JP2013044689A - Shape measurement device and shape measurement method - Google Patents

Shape measurement device and shape measurement method Download PDF

Info

Publication number
JP2013044689A
JP2013044689A JP2011184185A JP2011184185A JP2013044689A JP 2013044689 A JP2013044689 A JP 2013044689A JP 2011184185 A JP2011184185 A JP 2011184185A JP 2011184185 A JP2011184185 A JP 2011184185A JP 2013044689 A JP2013044689 A JP 2013044689A
Authority
JP
Japan
Prior art keywords
light source
phase
light sources
dimensional
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011184185A
Other languages
Japanese (ja)
Other versions
JP5853284B2 (en
Inventor
Yoshiharu Morimoto
吉春 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MOIRE INST Inc
MOIRE INSTITUTE Inc
Original Assignee
MOIRE INST Inc
MOIRE INSTITUTE Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MOIRE INST Inc, MOIRE INSTITUTE Inc filed Critical MOIRE INST Inc
Priority to JP2011184185A priority Critical patent/JP5853284B2/en
Publication of JP2013044689A publication Critical patent/JP2013044689A/en
Application granted granted Critical
Publication of JP5853284B2 publication Critical patent/JP5853284B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shape measurement device capable of performing shape measurement of an object in a non-contact manner and with high precision, and to provide a shape measurement method.SOLUTION: An inventive shape measurement device 1 comprises: a light source array 11 with at least five light sources arranged at equal intervals in line; a grating plate 12 having a lattice plane of a one-dimensional lattice; a camera 13 capturing a measurement object 21 on which the one-dimensional lattice is projected; and a control unit 50. The control unit 50 sets two light source groups consisting of at least four neighboring light sources among at least five light sources, controls the light source array 11 so that the light sources in the two light source groups are lit one by one successively, controls the camera 13 so that one-dimensional lattices projected on the measurement object 21 are captured, respectively, calculates the phase of the one-dimensional lattices projected on the measurement object 21 by two light source groups form captured images, respectively, and obtains height coordinates relating to the measurement object 21 on the basis of a predetermined conversion formula by using the difference between the two phases as a phase shift amount.

Description

本発明は、物体の形状計測を非接触且つ高精度で行い得る形状計測装置及び形状計測方法に関する。   The present invention relates to a shape measuring apparatus and a shape measuring method that can perform shape measurement of an object in a non-contact and high accuracy.

従来、物体や人体等の計測対象物体の形状を非接触且つ3次元的に計測する方法として、位相シフト法を用いた方法がある。位相シフト法は、位相を変化させながら格子画像や干渉縞画像を1台のカメラで順次撮影し、これら位相を変化させた複数枚の格子画像や干渉縞画像に基づいて格子の位相分布を求めるものである。   Conventionally, there is a method using a phase shift method as a method for non-contact and three-dimensionally measuring the shape of a measurement target object such as an object or a human body. In the phase shift method, a lattice image and an interference fringe image are sequentially photographed by one camera while changing the phase, and a phase distribution of the lattice is obtained based on a plurality of lattice images and interference fringe images whose phases are changed. Is.

位相シフト法を用いた方法として、例えば、カメラとプロジェクタを用いて、これらのカメラ又はプロジェクタのレンズ収差の影響を受けることなく高精度な形状計測を行うために、格子が描かれた基準平板の画像からカメラ又はプロジェクタのレンズ中心座標を算出するのではなく、複数の基準面における各基準面に固定された2次元格子から、カメラの画素毎の視線が通る光路と、プロジェクタから投影される光の光路とをそれぞれ全て求めて、これらの光路の交点として空間座標を算出する形状計測方法及び形状計測装置が知られている(例えば、特許文献1参照)。   As a method using the phase shift method, for example, using a camera and a projector, in order to perform highly accurate shape measurement without being affected by lens aberration of these cameras or projectors, a reference plate on which a grating is drawn is used. Rather than calculating the lens center coordinates of the camera or projector from the image, the optical path through which the line of sight for each pixel of the camera passes from the two-dimensional grid fixed to each reference plane in the plurality of reference planes, and the light projected from the projector There are known a shape measuring method and a shape measuring apparatus that calculate all of the optical paths and calculate spatial coordinates as intersections of these optical paths (see, for example, Patent Document 1).

また、カメラとプロジェクタを用いて複数の基準面を基に物体の形状計測を行う別の技術がある。例えば、互いに直交するX,Y軸平面を有する基準面を、基準面の法線方向(即ち、X,Y軸平面に垂直なZ軸方向)に所定の間隔で複数設定しておき、計測すべき物体を当該複数の基準面のうち、両端に位置する基準面の間に配置し、その後、物体の表面上の点Sの座標を求めるために、物体上の点Sを撮影するカメラの視線と物体上の点Sを通るプロジェクタからの光線の各々が当該複数の基準面にそれぞれ交わる点を算出し、カメラの視線上の当該交わる点からなる直線と、プロジェクタからの光線上の当該交わる点からなる直線との交点を求め、この交点のZ座標からその点に最も近接した2つの基準面を選出し、選出した2つの基準面を用いて物体の形状を計測する技術が知られている(例えば、特許文献2参照)。   There is another technique for measuring the shape of an object based on a plurality of reference planes using a camera and a projector. For example, a plurality of reference planes having X and Y axis planes orthogonal to each other are set at predetermined intervals in the normal direction of the reference plane (that is, the Z axis direction perpendicular to the X and Y axis planes) and measured. A line of sight of a camera that shoots a point S on the object in order to determine the coordinates of the point S on the surface of the object by arranging the power object between the reference surfaces located at both ends of the plurality of reference surfaces And a point where each of the light rays from the projector passing through the point S on the object intersects the plurality of reference planes, and a line formed by the intersecting points on the line of sight of the camera and the intersecting point on the light rays from the projector A technique is known in which an intersection point with a straight line is obtained, two reference planes closest to the point are selected from the Z coordinate of the intersection point, and the shape of the object is measured using the two selected reference planes. (For example, refer to Patent Document 2).

他方、カメラとプロジェクタを用いて複数の基準面を基に物体の形状計測を行う更に別の技術として、X,Y軸平面を有する基準面をその法線方向に微小量ずつ平行移動させたときの複数の基準面について、所定の2次元パターンや空間分割パターンを利用することにより、物体に投影する空間分割パターンの輝度分布が余弦波状でなくても、さらには物体に投影する空間分割パターンのピッチが不等間隔であっても、精度良く形状計測を行い得る形状計測装置が知られている(例えば、特許文献3参照)。   On the other hand, as yet another technique for measuring the shape of an object based on a plurality of reference planes using a camera and a projector, when a reference plane having X and Y axis planes is translated by a minute amount in the normal direction By using a predetermined two-dimensional pattern or a spatial division pattern for the plurality of reference planes, even if the luminance distribution of the spatial division pattern projected onto the object is not cosine-like, the spatial division pattern projected onto the object 2. Description of the Related Art A shape measuring apparatus that can accurately measure a shape even when the pitch is unequal is known (see, for example, Patent Document 3).

特許第2913021号明細書Japanese Patent No. 2913021 特許第3446020号明細書Japanese Patent No. 3446020 特開2008−281491号公報JP 2008-281491 A

上述の特許文献1〜3に開示される技術では、位相シフトを行うための格子を描いた基板(格子基板)の移動機構を用いることが代表的な実施形態として考えられる。例えば、特許文献1に開示される技術では、位相シフトを行うために格子基板を移動機構上に設けて格子基板を機械的に移動させることになる。この移動機構は、例えばピエゾステージ等で構成され非常に高価なものとなるだけでなく、格子の位相シフトを高速に行うことに不向きであり、高速で移動する物体の形状を計測することが困難な構成要素となる。   In the technologies disclosed in Patent Documents 1 to 3 described above, it is considered as a typical embodiment to use a moving mechanism of a substrate (grating substrate) on which a grating for performing phase shift is drawn. For example, in the technique disclosed in Patent Document 1, a grating substrate is provided on a moving mechanism to perform a phase shift, and the grating substrate is mechanically moved. This moving mechanism is not only very expensive because it consists of, for example, a piezo stage, but it is not suitable for performing phase shift of the grating at high speed, and it is difficult to measure the shape of an object moving at high speed It becomes a necessary component.

また、位相シフトに基づいて形状計測を行うためには、この位相シフト量をより高精度で求める工夫が要望される。   Further, in order to perform shape measurement based on the phase shift, a device for obtaining the phase shift amount with higher accuracy is required.

本発明は、上述の問題に鑑みて為されたものであり、本発明の目的は、物体の形状計測を非接触且つ高精度で行い得る形状計測装置及び形状計測方法を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a shape measuring device and a shape measuring method capable of measuring the shape of an object in a non-contact and highly accurate manner.

本発明では、少なくとも5つの光源を等間隔かつ一列に並べ、このうち隣接配置の少なくとも4つの光源からなる光源組を少なくとも2組設定し、2つの光源組における各光源を順次点灯して計測対象物体上に投影される格子を撮影し、それぞれの光源組による格子の位相を算出し、求めた2つの格子の位相の差を位相シフト量として予め定めた換算式に基づいて高さ座標を求める。また、3つ以上の光源組としてもよい。これにより、光源の切り替え制御で格子の位相シフトを高速化するとともに、少なくとも2つの光源組を用いるため計測対象物体の形状計測を高精度化する。尚、本発明では、少なくとも4つの光源からなる光源組毎に、この少なくとも4つの光源の順次点灯によって格子を位相シフトさせるため、この位相シフト量は、従来の位相シフト法のように2πを整数で割った値とはならずに上記少なくとも4つの光源を通る直線からの距離に依存することとなり、空間座標と位相との間で距離に依存しない換算式を用いる従来の位相シフト法とは異なる方式となっている。   In the present invention, at least five light sources are arranged in a line at equal intervals, and among these, at least two light source sets composed of at least four light sources adjacent to each other are set, and each light source in the two light source sets is sequentially turned on to be measured. The grid projected on the object is photographed, the phase of the grid by each light source set is calculated, and the height coordinate is obtained based on a predetermined conversion formula using the phase difference between the two obtained grids as a phase shift amount. . Moreover, it is good also as three or more light source groups. Thereby, the phase shift of the grating is accelerated by the light source switching control, and the shape measurement of the measurement target object is made highly accurate because at least two light source sets are used. In the present invention, since the grating is phase-shifted by sequentially lighting the at least four light sources for each light source set composed of at least four light sources, the phase shift amount is an integer of 2π as in the conventional phase shift method. It is dependent on the distance from the straight line passing through the at least four light sources rather than being divided by the above, and is different from the conventional phase shift method using a conversion formula that does not depend on the distance between the spatial coordinates and the phase. It is a method.

即ち、本発明の形状計測装置は、計測対象物体の形状を非接触で計測する形状計測装置であって、少なくとも5つの光源を等間隔に直線状に配列した光源アレイと、前記少なくとも5つの光源を配列した直線に対して垂直方向の直線からなる光透過領域を光遮蔽領域に対して等間隔で並べて構成された1次元格子の格子面を有する格子プレートと、前記少なくとも5つの光源の順次点灯により前記1次元格子がそれぞれ前記計測対象物体上に投影される計測対象物体を撮影するカメラと、前記少なくとも5つの光源のうち隣接配置の少なくとも4つの光源からなる光源組を2組設定し、前記2組の光源組における各光源を順次点灯するよう前記光源アレイを制御するとともに、前記各光源を順次点灯してそれぞれ投影される1次元格子を撮影するよう前記カメラを制御し、前記2組の光源組による前記計測対象物体上に投影された前記1次元格子の位相をそれぞれ算出し、算出した当該2つの位相の差を位相シフト量として、前記位相シフト量から距離を決定する予め定めた換算式に基づいて前記計測対象物体に関する高さ座標を求める制御ユニットと、を備えることを特徴とする。ここで、光源の各々を複数のLEDからなるものとし、この複数のLEDを点光源として構成して高輝度化することができる。また、この複数のLEDを直線からなる光透過領域に対して平行に配置することで更に高輝度化することができる。   That is, the shape measuring device of the present invention is a shape measuring device that measures the shape of a measurement target object in a non-contact manner, and includes a light source array in which at least five light sources are linearly arranged at equal intervals, and the at least five light sources. A grid plate having a grid surface of a one-dimensional grid configured by arranging light transmission regions composed of straight lines perpendicular to the straight lines arranged at equal intervals with respect to the light shielding region, and sequentially lighting the at least five light sources Two sets of light source sets each including a camera that captures the measurement target object projected on the measurement target object by the one-dimensional grating and at least four light sources adjacent to each other among the at least five light sources, The light source array is controlled so that each light source in the two light source groups is sequentially turned on, and each light source is turned on sequentially to photograph a projected one-dimensional lattice. Controlling the camera to calculate the phase of the one-dimensional grating projected onto the measurement target object by the two sets of light sources, and using the calculated difference between the two phases as a phase shift amount, And a control unit for obtaining a height coordinate related to the measurement target object based on a predetermined conversion formula for determining a distance from a phase shift amount. Here, each light source is composed of a plurality of LEDs, and the plurality of LEDs can be configured as point light sources to increase the luminance. Further, it is possible to further increase the brightness by arranging the plurality of LEDs in parallel to the light transmission region formed of a straight line.

また、本発明の形状計測装置において、前記位相シフト量から距離を決定する予め定めた換算式は、前記少なくとも5つの光源を配列した直線上の1点を原点として、前記格子プレートのそれぞれの光透過領域の配列方向をX軸、前記光透過領域の直線をY軸、及び前記格子プレートの格子面の法線方向をZ軸とし、前記光源アレイの原点から前記計測対象物体の表面までの前記Z軸方向の距離をz、前記光源アレイの各光源の間隔をl、前記光源アレイの原点から前記格子面までのZ軸方向の距離をd、前記位相シフト量をΨ、前記1次元格子の間隔をpとしたとき、
Further, in the shape measuring apparatus of the present invention, the predetermined conversion formula for determining the distance from the phase shift amount is that each light of the grating plate has one point on the straight line where the at least five light sources are arranged as the origin. The arrangement direction of the transmission region is the X axis, the straight line of the light transmission region is the Y axis, and the normal direction of the lattice plane of the lattice plate is the Z axis, and the origin from the light source array to the surface of the measurement target object The distance in the Z-axis direction is z, the interval between the light sources in the light source array is l, the distance in the Z-axis direction from the origin of the light source array to the grating plane is d, the phase shift amount is Ψ, and the one-dimensional grating is When the interval is p,

また、本発明の形状計測装置において、前記制御ユニットは、当該投影された1次元格子の位相から距離を決定する予め定めた換算式に基づいて前記計測対象物体に関する高さ座標を求める手段を有し、前記少なくとも5つの光源を配列した直線上の1点を原点として、前記格子プレートのそれぞれの光透過領域の配列方向をX軸、前記光透過領域の直線をY軸、及び前記格子プレートの格子面の法線方向をZ軸とし、前記光源アレイの原点から前記計測対象物体の表面までの前記Z軸方向の距離をz、前記光源アレイの原点から前記格子面までの前記Z軸方向の距離をd、前記1次元格子の位相をΦ、前記1次元格子の間隔をp、前記原点から前記計測対象物体の表面までの前記X軸方向の距離をx、前記1次元格子を構成する各光透過領域の中央位置のうち前記Z軸からの最短距離をeとしたとき、
In the shape measuring apparatus of the present invention, the control unit has means for obtaining a height coordinate related to the measurement target object based on a predetermined conversion formula for determining a distance from the phase of the projected one-dimensional grating. Then, with one point on the straight line where the at least five light sources are arranged as the origin, the arrangement direction of the light transmission regions of the lattice plate is the X axis, the straight line of the light transmission region is the Y axis, and the lattice plate The normal direction of the lattice plane is the Z-axis, the distance in the Z-axis direction from the origin of the light source array to the surface of the object to be measured is z, and the Z-axis direction from the origin of the light source array to the lattice plane The distance is d, the phase of the one-dimensional grating is Φ, the interval of the one-dimensional grating is p, the distance in the X-axis direction from the origin to the surface of the object to be measured is x, and each of the elements constituting the one-dimensional grating Light transmission area The shortest distance from the Z-axis of the center position when the e of,

また、本発明の形状計測装置において、前記1次元格子が投影されるように配置された基準面を有する基準平板を更に備え、前記制御ユニットは、前記少なくとも5つの光源のうち隣接配置の少なくとも4つの光源からなる光源組を2組設定し、前記2組の光源組における各光源を順次点灯するよう前記光源アレイを制御するとともに、前記各光源を順次点灯してそれぞれ前記基準面に投影される1次元格子を撮影するよう前記カメラを制御し、前記2組の光源組による前記基準面上に投影された前記1次元格子の位相をそれぞれ算出してメモリに保持する手段と、前記2組の光源組のそれぞれについて、前記メモリに保持した前記基準面上に投影された前記1次元格子の位相と、前記計測対象物体上に投影された前記1次元格子の位相との差分を算出し、該差分から距離を決定する予め定めた換算式に基づいて前記計測対象物体に関する高さ座標を求める手段とを備えることを特徴とする。   The shape measurement apparatus of the present invention further includes a reference plate having a reference surface arranged so that the one-dimensional grating is projected, and the control unit includes at least four of the at least five light sources arranged adjacent to each other. Two sets of light sources consisting of two light sources are set, and the light source array is controlled so that the respective light sources in the two sets of light sources are sequentially turned on, and the respective light sources are turned on sequentially and projected onto the reference plane. Means for controlling the camera to photograph a one-dimensional grating, calculating a phase of the one-dimensional grating projected on the reference plane by the two sets of light sources, and holding them in a memory; For each light source set, the phase of the one-dimensional grating projected onto the reference plane held in the memory and the phase of the one-dimensional grating projected onto the measurement target object Min is calculated and further comprising a means for determining height coordinates for advance the measurement object on the basis of the conversion formula determined for determining the distance from said difference.

