this connection were made like the connection method of Example 1, and the connection structure of the circuit member of Example 9 was obtained.

(実施例10)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例2と同様のIZO回路電極を備えるガラス基板を用意した。そして、実施例2の接続方法と同様に回路接続材料7による仮接続、本接続を行い、実施例10の回路部材の接続構造を得た。
(Example 10)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the same IZO circuit electrode as Example 2 was prepared as a 2nd circuit member. And the temporary connection by the circuit connection material 7 and this connection were made like the connection method of Example 2, and the connection structure of the circuit member of Example 10 was obtained.

(実施例11)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例1と同様のITO回路電極(電極膜厚:50nm)を備えるガラス基板を用意した。そして、実施例1の接続方法と同様に回路接続材料8による仮接続、本接続を行い、実施例11の回路部材の接続構造を得た。
(Example 11)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the ITO circuit electrode (electrode film thickness: 50 nm) similar to Example 1 as a 2nd circuit member was prepared. And the temporary connection by the circuit connection material 8 and this connection were made like the connection method of Example 1, and the connection structure of the circuit member of Example 11 was obtained.

(実施例12)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例2と同様のIZO回路電極を備えるガラス基板を用意した。そして、実施例2の接続方法と同様に回路接続材料8による仮接続、本接続を行い、実施例12の回路部材の接続構造を得た。
(Example 12)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the same IZO circuit electrode as Example 2 was prepared as a 2nd circuit member. And the temporary connection by the circuit connection material 8 and this connection were made like the connection method of Example 2, and the connection structure of the circuit member of Example 12 was obtained.

(実施例15)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例1と同様のITO回路電極(電極膜厚:50nm)を備えるガラス基板を用意した。そして、実施例1の接続方法と同様に回路接続材料12による仮接続、本接続を行い、実施例15の回路部材の接続構造を得た。
(Example 15)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the ITO circuit electrode (electrode film thickness: 50 nm) similar to Example 1 as a 2nd circuit member was prepared. And the temporary connection by the circuit connection material 12 and this connection were made like the connection method of Example 1, and the connection structure of the circuit member of Example 15 was obtained.

(実施例16)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例2と同様のIZO回路電極を備えるガラス基板を用意した。そして、実施例2の接続方法と同様に回路接続材料12による仮接続、本接続を行い、実施例16の回路部材の接続構造を得た。
(Example 16)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the same IZO circuit electrode as Example 2 was prepared as a 2nd circuit member. And the temporary connection by the circuit connection material 12 and this connection were made like the connection method of Example 2, and the connection structure of the circuit member of Example 16 was obtained.

(実施例17)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例1と同様のITO回路電極(電極膜厚:50nm)を備えるガラス基板を用意した。そして、実施例1の接続方法と同様に回路接続材料13による仮接続、本接続を行い、実施例17の回路部材の接続構造を得た。
(Example 17)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the ITO circuit electrode (electrode film thickness: 50 nm) similar to Example 1 as a 2nd circuit member was prepared. And the temporary connection by the circuit connection material 13 and this connection were made like the connection method of Example 1, and the connection structure of the circuit member of Example 17 was obtained.

(実施例18)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例2と同様のIZO回路電極を備えるガラス基板を用意した。そして、実施例2の接続方法と同様に回路接続材料13による仮接続、本接続を行い、実施例18の回路部材の接続構造を得た。
(Example 18)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the same IZO circuit electrode as Example 2 was prepared as a 2nd circuit member. And the temporary connection by the circuit connection material 13 and this connection were made like the connection method of Example 2, and the connection structure of the circuit member of Example 18 was obtained.

(実施例21)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例1と同様のITO回路電極(電極膜厚:50nm)を備えるガラス基板を用意した。そして、実施例1の接続方法と同様に回路接続材料17による仮接続、本接続を行い、実施例21の回路部材の接続構造を得た。
(Example 21)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the ITO circuit electrode (electrode film thickness: 50 nm) similar to Example 1 as a 2nd circuit member was prepared. And the temporary connection by the circuit connection material 17 and this connection were made like the connection method of Example 1, and the connection structure of the circuit member of Example 21 was obtained.

(実施例22)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例2と同様のIZO回路電極を備えるガラス基板を用意した。そして、実施例2の接続方法と同様に回路接続材料17による仮接続、本接続を行い、実施例22の回路部材の接続構造を得た。
(Example 22)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the same IZO circuit electrode as Example 2 was prepared as a 2nd circuit member. And the temporary connection by the circuit connection material 17 and this connection were made like the connection method of Example 2, and the connection structure of the circuit member of Example 22 was obtained.

(実施例23)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例1と同様のITO回路電極(電極膜厚:50nm)を備えるガラス基板を用意した。そして、実施例1の接続方法と同様に回路接続材料18による仮接続、本接続を行い、実施例23の回路部材の接続構造を得た。
(Example 23)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the ITO circuit electrode (electrode film thickness: 50 nm) similar to Example 1 as a 2nd circuit member was prepared. And the temporary connection by the circuit connection material 18 and this connection were made like the connection method of Example 1, and the connection structure of the circuit member of Example 23 was obtained.

