JP2013037065A - Image heating device - Google Patents

Image heating device Download PDF

Info

Publication number
JP2013037065A
JP2013037065A JP2011170957A JP2011170957A JP2013037065A JP 2013037065 A JP2013037065 A JP 2013037065A JP 2011170957 A JP2011170957 A JP 2011170957A JP 2011170957 A JP2011170957 A JP 2011170957A JP 2013037065 A JP2013037065 A JP 2013037065A
Authority
JP
Japan
Prior art keywords
heater
heating resistor
recording material
heating
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011170957A
Other languages
Japanese (ja)
Inventor
Tomoaki Nakai
智朗 中居
Hiroshi Kataoka
洋 片岡
Tetsuya Sano
哲也 佐野
Yusuke Shirota
勇介 城田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011170957A priority Critical patent/JP2013037065A/en
Publication of JP2013037065A publication Critical patent/JP2013037065A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Fixing For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an image heating device switching a serial connection and a parallel connection of a first heat generating resistor and a second heat generating resistor of a heating body according to a different voltage of a commercial power source, which is capable of obtaining a same excellent image quality in both the serial connection and the parallel connection.SOLUTION: An image heating device switches a serial connection and a parallel connection of a first heat generating resistor H1 and a second heat generating resistor H2 provided on a substrate 105 of a heating body 300 according to a different voltage of a commercial power source 20. The image heating device is characterized in that a resistance value of the second heat generating resistor on the substrate in the recording material conveyance direction downstream side is smaller than a resistance value of the first heat generating resistor on the substrate in the recording material conveyance direction upstream side.

Description

本発明は、電子写真複写機、電子写真プリンタ等の画像形成装置に搭載する定着装置(定着器)として好適の用いられる像加熱装置に関する。   The present invention relates to an image heating apparatus suitably used as a fixing device (fixing device) mounted on an image forming apparatus such as an electrophotographic copying machine or an electrophotographic printer.

電子写真式の複写機やプリンタに搭載される定着装置(定着器)として、フィルム加熱方式の定着装置が知られている。このフィルム加熱方式の定着装置は、セラミックス製の基板上に通電により発熱する抵抗発熱体を有するヒータと、ヒータと接触しつつ移動する筒状の定着フィルムと、定着フィルムを介してヒータとニップ部を形成する加圧ローラと、を有している。未定着トナー画像を担持する記録材はニップ部で挟持搬送されつつ加熱され、これにより記録材上の画像は記録材に加熱定着される。   As a fixing device (fixing device) mounted on an electrophotographic copying machine or printer, a film heating type fixing device is known. This film heating type fixing device includes a heater having a resistance heating element that generates heat upon energization on a ceramic substrate, a cylindrical fixing film that moves while being in contact with the heater, and a heater and a nip portion via the fixing film. A pressure roller. The recording material carrying the unfixed toner image is heated while being nipped and conveyed at the nip portion, whereby the image on the recording material is heated and fixed to the recording material.

この定着装置は、ヒータへの通電を開始し定着可能温度まで昇温するのに要する時間が短いというメリットがある。従ってこの定着装置を搭載するプリンタは、プリント指令の入力後、1枚目の画像を出力するまでの時間(FPOT:First Print Out Time)が短くできる。またこのタイプの定着装置は、プリント指令を待つ待機中の消費電力が少ないというメリットもある。   This fixing device has an advantage that the time required for starting energization of the heater and raising the temperature to a fixable temperature is short. Therefore, a printer equipped with this fixing device can shorten the time (FPOT: First Print Out Time) until the first image is output after a print command is input. This type of fixing device also has an advantage that power consumption during standby for waiting for a print command is small.

上記フィルム加熱方式の定着装置では、商用電源の電圧が100V系と200V系の地域において、同じ抵抗値のヒータを用いる場合がある。この場合、ヒータに供給される電力は電圧の二乗に比例するため、ヒータに供給可能な最大電力は200V系の地域では100V系の4倍になる。ヒータに供給可能な最大電力が大きくなると、ヒータの電力制御で生じる高調波電流やフリッカ等が低下するので、100V系と200V系の商用電源電圧に応じて異なる抵抗値のヒータを有する定着装置を用いる場合が多い。   In the film heating type fixing device, heaters having the same resistance value may be used in regions where the voltage of the commercial power supply is 100V and 200V. In this case, since the power supplied to the heater is proportional to the square of the voltage, the maximum power that can be supplied to the heater is four times that of the 100V system in the 200V system area. When the maximum power that can be supplied to the heater is increased, harmonic current and flicker generated by the heater power control are reduced. Therefore, a fixing device having heaters having different resistance values depending on the commercial power supply voltage of the 100V system and the 200V system. Often used.

100V系と200V系の地域で共用できる定着装置を実現する手段としては、リレーなどスイッチ手段を用いて、ヒータの抵抗値を切り替える方法が提案されている。特許文献1に記載の定着装置では、ヒータは記録材搬送方向上流側に長手方向に沿って設けられた第1の抵抗発熱体と、同記録材搬送方向下流側に長手方向に沿って設けられた第2の抵抗発熱体を有している。そして第1の抵抗発熱体と第2の抵抗発熱体を直列に接続して通電する第1の動作状態と、第1の抵抗発熱体と第2の抵抗発熱体を並列に接続して通電する第2の動作状態で、ヒータの抵抗値を切り替える方法が提案されている。   As a means for realizing a fixing device that can be shared in 100V system and 200V system areas, a method of switching the resistance value of the heater using a switching means such as a relay has been proposed. In the fixing device described in Patent Document 1, the heater is provided along the longitudinal direction on the downstream side in the recording material conveyance direction, and the first resistance heating element provided in the longitudinal direction on the upstream side in the recording material conveyance direction. And a second resistance heating element. The first operating state in which the first resistance heating element and the second resistance heating element are connected in series and energized, and the first resistance heating element and the second resistance heating element are connected in parallel and energized. A method of switching the resistance value of the heater in the second operating state has been proposed.

特開平09−329982号公報JP 09-329982 A

商用電源電圧に合わせて抵抗発熱体を直列或いは並列に接続してヒータ抵抗値を切り換える方式の定着装置においては、接続方法の違いによってヒータの記録材搬送方向上流側の抵抗発熱体と記録材搬送方向下流側の抵抗発熱体の発熱分布に差が生じることがある。   In a fixing device that switches resistance values by connecting resistance heating elements in series or in parallel according to the commercial power supply voltage, the resistance heating element upstream of the recording material conveyance direction of the heater and the recording material conveyance depending on the connection method There may be a difference in the heat generation distribution of the resistance heating element on the downstream side in the direction.