また、本発明の形状計測装置において、前記差分から距離を決定する予め定めた換算式は、前記少なくとも5つの光源を配列した直線上の1点を原点として、前記格子プレートのそれぞれの光透過領域の配列方向をX軸、前記光透過領域の直線をY軸、及び前記格子プレートの格子面の法線方向をZ軸とし、前記光源アレイの原点から前記計測対象物体の表面までの前記Z軸方向の距離をz、前記光源アレイの原点から前記格子面までの前記Z軸方向の距離をd、前記原点から前記カメラのレンズの中心までの距離をv、前記原点から前記基準面までのZ軸方向の距離をz、前記1次元格子の間隔をp、前記原点から前記計測対象物体の表面までの前記X軸方向の距離xにおける当該投影された前記1次元格子の位相をΦ、前記距離xの前記計測対象物体の表面位置と前記レンズの中心とを通る直線と、前記基準面との交点における当該投影された前記1次元格子の位相をΦとしたとき、
Further, in the shape measuring apparatus of the present invention, the predetermined conversion formula for determining the distance from the difference is that each light transmission region of the lattice plate has an origin at one point on a straight line where the at least five light sources are arranged. The X axis is the X axis, the straight line of the light transmission region is the Y axis, and the normal direction of the grating plane of the grating plate is the Z axis, and the Z axis from the origin of the light source array to the surface of the object to be measured The distance in the direction is z, the distance in the Z-axis direction from the origin of the light source array to the lattice plane is d, the distance from the origin to the center of the camera lens is v, and the distance from the origin to the reference plane is Z. The axial distance is z R , the interval between the one-dimensional gratings is p, and the phase of the projected one-dimensional grating at the distance x in the X-axis direction from the origin to the surface of the measurement target object is Φ S , The distance x A straight line passing through the center of the measurement object surface position and the lens, when the phase of the one-dimensional lattice which is the projection of the intersection between the reference plane and the [Phi R,

また、本発明の形状計測装置において、前記制御ユニットは、前記カメラの画素位置で定まるX軸及びY軸のx,y座標とZ軸のz座標からなる三次元座標について、前記基準平板を用いて計測された一定間隔のz座標毎に、前記位相と前記x,y座標との関係、及び前記位相シフト量と前記x,y座標との関係を関連づけるテーブルをそれぞれ作成して前記メモリに保持する手段と、前記計測対象物体について算出した前記1次元格子の位相及び前記位相シフト量から、前記メモリに保持したテーブルを参照して前記計測対象物体に関する三次元座標を導出する手段とを備えることを特徴とする。   In the shape measuring apparatus of the present invention, the control unit uses the reference flat plate for three-dimensional coordinates composed of x, y coordinates of the X axis and Y axis determined by the pixel position of the camera and z coordinates of the Z axis. A table that associates the relationship between the phase and the x and y coordinates and the relationship between the phase shift amount and the x and y coordinates is created and stored in the memory for each z coordinate measured at a predetermined interval. And means for deriving three-dimensional coordinates relating to the measurement target object from the phase of the one-dimensional grating calculated for the measurement target object and the phase shift amount with reference to a table held in the memory. It is characterized by.

さらに、本発明の形状計測方法は、少なくとも5つの光源を等間隔に直線状に配列した光源アレイと、前記少なくとも5つの光源を配列した直線に対して垂直方向の直線からなる光透過領域を光遮蔽領域に対して等間隔で並べて構成された1次元格子の格子面を有する格子プレートと、前記少なくとも5つの光源の順次点灯により前記1次元格子がそれぞれ投影される計測対象物体を撮影するカメラと、制御ユニットと、を備える形状計測装置によって前記計測対象物体の形状を計測する形状計測方法であって、前記制御ユニットの処理は、前記少なくとも5つの光源のうち隣接配置の少なくとも4つの光源からなる光源組を2組設定するステップと、前記2組の光源組における各光源を順次点灯するよう前記光源アレイを制御するステップと、前記各光源を順次点灯してそれぞれ前記計測対象物体上に投影される1次元格子を撮影するよう前記カメラを制御するステップと、前記2組の光源組による前記計測対象物体上に投影された前記1次元格子の位相をそれぞれ算出するステップと、算出した当該2つの位相の差を位相シフト量として、前記位相シフト量から距離を決定する予め定めた換算式に基づいて前記計測対象物体に関する高さ座標を求めるステップと、を含むことを特徴とする。   Furthermore, the shape measuring method of the present invention provides a light source region in which at least five light sources are arranged in a straight line at equal intervals, and a light transmission region consisting of a straight line perpendicular to the straight line in which the at least five light sources are arranged. A lattice plate having a lattice plane of a one-dimensional lattice arranged at equal intervals with respect to the shielding area, and a camera for photographing a measurement target object onto which the one-dimensional lattice is projected by sequentially turning on the at least five light sources; , A shape measuring method for measuring the shape of the object to be measured by a shape measuring device comprising a control unit, wherein the processing of the control unit comprises at least four light sources adjacently arranged among the at least five light sources. A step of setting two sets of light sources, and a step of controlling the light source array so as to sequentially turn on each light source in the two sets of light sources. Illuminating each light source sequentially and controlling the camera to photograph a one-dimensional lattice projected onto the measurement target object, respectively, and projecting onto the measurement target object by the two sets of light sources A step of calculating the phase of the one-dimensional grating, and a difference between the calculated two phases as a phase shift amount, based on a predetermined conversion formula for determining a distance from the phase shift amount, Obtaining a height coordinate.

本発明によれば、少なくとも5つの光源を順次点灯させることにより位相シフトを高速に行うことができるため、計測対象物体の形状を高速かつ高精度に計測することができる。   According to the present invention, since the phase shift can be performed at high speed by sequentially turning on at least five light sources, the shape of the measurement target object can be measured at high speed and with high accuracy.

本発明による第1実施形態の形状計測装置の構成とその動作原理を示す図である。It is a figure which shows the structure of the shape measuring apparatus of 1st Embodiment by this invention, and its operation principle. (A),(B)は、本発明による第1実施形態(及び第2実施形態)の形状計測装置における光源アレイと格子プレートの配置例を示す図である。(A), (B) is a figure which shows the example of arrangement | positioning of the light source array and grating | lattice plate in the shape measuring device of 1st Embodiment (and 2nd Embodiment) by this invention. 本発明による第1実施形態(及び第2実施形態)の形状計測装置における制御ユニットのブロック図である。It is a block diagram of the control unit in the shape measuring apparatus of 1st Embodiment (and 2nd Embodiment) by this invention. 本発明に係る光ステッピング法における位相シフト量と輝度との関係を示す図である。It is a figure which shows the relationship between the phase shift amount and the brightness | luminance in the optical stepping method which concerns on this invention. 本発明による第1実施形態の形状計測装置の動作フローの一例を示す図である。It is a figure which shows an example of the operation | movement flow of the shape measuring apparatus of 1st Embodiment by this invention. 本発明による第1実施形態の形状計測装置による三次元座標テーブルの例を示す図である。It is a figure which shows the example of the three-dimensional coordinate table by the shape measuring apparatus of 1st Embodiment by this invention. 本発明による第2実施形態の形状計測装置の構成とその動作原理を示す図である。It is a figure which shows the structure and operating principle of the shape measuring apparatus of 2nd Embodiment by this invention. 本発明による第2実施形態の形状計測装置による三次元座標テーブルの例を示す図である。It is a figure which shows the example of the three-dimensional coordinate table by the shape measuring apparatus of 2nd Embodiment by this invention. 本発明に係る位相シフト量の余弦と高さとの関係の例を示す図である。It is a figure which shows the example of the relationship between the cosine of the phase shift amount and height which concern on this invention. 本発明に係る位相の正接と高さとの関係の例を示す図である。It is a figure which shows the example of the relationship between the tangent of a phase which concerns on this invention, and height. 本発明に係る計測対象物体上での位相と基準面上での位相との差と、高さとの関係を示す図である。It is a figure which shows the relationship between the difference of the phase on the measurement object which concerns on this invention, and the phase on a reference plane, and height.

以下、本発明による第1実施形態及び第2実施形態の形状計測装置について、それぞれ図面を参照して説明する。尚、第1実施形態の形状計測装置1は、基準面を用いずに計測対象物体の形状を計測する態様であり、第2実施形態の形状計測装置2は、基準面を用いて計測対象物体の形状を計測する態様である。   Hereinafter, a shape measuring device according to a first embodiment and a second embodiment of the present invention will be described with reference to the drawings. In addition, the shape measuring apparatus 1 of 1st Embodiment is an aspect which measures the shape of a measurement target object, without using a reference plane, and the shape measurement apparatus 2 of 2nd Embodiment is a measurement target object using a reference plane. It is the aspect which measures the shape of.

〔第1実施形態〕
まず、本発明による第1実施形態の形状計測装置1について説明する。図1は、本発明による第1実施形態の形状計測装置1の構成とその動作原理を示す図である。本実施形態の形状計測装置1は、計測対象物体21の三次元形状を計測する装置であり、等間隔且つ一列に並べられた6つの光源L−2,L−1,L,L,L及びLからなる光源アレイ11と、1次元格子からなる格子面を有する格子プレート12と、カメラ13と、制御ユニット50とを備える。
[First Embodiment]
First, the shape measuring apparatus 1 of 1st Embodiment by this invention is demonstrated. FIG. 1 is a diagram showing the configuration of the shape measuring apparatus 1 according to the first embodiment of the present invention and its operating principle. Shape measuring apparatus 1 of this embodiment, measuring a device for measuring a three-dimensional shape of the target object 21, equally spaced and six arranged in a row of the light source L -2, L -1, L 0 , L 1, A light source array 11 composed of L 2 and L 3 , a lattice plate 12 having a lattice plane composed of a one-dimensional lattice, a camera 13, and a control unit 50 are provided.

X軸、Y軸及びZ軸からなる座標点x,y,zで三次元空間を規定するために、光源アレイ11を構成する6つの光源L−2,L−1,L,L,L及びLのうちのいずれかの光源の位置(図1に示す例では、Lの位置)を原点O(即ち、x=0,y=0,z=0)とし、格子プレート12のそれぞれの光透過領域12bの配列方向をX軸、光透過領域12bの直線をY軸、及び格子プレート12の格子面の法線方向をZ軸とする。計測対象物体21は、Z軸方向に配置される。尚、原点Oの位置は、光源アレイ11における両端の光源間の中央位置として規定することもできるが、ここでは6つの光源のうちのいずれかの位置を原点Oとする。 X-axis, Y-axis and made of Z-axis coordinate points x, y, in order to define the three-dimensional space by z, 6 single light source L -2 constituting the light source array 11, L -1, L 0, L 1, The position of one of the light sources L 2 and L 3 (the position of L 0 in the example shown in FIG. 1) is the origin O (ie, x = 0, y = 0, z = 0), and the grating plate 12 The arrangement direction of the respective light transmission regions 12b is defined as the X axis, the straight line of the light transmission region 12b is defined as the Y axis, and the normal direction of the lattice plane of the lattice plate 12 is defined as the Z axis. The measurement target object 21 is arranged in the Z-axis direction. The position of the origin O can also be defined as the center position between the light sources at both ends in the light source array 11, but here, any one of the six light sources is defined as the origin O.

光源アレイ11は、6つの光源L−2,L−1,L,L,L及びLを等間隔に直線状に配列した構成となっている。図1では、光源アレイ11として、X軸方向に等間隔で配列した6つの光源からなる例を代表的に説明するが、5つの光源、又は7つ以上の光源を備えるように構成することもできる。また、光源として発光ダイオード(LED)を用いており、各LEDは線光源又は点光源として構成することができる。即ち、LEDチップの出力は小さいため、複数のLEDチップをY軸方向に並べてY軸に対して平行となる線光源とし、この各線光源をX軸方向に等間隔で配列して6つの光源L−2,L−1,L,L,L及びLを構成することができる。更に、複数のLEDチップを集約して1つの点光源とすることもできる。例えば、図2(A)に示すように、各光源は、複数のLEDチップ11cをY軸方向に配列し、必要に応じて指向性レンズ11dを設けることで線光源として構成することができる。また、図2(B)に示すように、各光源は、複数のLEDチップを集約して1つの点光源として構成することができる。また、6つの光源間の間隔はlである。以下、6つの光源L−2,L−1,L,L,L及びLを含むz=0の面(X軸及びY軸からなるX,Y軸平面に平行でz=0となる面)を「光源面」と称する。つまり、光源アレイ11上から計測対象物体21の表面までのZ軸方向の距離をz(換言すれば、光源面からZ軸方向の位置を「高さ」を表す座標点z)とすることができる。 Light source array 11, six light sources L -2, L -1, has a configuration that is linearly arranged to L 0, L 1, L 2 and L 3 at equal intervals. In FIG. 1, an example of six light sources arranged at equal intervals in the X-axis direction will be representatively described as the light source array 11, but the light source array 11 may be configured to include five light sources or seven or more light sources. it can. Moreover, the light emitting diode (LED) is used as a light source, and each LED can be comprised as a line light source or a point light source. That is, since the output of the LED chip is small, a plurality of LED chips are arranged in the Y-axis direction to form a line light source that is parallel to the Y-axis, and each of these line light sources is arranged at equal intervals in the X-axis direction. -2, L -1, it is possible to configure the L 0, L 1, L 2 and L 3. Furthermore, a plurality of LED chips can be integrated into a single point light source. For example, as shown in FIG. 2A, each light source can be configured as a linear light source by arranging a plurality of LED chips 11c in the Y-axis direction and providing a directional lens 11d as necessary. Further, as shown in FIG. 2B, each light source can be configured as a single point light source by integrating a plurality of LED chips. The interval between the six light sources is l. Hereinafter, six light sources L -2, L -1, L 0 , L 1, L 2 and L 3 the plane of z = 0 comprising (consisting of X-axis and Y-axis X, parallel to the Y-axis plane z = 0 Is referred to as a “light source surface”. That is, the distance in the Z-axis direction from the light source array 11 to the surface of the measurement target object 21 is set to z (in other words, the position in the Z-axis direction from the light source surface is a coordinate point z representing “height”). it can.

格子プレート12は、6つの光源L−2,L−1,L,L,L及びLを配列した方向(図1及び図2に示す例では、X軸方向)に対して垂直方向(即ち、Y軸方向)の直線からなる光透過領域12bを光遮蔽領域12aに対して等間隔で並べて構成された1次元格子の格子面を有する。例えば、格子プレート12は、透明のガラス又はプラスチック材の表面に黒色の1次元格子の格子面を印刷することで構成することができるほか、光を遮蔽する部材(光遮蔽領域12a)にスリット(光透過領域12b)を設けて構成することもできる。この格子プレート12は、光源アレイ11から照射された光が格子プレート12を通過することにより、1次元格子が計測対象物体21上に投影されるように構成されている。1次元格子を構成する各光透過領域12bの格子間隔はpであり、図1に例示する態様では光源面と格子面は平行であり、光源面と格子面との間隔はdである。また、1次元格子を構成する各光透過領域12bの中央位置のうちZ軸からの距離が最短なものを基準点E(Φ=0)とし、格子プレート12の格子面とZ軸との交点をCとする。尚、当該投影される1次元格子の輝度分布は余弦波状である必要がある。このため、格子プレート12上の輝度分布(透過率分布)が矩形波状であっても、距離dの位置に設けた光源アレイ11の光源から照射された光によって計測対象物体21に投影される1次元格子は、カメラ13による撮像画像上において、ほぼ余弦波状になる。尚、厳密に余弦波とならなくともよい。特に、後述する全空間テーブル化手法を使うことによりその誤差を打ち消すこともできる。 Grid plates 12, six light sources L -2, L -1, (in the example shown in FIGS. 1 and 2, X-axis direction) L 0, L 1, L 2 and L 3 having an array direction perpendicular to the It has a lattice plane of a one-dimensional lattice formed by arranging light transmission regions 12b composed of straight lines in the direction (that is, the Y-axis direction) at equal intervals with respect to the light shielding region 12a. For example, the grating plate 12 can be configured by printing a black one-dimensional grating surface on a transparent glass or plastic surface, and a slit (light shielding region 12a) with a slit ( A light transmission region 12b) may be provided. The grating plate 12 is configured such that a light irradiated from the light source array 11 passes through the grating plate 12 so that a one-dimensional grating is projected onto the measurement target object 21. The lattice spacing of each light transmission region 12b constituting the one-dimensional lattice is p. In the embodiment illustrated in FIG. 1, the light source surface and the lattice surface are parallel, and the distance between the light source surface and the lattice surface is d. Further, of the central positions of the light transmission regions 12b constituting the one-dimensional lattice, the shortest distance from the Z axis is defined as a reference point E (Φ = 0), and the intersection of the lattice plane of the lattice plate 12 and the Z axis. Is C. Note that the luminance distribution of the projected one-dimensional grating needs to be a cosine wave. For this reason, even if the luminance distribution (transmittance distribution) on the grid plate 12 is a rectangular wave shape, it is projected onto the measurement target object 21 by the light emitted from the light source of the light source array 11 provided at the position of the distance d. The dimensional lattice has a substantially cosine wave shape on the image captured by the camera 13. It does not have to be strictly a cosine wave. In particular, the error can be canceled by using the all-space table forming method described later.