(実施例24)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例2と同様のIZO回路電極を備えるガラス基板を用意した。そして、実施例2の接続方法と同様に回路接続材料18による仮接続、本接続を行い、実施例24の回路部材の接続構造を得た。
(Example 24)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the same IZO circuit electrode as Example 2 was prepared as a 2nd circuit member. And the temporary connection by the circuit connection material 18 and this connection were made like the connection method of Example 2, and the connection structure of the circuit member of Example 24 was obtained.

(実施例27)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例1と同様のITO回路電極(電極膜厚:50nm)を備えるガラス基板を用意した。そして、実施例1の接続方法と同様に回路接続材料22による仮接続、本接続を行い、実施例27の回路部材の接続構造を得た。
(Example 27)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the ITO circuit electrode (electrode film thickness: 50 nm) similar to Example 1 as a 2nd circuit member was prepared. And the temporary connection by the circuit connection material 22 and this connection were made like the connection method of Example 1, and the connection structure of the circuit member of Example 27 was obtained.

(実施例28)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例2と同様のIZO回路電極を備えるガラス基板を用意した。そして、実施例2の接続方法と同様に回路接続材料22による仮接続、本接続を行い、実施例28の回路部材の接続構造を得た。
(Example 28)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the same IZO circuit electrode as Example 2 was prepared as a 2nd circuit member. And the temporary connection by the circuit connection material 22 and this connection were made like the connection method of Example 2, and the connection structure of the circuit member of Example 28 was obtained.

(実施例29)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例1と同様のITO回路電極(電極膜厚:50nm)を備えるガラス基板を用意した。そして、実施例1の接続方法と同様に回路接続材料23による仮接続、本接続を行い、実施例29の回路部材の接続構造を得た。
(Example 29)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the ITO circuit electrode (electrode film thickness: 50 nm) similar to Example 1 as a 2nd circuit member was prepared. And the temporary connection by the circuit connection material 23 and this connection were made like the connection method of Example 1, and the connection structure of the circuit member of Example 29 was obtained.

(実施例30)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例2と同様のIZO回路電極を備えるガラス基板を用意した。そして、実施例2の接続方法と同様に回路接続材料23による仮接続、本接続を行い、実施例30の回路部材の接続構造を得た。
(Example 30)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the same IZO circuit electrode as Example 2 was prepared as a 2nd circuit member. And the temporary connection by the circuit connection material 23 and this connection were made like the connection method of Example 2, and the connection structure of the circuit member of Example 30 was obtained.

(比較例1)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例1と同様のITO回路電極(電極膜厚:50nm)を備えるガラス基板を用意した。そして、実施例1の接続方法と同様に回路接続材料5による仮接続、本接続を行い、比較例1の回路部材の接続構造を得た。
(Comparative Example 1)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the ITO circuit electrode (electrode film thickness: 50 nm) similar to Example 1 as a 2nd circuit member was prepared. And the temporary connection by the circuit connection material 5 and this connection were made like the connection method of Example 1, and the connection structure of the circuit member of the comparative example 1 was obtained.

(比較例2)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例2と同様のIZO回路電極を備えるガラス基板を用意した。そして、実施例2の接続方法と同様に回路接続材料5による仮接続、本接続を行い、比較例2の回路部材の接続構造を得た。
(Comparative Example 2)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the same IZO circuit electrode as Example 2 was prepared as a 2nd circuit member. And the temporary connection by the circuit connection material 5 and this connection were made like the connection method of Example 2, and the connection structure of the circuit member of the comparative example 2 was obtained.

(比較例3)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例1と同様のITO回路電極(電極膜厚:50nm)を備えるガラス基板を用意した。そして、実施例1の接続方法と同様に回路接続材料6による仮接続、本接続を行い、比較例3の回路部材の接続構造を得た。
(Comparative Example 3)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the ITO circuit electrode (electrode film thickness: 50 nm) similar to Example 1 as a 2nd circuit member was prepared. And the temporary connection by the circuit connection material 6 and this connection were made like the connection method of Example 1, and the connection structure of the circuit member of the comparative example 3 was obtained.

(比較例4)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例2と同様のIZO回路電極を備えるガラス基板を用意した。そして、実施例2の接続方法と同様に回路接続材料6による仮接続、本接続を行い、比較例4の回路部材の接続構造を得た。
(Comparative Example 4)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the same IZO circuit electrode as Example 2 was prepared as a 2nd circuit member. And the temporary connection by the circuit connection material 6 and this connection were made like the connection method of Example 2, and the connection structure of the circuit member of the comparative example 4 was obtained.

(比較例5)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例1と同様のITO回路電極(電極膜厚:50nm)を備えるガラス基板を用意した。そして、実施例1の接続方法と同様に回路接続材料10による仮接続、本接続を行い、比較例5の回路部材の接続構造を得た。
(Comparative Example 5)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the ITO circuit electrode (electrode film thickness: 50 nm) similar to Example 1 as a 2nd circuit member was prepared. And the temporary connection by the circuit connection material 10 and this connection were made like the connection method of Example 1, and the connection structure of the circuit member of the comparative example 5 was obtained.