即ち、フィルム加熱方式の定着装置は、定着フィルムの回転によって記録材搬送方向下流側に熱が運ばれるため、定着フィルムの回転動作時のヒータの記録材搬送方向下流側の温度は記録材搬送方向上流側より高くなる傾向にある。
定着装置の構成や、定着フィルムの回転速度によって違いはあるものの、ヒータの記録材搬送方向上流側に配置した抵抗発熱体と記録材搬送方向下流側に配置した抵抗発熱体の温度差は100℃程度にもなる。このため、発熱抵抗体のTCR(温度抵抗係数)の影響で温度によって抵抗値が異なるため、直列接続、並列接続の接続方法により、ヒータの記録材搬送方向上流側に配置した抵抗発熱体と記録材搬送方向下流側に配置した抵抗発熱体の発熱分布も異なってくる。以下、説明の都合上、記録材搬送方向上流側に配置した抵抗発熱体を上流側抵抗発熱体と記し、記録材搬送方向下流側に配置した抵抗発熱体を下流側抵抗発熱体と記す。
That is, in the film heating type fixing device, heat is transferred to the downstream side in the recording material conveyance direction by the rotation of the fixing film. Therefore, the temperature downstream of the recording material conveyance direction of the heater during the rotation operation of the fixing film is the recording material conveyance direction. It tends to be higher than the upstream side.
Although there is a difference depending on the configuration of the fixing device and the rotation speed of the fixing film, the temperature difference between the resistance heating element arranged on the upstream side in the recording material conveyance direction of the heater and the resistance heating element arranged on the downstream side in the recording material conveyance direction is 100 ° C. It also becomes a degree. For this reason, since the resistance value varies depending on the temperature due to the influence of the TCR (temperature resistance coefficient) of the heating resistor, the resistance heating element arranged on the upstream side in the recording material conveyance direction of the heater and the recording by the connection method of series connection and parallel connection. The heat generation distribution of the resistance heating element arranged on the downstream side in the material conveyance direction is also different. Hereinafter, for convenience of explanation, the resistance heating element arranged on the upstream side in the recording material conveyance direction is referred to as an upstream resistance heating element, and the resistance heating element arranged on the downstream side in the recording material conveyance direction is referred to as a downstream resistance heating element.

この理由としては、次のように考えられる。直列接続の場合、上流側抵抗発熱体と下流側抵抗発熱体に流れる電流は同じである。このため、温度が高く抵抗値も高い下流側発熱抵抗体の方が、上流側発熱抵抗体より発熱量も大きく、ヒータの上流側抵抗発熱体と下流側抵抗発熱体の温度差は大きくなる。一方、並列接続の場合、ヒータの上流側抵抗発熱体と下流側抵抗発熱体に印加される電圧が同じである。このため、温度が低く抵抗値も低い上流側抵抗発熱体の方が、電流が多く流れ、発熱量が下流側抵抗発熱体より大きくなる。これにより、ヒータの上流側抵抗発熱体と下流側抵抗発熱体の温度差は解消される方に働く。   The reason is considered as follows. In the case of series connection, the current flowing through the upstream resistance heating element and the downstream resistance heating element is the same. For this reason, the downstream heating resistor having a high temperature and a high resistance value has a larger amount of heat generation than the upstream heating resistor, and the temperature difference between the upstream resistance heating element and the downstream resistance heating element of the heater is large. On the other hand, in the case of parallel connection, the voltage applied to the upstream resistance heating element and the downstream resistance heating element of the heater is the same. For this reason, the upstream resistance heating element having a low temperature and a low resistance value has a larger current flow, and the heat generation amount is larger than that of the downstream resistance heating element. As a result, the temperature difference between the upstream resistance heating element and the downstream resistance heating element of the heater is eliminated.

このように、直列或いは並列の接続方法によりヒータの上流側抵抗発熱体と下流側抵抗発熱体の温度分布が異なると、ヒータへの投入電力が同じであっても、ニップ部に通紙された記録材に与えられる熱量も異なる。これは、発熱抵抗体と記録材の温度差が大きいほど記録材に移動する熱量は多くなるためである。これにより、ヒータの上流側抵抗発熱体と下流側抵抗発熱体の温度差が大きい直列接続の方が、記録材がニップ部を通過する間、発熱抵抗体と記録材の温度差を大きく保つためと考えられる。   In this way, when the temperature distribution of the upstream resistance heating element and the downstream resistance heating element of the heater is different depending on the connection method in series or in parallel, even if the input power to the heater is the same, the paper is passed through the nip portion. The amount of heat given to the recording material is also different. This is because the amount of heat transferred to the recording material increases as the temperature difference between the heating resistor and the recording material increases. As a result, the temperature difference between the heating resistor and the recording material is kept larger in the serial connection in which the temperature difference between the upstream resistance heating element and the downstream resistance heating element of the heater is larger while the recording material passes through the nip portion. it is conceivable that.

このため、直列接続或いは並列接続の接続方法により定着性、オフセットなどの画像品質に影響する場合があった。つまり、直列或いは並列の接続方法の違いによってヒータの上流側抵抗発熱体と下流側抵抗発熱体の発熱分布に差が生じ、記録材上の定着画像品質に差異を生ずる場合があった。   For this reason, the image quality such as fixing property and offset may be affected by the connection method of series connection or parallel connection. That is, the difference in the heat generation distribution between the upstream resistance heating element and the downstream resistance heating element of the heater is caused by the difference in series or parallel connection method, and the fixed image quality on the recording material may be different.

また、ヒータの所定の定着温度を超える温度上昇は、ヒータと接触する部材やヒータを支持する部材の熱劣化などの観点から好ましいものではない。特に、TCR(温度抵抗係数)の大きい発熱抵抗体を用いる場合は、ヒータの上流側抵抗発熱体と下流側抵抗発熱体の温度差による抵抗値差が大きくなり、発熱量差も大きくなるので、上記の温度差は顕著である。   Further, a temperature increase exceeding a predetermined fixing temperature of the heater is not preferable from the viewpoint of thermal deterioration of a member that contacts the heater or a member that supports the heater. In particular, when a heating resistor having a large TCR (temperature resistance coefficient) is used, the resistance value difference due to the temperature difference between the upstream resistance heating element and the downstream resistance heating element of the heater increases, and the heating value difference also increases. The above temperature difference is significant.

本発明の目的は、商用電源の異なる電圧に応じて加熱体の第1の発熱抵抗体と第2の発熱抵抗体を直列接続或いは並列接続に切り替える像加熱装置において、直列接続或いは並列接続で同等の良好な画像品質を得られるようにした像加熱装置を提供することにある。   It is an object of the present invention to provide an image heating apparatus that switches a first heating resistor and a second heating resistor of a heating body to a series connection or a parallel connection according to different voltages of a commercial power source. It is an object of the present invention to provide an image heating apparatus capable of obtaining excellent image quality.