本実施形態では、図2に示すように、各光源をX軸方向に等間隔で配列して6つの光源L−2,L−1,L,L,L及びLを構成する光源アレイ11と格子プレート12をX,Y軸平面で平行となるようにZ軸方向に配置している。ただし、光源アレイ11をz=0のX,Y軸平面内において原点Oを中心にしてX軸に対して傾けて配置することができる。つまり、光源アレイ11は、X軸に対して平行である必要はない。この場合、上記の説明における6つの光源間の間隔lとしては、X軸方向(即ち、1次元格子を構成する光透過領域12bの直線に垂直な方向)の光源間の間隔(即ち、6つの光源間の間隔のX軸方向の成分)を用いる。光源間の間隔を物理的に狭めることは困難であるが、上記のように光源アレイ11をX軸に対して傾けることにより、X軸方向の光源間の間隔を容易に狭めることができるようになる。また、格子プレート12は、光透過領域12bの直線がY軸に平行であればよい。 In the present embodiment, as shown in FIG. 2, it is arranged at equal intervals on each light source in the X-axis direction 6 of the light source L -2, constituting L -1, L 0, L 1 , L 2 and L 3 The light source array 11 and the grating plate 12 are arranged in the Z-axis direction so as to be parallel in the X and Y axis planes. However, the light source array 11 can be arranged in the X and Y axis planes with z = 0 and inclined with respect to the X axis with the origin O as the center. That is, the light source array 11 does not have to be parallel to the X axis. In this case, as the interval l between the six light sources in the above description, the interval between the light sources in the X-axis direction (that is, the direction perpendicular to the straight line of the light transmission region 12b constituting the one-dimensional grating) (that is, six X-axis direction component of the interval between the light sources) is used. Although it is difficult to physically reduce the interval between the light sources, the interval between the light sources in the X-axis direction can be easily reduced by tilting the light source array 11 with respect to the X-axis as described above. Become. The grating plate 12 only needs to have a straight line of the light transmission region 12b parallel to the Y axis.

図2に示すように、本実施形態では、6つの光源L−2,L−1,L,L,L及びLのうち、隣接配置の5つの光源からなる光源組を2組設定する。具体的には、5つの光源L−2,L−1,L,L及びLを第1の光源組11aとし、5つの光源L−1,L,L,L及びLを第2の光源組11bとする。これは、詳細に後述するが、それぞれの光源組において各光源を順次点灯して計測対象物体21上に投影される1次元格子を撮影し、それぞれの光源組による1次元格子の位相を算出し、求めた2つの1次元格子の位相の差を位相シフト量として高さ座標zを求めるためである。隣接配置の5つの光源からなる光源組を3組以上とした場合も、定めた原点Oの光源を含む光源組とすることで位相シフト量を正確に求めることができる。例えば、第1、第2及び第3の光源組として3つの光源組を設定した場合、第1、第2の光源組による位相シフト量、第2、第3の光源組による位相シフト量、及び第1、第3の光源組による位相シフト量をそれぞれ求めることができる。したがって、隣接配置の5つの光源からなる光源組を3組以上とした場合も、3組以上の光源組のうち位相シフト量を求める光源組を2組設定することで高さ座標zを求めることができる。 As shown in FIG. 2, in the present embodiment, six light sources L -2, L -1, L 0 , L 1, of the L 2 and L 3, the light source sets of five light sources adjacently arranged two pairs Set. Specifically, five light sources L -2, L -1, the L 0, L 1 and L 2 and the first light source assembly 11a, five light sources L -1, L 0, L 1, L 2 and L 3 is a second light source set 11b. As will be described in detail later, each light source is sequentially turned on in each light source set, a one-dimensional lattice projected on the measurement target object 21 is photographed, and the phase of the one-dimensional lattice by each light source set is calculated. This is because the height coordinate z is obtained using the phase difference between the obtained two one-dimensional gratings as a phase shift amount. Even when the number of light source sets including five light sources arranged adjacent to each other is set to three or more, the phase shift amount can be accurately obtained by using a light source set including a light source having a predetermined origin O. For example, when three light source sets are set as the first, second, and third light source sets, the phase shift amount by the first and second light source sets, the phase shift amount by the second and third light source sets, and The amount of phase shift by the first and third light source sets can be obtained respectively. Therefore, even when the number of light source sets including five light sources arranged adjacent to each other is three or more, the height coordinate z is obtained by setting two light source sets for obtaining the phase shift amount among the three or more light source sets. Can do.

図1を参照するに、カメラ13は、6つの光源L−2,L−1,L,L,L及びLのうちの1つの点灯によってそれぞれ1次元格子が投影された計測対象物体21を撮影する。カメラ13としては、CCDセンサやCMOSセンサ等を使用したものとすることができる。x,y座標については、例えばフーリエ変換格子法により、X軸方向及びY軸方向の位相をそれぞれ求め、更に位相接続を行うことにより、各点におけるx座標及びy座標をそれぞれ得ることができる(例えば、特許第3281918号明細書参照)。 Referring to FIG. 1, the camera 13, six light sources L -2, L -1, L 0 , L 1, the measurement object one-dimensional lattice, each projected by one lighting of L 2 and L 3 The object 21 is photographed. As the camera 13, a CCD sensor, a CMOS sensor, or the like can be used. For the x and y coordinates, for example, the phase in the X-axis direction and the Y-axis direction are obtained by the Fourier transform grid method, and the phase connection is further performed to obtain the x-coordinate and y-coordinate at each point ( For example, see Japanese Patent No. 3281918).

尚、光源と格子プレート12との間や、格子プレート12と計測対象物体21との間に、レンズ等の像の拡大や縮小を行う部材を配置することもできる。   In addition, a member for enlarging or reducing an image such as a lens may be disposed between the light source and the grating plate 12 or between the grating plate 12 and the measurement target object 21.

図3に示すように、制御ユニット50は、それぞれの光源組11a,11bにおける各光源を順次点灯するための光源切替制御信号を光源アレイ11に供給するとともに、各光源を順次点灯したことによる計測対象物体21上に投影される1次元格子を撮影するためのカメラ制御信号をカメラ13に供給してカメラ13から1次元格子を撮影した画像信号を取得する。更に、制御ユニット50は、撮影した画像信号から得られる画素毎の輝度値を基に、それぞれの光源組11a,11bによる計測対象物体21上に投影される1次元格子の位相をそれぞれ算出し、算出した2つの投影された1次元格子の位相の差を位相シフト量として定め、位相シフト量から距離を決定する予め定めた換算式に基づいて計測対象物体21に関する高さ座標を求める。より具体的には、制御ユニット50は、制御部51と、メモリ52とを備える。制御部51は、光源決定部511と、カメラ撮影処理部512と、画素別輝度算出部513と、位相・位相シフト量算出部514と、三次元座標算出部515とを備える。   As shown in FIG. 3, the control unit 50 supplies a light source switching control signal for sequentially turning on the respective light sources in the respective light source sets 11a and 11b to the light source array 11 and measures the lighting of the respective light sources in turn. A camera control signal for photographing a one-dimensional lattice projected on the target object 21 is supplied to the camera 13 and an image signal obtained by photographing the one-dimensional lattice from the camera 13 is acquired. Further, the control unit 50 calculates the phase of the one-dimensional grating projected on the measurement target object 21 by each light source set 11a, 11b based on the luminance value for each pixel obtained from the captured image signal, A difference in phase between the two projected one-dimensional gratings calculated is determined as a phase shift amount, and a height coordinate related to the measurement target object 21 is obtained based on a predetermined conversion formula for determining a distance from the phase shift amount. More specifically, the control unit 50 includes a control unit 51 and a memory 52. The control unit 51 includes a light source determination unit 511, a camera photographing processing unit 512, a pixel-by-pixel luminance calculation unit 513, a phase / phase shift amount calculation unit 514, and a three-dimensional coordinate calculation unit 515.

光源決定部511は、それぞれの光源組11a,11bにおいて各光源を順次点灯するための光源切替制御信号を光源アレイ11に供給する。   The light source determination unit 511 supplies the light source array 11 with a light source switching control signal for sequentially lighting each light source in each of the light source groups 11a and 11b.

カメラ撮影処理部512は、各光源を順次点灯したことによる計測対象物体21上に投影される1次元格子を撮影するためのカメラ制御信号をカメラ13に供給してカメラ13から撮影した画像の画像信号を取得する。   The camera photographing processing unit 512 supplies the camera 13 with a camera control signal for photographing a one-dimensional lattice projected on the measurement target object 21 by sequentially turning on each light source, and images of the images photographed from the camera 13. Get the signal.

画素別輝度算出部513は、取得した画像信号から、各画素位置における輝度値を算出する。   The pixel-specific luminance calculation unit 513 calculates a luminance value at each pixel position from the acquired image signal.

位相・位相シフト量算出部514は、撮影画像の画像信号から得られる画素毎の輝度値を基に、それぞれの光源組11a,11bによる1次元格子の位相を算出し、求めた2つの1次元格子の位相の差である位相シフト量を算出する。以下、位相Φ及び位相シフト量Ψを求める処理を「位相解析処理」と称する。また、例えばフーリエ変換格子法による位相解析によって、この位相から画素毎にx,y座標を求める。   The phase / phase shift amount calculation unit 514 calculates the phase of the one-dimensional grating by each of the light source groups 11a and 11b based on the luminance value for each pixel obtained from the image signal of the captured image, and obtains the obtained two one-dimensional values. A phase shift amount that is a difference in phase of the grating is calculated. Hereinafter, the process of obtaining the phase Φ and the phase shift amount Ψ is referred to as “phase analysis process”. Further, for example, x and y coordinates are obtained for each pixel from this phase by phase analysis using a Fourier transform lattice method.

三次元座標算出部515は、計測対象物体21における画素毎に得られた位相シフト量から、予め定めた換算式に基づいて高さ座標zを求め、計測対象物体21の三次元座標データをメモリ52に記憶する。   The three-dimensional coordinate calculation unit 515 obtains the height coordinate z from the phase shift amount obtained for each pixel in the measurement target object 21 based on a predetermined conversion formula, and stores the three-dimensional coordinate data of the measurement target object 21 in the memory. 52.

この位相解析処理には、1次元格子の位相と空間座標とを関連づけるテーブルを予め画素毎に作成しておき、該テーブルを参照して、各画素から得られる1次元格子の位相から空間座標(即ち、計測対象物体21上の点Sの座標)を求める全空間テーブル化手法を適用することもできる。より具体的には、制御ユニット50における三次元座標算出部515の一機能として、カメラ13の画素位置で定まるX軸及びY軸のx,y座標とZ軸のz座標からなる三次元座標について、特許文献1で開示されるような所定の基準平板を用いて計測された一定間隔のz座標毎に、位相とx,y座標との関係、及び位相シフト量とx,y座標との関係を関連づけるテーブルをそれぞれ作成してメモリ52に保持しておき、計測対象物体21について算出した1次元格子の位相及び位相シフト量から、メモリ52に保持したこれらのテーブルを参照して計測対象物体21に関する三次元座標を導出するように構成すればよい。   In this phase analysis process, a table that associates the phase of the one-dimensional lattice with the spatial coordinates is created in advance for each pixel, and the spatial coordinates (from the phase of the one-dimensional lattice obtained from each pixel are referred to by referring to the table. That is, it is also possible to apply a whole space table formation method for obtaining the coordinates of the point S on the measurement target object 21). More specifically, as a function of the three-dimensional coordinate calculation unit 515 in the control unit 50, a three-dimensional coordinate composed of the x and y coordinates of the X axis and the Y axis determined by the pixel position of the camera 13 and the z coordinate of the Z axis. The relationship between the phase and the x and y coordinates, and the relationship between the phase shift amount and the x and y coordinates, for each z coordinate at a constant interval measured using a predetermined reference flat plate as disclosed in Patent Document 1. Are created and held in the memory 52, and the measurement target object 21 is referred to with reference to these tables held in the memory 52 from the phase and phase shift amount of the one-dimensional grating calculated for the measurement target object 21. What is necessary is just to comprise so that the three-dimensional coordinate regarding may be derived | led-out.

つまり、制御ユニット50は、カメラ13の撮影画像から得られる各画素位置の「輝度」から「それぞれの光源組11a,11bによる1次元格子の位相」を算出し、「それぞれの光源組11a,11bによる2つの1次元格子の位相の差である位相シフト量」を算出し、この位相シフト量から予め定めた換算式に基づいて計測対象物体21における「高さ座標z」を求める処理を行う。x,y座標については、例えばフーリエ変換格子法による位相解析から求めることができる。したがって、カメラ13の画素毎に、z座標が得られ、また、x,y座標も得られる。   That is, the control unit 50 calculates “the phase of the one-dimensional grating by the respective light source sets 11a and 11b” from the “brightness” of each pixel position obtained from the captured image of the camera 13, and “the respective light source sets 11a and 11b”. The phase shift amount, which is the phase difference between the two one-dimensional gratings obtained by the above, is calculated, and the “height coordinate z” in the measurement target object 21 is calculated from the phase shift amount based on a predetermined conversion formula. The x and y coordinates can be obtained from phase analysis by the Fourier transform lattice method, for example. Therefore, the z coordinate is obtained for each pixel of the camera 13, and the x and y coordinates are also obtained.

以下、計測原理について、図1を参照してより具体的に説明する。   Hereinafter, the measurement principle will be described more specifically with reference to FIG.

以下の説明では、6つの光源L−2,L−1,L,L,L及びLのそれぞれの発光輝度分布(発光の指向特性)は、観測範囲内において均一で等しいと仮定する。尚、均一でない場合は、その分布を係数として撮影画像から得られる輝度値を補正すればよい。また、光源面と格子面を平行に配置した例について説明する。ここで、光源面と格子面が平行でない場合、光源面と格子面との間の距離dは、光源アレイ11の原点Oから格子プレート12の格子面までZ軸方向の距離として、これに伴う各光源の発光輝度分布(発光の指向特性)の不均一性も同様に輝度値を補正すればよい。 In the following description, (directional characteristics of the light-emitting) six light sources L -2, L -1, L 0 , each light emission luminance distribution of L 1, L 2 and L 3 are assumed to be equal and uniform in the observation range To do. If it is not uniform, the luminance value obtained from the captured image may be corrected using the distribution as a coefficient. An example in which the light source surface and the lattice surface are arranged in parallel will be described. Here, when the light source surface and the lattice surface are not parallel, the distance d between the light source surface and the lattice surface is a distance in the Z-axis direction from the origin O of the light source array 11 to the lattice surface of the lattice plate 12. The non-uniformity of the light emission luminance distribution (light emission directivity) of each light source may be corrected similarly.

まず、光源組11aにおける5つの光源Lを順次点灯し、1次元格子が計測対称物体21上に投影することを考える。ここで、nは、原点Oを0とした光源の位置を示す−2,−1,0,1,2として与えられる。このとき、z=dにある1次元格子の透過率分布は余弦波状になっており、光源Lにより照射された1次元格子の影の輝度分布は、以下の式で表される。 First, the five light sources L n sequentially lit in the light source assembly 11a, given that one-dimensional lattice is projected onto the measuring symmetric object 21. Here, n is given as -2, -1, 0, 1, 2 indicating the position of the light source with the origin O as 0. In this case, the transmittance distribution of the one-dimensional lattice in the z = d has become a cosine wave, the luminance distribution of the shadow of the one-dimensional grating which is illuminated by the light source L n is expressed by the following equation.