(比較例6)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例2と同様のIZO回路電極を備えるガラス基板を用意した。そして、実施例2の接続方法と同様に回路接続材料10による仮接続、本接続を行い、比較例6の回路部材の接続構造を得た。
(Comparative Example 6)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the same IZO circuit electrode as Example 2 was prepared as a 2nd circuit member. And the temporary connection by the circuit connection material 10 and this connection were made like the connection method of Example 2, and the connection structure of the circuit member of the comparative example 6 was obtained.

(比較例7)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例1と同様のITO回路電極(電極膜厚:50nm)を備えるガラス基板を用意した。そして、実施例1の接続方法と同様に回路接続材料11による仮接続、本接続を行い、比較例7の回路部材の接続構造を得た。
(Comparative Example 7)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the ITO circuit electrode (electrode film thickness: 50 nm) similar to Example 1 as a 2nd circuit member was prepared. And the temporary connection by the circuit connection material 11 and this connection were made like the connection method of Example 1, and the connection structure of the circuit member of the comparative example 7 was obtained.

(比較例8)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例2と同様のIZO回路電極を備えるガラス基板を用意した。そして、実施例2の接続方法と同様に回路接続材料11による仮接続、本接続を行い、比較例8の回路部材の接続構造を得た。
(Comparative Example 8)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the same IZO circuit electrode as Example 2 was prepared as a 2nd circuit member. And the temporary connection by the circuit connection material 11 and this connection were made like the connection method of Example 2, and the connection structure of the circuit member of the comparative example 8 was obtained.

(比較例9)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例1と同様のITO回路電極(電極膜厚:50nm)を備えるガラス基板を用意した。そして、実施例1の接続方法と同様に回路接続材料15による仮接続、本接続を行い、比較例9の回路部材の接続構造を得た。
(Comparative Example 9)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the ITO circuit electrode (electrode film thickness: 50 nm) similar to Example 1 as a 2nd circuit member was prepared. And the temporary connection by the circuit connection material 15 and this connection were made like the connection method of Example 1, and the connection structure of the circuit member of the comparative example 9 was obtained.

(比較例10)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例2と同様のIZO回路電極を備えるガラス基板を用意した。そして、実施例2の接続方法と同様に回路接続材料15による仮接続、本接続を行い、比較例10の回路部材の接続構造を得た。
(Comparative Example 10)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the same IZO circuit electrode as Example 2 was prepared as a 2nd circuit member. And the temporary connection by the circuit connection material 15 and this connection were made like the connection method of Example 2, and the connection structure of the circuit member of the comparative example 10 was obtained.

(比較例11)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例1と同様のITO回路電極(電極膜厚:50nm)を備えるガラス基板を用意した。そして、実施例1の接続方法と同様に回路接続材料16による仮接続、本接続を行い、比較例11の回路部材の接続構造を得た。
(Comparative Example 11)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the ITO circuit electrode (electrode film thickness: 50 nm) similar to Example 1 as a 2nd circuit member was prepared. And the temporary connection by the circuit connection material 16 and this connection were made like the connection method of Example 1, and the connection structure of the circuit member of the comparative example 11 was obtained.

(比較例12)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例2と同様のIZO回路電極を備えるガラス基板を用意した。そして、実施例2の接続方法と同様に回路接続材料16による仮接続、本接続を行い、比較例12の回路部材の接続構造を得た。
(Comparative Example 12)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the same IZO circuit electrode as Example 2 was prepared as a 2nd circuit member. And the temporary connection by the circuit connection material 16 and this connection were made like the connection method of Example 2, and the connection structure of the circuit member of the comparative example 12 was obtained.

(比較例13)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例1と同様のITO回路電極(電極膜厚:50nm)を備えるガラス基板を用意した。そして、実施例1の接続方法と同様に回路接続材料20による仮接続、本接続を行い、比較例13の回路部材の接続構造を得た。
(Comparative Example 13)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the ITO circuit electrode (electrode film thickness: 50 nm) similar to Example 1 as a 2nd circuit member was prepared. And the temporary connection by the circuit connection material 20 and this connection were made like the connection method of Example 1, and the connection structure of the circuit member of the comparative example 13 was obtained.

(比較例14)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例2と同様のIZO回路電極を備えるガラス基板を用意した。そして、実施例2の接続方法と同様に回路接続材料20による仮接続、本接続を行い、比較例14の回路部材の接続構造を得た。
(Comparative Example 14)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the same IZO circuit electrode as Example 2 was prepared as a 2nd circuit member. And the temporary connection by the circuit connection material 20 and this connection were made like the connection method of Example 2, and the connection structure of the circuit member of the comparative example 14 was obtained.

(比較例15)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例1と同様のITO回路電極(電極膜厚:50nm)を備えるガラス基板を用意した。そして、実施例1の接続方法と同様に回路接続材料21による仮接続、本接続を行い、比較例15の回路部材の接続構造を得た。
(Comparative Example 15)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the ITO circuit electrode (electrode film thickness: 50 nm) similar to Example 1 as a 2nd circuit member was prepared. And the temporary connection by the circuit connection material 21 and this connection were made like the connection method of Example 1, and the connection structure of the circuit member of the comparative example 15 was obtained.

(比較例16)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例2と同様のIZO回路電極を備えるガラス基板を用意した。そして、実施例2の接続方法と同様に回路接続材料21による仮接続、本接続を行い、比較例16の回路部材の接続構造を得た。
(Comparative Example 16)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the same IZO circuit electrode as Example 2 was prepared as a 2nd circuit member. And the temporary connection by the circuit connection material 21 and this connection were made like the connection method of Example 2, and the connection structure of the circuit member of the comparative example 16 was obtained.