上記目的を達成するための本発明に係る像加熱装置の構成は、基板と前記基板の上に商用電源から供給される電力によって発熱する第1の発熱抵抗体と第2の発熱抵抗体とを有する加熱体と、前記加熱体と接触しつつ移動する筒状の可撓性部材と、前記可撓性部材を介して前記加熱体と共にニップ部を形成するバックアップ部材と、前記商用電源の電圧に応じて前記第1の発熱抵抗体と前記第2の発熱抵抗体を直列接続或いは並列接続に切り替える切替え手段と、を有し、前記ニップ部で画像を担持する記録材を挟持搬送しつつ画像を加熱する像加熱装置において、前記基板の記録材搬送方向上流側にある前記第1の発熱抵抗体の抵抗値より、前記基板の記録材搬送方向下流側にある前記第2の発熱抵抗体の抵抗値の方が小さいことを特徴とする。   In order to achieve the above object, an image heating apparatus according to the present invention includes a substrate, a first heating resistor and a second heating resistor that generate heat by power supplied from a commercial power source on the substrate. A heating member having a cylindrical flexible member that moves in contact with the heating member, a backup member that forms a nip portion with the heating member via the flexible member, and a voltage of the commercial power source. And a switching means for switching the first heating resistor and the second heating resistor to a serial connection or a parallel connection according to the first heating resistor and the second heating resistor. In the image heating apparatus to be heated, the resistance of the second heating resistor on the downstream side in the recording material conveyance direction of the substrate from the resistance value of the first heating resistor on the upstream side in the recording material conveyance direction of the substrate. It is characterized by a smaller value That.

本発明によれば、商用電源の異なる電圧に応じて加熱体の第1の発熱抵抗体と第2の発熱抵抗体を直列接続或いは並列接続に切り替える像加熱装置において、直列接続或いは並列接続で同等の良好な画像品質を得られるようにした像加熱装置を提供できる。   According to the present invention, in an image heating apparatus that switches a first heating resistor and a second heating resistor of a heating body to a series connection or a parallel connection according to different voltages of a commercial power source, the series connection or the parallel connection is equivalent. It is possible to provide an image heating apparatus capable of obtaining excellent image quality.

実施例1に係る定着装置の横断側面構成模式図Fig. 3 is a schematic cross-sectional side view of the fixing device according to the first embodiment. 実施例1に係る定着装置のヒータ、及びヒータの通電制御系の構成模式図1 is a schematic diagram of a configuration of a heater of a fixing device according to a first embodiment and an energization control system of the heater. (a)はヒータの第1の発熱抵抗体H1と第2の発熱抵抗体H2の直列接続(200V系)を表す説明図、(b)は同ヒータの第1の発熱抵抗体H1と第2の発熱抵抗体H2の並列接続(100V系)を表す説明図図2に示すヒータ及びヒータの通電制御系の説明図(A) is explanatory drawing showing the serial connection (200V type | system | group) of the 1st heating resistor H1 and the 2nd heating resistor H2 of a heater, (b) is the 1st heating resistor H1 and 2nd of the heater. Explanatory drawing showing parallel connection (100V system) of heating resistor H2 of FIG. 2 Explanatory drawing of heater shown in FIG. 2 and energization control system of heater 図2に示すヒータの発熱分布を表す模式図Schematic diagram showing the heat generation distribution of the heater shown in FIG. 図2に示すヒータのプリント開始から発熱体抵抗値変化を示す図The figure which shows a heating element resistance value change from the printing start of the heater shown in FIG. 画像評価結果を示す図Diagram showing image evaluation results (a)は実施例2のヒータの基板表面側からの概略構成模式図、(b)は比較例2のヒータの基板表面側からの概略構成模式図(A) is a schematic structure schematic diagram from the substrate surface side of the heater of Example 2, (b) is a schematic structure schematic diagram from the substrate surface side of the heater of Comparative Example 2. (a)は実施例3のヒータの基板表面側からの概略構成模式図、(b)は比較例3のヒータの基板表面側からの概略構成模式図(A) is a schematic structure schematic diagram from the substrate surface side of the heater of Example 3, (b) is a schematic structure schematic diagram from the substrate surface side of the heater of Comparative Example 3. (a)は実施例4のヒータの基板表面側からの概略構成模式図、(b)は比較例4のヒータの基板表面側からの概略構成模式図(A) is a schematic structure schematic diagram from the substrate surface side of the heater of Example 4, (b) is a schematic structure schematic diagram from the substrate surface side of the heater of Comparative Example 4. 画像形成装置の一例の概略構成模式図Schematic configuration schematic diagram of an example of an image forming apparatus

[実施例1]
(1)画像形成装置例
図10は本発明に係る像加熱装置を定着装置(定着器)として搭載した画像形成装置の一例の概略構成模式図である。この画像形成装置は電子写真式のレーザビームプリンタである。この画像形成装置の記録材の搬送基準は、定着装置の後述する定着フィルムの長手方向の中心と記録材の幅方向の中心を一致させて記録材を搬送する中央搬送基準である。
[Example 1]
(1) Example of Image Forming Apparatus FIG. 10 is a schematic diagram schematically illustrating an example of an image forming apparatus in which the image heating apparatus according to the present invention is mounted as a fixing device (fixing device). This image forming apparatus is an electrophotographic laser beam printer. The recording material conveyance reference of the image forming apparatus is a central conveyance reference in which the recording material is conveyed with the center in the longitudinal direction of a fixing film (described later) of the fixing device coincided with the center in the width direction of the recording material.

本実施例に示す画像形成装置は、像担持体としてのドラム型の電子写真感光体(以下、感光ドラムと記す)1を有している。感光ドラム1は、OPC・アモルファスSe・アモルファスSi等の感光材料層を、アルミニウムやニッケル等の金属材料により形成されたシリンダ(ドラム)状の導電性基体の外周面に形成した構成から成る。   The image forming apparatus shown in this embodiment includes a drum-type electrophotographic photosensitive member (hereinafter referred to as a photosensitive drum) 1 as an image carrier. The photosensitive drum 1 has a configuration in which a photosensitive material layer such as OPC, amorphous Se, or amorphous Si is formed on the outer peripheral surface of a cylinder (drum) -like conductive substrate formed of a metal material such as aluminum or nickel.