ここで、Φは1次元格子の位相、aは振幅、bは背景輝度、xは格子面におけるx座標、eは格子面における基準点E(Φ=0)と点Cとの間の距離である。尚、格子プレート12の1次元格子を構成する各光透過領域12bの中央位置のうちZ軸からの距離が最短なものを基準点E(Φ=0)とし、格子プレート12の格子面とZ軸との交点をCとしている。 Where Φ is the phase of the one-dimensional lattice, a g is the amplitude, b g is the background luminance, x g is the x coordinate on the lattice plane, and e is between the reference point E (Φ = 0) and the point C on the lattice plane. Is the distance. Of the central positions of the light transmission regions 12b constituting the one-dimensional lattice of the lattice plate 12, the shortest distance from the Z axis is defined as a reference point E (Φ = 0), and the lattice plane of the lattice plate 12 and Z The intersection with the axis is C.

まず、5つの光源L−2,L−1,L,L及びLのうち、光源Lの点灯により1次元格子が投影された計測対象物体21上の位置S(x,y,z)における輝度Iは、近似的に次式で表される。 First, the five light sources L -2, L -1, L 0 , L 1 and of L 2, the position S (x on the measurement object 21 to the one-dimensional grating is projected by the lighting of the light source L 0, y, The luminance I 0 in z) is approximately expressed by the following equation.

ここで、任意の点の輝度は、光源からの距離の2乗に反比例することを考慮している。また、図1に示すように、計測対象物体21上の1点Sには、図1における格子面上の1次元格子のG点の影が投影されている。   Here, it is considered that the luminance at an arbitrary point is inversely proportional to the square of the distance from the light source. As shown in FIG. 1, a shadow of point G of the one-dimensional lattice on the lattice plane in FIG.

このとき、幾何学的関係より、次式の関係がある。   At this time, there is a relationship of the following expression rather than a geometric relationship.

次に、光源をLからLに切り換えると、G点の影は、座標点zの(x,y)面では、A点に向かって投影される。このとき、点Sには1次元格子のF点の影が投影され、位相シフトが生じている。したがって、点Sでは光源の切り替えによって生じる位相シフト量に起因して異なる輝度値となる。 Next, when the light source is switched from L 0 to L 1 , the shadow of the point G is projected toward the point A on the (x, y) plane of the coordinate point z. At this time, a shadow of point F of the one-dimensional lattice is projected onto point S, and a phase shift occurs. Therefore, the point S has a different luminance value due to the phase shift amount caused by switching the light source.

光源Lによる位置S(x,y,z)における輝度と位相シフト量Ψとの関係は、次のようにして定式化することができる。即ち、光源をLからLに切り替えたことにより、計測対象物体21に投影される1次元格子の位相(アンラッピングされた位相)は、以下の式(4)で与えられる量だけシフトする。尚、アンラッピングとは、得られる位相分布が限定された範囲に折りたたまれてしまう現象(ラッピング)に対して位相特性を連続的に繋いだ状態を云う。 Position S by the light source L 1 (x, y, z ) between the luminance and the amount of phase shift Ψ in can be formulated as follows. That is, by switching the light source from L 0 to L 1 , the phase (unwrapped phase) of the one-dimensional grating projected onto the measurement target object 21 is shifted by an amount given by the following equation (4). . Note that unwrapping refers to a state in which phase characteristics are continuously connected to a phenomenon (wrapping) in which the obtained phase distribution is folded into a limited range.

この位相シフト量Ψは、以下のようにして求められる。即ち、図1における点L,L,Gからなる三角形(以下、このような三角形を「△LG」と表す)と、点S,A,Gからなる△SAGとが相似であるため、次式となる。 This phase shift amount Ψ is obtained as follows. That is, a triangle composed of points L 0 , L 1 , G in FIG. 1 (hereinafter such triangle is represented as “ΔL 0 L 1 G”) and ΔSAG composed of points S, A, G are similar. Therefore, the following equation is obtained.

また、点S,A,Lからなる△SALと、点F,G,Lからなる△FGLとが相似であるため、次式となる。 Further, since the point S, A, and becomes △ SAL 1 from L 1, point F, G, consists of L 1 △ FGL 1 and is similar to, the following equation.

式(5)及び式(6)から、次式が得られる。   From the equations (5) and (6), the following equation is obtained.

また、式(4)及び式(7)から、次式が得られる。   Moreover, the following equation is obtained from the equations (4) and (7).

こうして、光源をLからLに切り替えたときの、計測対象物体21に投影された1次元格子の位相シフト量Ψの値を定式化することができる。この位相シフト量Ψは、zに依存することが分かる。 In this way, the value of the phase shift amount ψ of the one-dimensional grating projected onto the measurement target object 21 when the light source is switched from L 0 to L 1 can be formulated. It can be seen that this phase shift amount Ψ depends on z.

同様に、光源Lから光源Lに切り替えることにより、式(2)に比べて位相がn・Ψだけシフトするため、位置S(x,y,z)における輝度Iは、次式となる。尚、nは、原点Oを0とした光源の位置を示す−2,−1,0,1,2として与えられる。 Similarly, by switching from the light source L 0 to the light source L n , the phase is shifted by n · Ψ as compared with the equation (2). Therefore, the luminance In at the position S (x, y, z) is expressed by the following equation: Become. Note that n is given as -2, -1, 0, 1, 2 indicating the position of the light source with the origin O as 0.

この式(9)について、式(8)及び式(10)〜(12)を用いて置き直すと、式(13)が得られる。   When this formula (9) is replaced using formula (8) and formulas (10) to (12), formula (13) is obtained.

こうして、光源Lを点灯したときの、位置S(x,y,z)における輝度Iと位相Φ及び位相シフト量Ψとの関係を定式化することができる。 Thus, when the light source was on L n, the position S (x, y, z) the relationship between the luminance I n and the phase Φ and the phase shift amount Ψ in can be formulated.

尚、計測対象物体21の反射率rを考慮する場合は、式(13)におけるa及びbに反射率rを乗じればよいが、ここでは説明を簡単化するために省略している。   When the reflectance r of the measurement target object 21 is taken into consideration, a and b in the equation (13) may be multiplied by the reflectance r, but are omitted here for the sake of simplicity.

したがって、計測対象物体21までの高さ座標zを求めるためには、位相シフト量Ψ又は位相Φが分かればよい。この高さzと位相シフト量Ψとの関係は、式(8)から次式のように得られる。   Therefore, in order to obtain the height coordinate z to the measurement target object 21, it is sufficient to know the phase shift amount Ψ or the phase Φ. The relationship between the height z and the phase shift amount ψ is obtained from the equation (8) as follows.

ここで、光源アレイ11の原点Oから計測対象物体21の表面までのZ軸方向の距離をz、光源アレイ11の各光源の間隔をl、光源アレイ11の原点Oから格子プレート12の格子面までのZ軸方向の距離をd、位相シフト量をΨ、格子プレート12の1次元格子の間隔をpとしている。これにより、高さzを求めることができる。この場合、等位相線は等高線となっている。   Here, the distance in the Z-axis direction from the origin O of the light source array 11 to the surface of the measurement target object 21 is z, the interval between each light source of the light source array 11 is l, and the lattice plane of the lattice plate 12 from the origin O of the light source array 11 The distance in the Z-axis direction until is d, the phase shift amount is ψ, and the one-dimensional grating interval of the grating plate 12 is p. Thereby, the height z can be obtained. In this case, the isophase lines are contour lines.

また、位相Φが求められると、式(12)から次式が得られる。   When the phase Φ is obtained, the following equation is obtained from the equation (12).

ここで、光源アレイ11の原点Oから計測対象物体21の表面までのZ軸方向の距離をz、光源アレイ11の原点Oから格子プレート12の格子面までのZ軸方向の距離をd、格子プレート12の1次元格子の位相をΦ、格子プレート12の1次元格子の間隔をp、原点Oから計測対象物体21の表面までのX軸方向の距離をx、格子プレート12の1次元格子を構成する各光透過領域12bの中央位置のうちZ軸からの最短距離をeとしている。これにより、位相Φが求められると、高さzが求められる。この場合、等位相線はxの関数となっており、等高線とはならない。   Here, the distance in the Z-axis direction from the origin O of the light source array 11 to the surface of the measurement target object 21 is z, the distance in the Z-axis direction from the origin O of the light source array 11 to the lattice plane of the lattice plate 12 is d, and the lattice The phase of the one-dimensional grating of the plate 12 is Φ, the interval of the one-dimensional grating of the grating plate 12 is p, the distance in the X-axis direction from the origin O to the surface of the measurement target object 21 is x, and the one-dimensional grating of the grating plate 12 is The shortest distance from the Z-axis among the central positions of the respective light transmission regions 12b is e. Accordingly, when the phase Φ is obtained, the height z is obtained. In this case, the isophase line is a function of x and does not become a contour line.

このように、光源組11aにおける5つの光源L−2,L−1,L,L及びLを順次点灯するのみで、位相シフト量Ψ又は位相Φを求めることができ、位相シフト量Ψ又は位相Φを求めることができれば、式(14)又は式(15)から、カメラ13の位置とは無関係に高さzを求めることができる。同様にして、光源組11bにおける5つの光源L−1,L,L,L及びLを順次点灯するのみで、位相シフト量Ψ又は位相Φを求めることができ、高さzを求めることができる。ただし、本実施形態では、この位相シフト量Ψを更に高精度化するために、光源組11aにおける5つの光源L−2,L−1,L,L及びLを順次点灯することで得られる位相Φと、光源組11bにおける5つの光源L−1,L,L,L及びLを順次点灯することで得られる位相Φとの差分を位相シフト量Ψとする。この各光源組で得られる位相Φの差分による位相シフト量Ψとすることで高精度化する理由を説明する前に、位相解析による位相Φ及び位相シフト量Ψの具体的な算出法とその問題点について説明する。各光源組で得られる位相Φの差分による位相シフト量Ψとすることで位相解析による問題点を改善することができるためである。 Thus, five light L in the light source assembly 11a -2, L -1, L 0, L 1 and L 2 only sequentially lit, it is possible to obtain the phase shift amount Ψ or phase [Phi, phase shift amount If Ψ or phase Φ can be obtained, the height z can be obtained from Expression (14) or Expression (15) regardless of the position of the camera 13. Similarly, the phase shift amount Ψ or the phase Φ can be obtained only by sequentially lighting the five light sources L −1 , L 0 , L 1 , L 2 and L 3 in the light source set 11b, and the height z is set to Can be sought. However, in the present embodiment, the phase shift amount Ψ to further high accuracy, five light L in the light source assembly 11a -2, L -1, L 0, L 1 and L 2 is sequentially turned that the The difference between the obtained phase Φ 1 and the phase Φ 2 obtained by sequentially lighting the five light sources L −1 , L 0 , L 1 , L 2 and L 3 in the light source set 11 b is defined as a phase shift amount Ψ. . Before explaining the reason for achieving high accuracy by setting the phase shift amount Ψ by the difference of the phase Φ obtained by each light source set, a specific calculation method of the phase Φ and the phase shift amount Ψ by phase analysis and its problem The point will be described. This is because the problem due to the phase analysis can be improved by setting the phase shift amount Ψ by the difference of the phase Φ obtained in each light source group.

そこで、高さzを求めるために必要な、位相Φ及び位相シフト量Ψを求める方法について説明する。上述のように、従来の位相シフト法が、図1の格子プレート12を直接動かすことにより、位相2πを整数Nで割算して、全ての位置にて位相を2π/Nずつシフトさせるのに対し、本発明に係る位相シフト法においては、5つの光源を順次選択して点灯させることにより、計測対象物体21に投影される1次元格子の位相を、式(8)で示される位相シフト量Ψにて等間隔に5回シフトさせる(初期位置を含めて)位相シフトを行う。この位相シフト量Ψは、通常、2πを5等分したものでないため従来法とは異なる。また、式(8)から明らかなように、zの値によって位相シフト量Ψは異なる。こうした本発明に係る光源切替方式の位相シフト法を、光源切り替えで等間隔に位相をステッピングさせることから「光ステッピング法」と呼ぶことにする。   Therefore, a method for obtaining the phase Φ and the phase shift amount ψ necessary for obtaining the height z will be described. As described above, the conventional phase shift method shifts the phase by 2π / N at every position by dividing the phase 2π by the integer N by directly moving the grating plate 12 of FIG. On the other hand, in the phase shift method according to the present invention, by sequentially selecting and lighting five light sources, the phase of the one-dimensional grating projected onto the measurement target object 21 is changed to the phase shift amount represented by the equation (8). The phase is shifted five times (including the initial position) at equal intervals by Ψ. This phase shift amount ψ is different from the conventional method because it is not normally obtained by dividing 2π into five equal parts. Further, as is clear from the equation (8), the phase shift amount Ψ varies depending on the value of z. Such a light source switching type phase shift method according to the present invention is referred to as an “optical stepping method” because the phase is stepped at equal intervals by light source switching.

図4は、余弦波状に輝度が変化する1次元格子の位相を、位相シフト量Ψにて等間隔に位相シフトさせたときの、標本点の輝度及び位相シフト量の関係を示す。光ステッピング法においては、原点Oに位置する光源Lの輝度Iにおける位相Φが求めるべき位相であり、光源Lを切り替えて順次点灯させる毎に、Ψずつ位相シフトする。このとき、輝度は上述の式(13)で表され、全てのnについて書くと、式(16)〜式(20)となる。 FIG. 4 shows the relationship between the luminance of the sample point and the phase shift amount when the phase of the one-dimensional grating whose luminance changes like a cosine wave is phase-shifted at equal intervals by the phase shift amount ψ. In the optical stepping method, the phase Φ in the luminance I 0 of the light source L 0 located at the origin O is a phase to be obtained, and the phase is shifted by Ψ every time the light source L n is switched and sequentially turned on. At this time, the luminance is expressed by the above equation (13), and when all n are written, equations (16) to (20) are obtained.

ここで、未知数はΦ,Ψ,a及びbの4つであり、これらの式から位相Φのラッピングされた値φと、位相シフト量Ψのラッピングされた値ψは、それぞれ以下の式(21)及び(22)のようになる。   Here, there are four unknowns, Φ, ψ, a, and b. From these equations, the wrapped value φ of the phase Φ and the wrapped value ψ of the phase shift amount ψ are respectively expressed by the following equations (21 ) And (22).

これらの式(21)及び(22)を用いれば、容易にラッピングされた位相φ及び位相シフト量ψを求めることができる。尚、式(13)を解くのに、式(16)〜(20)の5つの式を用いたが、未知数の数が4つであるため、この5つの式のうちの4つを用いれば、4つの未知数を求めることができるのは言うまでもない。即ち、本発明においては、少なくとも5つの光源を等間隔かつ一列に並べた光源アレイ11について、このうち隣接配置の少なくとも4つの光源からなる光源組を少なくとも2組設定し、この2つの光源組における各光源を順次点灯して計測対象物体21上に投影される一次元格子をカメラ13で撮影して輝度値を得る。これにより、この少なくとも4つの光源の順次点灯によって位相シフトさせた位相φ及び位相シフト量ψを求めることができる。   By using these equations (21) and (22), the wrapped phase φ and the phase shift amount ψ can be easily obtained. In order to solve equation (13), five equations of equations (16) to (20) were used, but since the number of unknowns is four, if four of these five equations are used, Needless to say, four unknowns can be obtained. That is, in the present invention, for the light source array 11 in which at least five light sources are arranged at equal intervals and in a line, at least two light source sets composed of at least four light sources adjacent to each other are set. The light source is sequentially turned on and a one-dimensional grid projected on the measurement target object 21 is photographed by the camera 13 to obtain a luminance value. Accordingly, the phase φ and the phase shift amount ψ that are phase-shifted by sequentially lighting the at least four light sources can be obtained.

このように、光源組11aにおける5つの光源L−2,L−1,L,L及びLを順次点灯するのみで、位相シフト量Ψ又は位相Φを求めることができ、位相シフト量Ψ又は位相Φを求めることができれば、式(14)又は式(15)から、カメラ13の位置とは無関係に高さzを求めることができる。同様にして、光源組11bにおける5つの光源L−1,L,L,L及びLを順次点灯するのみで、位相シフト量Ψ又は位相Φを求めることができ、高さzを求めることができる。 Thus, five light L in the light source assembly 11a -2, L -1, L 0, L 1 and L 2 only sequentially lit, it is possible to obtain the phase shift amount Ψ or phase [Phi, phase shift amount If Ψ or phase Φ can be obtained, the height z can be obtained from Expression (14) or Expression (15) regardless of the position of the camera 13. Similarly, the phase shift amount Ψ or the phase Φ can be obtained only by sequentially lighting the five light sources L −1 , L 0 , L 1 , L 2 and L 3 in the light source set 11b, and the height z is set to Can be sought.