(比較例17)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例1と同様のITO回路電極(電極膜厚:50nm)を備えるガラス基板を用意した。そして、実施例1の接続方法と同様に回路接続材料25による仮接続、本接続を行い、比較例17の回路部材の接続構造を得た。
(Comparative Example 17)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the ITO circuit electrode (electrode film thickness: 50 nm) similar to Example 1 as a 2nd circuit member was prepared. And the temporary connection by the circuit connection material 25 and this connection were made like the connection method of Example 1, and the connection structure of the circuit member of the comparative example 17 was obtained.

(比較例18)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例2と同様のIZO回路電極を備えるガラス基板を用意した。そして、実施例2の接続方法と同様に回路接続材料25による仮接続、本接続を行い、比較例18の回路部材の接続構造を得た。
(Comparative Example 18)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the same IZO circuit electrode as Example 2 was prepared as a 2nd circuit member. And the temporary connection by the circuit connection material 25 and this connection were made like the connection method of Example 2, and the connection structure of the circuit member of the comparative example 18 was obtained.

(比較例19)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例1と同様のITO回路電極(電極膜厚:50nm)を備えるガラス基板を用意した。そして、実施例1の接続方法と同様に回路接続材料26による仮接続、本接続を行い、比較例19の回路部材の接続構造を得た。
(Comparative Example 19)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the ITO circuit electrode (electrode film thickness: 50 nm) similar to Example 1 as a 2nd circuit member was prepared. And the temporary connection by the circuit connection material 26 and this connection were made like the connection method of Example 1, and the connection structure of the circuit member of the comparative example 19 was obtained.

(比較例20)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例2と同様のIZO回路電極を備えるガラス基板を用意した。そして、実施例2の接続方法と同様に回路接続材料26による仮接続、本接続を行い、比較例20の回路部材の接続構造を得た。
(Comparative Example 20)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the same IZO circuit electrode as Example 2 was prepared as a 2nd circuit member. And the temporary connection by the circuit connection material 26 and this connection were made like the connection method of Example 2, and the connection structure of the circuit member of the comparative example 20 was obtained.

(比較例21)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例1と同様のITO回路電極(電極膜厚:50nm)を備えるガラス基板を用意した。そして、実施例1の接続方法と同様に回路接続材料27による仮接続、本接続を行い、比較例21の回路部材の接続構造を得た。
(Comparative Example 21)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the ITO circuit electrode (electrode film thickness: 50 nm) similar to Example 1 as a 2nd circuit member was prepared. And the temporary connection by the circuit connection material 27 and this connection were made like the connection method of Example 1, and the connection structure of the circuit member of the comparative example 21 was obtained.

(比較例22)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例2と同様のIZO回路電極を備えるガラス基板を用意した。そして、実施例2の接続方法と同様に回路接続材料27による仮接続、本接続を行い、比較例22の回路部材の接続構造を得た。
(Comparative Example 22)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the same IZO circuit electrode as Example 2 was prepared as a 2nd circuit member. And the temporary connection by the circuit connection material 27 and this connection were made like the connection method of Example 2, and the connection structure of the circuit member of the comparative example 22 was obtained.

(比較例23)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例1と同様のITO回路電極(電極膜厚:50nm)を備えるガラス基板を用意した。そして、実施例1の接続方法と同様に回路接続材料28による仮接続、本接続を行い、比較例23の回路部材の接続構造を得た。
(Comparative Example 23)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the ITO circuit electrode (electrode film thickness: 50 nm) similar to Example 1 as a 2nd circuit member was prepared. And the temporary connection by the circuit connection material 28 and this connection were made like the connection method of Example 1, and the connection structure of the circuit member of the comparative example 23 was obtained.

(比較例24)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例2と同様のIZO回路電極を備えるガラス基板を用意した。そして、実施例2の接続方法と同様に回路接続材料28による仮接続、本接続を行い、比較例24の回路部材の接続構造を得た。
(Comparative Example 24)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the same IZO circuit electrode as Example 2 was prepared as a 2nd circuit member. And the temporary connection by the circuit connection material 28 and this connection were made like the connection method of Example 2, and the connection structure of the circuit member of the comparative example 24 was obtained.

(比較例25)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例1と同様のITO回路電極(電極膜厚:50nm)を備えるガラス基板を用意した。そして、実施例1の接続方法と同様に回路接続材料29による仮接続、本接続を行い、比較例25の回路部材の接続構造を得た。
(Comparative Example 25)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the ITO circuit electrode (electrode film thickness: 50 nm) similar to Example 1 as a 2nd circuit member was prepared. And the temporary connection by the circuit connection material 29 and this connection were made like the connection method of Example 1, and the connection structure of the circuit member of the comparative example 25 was obtained.

(比較例26)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として実施例2と同様のIZO回路電極を備えるガラス基板を用意した。そして、実施例2の接続方法と同様に回路接続材料29による仮接続、本接続を行い、比較例26の回路部材の接続構造を得た。
(Comparative Example 26)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, the glass substrate provided with the same IZO circuit electrode as Example 2 was prepared as a 2nd circuit member. And the temporary connection by the circuit connection material 29 and this connection were made like the connection method of Example 2, and the connection structure of the circuit member of the comparative example 26 was obtained.