感光ドラム1は、ホストコンピュータやネットワーク上の端末機等の外部装置から出力されるプリント指令に応じて矢印方向に所定の周速度(プロセススピード)にて回転される。そしてこの回転過程で感光ドラム1の外周面(表面)が帯電手段としての帯電ローラ2により所定の極性・電位に一様に帯電処理される。   The photosensitive drum 1 is rotated at a predetermined peripheral speed (process speed) in the direction of an arrow in response to a print command output from an external device such as a host computer or a terminal on a network. In this rotation process, the outer peripheral surface (surface) of the photosensitive drum 1 is uniformly charged to a predetermined polarity and potential by a charging roller 2 as a charging means.

この感光ドラム1表面の一様帯電面は、走査露光装置としてのレーザービームスキャナ3から出力される、外部装置からの画像情報に応じて変調制御(ON/OFF制御)されたレーザービームLBによって走査露光がなされる。これにより感光ドラム1表面に目的の画像情報に応じた静電潜像(静電像)が形成される。   The uniformly charged surface of the surface of the photosensitive drum 1 is scanned by a laser beam LB that is modulated and controlled (ON / OFF control) according to image information from an external device that is output from a laser beam scanner 3 as a scanning exposure device. Exposure is made. As a result, an electrostatic latent image (electrostatic image) corresponding to the target image information is formed on the surface of the photosensitive drum 1.

この感光ドラム1表面の潜像に現像手段としての現像装置4でトナー(現像剤)TOを付着させ、感光ドラム1表面の潜像をトナー画像(現像像)として現像する。現像方法としては、ジャンピング現像法、2成分現像法、FEED現像法などが用いられ、イメージ露光と反転現像との組み合わせで用いられることが多い。   A toner (developer) TO is attached to the latent image on the surface of the photosensitive drum 1 by a developing device 4 as a developing unit, and the latent image on the surface of the photosensitive drum 1 is developed as a toner image (developed image). As a development method, a jumping development method, a two-component development method, a FEED development method, or the like is used, and is often used in combination with image exposure and reversal development.

一方、給送ローラ8の回転により給送カセット9内に積載収納されている記録材Pが一枚ずつ繰り出されガイド10を有するシートパスを通ってレジストローラ11に搬送される。レジストローラ11は、この記録材Pを感光ドラム1表面と転写ローラ5の外周面(表面)との間の転写ニップ部に所定の制御タイミングにて給送する。この記録材Pは転写ニップ部で挟持搬送され、この搬送過程において転写ローラ5に印加される転写バイアスによって感光ドラム1表面のトナー画像が順次に記録材上に転写されていく。これによって記録材Pは未定着のトナー画像を担持する。   On the other hand, the recording materials P loaded and stored in the feeding cassette 9 are fed one by one by the rotation of the feeding roller 8 and conveyed to the registration roller 11 through a sheet path having a guide 10. The registration roller 11 feeds the recording material P to the transfer nip portion between the surface of the photosensitive drum 1 and the outer peripheral surface (front surface) of the transfer roller 5 at a predetermined control timing. The recording material P is nipped and conveyed at the transfer nip portion, and the toner image on the surface of the photosensitive drum 1 is sequentially transferred onto the recording material by a transfer bias applied to the transfer roller 5 in the conveyance process. As a result, the recording material P carries an unfixed toner image.

未定着のトナー画像(未定着画像)を担持した記録材Pは感光ドラム1表面から順次に分離して転写ニップ部から排出され、搬送ガイド12を通じて定着装置(定着器)6のニップ部Nに導入される。そしてこの記録材Pがニップ部Nを通過することによってトナー画像は記録材Pの面上に加熱定着される。定着装置6を出た記録材Pは搬送ローラ13とガイド14と排出ローラ15とを有するシートパスを通って排出トレイ16にプリントアウトされる。   The recording material P carrying an unfixed toner image (unfixed image) is sequentially separated from the surface of the photosensitive drum 1 and discharged from the transfer nip portion, and is conveyed to the nip portion N of the fixing device (fixing device) 6 through the conveyance guide 12. be introduced. When the recording material P passes through the nip portion N, the toner image is heated and fixed on the surface of the recording material P. The recording material P exiting the fixing device 6 is printed out on a discharge tray 16 through a sheet path having a conveyance roller 13, a guide 14, and a discharge roller 15.

記録材P分離後の感光ドラム1表面はクリーニング手段としてのクリーニング装置7により転写残りトナー等の付着汚染物の除去処理を受けて清浄面化され、感光ドラム1は次の画像形成に供される。   The surface of the photosensitive drum 1 after separation of the recording material P is cleaned by a cleaning device 7 as a cleaning unit to remove adhered contaminants such as transfer residual toner, and the photosensitive drum 1 is used for the next image formation. .

(2)定着装置(像加熱装置)6
以下の説明において、定着装置及びこの定着装置を構成する部材に関し、長手方向とは記録材の面において記録材搬送方向と直交する方向をいう。短手方向とは記録材の面において記録材搬送方向と平行な方向でいう。長さとは長手方向の寸法をいう。幅とは短手方向の寸法をいう。記録材に関し、幅方向とは記録材の面において記録材搬送方向と直交する方向をいう。幅とは幅方向の寸法をいう。
(2) Fixing device (image heating device) 6
In the following description, with respect to the fixing device and members constituting the fixing device, the longitudinal direction refers to a direction orthogonal to the recording material conveyance direction on the surface of the recording material. The short side direction is a direction parallel to the recording material conveyance direction on the surface of the recording material. The length is a dimension in the longitudinal direction. The width is a dimension in the short direction. Regarding the recording material, the width direction means a direction orthogonal to the recording material conveyance direction on the surface of the recording material. The width is a dimension in the width direction.

図1は定着装置6の横断側面構成模式図である。この定着装置6はフィルム加熱方式の定着装置である。   FIG. 1 is a schematic cross-sectional side view of the fixing device 6. The fixing device 6 is a film heating type fixing device.

本実施例に示す定着装置6は、可撓性及び耐熱性を有する筒状の可撓性部材としての定着フィルム(エンドレスフィルム)102と、加熱体としてのヒータ300と、支持部材としてのヒータホルダ101を有している。また定着装置6は、剛性部材としての剛性ステー104と、バックアップ部材としての加圧ローラ108などを有している。定着フィルム102と、ヒータ300と、ヒータホルダ101と、剛性ステー104と、加圧ローラ108は、何れも長手方向に長い部材である。   The fixing device 6 shown in this embodiment includes a fixing film (endless film) 102 as a flexible tubular member having flexibility and heat resistance, a heater 300 as a heating body, and a heater holder 101 as a support member. have. The fixing device 6 includes a rigid stay 104 as a rigid member, a pressure roller 108 as a backup member, and the like. The fixing film 102, the heater 300, the heater holder 101, the rigid stay 104, and the pressure roller 108 are all members that are long in the longitudinal direction.