ただし、本実施形態では、光源組11aにおける5つの光源L−2,L−1,L,L及びLを順次点灯することで得られる位相Φと、光源組11bにおける5つの光源L−1,L,L,L及びLを順次点灯することで得られる位相Φとの差分を位相シフト量Ψとして、高さzを求めるようにする。 However, in the present embodiment, the phase Φ 1 obtained by sequentially lighting the five light sources L −2 , L −1 , L 0 , L 1 and L 2 in the light source set 11a and the five light sources in the light source set 11b. The height z is obtained by using the difference from the phase Φ 2 obtained by sequentially lighting L −1 , L 0 , L 1 , L 2 and L 3 as the phase shift amount Ψ.

実験で式(22)の位相シフト量Ψを求めたところ,分母が0に近くなる付近で誤差が大きくなり、また、全範囲でばらつきも大きい。また、式(22)の位相シフト量ΨはcosΨから求めるため、誤差があると式(22)の右辺が−1と1の間を超えてしまうことが起こり、この場合Ψを求めることができない。一方、位相Φについては式(21)を用いてかなり精度よく求めることができる。   When the phase shift amount Ψ of the equation (22) is obtained by experiment, the error increases near the denominator being close to 0, and the variation is large over the entire range. In addition, since the phase shift amount Ψ in Expression (22) is obtained from cos Ψ, if there is an error, the right side of Expression (22) may exceed between −1 and 1, and in this case, Ψ cannot be obtained. . On the other hand, the phase Φ can be obtained with considerably high accuracy using the equation (21).

そこで、単一の光源組で位相シフト量Ψを求めるよりも、高精度の位相シフト量Ψを別途求めるために、光源組11aにおける5つの光源L−2,L−1,L,L及びLを順次点灯することで得られる位相Φと、光源組11bにおける5つの光源L−1,L,L,L及びLを順次点灯することで得られる位相Φとの差分を位相シフト量Ψとする。 Therefore, in order to separately obtain the highly accurate phase shift amount ψ rather than obtaining the phase shift amount ψ with a single light source set, the five light sources L −2 , L −1 , L 0 , L 1 in the light source set 11 a are obtained. and a phase [Phi 1 obtained by sequentially lighting the L 2, 5 one light source L -1 in the light source group 11b, and L 0, L 1, L 2 and phase [Phi 2 obtained by sequentially lighting the L 3 Is the phase shift amount ψ.

即ち、2つの光源組を用いた位相シフト量Ψは、次式で得られる。   That is, the phase shift amount Ψ using two light source sets is obtained by the following equation.

位相Φも位相Φも精度よく得られるので、式(23)で得られる位相シフト量Ψも精度よく得られることになる。 Since both the phase Φ 1 and the phase Φ 2 can be obtained with high accuracy, the phase shift amount ψ obtained by the equation (23) can also be obtained with high accuracy.

この式(23)で示す位相シフト量Ψを用いることで位相接続の高精度化を図ることができる。即ち、式(14)と式(22)から決まるcosψとzとの関係は、後述する図9から分かるように、zの広い範囲にわたってψの一価関数である。また、式(15)と式(21)から決まるtanφとzとの関係は、後述する図10から分かるように、位相φはzの多価関数となっており、一価関数として扱えるのはzの狭い範囲だけである。したがって位相φだけでは、広いレンジのzは決まらない。そこで、この位相シフト量ψを使ってzを求め、そのz付近の式(15)の関係より、位相φ(即ち、位相φや位相φ)を用いて細密で正確なzを求めることができる。或いは、位相φと位相φの2つのデータから、zを2個求めることができるので、その平均を取るとその分精度が上がることになる。 By using the phase shift amount ψ shown by the equation (23), it is possible to improve the accuracy of the phase connection. That is, the relationship between cos ψ and z determined from Equation (14) and Equation (22) is a monovalent function of ψ over a wide range of z, as can be seen from FIG. Further, as can be seen from FIG. 10 described later, the relationship between tan φ and z determined from the equations (15) and (21) is a multivalent function of z, and can be treated as a monovalent function. Only a narrow range of z. Therefore, z in a wide range cannot be determined only by the phase φ. Therefore, z is obtained using the phase shift amount ψ, and fine and accurate z is obtained using the phase φ (that is, the phase φ 1 and the phase φ 2 ) from the relationship of the equation (15) near the z. Can do. Alternatively, two z values can be obtained from the two data of the phase φ 2 and the phase φ 1 , so that taking the average increases the accuracy accordingly.

次に、図5を参照して本実施形態の形状計測装置1の動作について説明する。   Next, the operation of the shape measuring apparatus 1 of the present embodiment will be described with reference to FIG.

まず、制御ユニット50の光源決定部511は、2つの光源組11a,11bのうち1つを選択する(ステップS1)。   First, the light source determination unit 511 of the control unit 50 selects one of the two light source sets 11a and 11b (step S1).

続いて、制御ユニット50の光源決定部511は、選択した光源組(例えば、光源組11a)を構成する5つの光源のうち1つを点灯する(ステップS2)。   Subsequently, the light source determination unit 511 of the control unit 50 turns on one of the five light sources constituting the selected light source set (for example, the light source set 11a) (step S2).

続いて、制御ユニット50のカメラ撮像処理部512は、格子プレート12を介して1次元格子が投影された計測対象物体21をカメラで撮影する(ステップS3)。   Subsequently, the camera imaging processing unit 512 of the control unit 50 captures an image of the measurement target object 21 onto which the one-dimensional lattice is projected via the lattice plate 12 (step S3).

続いて、制御ユニット50のカメラ撮像処理部512は、選択した光源組を構成する5つの光源の全てについて撮影したか否かを判定する(ステップS4)。5つの光源の全てについて撮影していた場合(ステップS4のY)、ステップS5に移行にする。他方、5つの光源の全てについて撮影していない場合(ステップS4のN)、5つの光源の全てについて撮影するまでステップS2,S3を繰り返す。これにより、5つの光源を順次点灯させて、計測対象物体21に投影される1次元格子の位相をシフトさせながら計測対象物体21を撮影した画像信号を得ることができる。この画像信号は、画素別の輝度値として得ることができる。   Subsequently, the camera imaging processing unit 512 of the control unit 50 determines whether or not all five light sources constituting the selected light source set have been photographed (step S4). If all five light sources have been photographed (Y in step S4), the process proceeds to step S5. On the other hand, if all five light sources are not photographed (N in step S4), steps S2 and S3 are repeated until all five light sources are photographed. Thereby, it is possible to obtain an image signal obtained by photographing the measurement target object 21 while sequentially turning on the five light sources and shifting the phase of the one-dimensional grating projected onto the measurement target object 21. This image signal can be obtained as a luminance value for each pixel.

つまり、制御ユニット50の画素別輝度算出部513は、当該選択した光源組によるそれぞれの5種類の輝度値をカメラの画素毎に決定する(ステップS5)。   That is, the pixel-by-pixel luminance calculation unit 513 of the control unit 50 determines each of the five types of luminance values for the selected light source set for each pixel of the camera (step S5).

続いて、制御ユニット50の位相・位相シフト量算出部514は、当該5種類の輝度値から当該投影された1次元格子の位相φを算出する(ステップS6)。   Subsequently, the phase / phase shift amount calculation unit 514 of the control unit 50 calculates the phase φ of the projected one-dimensional grating from the five types of luminance values (step S6).

さらに、制御ユニット50の光源決定部511は、光源組を全て選択したか否かを判定する(ステップS7)。光源組を全て選択していた場合(ステップS7のY)、ステップS8に移行する。他方、光源組を全て選択していない場合(ステップS7のN)、光源組を全て選択するまで、ステップS1〜S6を繰り返す。これにより、各光源組による当該投影された1次元格子の位相が求められる。   Furthermore, the light source determination unit 511 of the control unit 50 determines whether or not all light source groups have been selected (step S7). When all the light source groups have been selected (Y in step S7), the process proceeds to step S8. On the other hand, when all the light source groups are not selected (N in step S7), steps S1 to S6 are repeated until all the light source groups are selected. Thereby, the phase of the projected one-dimensional grating by each light source set is obtained.

続いて、制御ユニット50の位相・位相シフト量算出部514は、2つの光源組から得られる位相φ=Φ,Φからその差分で表される位相シフト量Ψを算出する(ステップS8)。 Subsequently, the phase / phase shift amount calculation unit 514 of the control unit 50 calculates the phase shift amount ψ represented by the difference from the phases φ = Φ 1 and Φ 2 obtained from the two light source sets (step S8). .

続いて、制御ユニット50の三次元座標算出部515は、算出した位相シフト量Ψから式(14)に基づいて高さ座標zを算出し、計測対象物体21の三次元座標を決定する(ステップS9)。このようにして、撮影された画像に対して光ステッピング法により位相解析処理を施して、計測対象物体21の形状を求めることができる。図5に示す動作フローでは、光源組毎に撮像して位相を算出する例を説明したが、全ての光源による撮像をした後、光源組を設定して位相を算出するように動作させることもできる。   Subsequently, the three-dimensional coordinate calculation unit 515 of the control unit 50 calculates the height coordinate z from the calculated phase shift amount Ψ based on the equation (14), and determines the three-dimensional coordinate of the measurement target object 21 (step). S9). In this manner, the shape of the measurement target object 21 can be obtained by performing phase analysis processing on the captured image by the optical stepping method. In the operation flow shown in FIG. 5, the example in which the phase is calculated by imaging for each light source set has been described. However, after imaging with all the light sources, the operation may be performed to calculate the phase by setting the light source set. it can.

これにより、例えば、図8に示すように、各光源により撮像して得られる輝度値から2つの位相Φ,Φを算出して位相シフト量Ψを算出し、2つの位相Φ,Φ及び位相シフト量Ψを用いて高さ座標zを算出するとともに例えばフーリエ変換格子法による位相解析からx,y座標を求めることにより、三次元座標テーブルを高精度に生成することができる。 Accordingly, for example, as shown in FIG. 8, two phases Φ 1 and Φ 2 are calculated from the luminance values obtained by imaging with the respective light sources to calculate the phase shift amount Ψ, and the two phases Φ 1 and Φ are calculated. The three-dimensional coordinate table can be generated with high accuracy by calculating the height coordinate z using 2 and the phase shift amount Ψ and obtaining the x and y coordinates from the phase analysis by the Fourier transform lattice method, for example.

尚、図1において、光源アレイ11以外の構成の配置をX軸,Y軸,Z軸の三次元空間で全て固定した状態で、光源アレイ11をz=0の面内において原点Oを中心にしてX軸に対して傾けて配置することができる。つまり、光源アレイ11は、X軸に対して平行である必要はない。この場合、6つの光源間の間隔lとしては、6つの光源間の間隔のX軸方向の成分を用いる。光源間の間隔を物理的に狭めることは困難であるが、上記のように光源アレイ11をX軸に対して傾けることにより、X軸方向の光源間の間隔を容易に狭めることができるようになる。   In FIG. 1, the arrangement of the components other than the light source array 11 is fixed in the three-dimensional space of the X axis, the Y axis, and the Z axis, and the light source array 11 is centered on the origin O in the plane of z = 0. And tilted with respect to the X axis. That is, the light source array 11 does not have to be parallel to the X axis. In this case, as the interval l between the six light sources, a component in the X-axis direction of the interval between the six light sources is used. Although it is difficult to physically reduce the interval between the light sources, the interval between the light sources in the X-axis direction can be easily reduced by tilting the light source array 11 with respect to the X-axis as described above. Become.

また、図1において、光源アレイ11以外の構成の配置をX軸,Y軸,Z軸の三次元空間で全て固定した状態で、z=0の面内において、光源アレイ11を構成する光源L−2,L−1,L,L,L及びLの各々を、Y軸方向の任意の位置に配置することもできる。つまり、光源アレイ11を構成する光源L−2,L−1,L,L,L及びLは、X軸方向の距離成分として等間隔に並んでいればよい。 In FIG. 1, the light sources L constituting the light source array 11 in the plane of z = 0 in a state where the arrangement of the components other than the light source array 11 is all fixed in the three-dimensional space of the X axis, the Y axis, and the Z axis. −2 , L −1 , L 0 , L 1 , L 2, and L 3 can be arranged at arbitrary positions in the Y-axis direction. That is, the light source L -2, L -1 constituting the light source array 11, L 0, L 1, L 2 and L 3, it is sufficient equally spaced as the distance component in X-axis direction.

〔第2実施形態〕
次に、本発明による基準面を用いる第2実施形態の形状計測装置について説明する。図7は、本発明による第2実施形態の形状計測装置2の構成とその動作原理を示す図である。図1の構成と同様な構成要素には同一の参照番号を付している。
[Second Embodiment]
Next, the shape measuring apparatus according to the second embodiment using the reference surface according to the present invention will be described. FIG. 7 is a diagram showing the configuration and operating principle of the shape measuring apparatus 2 according to the second embodiment of the present invention. Components similar to those in FIG. 1 are denoted by the same reference numerals.

第2実施形態の形状計測装置2は、図1に示す形状計測装置1の構成と対比して、光源面からZ軸方向に距離zRだけ離れた位置に、格子プレート12に対して平行な基準面14aを有する基準平板14を更に備える点で相違する。第2実施形態の形状計測装置2は、計測対象物体21に格子プレート12の1次元格子を投影して撮影することとは別に、計測対象物体21を載置可能な基準平板14に格子プレート12の1次元格子を投影して撮影することで、計測対象物体21と基準面14aとの間の位相差を計測し、この位相差から予め定めた換算式を基に計測対象物体21の高さzを求めて三次元形状を計測する。   In contrast to the configuration of the shape measuring apparatus 1 shown in FIG. 1, the shape measuring apparatus 2 of the second embodiment is a reference parallel to the grid plate 12 at a position away from the light source surface by a distance zR in the Z-axis direction. The difference is that a reference flat plate 14 having a surface 14a is further provided. The shape measuring apparatus 2 according to the second embodiment separates the grid plate 12 on the reference flat plate 14 on which the measurement target object 21 can be placed, in addition to projecting and shooting the one-dimensional grid of the grid plate 12 on the measurement target object 21. The phase difference between the measurement target object 21 and the reference plane 14a is measured by projecting and photographing the one-dimensional lattice of the above, and the height of the measurement target object 21 is calculated based on a predetermined conversion formula from this phase difference. The three-dimensional shape is measured by obtaining z.

また、第2実施形態では、カメラ13のレンズの中心Vは、X軸方向の所定位置(X=v)に配置されている。即ち、原点Oからレンズの中心VまでのX軸方向の距離はvである。尚、第1実施形態と同様に、計測対象物体21は、格子プレート12と基準平板14との間に配置される。図7では、原点Oから格子プレート12を介して得られる1次元格子の位相φ=0〜5πの様子を点線で示しており、格子面の格子の明るい中心を通る位相φが偶数πとなり、格子面の格子の暗い中心を通る位相φが奇数πとなる。   In the second embodiment, the center V of the lens of the camera 13 is disposed at a predetermined position (X = v) in the X-axis direction. That is, the distance in the X-axis direction from the origin O to the center V of the lens is v. Note that, as in the first embodiment, the measurement target object 21 is disposed between the lattice plate 12 and the reference flat plate 14. In FIG. 7, the state of the phase φ = 0 to 5π of the one-dimensional grating obtained from the origin O through the grating plate 12 is indicated by a dotted line, and the phase φ passing through the bright center of the grating on the grating surface is an even number π, The phase φ passing through the dark center of the lattice of the lattice plane is an odd number π.

第2実施形態における形状計測装置2では、まず、制御ユニット50における光源決定部511の制御により、基準面14aに光源組11aのそれぞれの光源による1次元格子を投影し、カメラ撮影処理部512の制御により基準面14aに投影した各光源による1次元格子を撮影し、画素別輝度算出部513により各光源による各画素の輝度値を算出し、位相・位相シフト算出部514により、その位相ΦR1分布をメモリ52に記録する。次いで、基準面14aと格子プレート12との間に計測対象物体21を配置し、第1実施形態と同様に計測対象物体21上の点Sにおける、光源組11aのそれぞれの光源によって投影された1次元格子の位相ΦS1を求める。続いて、三次元座標算出部515により、カメラ13の各画素において、基準面14aと計測対象物体21上の点Sとの位相差(ΦS1−ΦR1)から、光源組11aにおける原点OからのZ軸方向の高さz又は基準面14aからの計測対象物体21の高さh=z−zを求める。同様にして、光源組11bのそれぞれの光源による点Sとの位相差(ΦS2−ΦR2)から、原点OからのZ軸方向の高さz又は基準面14aからの計測対象物体21の高さh=z−zを求める。更に、第1実施形態と同様に、位相シフト量(ΦS2−ΦS1)から、原点OからのZ軸方向の高さz又は基準面14aからの計測対象物体21の高さh=z−zを求める。位相シフト量(ΦS2−ΦS1)を用いて細密で正確なzを求めることができ、位相ΦS2と位相ΦS1の2つのデータから、zを2個求めることができるので、これらのzの平均を取るとその分精度が上がることになる。 In the shape measuring apparatus 2 in the second embodiment, first, a one-dimensional lattice by each light source of the light source set 11a is projected onto the reference plane 14a under the control of the light source determination unit 511 in the control unit 50, and the camera photographing processing unit 512 A one-dimensional grid formed by each light source projected onto the reference plane 14a is photographed under control, the luminance value of each pixel by each light source is calculated by the pixel-specific luminance calculation unit 513, and the phase Φ R1 is calculated by the phase / phase shift calculation unit 514. The distribution is recorded in the memory 52. Next, the measurement target object 21 is arranged between the reference plane 14a and the grid plate 12, and 1 projected by the respective light sources of the light source set 11a at the point S on the measurement target object 21 as in the first embodiment. Determine the phase Φ S1 of the dimensional grating. Subsequently, from the phase difference (Φ S1 −Φ R1 ) between the reference plane 14 a and the point S on the measurement target object 21 in each pixel of the camera 13, from the origin O in the light source set 11 a by the three-dimensional coordinate calculation unit 515. The height z in the Z-axis direction or the height h S = z R −z of the measurement target object 21 from the reference plane 14a is obtained. Similarly, from the phase difference (Φ S2 −Φ R2 ) with respect to the point S by each light source of the light source set 11b, the height z in the Z-axis direction from the origin O or the height of the measurement target object 21 from the reference plane 14a. H S = z R −z is obtained. Further, similarly to the first embodiment, from the phase shift amount (Φ S2 −Φ S1 ), the height z in the Z-axis direction from the origin O or the height h S = z of the measurement target object 21 from the reference plane 14a. R- z is obtained. A precise and accurate z can be obtained using the phase shift amount (Φ S2 −Φ S1 ), and two z can be obtained from the two data of the phase Φ S2 and the phase Φ S1. If the average is taken, the accuracy will increase accordingly.