(比較例27)
第1の回路部材として、実施例1と同様のFPCを準備した。次に、第2の回路部材として表面上にITO回路電極(電極膜厚:25nm、表面抵抗<40Ω)を備えるガラス基板(厚さ1.1mm)を用意した。この第2の回路部材の回路については、ライン幅25μm、ピッチ50μmとした。そして、実施例1の接続方法と同様に回路接続材料1による仮接続、本接続を行い、比較例27の回路部材の接続構造を得た。
(Comparative Example 27)
As the first circuit member, the same FPC as in Example 1 was prepared. Next, a glass substrate (thickness 1.1 mm) having an ITO circuit electrode (electrode film thickness: 25 nm, surface resistance <40Ω) on the surface was prepared as a second circuit member. The circuit of the second circuit member has a line width of 25 μm and a pitch of 50 μm. And the temporary connection by the circuit connection material 1 and this connection were made like the connection method of Example 1, and the connection structure of the circuit member of the comparative example 27 was obtained.

(接続抵抗の測定)
実施例1〜12、15〜18、21〜24、27〜30、比較例1〜27の回路部材の接続構造について、FPCの回路電極と、第2の回路部材の回路電極との間の接続抵抗値をマルチメータで測定した。接続抵抗値としては、接続直後の抵抗値(初期抵抗値)と、80℃、95%RHの高温高湿槽中に250時間保持した後(高温高湿処理後)の抵抗値(処理後抵抗値)をそれぞれ測定した。なお、接続抵抗値は、隣接回路間の抵抗37点の平均値と標準偏差を3倍した値との和(x+3σ)とした。また、抵抗増加率は、初期抵抗値から処理後抵抗値までの増加量を初期抵抗値で除した値を百分率で示しており、式(処理後抵抗値−初期抵抗値)/初期抵抗値×100で算出した。表2、表3に接続抵抗値の測定結果及び抵抗増加率の算出結果を示す。なお、接続抵抗値が小さいほど、対向する回路電極同士間の電気的接続が良好であり、抵抗増加率が小さいほど、回路電極間の電気特性の長期信頼性が高い。
(Measurement of connection resistance)
About connection structure of the circuit member of Examples 1-12, 15-18, 21-24, 27-30, and Comparative Examples 1-27, the connection between the circuit electrode of FPC and the circuit electrode of the 2nd circuit member The resistance value was measured with a multimeter. As the connection resistance value, the resistance value immediately after the connection (initial resistance value) and the resistance value after being held in a high-temperature and high-humidity bath at 80 ° C. and 95% RH (after high-temperature and high-humidity treatment) (resistance after treatment) Value) was measured respectively. The connection resistance value was the sum (x + 3σ) of an average value of 37 resistances between adjacent circuits and a value obtained by triple the standard deviation. The resistance increase rate is a percentage obtained by dividing the increase from the initial resistance value to the processed resistance value by the initial resistance value as a percentage, and the formula (resistance value after processing−initial resistance value) / initial resistance value × Calculated at 100. Tables 2 and 3 show the connection resistance value measurement results and the resistance increase rate calculation results. Note that the smaller the connection resistance value, the better the electrical connection between the opposing circuit electrodes, and the smaller the resistance increase rate, the higher the long-term reliability of the electrical characteristics between the circuit electrodes.

Figure 2013055058
Figure 2013055058

Figure 2013055058
Figure 2013055058

導電粒子の最外層を構成する金属(最外層金属)がNiであり、さらに最外層に突起部が形成された導電粒子を用いた実施例1、2では、抵抗増加率が5%以下と非常に良好な値を示した。一方、最外層金属がNiであるものの、最外層に突起部が形成されていない導電粒子を用いた比較例21、22や、最外層金属がAuである導電粒子を用いた比較例23〜26では、抵抗増加率が実施例1、2を含む全実施例より高かった。   In Examples 1 and 2 using the conductive particles in which the metal (outermost layer metal) constituting the outermost layer of the conductive particles is Ni and the protrusions are formed on the outermost layer, the resistance increase rate is 5% or less. Good value was shown. On the other hand, Comparative Examples 21 and 22 using conductive particles in which the outermost layer metal is Ni but no protrusions are formed on the outermost layer, and Comparative Examples 23 to 26 using conductive particles whose outermost layer metal is Au. Then, the resistance increase rate was higher than all Examples including Examples 1 and 2.

また、実施例1〜12、15〜18、21〜24、27〜30に示すように、導電粒子の直径(粒子直径)に応じて硬度が一定の範囲にある場合に抵抗増加率が5%以下と非常に良好な値を示すことがわかった。   Moreover, as shown in Examples 1-12, 15-18, 21-24, 27-30, the resistance increase rate is 5% when the hardness is in a certain range according to the diameter (particle diameter) of the conductive particles. It was found that the following values were very good.