定着フィルム102は、ポリイミド、ポリアミド、PEEK等の耐熱樹脂、またはステンレス等の金属からなる厚さ30〜70μmの筒状の基層(不図示)を有している。そしてこの基層の外周面上に、PFA、PTFE等のフッ素樹脂からなる厚さ5〜30μmの離型層(不図示)を設けている。   The fixing film 102 has a cylindrical base layer (not shown) having a thickness of 30 to 70 μm made of a heat-resistant resin such as polyimide, polyamide, PEEK, or a metal such as stainless steel. A release layer (not shown) having a thickness of 5 to 30 μm made of fluororesin such as PFA or PTFE is provided on the outer peripheral surface of the base layer.

本実施例では、定着フィルム102として、厚さ60μmのポリイミドからなる筒状の基層の外周面上に厚さ15μmのPFA樹脂からなる離型層を設けたφ24、長さ220mmの定着フィルムを用いている。   In this embodiment, as the fixing film 102, a fixing film having a diameter of 24 mm and a length of 220 mm, in which a release layer made of PFA resin having a thickness of 15 μm is provided on the outer peripheral surface of a cylindrical base layer made of polyimide having a thickness of 60 μm, is used. ing.

ヒータホルダ101は、LCP(液晶ポリマ)等の耐熱樹脂材料により横断面略凹字形状に形成されている。このヒータホルダ101は、ヒータホルダ101の短手方向の下面中央で長手方向に沿って設けられた溝101bによりヒータ300を後述の表面保護層107が下向きになるように支持している。このヒータホルダ101の短手方向の上面中央にはヒータホルダ101の変形を防止するための剛性ステー104が配設されている。この剛性ステー104は所定の金属材料により横断面略逆U字形状に形成してある。   The heater holder 101 is formed of a heat-resistant resin material such as LCP (liquid crystal polymer) and has a substantially concave shape in cross section. The heater holder 101 supports the heater 300 by a groove 101b provided along the longitudinal direction at the center of the lower surface of the heater holder 101 so that the surface protective layer 107 described later faces downward. A rigid stay 104 for preventing deformation of the heater holder 101 is disposed at the center of the upper surface of the heater holder 101 in the short direction. The rigid stay 104 is formed of a predetermined metal material in a substantially inverted U shape in cross section.

ヒータ300と剛性ステー104を備えた上記ヒータホルダ101の外周には定着フィルム102がルーズに外嵌されている。そしてヒータホルダ101及び剛性ステー104の長手方向両端部を定着装置6の長手方向両側の支持フレーム(不図示)に支持固定させている。定着フィルム102を外嵌させたヒータホルダ101は、ヒータホルダ101の短手方向両側で定着フィルム102の内周面(内面)に沿うように設けられた弧状突部101aの外面により回転中(移動中)の定着フィルム102をガイドするようになっている。   A fixing film 102 is loosely fitted on the outer periphery of the heater holder 101 including the heater 300 and the rigid stay 104. Then, both longitudinal end portions of the heater holder 101 and the rigid stay 104 are supported and fixed to support frames (not shown) on both longitudinal sides of the fixing device 6. The heater holder 101 fitted with the fixing film 102 is rotating (moving) by the outer surface of the arc-shaped protrusion 101a provided along the inner peripheral surface (inner surface) of the fixing film 102 on both sides in the short direction of the heater holder 101. The fixing film 102 is guided.

図2にヒータ300、及びヒータ300の通電制御系の構成模式図を示す。ヒータ300は、幅5〜12mm、厚さ0.5〜1mmで長さ240mmに形成されたアルミナ等からなるセラミック製のヒータ基板(以下、基板と記す)105を有している。   FIG. 2 shows a schematic configuration diagram of the heater 300 and the energization control system of the heater 300. The heater 300 has a ceramic heater substrate (hereinafter referred to as a substrate) 105 made of alumina or the like formed to have a width of 5 to 12 mm, a thickness of 0.5 to 1 mm, and a length of 240 mm.

この基板105の定着ニップ部(ニップ部)Nが形成される側の基板表面上(基板上)には、例えばAg/Pd(銀パラジウム)等からなる2つの発熱抵抗体H1,H2がパターン印刷により形成してある。2つの発熱抵抗体H1,H2のうち、発熱抵抗体H1は記録材搬送方向上流側端部の内側で基板105の長手方向に沿って形成され、発熱抵抗体H2は基板105の記録材搬送方向下流側端部の内側で基板105の長手方向に沿って形成されている。   On the substrate surface (on the substrate) on the side where the fixing nip portion (nip portion) N of the substrate 105 is formed, two heating resistors H1 and H2 made of, for example, Ag / Pd (silver palladium) are pattern printed. It is formed by. Of the two heating resistors H1 and H2, the heating resistor H1 is formed along the longitudinal direction of the substrate 105 inside the upstream end of the recording material conveyance direction, and the heating resistor H2 is formed in the recording material conveyance direction of the substrate 105. It is formed along the longitudinal direction of the substrate 105 inside the downstream end.

本実施例では、ヒータとして、発熱抵抗体H1の抵抗値が20.2Ω、発熱抵抗体H2の抵抗値が19.8Ω、各々の発熱抵抗体H1,H2のTCR(温度抵抗係数)が1000ppm/℃のものを用いた。発熱抵抗体H1,H2において、発熱抵抗体の材料は同一のものを用いた。そしてヒータ300の短手方向において、発熱抵抗体H1の幅を19.8mm、発熱抵抗体H2の幅を20.2mmとすることで、抵抗値を変えた。上記2つの発熱抵抗体H1,H2を区別するために、発熱抵抗体H1を第1の発熱抵抗体H1と記し、発熱抵抗体H2を第2の発熱抵抗体H2と記す。   In this embodiment, as the heater, the resistance value of the heating resistor H1 is 20.2Ω, the resistance value of the heating resistor H2 is 19.8Ω, and the TCR (temperature resistance coefficient) of each of the heating resistors H1 and H2 is 1000 ppm / The thing of ° C was used. In the heating resistors H1 and H2, the same material was used for the heating resistors. In the short direction of the heater 300, the resistance value was changed by setting the width of the heating resistor H1 to 19.8 mm and the width of the heating resistor H2 to 20.2 mm. In order to distinguish the two heating resistors H1 and H2, the heating resistor H1 is referred to as a first heating resistor H1, and the heating resistor H2 is referred to as a second heating resistor H2.