以下に、その原理について詳細に説明する。   The principle will be described in detail below.

今、カメラ13のある1画素Uが、格子プレート12と基準平板14との間にて、計測対象物体21を配置していないときの基準面14a上の点Rを、計測対象物体21を配置しているときの該計測対象物体21上の点Sを見ているとする。光源組11a,11bのいずれかによって計測対象物体21上に投影された1次元格子の点Sでの位相をΦ、点Rでの位相をΦとする。点Rと原点Oを結ぶ直線の格子面12aとの交点をQとする。このとき、位相ΦとΦは、それぞれ点Gと点Qにおける1次元格子の位相と同じであり、それらの位相差から次式の関係が得られる。 Now, one pixel U of the camera 13 arranges the measurement target object 21 at a point R on the reference plane 14a when the measurement target object 21 is not arranged between the grid plate 12 and the reference flat plate 14. Assume that the user is looking at a point S on the measurement target object 21 when he / she is performing. The phase at the point S of the one-dimensional grating projected onto the measurement target object 21 by any one of the light source groups 11a and 11b is Φ S , and the phase at the point R is Φ R. Let Q be the intersection of the straight lattice plane 12a connecting the point R and the origin O. At this time, the phases Φ S and Φ R are the same as the phases of the one-dimensional grating at the points G and Q, respectively, and the relationship of the following equation is obtained from the phase difference between them.

また、点S,P,Oからなる△SPOと、点G,Q,Oからなる△GQOとが相似であるため、次式が得られる。   Since ΔSPO consisting of points S, P, and O is similar to ΔGQO consisting of points G, Q, and O, the following equation is obtained.

式(24)及び式(25)から、次式が得られる。   From the equations (24) and (25), the following equation is obtained.

また、点S,P,Rからなる△SPRと、点V,O,Rからなる△VORとが相似であるため、次式が得られる。   Further, since ΔSPR composed of points S, P, and R and ΔVOR composed of points V, O, and R are similar, the following equation is obtained.

式(26)及び式(27)から、次式が得られる。   From the equations (26) and (27), the following equation is obtained.

この式(28)から、高さzは、次式が得られる。   From this equation (28), the following equation is obtained for the height z.

ここで、光源アレイ11上から計測対象物体21の表面までのZ軸方向の距離をz、原点Oから格子プレート12の格子面までのZ軸方向の距離をd、原点Oからレンズの中心Vまでの距離をv、原点Oから基準平板14の基準面14aまでのZ軸方向の距離をz、格子プレート12の1次元格子の間隔をp、原点Oから計測対象物体21の表面までのX軸方向の距離xにおける当該投影された1次元格子の位相をΦ、距離xの計測対象物体21の表面位置とレンズの中心Vとを通る直線と、基準面14aとの交点における当該投影された1次元格子の位相をΦとしている。このように、式(29)に基づいて、カメラ13の画素の基準面14aにおける位相Φ及び計測対象物体21上の点Sの位相Φから、光源組11a,11bのそれぞれにおける点Sのz座標を求めることができる。また、等位相差(Φ−Φ)線は等高線となる。更に、第1実施形態と同様に、位相シフト量(ΦS2−ΦS1)から、z又は基準面14aからの計測対象物体21の高さh=z−zを求めることができる。 Here, the distance in the Z-axis direction from the light source array 11 to the surface of the measurement target object 21 is z, the distance in the Z-axis direction from the origin O to the grating surface of the grating plate 12 is d, and the center V of the lens from the origin O The distance from the origin O to the reference surface 14a of the reference flat plate 14 in the Z-axis direction, z R , the distance between the one-dimensional gratings of the grating plate 12, and the distance from the origin O to the surface of the measurement target object 21. The phase of the projected one-dimensional grating at the distance x in the X-axis direction is Φ S , and the projection at the intersection of the reference plane 14a and a straight line passing through the surface position of the measurement target object 21 at the distance x and the center V of the lens. It has a phase of one-dimensional lattice which is a [Phi R. Thus, based on equation (29), the phase [Phi S phase [Phi R and a point S on the measurement object 21 in the reference plane 14a of the pixels of the camera 13, the light source assembly 11a, of the point S in each of 11b The z coordinate can be determined. Further, the equiphase difference (Φ S −Φ R ) line is a contour line. Further, similarly to the first embodiment, z or the height h S = z R −z of the measurement target object 21 from the reference plane 14a can be obtained from the phase shift amount (Φ S2 −Φ S1 ).

また、x座標及びy座標については、第1実施形態の場合と同様に、例えばフーリエ変換格子法により、X軸方向及びY軸方向の位相をそれぞれ求め、更に位相接続を行うことにより、各点におけるx座標及びy座標をそれぞれ得ることができる。   As for the x coordinate and the y coordinate, as in the case of the first embodiment, each phase is obtained by obtaining the phase in the X axis direction and the Y axis direction by, for example, the Fourier transform grid method, and further performing phase connection. X coordinate and y coordinate can be obtained respectively.

尚、第1実施形態の場合と同様に、第2実施形態においても、光源アレイ11以外の構成の配置をX軸,Y軸,Z軸の三次元空間で全て固定した状態で、光源アレイ11をz=0の面内において原点Oを中心にしてX軸に対して傾けて配置することができる。つまり、光源アレイ11は、X軸に対して平行である必要はない。この場合、6つの光源間の間隔lとしては、6つの光源間の間隔のX軸方向の成分を用いる。光源間の間隔を物理的に狭めることは困難であるが、上記のように光源アレイ11をX軸に対して傾けることにより、X軸方向の光源間の間隔を容易に狭めることができるようになる。   As in the case of the first embodiment, in the second embodiment as well, the arrangement of the components other than the light source array 11 is fixed in the three-dimensional space of the X axis, the Y axis, and the Z axis, and the light source array 11 is used. In the plane of z = 0, and can be arranged inclined with respect to the X axis with the origin O as the center. That is, the light source array 11 does not have to be parallel to the X axis. In this case, as the interval l between the six light sources, a component in the X-axis direction of the interval between the six light sources is used. Although it is difficult to physically reduce the interval between the light sources, the interval between the light sources in the X-axis direction can be easily reduced by tilting the light source array 11 with respect to the X-axis as described above. Become.

また、図1において、光源アレイ11以外の構成の配置をX軸,Y軸,Z軸の三次元空間で全て固定した状態で、z=0の面内において、光源アレイ11を構成する光源L−2,L−1,L,L,L及びLの各々を、Y軸方向の任意の位置に配置することもできる。つまり、光源アレイ11を構成する光源L−2,L−1,L,L,L及びLは、X軸方向の距離成分として等間隔に並んでいればよい。 In FIG. 1, the light sources L constituting the light source array 11 in the plane of z = 0 in a state where the arrangement of the components other than the light source array 11 is all fixed in the three-dimensional space of the X axis, the Y axis, and the Z axis. −2 , L −1 , L 0 , L 1 , L 2, and L 3 can be arranged at arbitrary positions in the Y-axis direction. That is, the light source L -2, L -1 constituting the light source array 11, L 0, L 1, L 2 and L 3, it is sufficient equally spaced as the distance component in X-axis direction.

こうして、計測対象物体21上の点Sの座標x,y及びzを求めることができ、計測対象物体21の形状を求めることができる。例えば、図8に示すように、制御ユニット50の制御により、2つの光源組11a,11bの各光源によって撮像された各画素の輝度値から、それぞれ2つの位相ΦS1,ΦS2を算出して位相シフト量Ψ=ΦS2−ΦS1を算出し、この算出した位相シフト量Ψと位相差(ΦS1−ΦR1)及び(ΦS2−ΦR2)を用いて位相接続し、高さ座標zを算出した三次元座標テーブルを生成してメモリ53に格納することができる。尚、制御ユニット50の制御により、この三次元座標テーブルを用いて、形状計測装置2に接続される表示装置(図示せず)に計測対象物体21の三次元像を表示するように構成することもできる。 Thus, the coordinates x, y, and z of the point S on the measurement target object 21 can be obtained, and the shape of the measurement target object 21 can be obtained. For example, as shown in FIG. 8, by controlling the control unit 50, two phases Φ S1 and Φ S2 are calculated from the luminance values of the pixels captured by the light sources of the two light source groups 11a and 11b, respectively. The phase shift amount Ψ = Φ S2 −Φ S1 is calculated, and the phase connection is made using the calculated phase shift amount Ψ and the phase difference (Φ S1− Φ R1 ) and (Φ S2− Φ R2 ), and the height coordinate z Can be generated and stored in the memory 53. Note that the control unit 50 is configured to display a three-dimensional image of the measurement target object 21 on a display device (not shown) connected to the shape measuring device 2 using the three-dimensional coordinate table. You can also.

本発明の第2実施形態においても、全空間テーブル化手法を適用することにより、計測対象物体21の形状計測を更に高速に行うことができる(例えば、特開2008−281491号公報参照)。即ち、図7に示すように、格子面12aに平行に配置された2次元格子が描かれた(又は投影された)基準面14aを有する基準平板14を用意し、該基準平板14をZ軸方向に所定の微少量だけ移動させながら基準面14aを撮影し、撮影された画像に対して位相解析処理を施すことにより、カメラ13の各画素に対して、x,y座標を定めるとともに、位相シフト量Ψ、位相Φ及び位相差(Φ−Φ)と高さz との関係を定め、それぞれテーブルとしてメモリ52に予め格納しておく。計測対称物体21の計測時には、こうして予め用意しておいた各画素に対するテーブルを参照することにより、各画素に対して得られた輝度から位相Φを算出し、算出した位相Φを基に位相シフト量Ψや位相差(Φ−Φ)を算出して高さzの値を求めることができる。 Also in the second embodiment of the present invention, the shape measurement of the measurement target object 21 can be performed at a higher speed by applying the total space table formation method (see, for example, JP-A-2008-281491). That is, as shown in FIG. 7, a reference plate 14 having a reference surface 14a on which a two-dimensional lattice arranged parallel to the lattice surface 12a is drawn (or projected) is prepared. The reference plane 14a is photographed while being moved by a predetermined minute amount in the direction, and a phase analysis process is performed on the photographed image, whereby the x and y coordinates are determined for each pixel of the camera 13, and the phase is also determined. The relationship between the shift amount Ψ, the phase Φ, the phase difference (Φ S −Φ R ), and the height z is determined and stored in advance in the memory 52 as a table. At the time of measurement of the measurement object 21, the phase Φ is calculated from the luminance obtained for each pixel by referring to the table prepared in advance for each pixel, and the phase shift is performed based on the calculated phase Φ. The value of the height z can be obtained by calculating the quantity Ψ and the phase difference (Φ S −Φ R ).

この全空間テーブル化手法においては、予め用意した画素毎のテーブルを参照するだけであり、三角測量などで用いる幾何学的計算をする必要がほとんどないため、計測対象物体21の形状を更に高速に求めることができる。   In this total space table formation method, it is only necessary to refer to a table for each pixel prepared in advance, and there is almost no need to perform geometric calculation used in triangulation or the like, so that the shape of the measurement target object 21 can be further increased. Can be sought.

(zとΨ,Φ,Φ及びΦとの関係の具体的検証)
ここで、高さzとΨ及びΦとの関係について、更に具体的に説明する。上記した式(14)及び式(15)は、位相Φ(及び位相シフト量Ψ)と高さzとの関係を表しており、Ψ及びΦ、又は(Φ−Φ)が求められれば、これらのいずれかの式を用いて高さzを求めることができる。しかし、実際には、式(21)及び式(22)で表されるtanΦ,cosΨ,tanΦ及びtanΦとして求める。これらの位相(及び位相シフト量)はラッピングされており、2mπ≦Φ≦2(m+1)π或いはqπ≦Ψ≦(q+1)πなどに制限されて出力される。ここで、m及びqは整数である。一般には、m=0及びq=0の場合に制限されている。そこで、tanΦ,cosΨ,tanΦ及びtanΦを用いて、これらと高さzとの関係を以下のように具体的に求めてみた。
(Specific verification of the relationship between z and Ψ, Φ, Φ S, and Φ R )
Here, the relationship between the height z and Ψ and Φ will be described more specifically. Expressions (14) and (15) described above represent the relationship between the phase Φ (and the phase shift amount Ψ) and the height z, and Ψ and Φ, or (Φ S −Φ R ) can be obtained. The height z can be obtained using any of these equations. However, in practice, determined tan represented by formula (21) and equation (22), cos, as tan S and tan R. These phases (and the amount of phase shift) are wrapped and output with being limited to 2mπ ≦ Φ ≦ 2 (m + 1) π or qπ ≦ ψ ≦ (q + 1) π. Here, m and q are integers. In general, it is limited when m = 0 and q = 0. Therefore, using tanΦ, cos Ψ, tanΦ S, and tanΦ R , the relationship between these and the height z was specifically obtained as follows.

例として、光源アレイ11が5つの光源からなる場合を考え、l=0.5mm、d=10mm、p=0.5mm、v=50mm、z=500mm及びe=0mmの場合を考える。このとき、式(14)を用いて得られたzとcosΨの関係は図9のようになる。 As an example, consider the case where the light source array 11 is composed of five light sources, and consider the case where l = 0.5 mm, d = 10 mm, p = 0.5 mm, v = 50 mm, z R = 500 mm and e = 0 mm. At this time, the relationship between z and cos Ψ obtained using equation (14) is as shown in FIG.

一方、式(15)を用いて得られたzは、xの関数である。ここで、基準面14aとZ軸との交点Iと、該交点Iを見ているカメラ13のある画素とを通る直線の式は、次式となる。   On the other hand, z obtained using equation (15) is a function of x. Here, an equation of a straight line passing through the intersection point I between the reference plane 14a and the Z axis and a certain pixel of the camera 13 looking at the intersection point I is as follows.

この式(29)を、式(12)に代入してxを消去すると、次式が得られる。   Substituting this equation (29) into equation (12) to eliminate x yields the following equation:

この式(30)で与えられるzとtanΦとの関係を図10に示す。   FIG. 10 shows the relationship between z and tan Φ given by this equation (30).

例えば光源組11aにおける5つの光源L−2,L−1,L,L及びLを順次点灯して撮影することで、5回の位相シフトを高速におこなうことができ、図9及び図10の位相が得られる。 For example, five light sources L -2 in the light source assembly 11a, L -1, by L 0, L 1 and sequential lighting for shooting the L 2, can be carried out five times the phase shift at high speed, FIG. 9 and The phase of FIG. 10 is obtained.

同様にして、予め基準面14aの位相分布を求めておけば、式(28)を用いて得られたzと0〜2πの範囲にラッピングされた(Φ−Φ)の関係を示す位相分布も同時に得られ(図11参照)、メモリ52に保持することができる。 Similarly, if the phase distribution of the reference surface 14a is obtained in advance, the phase indicating the relationship between z obtained using the equation (28) and (Φ S −Φ R ) wrapped in the range of 0 to 2π. A distribution is also obtained at the same time (see FIG. 11) and can be held in the memory 52.