一方、導電粒子の硬度が低すぎる比較例1、2、5、6、9、10、13、14、17、18では抵抗増加率が10%前後と高かった。これは、導電粒子が柔らかすぎるため、高温高湿処理に伴って、対向する回路電極間の距離が変動する際に、回路電極間距離の変動に導電粒子の形状が追随して変化できずに、導電粒子と回路電極とが十分に接触できなかったことに起因すると考えられる。   On the other hand, in Comparative Examples 1, 2, 5, 6, 9, 10, 13, 14, 17, and 18 in which the hardness of the conductive particles was too low, the resistance increase rate was as high as about 10%. This is because the conductive particles are too soft, and when the distance between the circuit electrodes facing each other changes due to the high temperature and high humidity treatment, the shape of the conductive particles cannot follow the change in the distance between the circuit electrodes. This is considered to be due to the fact that the conductive particles and the circuit electrode could not be contacted sufficiently.

また、導電粒子の硬度が高すぎる比較例3、4、7、8、11、12、15、16、19、20では初期の接続抵抗が高く、抵抗増加率も10%以上と特に高かった。これは、導電粒子が硬すぎて、導電粒子が十分に扁平にならないため、導電粒子と回路電極との接触面積が小さくなったことに起因すると考えられる。   Further, in Comparative Examples 3, 4, 7, 8, 11, 12, 15, 16, 19, and 20 where the hardness of the conductive particles was too high, the initial connection resistance was high, and the rate of increase in resistance was particularly high at 10% or more. This is probably because the conductive particles are too hard and the conductive particles are not sufficiently flattened, so that the contact area between the conductive particles and the circuit electrode is reduced.

また、回路電極が厚さ50nmのITOで構成されている回路部材を回路接続材料1で接続した実施例1と、回路電極が厚さ25nmのITOで構成されている回路部材を回路接続材料1で接続した比較例27とを比較した場合、比較例27の抵抗増加率は20%前後であるのに対して、実施例1の抵抗増加率は5%未満と小さかった。このことから、Niからなる最外層に突起部が形成され、且つ所定の直径に対応する硬度を有する導電粒子を含む回路接続材料と、ITO又はIZOからなる回路電極と、の組み合わせによる抵抗増加率の抑制効果(接続信頼性の改善効果)は、回路電極の厚みが50nm以上である場合に顕著であることが分かった。   In addition, Example 1 in which circuit members whose circuit electrodes are made of ITO having a thickness of 50 nm are connected by the circuit connection material 1, and circuit members whose circuit electrodes are made of ITO having a thickness of 25 nm are connected to the circuit connection material 1. When compared with Comparative Example 27 connected in (1), the resistance increase rate of Comparative Example 27 was around 20%, whereas the resistance increase rate of Example 1 was as small as less than 5%. From this, the rate of increase in resistance due to the combination of a circuit connecting material including conductive particles having protrusions formed on the outermost layer made of Ni and having hardness corresponding to a predetermined diameter, and a circuit electrode made of ITO or IZO It has been found that the suppression effect (improvement of connection reliability) is significant when the thickness of the circuit electrode is 50 nm or more.

以上説明したように、上記本発明によれば、回路電極の表面が平坦であっても、対向する回路電極同士間の良好な電気的接続を達成できると共に回路電極間の電気特性の長期信頼性を十分に高めることができる回路接続材料及び回路部材の接続構造を提供することができる。   As described above, according to the present invention, even if the surface of the circuit electrode is flat, it is possible to achieve good electrical connection between the facing circuit electrodes and to achieve long-term reliability of the electrical characteristics between the circuit electrodes. It is possible to provide a circuit connection material and a circuit member connection structure that can sufficiently increase the resistance.

1・・・回路部材の接続構造、10・・・回路接続部材、11・・・絶縁性物質、12・・・導電粒子、14・・・突起部、21・・・核体、21a・・・中核部、21b・・・核側突起部、22・・・最外層(金属層)、30・・・第1の回路部材、31・・・第1の回路基板、31a・・・主面、32・・・第1の回路電極、40・・・第2の回路部材、41・・・第2の回路基板、41a・・・主面、42・・・第2の回路電極、H・・・導電粒子の突起部の高さ、S・・・隣接する突起部間の距離。
DESCRIPTION OF SYMBOLS 1 ... Connection structure of a circuit member, 10 ... Circuit connection member, 11 ... Insulative substance, 12 ... Conductive particle, 14 ... Projection part, 21 ... Nucleus, 21a ... · Core portion, 21b ··· Nucleus-side projection, 22 · · · Outermost layer (metal layer), 30 · · · first circuit member, 31 · · · first circuit board, 31a · · · main surface 32 ... first circuit electrode, 40 ... second circuit member, 41 ... second circuit board, 41a ... main surface, 42 ... second circuit electrode, H. ..Height of conductive particle protrusions, S. Distance between adjacent protrusions.