第1の発熱抵抗体H1は、基板105の同基板面上において、長手方向一端部の内側に設けられた給電用電極(以下、電極と記す)303a、及び長手方向他端部の内側に設けられた給電用共通電極(以下、共通電極と記す)303cと電気的に接続されている。第2の発熱抵抗体H2は、基板105の同基板面上において、長手方向一端部の内側に設けられた給電用電極(以下、電極と記す)303b、及び共通電極303cと電気的に接続されている。そして第1の発熱抵抗体H1と第2の発熱抵抗体H2は基板105の同基板面上に設けられた厚さ0.05〜0.1mmの絶縁性(本実施例ではガラス)の表面保護層107によって覆われている。   The first heating resistor H1 is provided on the same substrate surface of the substrate 105 as a power supply electrode (hereinafter referred to as an electrode) 303a provided inside one end in the longitudinal direction and inside the other end in the longitudinal direction. The power supply common electrode (hereinafter referred to as a common electrode) 303c is electrically connected. The second heating resistor H2 is electrically connected to a power supply electrode (hereinafter referred to as an electrode) 303b and a common electrode 303c provided on the inner surface of one end in the longitudinal direction on the same surface of the substrate 105. ing. The first heating resistor H1 and the second heating resistor H2 are provided with an insulating (glass in this embodiment) surface protection having a thickness of 0.05 to 0.1 mm provided on the same surface of the substrate 105. Covered by layer 107.

通電制御系は、CPUとRAMやROMなどのメモリからなる制御部(制御手段)100と、第1の発熱抵抗体H1と第2の発熱抵抗体H2への供給電力を制御するトライアック(電力制御手段)21を有している。また通電制御系は、商用電源20から印加される電圧を検知する電圧検知回路などを備える電源電圧検知部(電源電圧検知手段)401とを有している。また通電制御系は、2つの通電切替スイッチとしての通電制御リレー401a,401bなどを備える切替え部(切替え手段)402などを有している。更に通電制御系は、温度検知素子112と、通電遮断手段としてのサーモスイッチ113を有している。   The energization control system is a triac (power control) that controls power supplied to a control unit (control means) 100 including a CPU, a memory such as a RAM and a ROM, and the first heating resistor H1 and the second heating resistor H2. Means) 21. The energization control system also includes a power supply voltage detection unit (power supply voltage detection means) 401 including a voltage detection circuit that detects a voltage applied from the commercial power supply 20. The energization control system includes a switching unit (switching unit) 402 including energization control relays 401a and 401b serving as two energization changeover switches. Further, the energization control system includes a temperature detection element 112 and a thermo switch 113 as an energization interruption unit.

切替え部402の2つの通電制御リレー402a,402bのうち、第1の通電制御リレー402aは可動接点mと接点aを有している。第2の通電制御リレー402bは共通接点cと2つの接点a1,a2を有している。第1の通電制御リレー402aにおいて、可動接点mは第1の抵抗発熱体H1の共通電極303cと電気的に接続され、接点aは商用電源22と電気的に接続されている。第2の通電制御リレー402aにおいて、共通接点cは第2の抵抗発熱体H2の電極303bと電気的に接続され、接点a1は商用電源22と電気的に接続され、接点a2はトライアック21と共に第1の抵抗発熱体H1の電極303aと電気的に接続されている。   Of the two energization control relays 402a and 402b of the switching unit 402, the first energization control relay 402a has a movable contact m and a contact a. The second energization control relay 402b has a common contact c and two contacts a1 and a2. In the first energization control relay 402a, the movable contact m is electrically connected to the common electrode 303c of the first resistance heating element H1, and the contact a is electrically connected to the commercial power source 22. In the second energization control relay 402 a, the common contact c is electrically connected to the electrode 303 b of the second resistance heating element H 2, the contact a 1 is electrically connected to the commercial power supply 22, and the contact a 2 is connected together with the triac 21. 1 is electrically connected to the electrode 303a of the resistance heating element H1.

温度検知素子112と、サーモスイッチ113は、それぞれ、ヒータ300の基板105の定着ニップ部Nが形成される側とは反対側の基板裏面上(基板上)に設けられている。   The temperature detecting element 112 and the thermo switch 113 are respectively provided on the back surface (on the substrate) of the heater 300 opposite to the side where the fixing nip portion N of the substrate 105 is formed.

温度検知素子112は、ヒータ300の長手方向において記録材Pが通過する領域(通紙領域)の略中央に配設され、ヒータ300の基板105の温度を検知して温度検知信号を制御部100に出力するものである。   The temperature detection element 112 is disposed in the approximate center of a region (sheet passing region) through which the recording material P passes in the longitudinal direction of the heater 300, detects the temperature of the substrate 105 of the heater 300, and sends a temperature detection signal to the control unit 100. Is output.

サーモスイッチ113は、ヒータ300の長手方向において記録材Pの通紙領域の所定位置において第1の抵抗発熱体H1と第2の抵抗発熱体H2に接触させて配設してある。このサーモスイッチ113は、何等かの事情でヒータ300の温度が所定の設定温度に達した場合に動作して第1の抵抗発熱体H1と第2の抵抗発熱体H2への通電を遮断するように構成されている。本実施例では、サーモスイッチ113の設定温度を250℃に設定した。   The thermo switch 113 is disposed in contact with the first resistance heating element H1 and the second resistance heating element H2 at a predetermined position in the sheet passing area of the recording material P in the longitudinal direction of the heater 300. The thermo switch 113 operates when the temperature of the heater 300 reaches a predetermined set temperature for some reason so as to cut off the energization to the first resistance heating element H1 and the second resistance heating element H2. It is configured. In this embodiment, the set temperature of the thermo switch 113 is set to 250 ° C.

この通電制御系は、電源電圧検知部401で商用電源20の電圧を検知し、その電圧に基づいて制御部100が第1の通電制御リレー402aと第2の通電制御リレー402bを制御するようになっている。   In this energization control system, the power supply voltage detection unit 401 detects the voltage of the commercial power supply 20, and the control unit 100 controls the first energization control relay 402 a and the second energization control relay 402 b based on the voltage. It has become.

加圧ローラ108は、鉄やアルミニウム等からなる丸軸状の芯金109と、芯金109の長手方向両側の被支持部(不図示)間で芯金109の外周面上に設けられたシリコーンゴム等からなる厚さ2〜4mmの弾性層110などを有している。   The pressure roller 108 is a silicone provided on the outer peripheral surface of the cored bar 109 between a round shaft-shaped cored bar 109 made of iron or aluminum and supported parts (not shown) on both sides in the longitudinal direction of the cored bar 109. An elastic layer 110 having a thickness of 2 to 4 mm made of rubber or the like is included.