したがって、一度の事前実験で得られた図9、図10及び図11で示される特性のいずれを使っても高さzを得ることができる。ただし、高さと位相の関係は、高さと位相とが1対1の対応がつく範囲でしか求められない。即ち、2mπ≦Φ≦2(m+1)π或いはqπ≦Ψ≦(q+1)πの範囲だけが解析できる。   Therefore, the height z can be obtained by using any of the characteristics shown in FIGS. 9, 10 and 11 obtained in one preliminary experiment. However, the relationship between the height and the phase can be obtained only in a range where the correspondence between the height and the phase is 1: 1. That is, only the range of 2mπ ≦ Φ ≦ 2 (m + 1) π or qπ ≦ ψ ≦ (q + 1) π can be analyzed.

前述したように、図9においては、cosΨはzの広い範囲にわたって単調増加或いは単調減少となる範囲がある。そのため、分解能は低いといえるが、ダイナミックレンジが広いといえる。一方、図10或いは図11においては、tanΦ或いは(Φ−Φ)が単調増加或いは単調減少するzの範囲は狭いため、ダイナミックレンジは狭いが、分解能が高いといえる。 As described above, in FIG. 9, cos Ψ has a monotonically increasing or decreasing range over a wide range of z. Therefore, it can be said that the resolution is low, but the dynamic range is wide. On the other hand, in FIG. 10 or FIG. 11, since the range of z in which tan Φ or (Φ S −Φ R ) monotonously increases or decreases monotonically is narrow, the dynamic range is narrow, but it can be said that the resolution is high.

そこで、図9に示したzとcosΨとの関係において、分解能がやや悪い高さzを予め求めておき、図10又は図11の関係において、予め求めたz付近の1対1の対応が成り立つ範囲においてzの値を高い分解能で求める。これにより、広い範囲にわたって高さzを高精度に求めることができる。さらに、本発明に係る式(23)の位相シフト量Ψを用いることによって、より高精度にzの値を求めることができるようになる。   Therefore, in the relationship between z and cos Ψ shown in FIG. 9, a height z having a slightly poor resolution is obtained in advance, and in the relationship of FIG. 10 or FIG. 11, a one-to-one correspondence in the vicinity of z obtained in advance is established. Find the value of z with high resolution in the range. Thereby, the height z can be obtained with high accuracy over a wide range. Furthermore, by using the phase shift amount Ψ of the equation (23) according to the present invention, the value of z can be obtained with higher accuracy.

また、第2実施形態において、撮影装置13のレンズの中心Vを原点Oとした場合は、v=0、x=0となり、式(12)より、Φ=0となり、図10における高さzとtanΦとの関係において高さzは不定となり、決まらない。このように、図10において、高さzと位相Φの関係は位置によって大きく異なり、精度も位置によって大きく異なることになる。したがって、図10に示した高さzとtanΦとの関係は使わず、図9に示したzとcosΨとの関係と図11に示した高さzと位相差(Φ−Φ)との関係を組み合わせて使用することが好適である。 Further, in the second embodiment, when the center V of the lens of the photographing apparatus 13 is the origin O, v = 0 and x = 0, and Φ = 0 from the equation (12), and the height z in FIG. In the relationship between tanΦ and tanΦ, the height z is indefinite and not determined. Thus, in FIG. 10, the relationship between the height z and the phase Φ varies greatly depending on the position, and the accuracy also varies greatly depending on the position. Therefore, the relationship between the height z and tan Φ shown in FIG. 10 is not used, the relationship between z and cos Ψ shown in FIG. 9 and the height z and phase difference (Φ S −Φ R ) shown in FIG. It is preferable to use a combination of these.

さらに、第1実施形態と同様に、位相シフト量(ΦS2−ΦS1)から、z又は基準面14aからの計測対象物体21の高さh=z−zを求めることで、より高精度のzを求めることができる。 Further, similarly to the first embodiment, by obtaining z or the height h S = z R −z of the measurement target object 21 from the reference surface 14a from the phase shift amount (Φ S2 −Φ S1 ), it is possible to obtain a higher value. The accuracy z can be determined.

また、式(14)や式(15)でその都度求めたzで十分に精度が得られることも考えられるが、全空間テーブル化手法を用いると式(14)や式(15)を直接用いなくてもよい。   In addition, it is conceivable that sufficient accuracy can be obtained with z obtained each time in Expression (14) or Expression (15), but Expression (14) or Expression (15) is directly used when the total space table formation method is used. It does not have to be.

こうして、逐次算出するか、予め位相Φと座標x,y及びz又は位相シフト量Ψと座標x,y及びzの換算式を示す全空間テーブルを保持しておくことで、計測対象物体21上の点Sの位相Φや位相シフト量Ψから座標x,y及びzを求めて、計測対象物体21の形状を求めることができる。   In this way, by sequentially calculating or holding the entire space table indicating the conversion formula between the phase Φ and the coordinates x, y, and z or the phase shift amount Ψ and the coordinates x, y, and z in advance, on the measurement target object 21 The coordinates x, y, and z are obtained from the phase Φ of the point S and the phase shift amount ψ, and the shape of the measurement target object 21 can be obtained.

また、第1実施形態及び第2実施形態では、光源や格子面の配置等に、種々の拘束条件を設けたが、6つの光源の発光輝度分布に多少のムラがある場合、点光源が完全な点ではなくて多少の面積がある場合、1次元格子やLEDの間隔が一定ではなく少々異なる場合、カメラ13のレンズの位置が光源面から少々外れる場合、平行に配置された各構成が平行から多少ずれる場合、及び1次元格子の輝度分布が余弦波から多少ずれる場合があるとしても、このような基準面14aを用いた位相解析により、計測された位相Φと高さzとの関係が単調に変化して1対1の対応関係がありさえすれば、これらの誤差を打ち消し、計測対象物体21の形状を精度良く求めることができる。   In the first embodiment and the second embodiment, various constraint conditions are provided for the arrangement of the light sources and the lattice planes. However, if there is some unevenness in the light emission luminance distribution of the six light sources, the point light source is completely If the area of the camera 13 is not constant and the spacing between the LEDs is not constant and slightly different, or if the lens position of the camera 13 is slightly off the light source surface, the components arranged in parallel are parallel. Even when the luminance distribution of the one-dimensional grating is slightly deviated from the cosine wave, there is a relationship between the measured phase Φ and the height z by the phase analysis using the reference plane 14a. As long as it changes monotonously and has a one-to-one correspondence, these errors can be canceled and the shape of the measurement target object 21 can be obtained with high accuracy.

より具体的には、基準面14aを用いて全空間テーブルを作成するにあたり、まず、第1の光源組10aによる5回の位相シフトで式(21)を用いて位相Φと高さzの関係を求める。次に、第2の光源組10bによる5回の位相シフトで式(21)を用いて位相Φと高さzの関係を求める。同時に位相シフト量Ψ=Φ−Φを求め、位相シフト量Ψと高さzの関係を求める。基準面14aのz座標の位置を一定間隔で変えながらこの作業を繰り返し、位相Φと高さzの関係をテーブルTとして求めてメモリ52に格納する。同様に位相Φと高さzの関係をテーブルTとして求めてメモリ52に格納する。さらに、位相シフト量Ψ(=Φ−Φ)とzの関係をテーブルTとして求めてメモリ52に格納する。テーブルT,T,Tを用いて、一定間隔の位相Φ,Φ及び位相シフト量Ψに対するそれぞれのzの値z,z及びzとなるテーブルを補間して求め直し、それぞれのテーブルT’,T’及びT’を生成する。図9及び図10又は図11から分かるように、Ψとzの関係が1:1の対応となる範囲に対して、Φ,Φとzの関係は、zに対してΦ,Φが多価関数となっていることから、これらのテーブルT’,T’及びT’を生成するのが好適となる。 More specifically, in creating the entire space table using the reference surface 14a, first, the phase Φ 1 and the height z of the phase Φ 1 and the height z are calculated using Equation (21) with five phase shifts by the first light source set 10a. Seeking a relationship. Next, the relationship between the phase Φ 2 and the height z is obtained using Expression (21) with five phase shifts by the second light source set 10b. At the same time, the phase shift amount ψ = Φ 2 −Φ 1 is obtained, and the relationship between the phase shift amount ψ and the height z is obtained. While changing the position of the z coordinates of the reference surface 14a at regular intervals Repeat this procedure to store in search of relationship between the phase [Phi 1 and height z as a table T 1 into the memory 52. Similarly, the relationship between the phase Φ 2 and the height z is obtained as a table T 2 and stored in the memory 52. Further, the relationship between the phase shift amount ψ (= Φ 2 −Φ 1 ) and z is obtained as a table T 3 and stored in the memory 52. Using the tables T 1 , T 2 , T 3 , interpolation is performed to obtain tables having z values z 1 , z 2, and z 3 for the phases Φ 1 , Φ 2 and the phase shift amount Ψ at regular intervals. , Each table T 1 ', T 2 ' and T 3 'is generated. As can be seen from FIGS. 9, 10, or 11, for the range in which the relationship between Ψ and z is 1: 1, the relationship between Φ 1 , Φ 2, and z is Φ 1 , Φ with respect to z Since 2 is a multivalent function, it is preferable to generate these tables T 1 ′, T 2 ′, and T 3 ′.

次に、計測対象物体21を置いたときに、まず、第1の光源組10aによる5回の位相シフトで位相Φを求め、次に、第2の光源組10bによる5回の位相シフトで位相Φを求め、これらの差より位相シフト量Ψを得る。そして、テーブルT’を参照して高さzを得る。これだけでも高さzの値をかなり精度よく求めることができる。更に、テーブルT’,T’のうち、高さz付近の位相Φ,Φと高さzの関係が一価関数となる範囲の位相Φや位相Φを用いることにより、高さz,zが一意に決まる。つまり、テーブルT’を参照して位相Φから高さzを得る。更に、テーブルT’を参照して位相Φから高さzを得る。最終的に、得られたzとzの値を平均して求めたいzの値とする。これにより、zを高精度に求めることができる。 Then, when placing the measuring object 21, first, obtains a phase [Phi 1 in five phase shift by the first light source group 10a, then, at five phase shift by the second light source group 10b The phase Φ 2 is obtained, and the phase shift amount ψ is obtained from these differences. Then, the height z 3 is obtained by referring to the table T 3 ′. Even with this alone, the value of the height z can be obtained with considerably high accuracy. Further, among the tables T 1 ′ and T 2 ′, by using the phase Φ 1 and the phase Φ 2 in the range in which the relationship between the phases Φ 1 and Φ 2 near the height z 3 and the height z is a monovalent function. , Heights z 1 and z 2 are uniquely determined. That is, the height z 1 is obtained from the phase Φ 1 with reference to the table T 1 ′. Furthermore, the height z 2 is obtained from the phase Φ 2 with reference to the table T 2 ′. Finally, the obtained z 1 and z 2 values are averaged to obtain the desired z value. Thereby, z can be obtained with high accuracy.

また、それぞれx,y方向の座標値x,yを基に、位相Φ,Φ及び位相シフト量Ψに対して全空間テーブル化手法を適用することができ、計測対象物体21のx,y,zの三次元座標を得ることができる。 Further, based on the coordinate values x and y in the x and y directions, respectively, the entire space table forming method can be applied to the phases Φ 1 and Φ 2 and the phase shift amount Ψ, and the x, The three-dimensional coordinates of y and z can be obtained.

つまり、第1実施形態の形状計測装置1において、全空間テーブル化手法を使うと精度が良くなり計測速度が高速となる。また、第2実施形態の形状計測装置2において、基準平板14と全空間テーブル化手法を使うと計測速度が高速になるだけでなく、さらに精度が良くなる。尚、第1実施形態及び第2実施形態において、格子面に平行に配置された基準面を有する所定の基準平板(第2実施形態では、基準平板14)を用いる例について説明したが、この全空間テーブル化手法を使うことで、投影される1次元格子の位相と三次元座標の関係をテーブル化してメモリ52に保持しておくことができるので、この基準平板と格子プレート12における格子面とを平行に配置しなくともよくなる。例えば、基準平板14上にX軸及びY軸を取り、その基準面14aに垂直な方向にZ軸を取るようにする。この全空間テーブル化手法により、座標値x,yを示す2次元格子を基準平板14上に投影するプロジェクタ(図示せず)を用いる場合においても、このプロジェクタ、光源アレイ11及びカメラ13の位置を自由に配置することができるようになる。したがって、本発明に係る形状計測装置で所定の基準平板を用いる場合に、全空間テーブル化手法を適用することは、この基準平板を格子面に平行に配置しなくてもよくなる点で有効である。   That is, in the shape measuring apparatus 1 according to the first embodiment, the use of the total space table method improves the accuracy and increases the measurement speed. In the shape measuring apparatus 2 according to the second embodiment, when the reference flat plate 14 and the total space table forming method are used, not only the measurement speed is increased, but also the accuracy is improved. In the first embodiment and the second embodiment, the example using the predetermined reference flat plate (the reference flat plate 14 in the second embodiment) having the reference plane arranged in parallel to the lattice plane has been described. By using the spatial table formation method, the relationship between the phase of the projected one-dimensional grating and the three-dimensional coordinates can be tabulated and stored in the memory 52. Need not be arranged in parallel. For example, the X axis and the Y axis are taken on the reference flat plate 14, and the Z axis is taken in a direction perpendicular to the reference plane 14a. Even when a projector (not shown) that projects a two-dimensional lattice indicating coordinate values x and y onto the reference flat plate 14 by using this total space table forming method, the positions of the projector, the light source array 11 and the camera 13 are determined. It becomes possible to arrange freely. Therefore, when a predetermined reference flat plate is used in the shape measuring apparatus according to the present invention, it is effective to apply the total space table method in that the reference flat plate need not be arranged parallel to the lattice plane. .

尚、各実施形態における制御ユニット50は、コンピュータとして構成することができ、制御ユニット50をコンピュータとして構成させる場合には、当該コンピュータに、制御ユニット50の各構成要素を実現させるためのプログラムをメモリ52に記憶する。当該コンピュータに備えられる中央演算処理部(CPU)が、各構成要素の機能を実現するための処理内容が記述されたプログラムや処理データを、適宜、メモリ52から読み込んで制御ユニット50の各構成要素の機能をコンピュータ上で実現させることができる。ここで、各構成要素の機能をハードウェアの一部で実現してもよいことは勿論である。   The control unit 50 in each embodiment can be configured as a computer. When the control unit 50 is configured as a computer, a program for causing the computer to realize each component of the control unit 50 is stored in a memory. 52. The central processing unit (CPU) provided in the computer reads a program or processing data in which processing contents for realizing the function of each component are described from the memory 52 as appropriate, and each component of the control unit 50 Can be realized on a computer. Here, it goes without saying that the function of each component may be realized by a part of hardware.

本発明によれば、少なくとも5つの光源を順次切り替えることにより位相シフトを高速に行うことができ、計測対象物体の形状を高速且つ高精度に計測することができるため、電子部品の検査、人体計測、医療、及び小型生物の立体観察や立体計測等の用途に有用である。   According to the present invention, the phase shift can be performed at high speed by sequentially switching at least five light sources, and the shape of the measurement target object can be measured at high speed and with high accuracy. It is useful for medical, and applications such as stereoscopic observation and stereoscopic measurement of small organisms.