Claims (8)

第1の回路電極を有する第1の回路部材と、前記第1の回路部材に対向し、第2の回路電極を有する第2の回路部材との間に介在して、前記第1の回路電極と前記第2の回路電極とを電気的に導通させる回路接続材料において、
接着剤組成物と、直径が0.5μm以上4μm未満である導電粒子と、を含有し、
前記導電粒子の最外層は、ビッカス硬度が300Hv以上であるNi又はNi合金からなり、
前記最外層の一部が外側に突出して突起部が形成されており、
前記導電粒子の直径が3μm以上4μm未満の時、前記導電粒子の硬度が900〜1400kgf/mmであり、
前記導電粒子の直径が2μm以上3μm未満の時、前記導電粒子の硬度が1000〜1700kgf/mmであり、
前記導電粒子の直径が0.5μm以上2μm未満の時、前記導電粒子の硬度が1200〜2000kgf/mmである、ことを特徴とする回路接続材料。
The first circuit electrode is interposed between a first circuit member having a first circuit electrode and a second circuit member facing the first circuit member and having a second circuit electrode. And a circuit connecting material for electrically connecting the second circuit electrode to each other,
An adhesive composition and conductive particles having a diameter of 0.5 μm or more and less than 4 μm,
The outermost layer of the conductive particles is made of Ni or Ni alloy having a Bickers hardness of 300 Hv or more,
A portion of the outermost layer protrudes outward to form a protrusion,
When the diameter of the conductive particles is 3 μm or more and less than 4 μm, the hardness of the conductive particles is 900 to 1400 kgf / mm 2 ;
When the diameter of the conductive particles is 2 μm or more and less than 3 μm, the hardness of the conductive particles is 1000 to 1700 kgf / mm 2 ;
A circuit connection material, wherein the conductive particles have a hardness of 1200 to 2000 kgf / mm 2 when the diameter of the conductive particles is 0.5 μm or more and less than 2 μm.
前記突起部の高さが50〜500nmであり、
前記最外層の一部が外側に突出して複数の前記突起部が形成されており、
隣接する前記突起部間の距離が1000nm以下である、ことを特徴とする請求項1に記載の回路接続材料。
The protrusion has a height of 50 to 500 nm,
A part of the outermost layer protrudes outward to form a plurality of the protrusions,
The circuit connection material according to claim 1, wherein a distance between adjacent protrusions is 1000 nm or less.
フィルム状である、請求項1又は2に記載の回路接続材料。   The circuit connection material according to claim 1, which is in the form of a film. 請求項1〜3のいずれか一項に記載の回路接続材料が、前記第1の回路部材と前記第2の回路部材との間に介在しており、前記第1の回路電極と前記第2の回路電極とが電気的に導通しており、
前記第1及び第2の回路電極の厚みが50nm以上であることを特徴とする回路部材の接続構造。
The circuit connection material according to claim 1 is interposed between the first circuit member and the second circuit member, and the first circuit electrode and the second circuit member are interposed between the first circuit member and the second circuit member. Is electrically connected to the circuit electrode,
A circuit member connection structure, wherein the first and second circuit electrodes have a thickness of 50 nm or more.
前記第1又は第2の回路電極が、インジウム−錫酸化物であることを特徴とする請求項4に記載の回路部材の接続構造。   5. The circuit member connection structure according to claim 4, wherein the first or second circuit electrode is indium-tin oxide. 前記第1又は第2の回路電極が、インジウム−亜鉛酸化物であることを特徴とする請求項4に記載の回路部材の接続構造。   The circuit member connection structure according to claim 4, wherein the first or second circuit electrode is indium-zinc oxide. 前記第1又は第2の回路電極の表面のみが、インジウム−錫酸化物であることを特徴とする請求項4に記載の回路部材の接続構造。   5. The circuit member connection structure according to claim 4, wherein only the surface of the first or second circuit electrode is indium-tin oxide. 前記第1又は第2の回路電極の表面のみが、インジウム−亜鉛酸化物であることを特徴とする請求項4に記載の回路部材の接続構造。

5. The circuit member connection structure according to claim 4, wherein only the surface of the first or second circuit electrode is indium-zinc oxide.

JP2012226010A 2007-11-12 2012-10-11 Circuit connection material and connection structure of circuit member Withdrawn JP2013055058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012226010A JP2013055058A (en) 2007-11-12 2012-10-11 Circuit connection material and connection structure of circuit member

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2007293079 2007-11-12
JP2007293079 2007-11-12
JP2008144856 2008-06-02
JP2008144856 2008-06-02
JP2012226010A JP2013055058A (en) 2007-11-12 2012-10-11 Circuit connection material and connection structure of circuit member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009522470A Division JPWO2009063827A1 (en) 2007-11-12 2008-11-10 Circuit connection material and circuit member connection structure

Publications (1)

Publication Number Publication Date
JP2013055058A true JP2013055058A (en) 2013-03-21

Family

ID=40638676

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009522470A Pending JPWO2009063827A1 (en) 2007-11-12 2008-11-10 Circuit connection material and circuit member connection structure
JP2012226010A Withdrawn JP2013055058A (en) 2007-11-12 2012-10-11 Circuit connection material and connection structure of circuit member

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009522470A Pending JPWO2009063827A1 (en) 2007-11-12 2008-11-10 Circuit connection material and circuit member connection structure

Country Status (5)