この加圧ローラ108は、定着フィルム102内側でヒータホルダ101が支持するヒータ300と定着フィルム102を介して対向するように配設されている。そして芯金109の長手方向両側の被支持部が定着装置6の上記支持フレームに軸受(不図示)を介して回転可能に支持されている。そしてこの芯金109の長手方向両側の軸受を加圧ばねなどの加圧手段(不図示)により総圧98〜294N(総圧10〜30kgf)の圧力で定着フィルム102側に付勢している。   The pressure roller 108 is disposed inside the fixing film 102 so as to face the heater 300 supported by the heater holder 101 via the fixing film 102. The supported parts on both sides in the longitudinal direction of the cored bar 109 are rotatably supported by the support frame of the fixing device 6 via bearings (not shown). The bearings on both sides in the longitudinal direction of the metal core 109 are urged toward the fixing film 102 with a total pressure of 98 to 294 N (total pressure of 10 to 30 kgf) by pressurizing means (not shown) such as a pressurizing spring. .

上記加圧手段の圧力により加圧ローラ108の外周面(表面)が定着フィルム102の外周面(表面)に加圧状態に接触する。これにより加圧ローラ108の弾性層110がヒータ300の長手方向全域に渡って弾性変形して加圧ローラ108表面と定着フィルム102表面とで幅5〜11mmの定着ニップ部(ニップ部)Nを形成している。   The outer peripheral surface (surface) of the pressure roller 108 comes into contact with the outer peripheral surface (surface) of the fixing film 102 in a pressurized state by the pressure of the pressing means. As a result, the elastic layer 110 of the pressure roller 108 is elastically deformed over the entire longitudinal direction of the heater 300 to form a fixing nip portion (nip portion) N having a width of 5 to 11 mm between the surface of the pressure roller 108 and the surface of the fixing film 102. Forming.

本実施例では、加圧ローラ108として、アルミニウムからなる芯金109の外周面上にシリコーンゴムからなる弾性層110を設け、弾性層110の外周面上にPFAからなる離型層111を設けた加圧ローラを用いている。芯金109はφ18、弾性層110は厚さ3mm、離型層111は厚さ50μm、加圧ローラはφ24、長さ220mmである。そしてこの加圧ローラ108を総圧147N(総圧15kgf)の圧力で定着フィルム102側に付勢して幅7mmの定着ニップ部Nを形成した。   In this embodiment, as the pressure roller 108, an elastic layer 110 made of silicone rubber is provided on the outer peripheral surface of a cored bar 109 made of aluminum, and a release layer 111 made of PFA is provided on the outer peripheral surface of the elastic layer 110. A pressure roller is used. The metal core 109 is φ18, the elastic layer 110 is 3 mm thick, the release layer 111 is 50 μm thick, the pressure roller is φ24, and the length is 220 mm. The pressure roller 108 was urged toward the fixing film 102 with a total pressure of 147 N (total pressure of 15 kgf) to form a fixing nip portion N having a width of 7 mm.

(3)定着装置6のトナー画像tの加熱定着動作
本実施例の定着装置6は、プリント指令に応じて回転駆動されるモータM(図1参照)の回転により加圧ローラ108が所定の周速度(プロセススピード)で矢印にて示す方向(図1参照)へ回転される。本実施例では記録材Pの搬送速度が300mm/secとなるように加圧ローラ108を回転している。加圧ローラ108の回転は定着ニップ部Nで加圧ローラ表面と定着フィルム102表面との摩擦力により定着フィルム102に伝わる。これにより定着フィルム102は、定着フィルム102内面がヒータ300の表面保護層107と接触した状態で加圧ローラ108の回転に追従して矢印にて示す方向(図1参照)へ回転(移動)する。
(3) Heat Fixing Operation of Toner Image t of Fixing Device 6 In the fixing device 6 of this embodiment, the pressure roller 108 is rotated around a predetermined circumference by the rotation of a motor M (see FIG. 1) that is driven to rotate in response to a print command. It is rotated in a direction (see FIG. 1) indicated by an arrow at a speed (process speed). In this embodiment, the pressure roller 108 is rotated so that the conveyance speed of the recording material P is 300 mm / sec. The rotation of the pressure roller 108 is transmitted to the fixing film 102 by the frictional force between the surface of the pressure roller and the surface of the fixing film 102 at the fixing nip portion N. As a result, the fixing film 102 rotates (moves) in the direction indicated by the arrow (see FIG. 1) following the rotation of the pressure roller 108 with the inner surface of the fixing film 102 in contact with the surface protective layer 107 of the heater 300. .

ここで、ヒータ300の第1の発熱抵抗体H1と第2の発熱抵抗体H2を直列接続或いは並列接続に切り替える切替え部402の動作を説明する。   Here, the operation of the switching unit 402 that switches the first heating resistor H1 and the second heating resistor H2 of the heater 300 to series connection or parallel connection will be described.

図3の(a)はヒータ300の第1の発熱抵抗体H1と第2の発熱抵抗体H2の直列接続(200V系)を表す説明図、(b)は同ヒータ300の第1の発熱抵抗体H1と第2の発熱抵抗体H2の並列接続(100V系)を表す説明図である。   3A is an explanatory diagram showing a series connection (200 V system) of the first heating resistor H1 and the second heating resistor H2 of the heater 300, and FIG. 3B is a first heating resistor of the heater 300. FIG. It is explanatory drawing showing the parallel connection (100V type | system | group) of the body H1 and the 2nd heating resistor H2.

画像形成装置の主電源スイッチがオン(ON)されると、商用電源22から電源電圧検知部401に電圧が印加される。電源電圧検知部401は、商用電源20から印加される電圧実効値の範囲が100V系(ex.100V〜127V)か200V系(ex.200V〜240V)のどちらかを判断する。そして100V系と判断した場合に100V系を意味する電圧検知信号を出力し、200V系と判断した場合に200V系を意味する電圧検知信号を出力する。   When the main power switch of the image forming apparatus is turned on, a voltage is applied from the commercial power supply 22 to the power supply voltage detection unit 401. The power supply voltage detection unit 401 determines whether the range of the effective voltage value applied from the commercial power supply 20 is a 100 V system (ex. 100 V to 127 V) or a 200 V system (ex. 200 V to 240 V). When it is determined that the system is 100V, a voltage detection signal that indicates the 100V system is output. When it is determined that the system is 200V, a voltage detection signal that indicates the 200V system is output.