1,2 形状計測装置
11 光源アレイ
12 格子プレート
12a 格子の光遮蔽領域
12b 格子の光透過領域
13 カメラ
14 基準平板
14a 基準面
21 計測対象物体
50 制御ユニット
51 制御部
52 メモリ
511 光源決定部
512 カメラ撮影処理部
513 画素別輝度算出部
514 位相・位相シフト量算出部
515 三次元座標算出部
−2,L−1,L,L,L,L 光源
U 撮影装置の画素
V 撮影装置のレンズの中心
DESCRIPTION OF SYMBOLS 1, 2 Shape measuring device 11 Light source array 12 Grating plate 12a Grating light shielding area 12b Grating light transmission area 13 Camera 14 Reference flat plate 14a Reference plane 21 Measurement object 50 Control unit 51 Control part 52 Memory 511 Light source determination part 512 Camera Imaging processing unit 513 Pixel-specific luminance calculation unit 514 Phase / phase shift amount calculation unit 515 Three-dimensional coordinate calculation unit L −2 , L −1 , L 0 , L 1 , L 2 , L 3 Light source U Pixel V imaging of imaging device Device lens center

Claims (7)

計測対象物体の形状を非接触で計測する形状計測装置であって、
少なくとも5つの光源を等間隔に直線状に配列した光源アレイと、
前記少なくとも5つの光源を配列した直線に対して垂直方向の直線からなる光透過領域を光遮蔽領域に対して等間隔で並べて構成された1次元格子の格子面を有する格子プレートと、
前記少なくとも5つの光源の順次点灯により前記1次元格子がそれぞれ投影される計測対象物体を撮影するカメラと、
前記少なくとも5つの光源のうち隣接配置の少なくとも4つの光源からなる光源組を2組設定し、前記2組の光源組における各光源を順次点灯するよう前記光源アレイを制御するとともに、前記各光源を順次点灯してそれぞれ前記計測対象物体上に投影される1次元格子を撮影するよう前記カメラを制御し、前記2組の光源組による前記計測対象物体上に投影された前記1次元格子の位相をそれぞれ算出し、算出した当該2つの位相の差を位相シフト量として、前記位相シフト量から距離を決定する予め定めた換算式に基づいて前記計測対象物体に関する高さ座標を求める制御ユニットと、
を備えることを特徴とする形状計測装置。
A shape measuring device that measures the shape of an object to be measured without contact,
A light source array in which at least five light sources are arranged linearly at equal intervals;
A lattice plate having a lattice plane of a one-dimensional lattice configured by arranging light transmission regions composed of straight lines perpendicular to the straight line in which the at least five light sources are arranged at equal intervals with respect to the light shielding region;
A camera that captures a measurement target object onto which the one-dimensional grating is projected by sequentially turning on the at least five light sources;
Two sets of light sources composed of at least four light sources arranged adjacent to each other among the at least five light sources are set, and the light source array is controlled to sequentially turn on the light sources in the two sets of light sources. The camera is controlled so as to photograph one-dimensional gratings that are sequentially turned on and projected onto the measurement target object, and the phase of the one-dimensional grating projected onto the measurement target object by the two light source sets is determined. A control unit for calculating a height coordinate related to the measurement target object based on a predetermined conversion formula for determining a distance from the phase shift amount using a difference between the calculated two phases as a phase shift amount,
A shape measuring device comprising:
前記位相シフト量から距離を決定する予め定めた換算式は、前記少なくとも5つの光源を配列した直線上の1点を原点として、前記格子プレートのそれぞれの光透過領域の配列方向をX軸、前記光透過領域の直線をY軸、及び前記格子プレートの格子面の法線方向をZ軸とし、前記光源アレイの原点から前記計測対象物体の表面までの前記Z軸方向の距離をz、前記光源アレイの各光源の間隔をl、前記光源アレイの原点から前記格子面までのZ軸方向の距離をd、前記位相シフト量をΨ、前記1次元格子の間隔をpとしたとき、
The predetermined conversion formula for determining the distance from the phase shift amount is based on the arrangement direction of the respective light transmission regions of the lattice plate as the X axis, with one point on the straight line where the at least five light sources are arranged as the origin. A straight line of the light transmission region is defined as a Y-axis, a normal direction of a lattice plane of the lattice plate is defined as a Z-axis, a distance in the Z-axis direction from the origin of the light source array to the surface of the object to be measured is z, and the light source When the interval between the light sources of the array is l, the distance in the Z-axis direction from the origin of the light source array to the grating plane is d, the phase shift amount is ψ, and the interval of the one-dimensional grating is p,
前記制御ユニットは、当該投影された1次元格子の位相から距離を決定する予め定めた換算式に基づいて前記計測対象物体に関する高さ座標を求める手段を有し、前記少なくとも5つの光源を配列した直線上の1点を原点として、前記格子プレートのそれぞれの光透過領域の配列方向をX軸、前記光透過領域の直線をY軸、及び前記格子プレートの格子面の法線方向をZ軸とし、前記光源アレイの原点から前記計測対象物体の表面までの前記Z軸方向の距離をz、前記光源アレイの原点から前記格子面までの前記Z軸方向の距離をd、前記1次元格子の位相をΦ、前記1次元格子の間隔をp、前記原点から前記計測対象物体の表面までの前記X軸方向の距離をx、前記1次元格子を構成する各光透過領域の中央位置のうち前記Z軸からの最短距離をeとしたとき、
The control unit has means for obtaining a height coordinate relating to the measurement target object based on a predetermined conversion formula for determining a distance from the phase of the projected one-dimensional grating, and arranging the at least five light sources With one point on the straight line as the origin, the arrangement direction of the light transmission regions of the lattice plate is the X axis, the straight line of the light transmission region is the Y axis, and the normal direction of the lattice plane of the lattice plate is the Z axis The distance in the Z-axis direction from the origin of the light source array to the surface of the object to be measured is z, the distance in the Z-axis direction from the origin of the light source array to the grating plane is d, and the phase of the one-dimensional grating Φ, the interval of the one-dimensional grating p, the distance in the X-axis direction from the origin to the surface of the object to be measured, x, and the Z of the center positions of the light transmission regions constituting the one-dimensional grating Shortest from axis When the release was e,
前記1次元格子が投影されるように配置された基準面を有する基準平板を更に備え、前記制御ユニットは、前記少なくとも5つの光源のうち隣接配置の少なくとも4つの光源からなる光源組を2組設定し、前記2組の光源組における各光源を順次点灯するよう前記光源アレイを制御するとともに、前記各光源を順次点灯してそれぞれ前記基準面に投影される1次元格子を撮影するよう前記カメラを制御し、前記2組の光源組による前記基準面上に投影された前記1次元格子の位相をそれぞれ算出してメモリに保持する手段と、前記2組の光源組のそれぞれについて、前記メモリに保持した前記基準面上に投影された前記1次元格子の位相と、前記計測対象物体上に投影された前記1次元格子の位相との差分を算出し、該差分から距離を決定する予め定めた換算式に基づいて前記計測対象物体に関する高さ座標を求める手段とを備えることを特徴とする、請求項1〜3のいずれか一項に記載の形状計測装置。   The control unit further includes a reference plate having a reference surface arranged so that the one-dimensional grating is projected, and the control unit sets two sets of light sources composed of at least four light sources adjacent to each other among the at least five light sources. And controlling the light source array so that each light source in the two light source sets is sequentially turned on, and simultaneously turning on each light source and photographing the one-dimensional lattice projected on the reference plane. Means for controlling and calculating the phase of the one-dimensional grating projected on the reference plane by the two sets of light sources and holding them in the memory; and holding each of the two sets of light sources in the memory The difference between the phase of the one-dimensional grating projected on the reference plane and the phase of the one-dimensional grating projected on the measurement target object is calculated, and the distance is determined from the difference. Characterized in that it comprises a means for determining the height coordinates for the measurement target object based on a predetermined conversion formula, the shape measuring apparatus according to any one of claims 1 to 3. 前記差分から距離を決定する予め定めた換算式は、前記少なくとも5つの光源を配列した直線上の1点を原点として、前記格子プレートのそれぞれの光透過領域の配列方向をX軸、前記光透過領域の直線をY軸、及び前記格子プレートの格子面の法線方向をZ軸とし、前記光源アレイの原点から前記計測対象物体の表面までの前記Z軸方向の距離をz、前記光源アレイの原点から前記格子面までの前記Z軸方向の距離をd、前記原点から前記カメラのレンズの中心までの距離をv、前記原点から前記基準面までのZ軸方向の距離をz、前記1次元格子の間隔をp、前記原点から前記計測対象物体の表面までの前記X軸方向の距離xにおける当該投影された前記1次元格子の位相をΦ、前記距離xの前記計測対象物体の表面位置と前記レンズの中心とを通る直線と、前記基準面との交点における当該投影された前記1次元格子の位相をΦとしたとき、
The predetermined conversion formula for determining the distance from the difference is that the arrangement direction of the respective light transmission regions of the lattice plate is the X axis, with one point on the straight line where the at least five light sources are arranged as the origin, and the light transmission. The straight line of the region is the Y axis, the normal direction of the lattice plane of the lattice plate is the Z axis, the distance from the origin of the light source array to the surface of the object to be measured is z, the distance of the light source array The distance in the Z-axis direction from the origin to the lattice plane is d, the distance from the origin to the center of the lens of the camera is v, the distance in the Z-axis direction from the origin to the reference plane is z R , 1 The interval of the three-dimensional grating is p, the phase of the projected one-dimensional grating at the distance x in the X-axis direction from the origin to the surface of the measurement target object is Φ S , and the surface of the measurement target object of the distance x The position and the label A straight line passing through the center of the figure, when the phase of the one-dimensional lattice which is the projection of the intersection between the reference plane and the [Phi R,
前記制御ユニットは、前記カメラの画素位置で定まるX軸及びY軸のx,y座標とZ軸のz座標からなる三次元座標について、前記基準平板を用いて計測された一定間隔のz座標毎に、前記位相と前記x,y座標との関係、及び前記位相シフト量と前記x,y座標との関係を関連づけるテーブルをそれぞれ作成して前記メモリに保持する手段と、前記計測対象物体について算出した前記1次元格子の位相及び前記位相シフト量から、前記メモリに保持したテーブルを参照して前記計測対象物体に関する三次元座標を導出する手段とを備えることを特徴とする、請求項1〜5のいずれか一項に記載の形状計測装置。   The control unit performs z-coordinates at regular intervals measured using the reference plate for three-dimensional coordinates composed of x- and y-coordinates of the X-axis and Y-axis determined by the pixel position of the camera and a z-coordinate of the Z axis. And a means for creating a table for associating the relationship between the phase and the x, y coordinates and the relationship between the phase shift amount and the x, y coordinates and storing the table in the memory, and calculating the measurement target object A means for deriving three-dimensional coordinates relating to the measurement target object from the phase of the one-dimensional grating and the phase shift amount with reference to a table held in the memory. The shape measuring device according to any one of the above. 少なくとも5つの光源を等間隔に直線状に配列した光源アレイと、前記少なくとも5つの光源を配列した直線に対して垂直方向の直線からなる光透過領域を光遮蔽領域に対して等間隔で並べて構成された1次元格子の格子面を有する格子プレートと、前記少なくとも5つの光源の順次点灯により前記1次元格子がそれぞれ投影される計測対象物体を撮影するカメラと、制御ユニットと、を備える形状計測装置によって前記計測対象物体の形状を計測する形状計測方法であって、
前記制御ユニットの処理は、
前記少なくとも5つの光源のうち隣接配置の少なくとも4つの光源からなる光源組を2組設定するステップと、
前記2組の光源組における各光源を順次点灯するよう前記光源アレイを制御するステップと、
前記各光源を順次点灯してそれぞれ前記計測対象物体上に投影される1次元格子を撮影するよう前記カメラを制御するステップと、
前記2組の光源組による前記計測対象物体上に投影された前記1次元格子の位相をそれぞれ算出するステップと、
算出した当該2つの位相の差を位相シフト量として、前記位相シフト量から距離を決定する予め定めた換算式に基づいて前記計測対象物体に関する高さ座標を求めるステップと、
を含むことを特徴とする形状計測方法。
A light source array in which at least five light sources are arranged in a straight line at equal intervals, and a light transmission region composed of straight lines perpendicular to the straight line in which the at least five light sources are arranged are arranged at equal intervals with respect to the light shielding region. A shape measuring apparatus comprising: a lattice plate having a lattice plane of a one-dimensional lattice, a camera for photographing a measurement target object onto which the one-dimensional lattice is projected by sequentially turning on the at least five light sources, and a control unit. A shape measuring method for measuring the shape of the measurement target object by:
The processing of the control unit is as follows:
Setting two sets of light sources composed of at least four light sources arranged adjacent to each other among the at least five light sources;
Controlling the light source array to sequentially turn on each light source in the two light source sets;
Controlling the camera to illuminate each of the light sources sequentially and capture a one-dimensional grid projected onto the object to be measured;
Calculating each phase of the one-dimensional grating projected onto the measurement target object by the two sets of light sources;
Calculating a height coordinate related to the measurement target object based on a predetermined conversion formula for determining a distance from the phase shift amount, using the calculated difference between the two phases as a phase shift amount;
A shape measuring method comprising:
JP2011184185A 2011-08-25 2011-08-25 Shape measuring apparatus and shape measuring method Active JP5853284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011184185A JP5853284B2 (en) 2011-08-25 2011-08-25 Shape measuring apparatus and shape measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011184185A JP5853284B2 (en) 2011-08-25 2011-08-25 Shape measuring apparatus and shape measuring method

Publications (2)

Publication Number Publication Date
JP2013044689A true JP2013044689A (en) 2013-03-04
JP5853284B2 JP5853284B2 (en) 2016-02-09

Family

ID=48008703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011184185A Active JP5853284B2 (en) 2011-08-25 2011-08-25 Shape measuring apparatus and shape measuring method

Country Status (1)

Country Link
JP (1) JP5853284B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5854544B1 (en) * 2015-04-07 2016-02-09 藤垣 元治 Shape measuring apparatus and shape measuring method
CN105741275A (en) * 2016-01-26 2016-07-06 浙江捷尚视觉科技股份有限公司 Human and car targets characteristics extraction method based on automatic calibration for fixed camera
JP2019196947A (en) * 2018-05-08 2019-11-14 株式会社ミツトヨ Optical device and shape measurement method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257528A (en) * 2001-03-02 2002-09-11 Ricoh Co Ltd Three-dimensional shape measuring device by phase shift method
JP2003050112A (en) * 2001-08-07 2003-02-21 Minolta Co Ltd Three-dimensional shape input device and projector
JP2006084286A (en) * 2004-09-15 2006-03-30 Olympus Corp Three-dimensional measuring method and its measuring device
JP2009150773A (en) * 2007-12-20 2009-07-09 Nikon Corp Device and method for measuring three-dimensional shape, and program
US20090225321A1 (en) * 2008-03-05 2009-09-10 Clark Alexander Bendall Fringe projection system and method for a probe suitable for phase-shift analysis
JP2010164424A (en) * 2009-01-15 2010-07-29 Kurabo Ind Ltd Non-contact shape measuring apparatus and non-contact shape measuring method
JP2010281665A (en) * 2009-06-04 2010-12-16 Yamaha Motor Co Ltd Phase shift imaging device, component transfer device, and phase shift imaging method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257528A (en) * 2001-03-02 2002-09-11 Ricoh Co Ltd Three-dimensional shape measuring device by phase shift method
JP2003050112A (en) * 2001-08-07 2003-02-21 Minolta Co Ltd Three-dimensional shape input device and projector
JP2006084286A (en) * 2004-09-15 2006-03-30 Olympus Corp Three-dimensional measuring method and its measuring device
JP2009150773A (en) * 2007-12-20 2009-07-09 Nikon Corp Device and method for measuring three-dimensional shape, and program
US20090225321A1 (en) * 2008-03-05 2009-09-10 Clark Alexander Bendall Fringe projection system and method for a probe suitable for phase-shift analysis
JP2010164424A (en) * 2009-01-15 2010-07-29 Kurabo Ind Ltd Non-contact shape measuring apparatus and non-contact shape measuring method
JP2010281665A (en) * 2009-06-04 2010-12-16 Yamaha Motor Co Ltd Phase shift imaging device, component transfer device, and phase shift imaging method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5854544B1 (en) * 2015-04-07 2016-02-09 藤垣 元治 Shape measuring apparatus and shape measuring method
CN105741275A (en) * 2016-01-26 2016-07-06 浙江捷尚视觉科技股份有限公司 Human and car targets characteristics extraction method based on automatic calibration for fixed camera
JP2019196947A (en) * 2018-05-08 2019-11-14 株式会社ミツトヨ Optical device and shape measurement method
JP7080718B2 (en) 2018-05-08 2022-06-06 株式会社ミツトヨ Optical device and shape measurement method

Also Published As

Publication number Publication date
JP5853284B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
JP5956218B2 (en) Shape measuring device, shape measuring method, and calibration processing method in shape measuring device
JP5689681B2 (en) Non-contact probe
US6977732B2 (en) Miniature three-dimensional contour scanner
JP5770495B2 (en) Shape measuring device and lattice projection device
KR20100085823A (en) Three-dimensional measurement device
TWI512263B (en) Shape measuring device and shape measuring method
JP5657276B2 (en) Shape measuring apparatus and shape measuring method
JP2010281621A (en) Three-dimensional shape measuring instrument
US10803623B2 (en) Image processing apparatus
JP6937482B2 (en) Surface shape measuring device and its stitching measuring method
JP5957575B1 (en) 3D measuring device
JP5854544B1 (en) Shape measuring apparatus and shape measuring method
TWI672481B (en) Structured light projector and three-dimensional image sensing module
JP5956296B2 (en) Shape measuring apparatus and shape measuring method
JP2005520142A (en) Method and apparatus for measuring absolute coordinates of object
JP5853284B2 (en) Shape measuring apparatus and shape measuring method
JP6420159B2 (en) Shape measuring apparatus and shape measuring method
JP5667891B2 (en) Shape measurement method
JP2012237613A (en) Shape measuring device and shape measuring method
Willomitzer et al. Flying triangulation-A motion-robust optical 3D sensor for the real-time shape acquisition of complex objects
US20120056999A1 (en) Image measuring device and image measuring method
JP2011021970A (en) Three-dimensional shape measuring device and three-dimensional shape measuring method
KR101566129B1 (en) Moire Technique- based Measurement of the 3-Dimension Profile of a Specimen and its Implementation with Line-Scan Camera
JP2017125707A (en) Measurement method and measurement device
JP2006064590A (en) Line sensor, and shape measuring method and device by linear projector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140803

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20140803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151111

R150 Certificate of patent or registration of utility model

Ref document number: 5853284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R255 Notification that request for automated payment was rejected

Free format text: JAPANESE INTERMEDIATE CODE: R2525

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250