Country Link
JP (2) JPWO2009063827A1 (en)
KR (1) KR20100080628A (en)
CN (1) CN101849266A (en)
TW (1) TWI395801B (en)
WO (1) WO2009063827A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199329A1 (en) * 2017-04-28 2018-11-01 日立化成株式会社 Adhesive composition and method for producing connected object
KR20200108439A (en) 2018-01-17 2020-09-18 히타치가세이가부시끼가이샤 Adhesive composition, connection structure, and manufacturing method thereof
KR20220162734A (en) 2020-04-10 2022-12-08 쇼와덴코머티리얼즈가부시끼가이샤 Adhesive composition, adhesive film, connection structure and manufacturing method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4640532B2 (en) * 2009-07-02 2011-03-02 日立化成工業株式会社 Coated conductive particles
JP4640531B2 (en) * 2009-07-02 2011-03-02 日立化成工業株式会社 Conductive particles
WO2011002084A1 (en) * 2009-07-02 2011-01-06 日立化成工業株式会社 Conductive particle
JP6061443B2 (en) * 2010-12-24 2017-01-18 デクセリアルズ株式会社 Anisotropic conductive adhesive film, connection structure and manufacturing method thereof
KR101940349B1 (en) * 2011-07-08 2019-01-18 히타치가세이가부시끼가이샤 Reel for adhesive tape, tape roll, packaging, use of reel as reel for adhesive tape for winding adhesive tape, and method for manufacturing reel for adhesive tape
EP3096330B1 (en) * 2014-01-14 2019-04-10 Toyo Aluminium Kabushiki Kaisha Composite conductive particle, conductive resin composition containing same and conductive coated article
CN108350341B (en) 2015-11-04 2020-09-04 日立化成株式会社 Adhesive composition and structure
WO2017078087A1 (en) 2015-11-04 2017-05-11 日立化成株式会社 Adhesive composition and structure
KR102615097B1 (en) 2015-11-25 2023-12-18 가부시끼가이샤 레조낙 Adhesive composition and structure for circuit connection
WO2018181589A1 (en) 2017-03-29 2018-10-04 日立化成株式会社 Adhesive composition and structure
JPWO2022158594A1 (en) 2021-01-25 2022-07-28

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100539060B1 (en) * 1997-10-28 2007-04-25 소니 케미카루 가부시키가이샤 Anisotropic conductive adhesive and adhesive film
JP3379456B2 (en) * 1998-12-25 2003-02-24 ソニーケミカル株式会社 Anisotropic conductive adhesive film
JP2000309715A (en) * 1999-04-26 2000-11-07 Sekisui Chem Co Ltd Polymer microparticle and conductive microparticle
JP2003234020A (en) * 2002-02-06 2003-08-22 Sekisui Chem Co Ltd Conductive minute particle
JP4154919B2 (en) * 2002-02-28 2008-09-24 日立化成工業株式会社 Circuit connection material and circuit terminal connection structure using the same
JP5247968B2 (en) * 2003-12-02 2013-07-24 日立化成株式会社 Circuit connection material and circuit member connection structure using the same
JP2007012378A (en) * 2005-06-29 2007-01-18 Fujikura Kasei Co Ltd Conductive particulate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199329A1 (en) * 2017-04-28 2018-11-01 日立化成株式会社 Adhesive composition and method for producing connected object
JPWO2018199329A1 (en) * 2017-04-28 2020-05-14 日立化成株式会社 Adhesive composition and method for producing connected body
JP7287275B2 (en) 2017-04-28 2023-06-06 株式会社レゾナック ADHESIVE COMPOSITION AND METHOD FOR MANUFACTURING CONNECTED BODY
KR20200108439A (en) 2018-01-17 2020-09-18 히타치가세이가부시끼가이샤 Adhesive composition, connection structure, and manufacturing method thereof
KR20220162734A (en) 2020-04-10 2022-12-08 쇼와덴코머티리얼즈가부시끼가이샤 Adhesive composition, adhesive film, connection structure and manufacturing method thereof

Also Published As

Publication number Publication date
CN101849266A (en) 2010-09-29
KR20100080628A (en) 2010-07-09
TW200946629A (en) 2009-11-16
JPWO2009063827A1 (en) 2011-03-31
TWI395801B (en) 2013-05-11
WO2009063827A1 (en) 2009-05-22

Similar Documents

Publication Publication Date Title
JP5247968B2 (en) Circuit connection material and circuit member connection structure using the same
JP4737177B2 (en) Circuit connection structure
JP4743322B2 (en) Circuit connection material and circuit member connection structure
JP4293187B2 (en) Circuit connection material, film-like circuit connection material using the same, circuit member connection structure, and manufacturing method thereof
JP2013055058A (en) Circuit connection material and connection structure of circuit member
JP5051221B2 (en) Circuit member connection structure and circuit member connection method
KR101024479B1 (en) Circuit connecting material, connection structure for circuit member using the same and production method thereof
JPWO2009017001A1 (en) Circuit member connection structure
JP2011100605A (en) Circuit connecting material and connection structure of circuit member using the same
JP4154919B2 (en) Circuit connection material and circuit terminal connection structure using the same
JP4844461B2 (en) Circuit connection material and circuit terminal connection structure using the same
JP2019065062A (en) Conductive adhesive film
JP4325379B2 (en) Circuit connection material, film-like circuit connection material using the same, circuit member connection structure, and manufacturing method thereof
JP2011054988A (en) Circuit connecting material
JP2011119154A (en) Connection method and connection structure
JP5387592B2 (en) Circuit connection material and method of manufacturing circuit member connection structure
JP4400674B2 (en) Circuit connection material and circuit terminal connection structure using the same

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130313