制御部100は、電源電圧検知部401から200V系を意味する電圧検知信号を取り込む。すると制御部100は、第2の通電制御リレー402bを制御して共通接点cを接点a1に接触させる(図3(a)参照)。   The control unit 100 takes in a voltage detection signal meaning a 200V system from the power supply voltage detection unit 401. Then, the control part 100 controls the 2nd electricity supply control relay 402b, and makes the common contact c contact the contact a1 (refer Fig.3 (a)).

これにより、商用電源20と、トライアック21と、サーモスイッチ113と、電極303aと、第1の発熱抵抗体H1と、共通電極303cと、第2の発熱抵抗体H2と、電極303bと、第2の通電制御リレー402bと、商用電源とで閉回路が構成される。即ち、第1の発熱抵抗体H1と第2の発熱抵抗体H2が直列接続された第1の導通経路が構成される。   Thereby, the commercial power source 20, the triac 21, the thermo switch 113, the electrode 303a, the first heating resistor H1, the common electrode 303c, the second heating resistor H2, the electrode 303b, and the second The energization control relay 402b and the commercial power supply constitute a closed circuit. That is, a first conduction path is formed in which the first heating resistor H1 and the second heating resistor H2 are connected in series.

次に制御部100は、トライアック21をオン(ON)すると共に、トライアック21を制御してヒータ300の第1の発熱抵抗体H1と第2の発熱抵抗体H2との総抵抗値が40Ωとなるようにする。トライアック21がオンされることで商用電源20からトライアック21に電力が印加され、トライアック21から上記総抵抗値に応じた電力がヒータ300の第1の発熱抵抗体H1と第2の発熱抵抗体H2に供給される。これにより第1の発熱抵抗体H1と第2の発熱抵抗体H2に通電されて第1の発熱抵抗体H1と第2の発熱抵抗体H2が発熱する。   Next, the control unit 100 turns on the triac 21 and controls the triac 21 so that the total resistance value of the first heating resistor H1 and the second heating resistor H2 of the heater 300 becomes 40Ω. Like that. When the triac 21 is turned on, electric power is applied from the commercial power supply 20 to the triac 21, and the electric power corresponding to the total resistance value from the triac 21 is supplied to the first heating resistor H1 and the second heating resistor H2 of the heater 300. To be supplied. As a result, the first heating resistor H1 and the second heating resistor H2 are energized, and the first heating resistor H1 and the second heating resistor H2 generate heat.

この第1の発熱抵抗体H1と第2の発熱抵抗体H2の発熱により表面保護層107を介して定着フィルム102が加熱される。そして制御部100は、温度検知素子112から出力される温度検知信号を取り込み、この温度検知信号に基づいて温度検知素子がトナー画像tを記録材上に加熱定着するために必要な所定の定着温度(目標温度)を維持するようにトライアック21を制御する。本実施例では、定着温度(以下、制御目標温度とも記す)を185℃に設定した。   The fixing film 102 is heated through the surface protective layer 107 by the heat generated by the first heating resistor H1 and the second heating resistor H2. Then, the control unit 100 takes in a temperature detection signal output from the temperature detection element 112, and based on this temperature detection signal, a predetermined fixing temperature necessary for the temperature detection element to heat and fix the toner image t on the recording material. The TRIAC 21 is controlled to maintain (target temperature). In this embodiment, the fixing temperature (hereinafter also referred to as control target temperature) is set to 185 ° C.

制御部100は、電源電圧検知部401から100V系を意味する電圧検知信号を取り込む。すると制御部100は、第1の通電制御リレー402aを制御して可動接点mを接点aに接触させ、第2の通電制御リレー402bを制御して共通接点cを接点a2に接触させる(図3(b)参照)。   The control unit 100 takes in a voltage detection signal indicating a 100V system from the power supply voltage detection unit 401. Then, the control unit 100 controls the first energization control relay 402a to bring the movable contact m into contact with the contact a, and controls the second energization control relay 402b to bring the common contact c into contact with the contact a2 (FIG. 3). (See (b)).

これにより、商用電源20と、トライアック21と、サーモスイッチ113と、第2の通電制御リレー402bと、電極303bと、第2の抵抗発熱体H2と、共通電極303cと、第1の通電制御リレー402aと、商用電源20とで1つの閉回路が構成される。また、商用電源20と、トライアック21と、サーモスイッチ113と、電極303aと、第1の抵抗発熱体H1と、共通電極303cと、第1の通電制御リレー402aと、商用電源20とで他の1つの閉回路が構成される。即ち、第1の抵抗発熱体H1と第2の抵抗発熱体H2が並列接続された第2の導通経路が構成される。   Thereby, the commercial power source 20, the triac 21, the thermo switch 113, the second energization control relay 402b, the electrode 303b, the second resistance heating element H2, the common electrode 303c, and the first energization control relay. 402a and the commercial power source 20 constitute one closed circuit. In addition, the commercial power source 20, the triac 21, the thermo switch 113, the electrode 303a, the first resistance heating element H1, the common electrode 303c, the first energization control relay 402a, and the commercial power source 20 One closed circuit is configured. That is, a second conduction path is formed in which the first resistance heating element H1 and the second resistance heating element H2 are connected in parallel.

次に制御部100は、トライアック21をオン(ON)すると共に、トライアック21を制御してヒータ300の第1の抵抗発熱体H1と第2の抵抗発熱体H2との総抵抗値が10Ωとなるようにする。トライアック21がオンされることで商用電源20からトライアック21に電力が印加され、トライアック21から上記総抵抗値に応じた電力がヒータ300の第1の抵抗発熱体H1と第2の抵抗発熱体H2に供給される。これにより第1の抵抗発熱体H1と第2の抵抗発熱体H2に通電されて第1の抵抗発熱体H1と第2の抵抗発熱体H2が発熱する。   Next, the control unit 100 turns on the triac 21 and controls the triac 21 so that the total resistance value of the first resistance heating element H1 and the second resistance heating element H2 of the heater 300 becomes 10Ω. Like that. When the triac 21 is turned on, electric power is applied from the commercial power supply 20 to the triac 21, and electric power corresponding to the total resistance value is applied from the triac 21 to the first resistance heating element H 1 and the second resistance heating element H 2 of the heater 300. To be supplied. As a result, the first resistance heating element H1 and the second resistance heating element H2 are energized, and the first resistance heating element H1 and the second resistance heating element H2 generate heat.

この第1の抵抗発熱体H1と第2の抵抗発熱体H2の発熱により表面保護層107を介して定着フィルム102が加熱される。そして制御部100は、温度検知素子112から出力される温度検知信号を取り込み、この温度検知信号に基づいて温度検知素子112が上記定着温度を維持するようにトライアック21を制御する。   The fixing film 102 is heated through the surface protective layer 107 by the heat generated by the first resistance heating element H1 and the second resistance heating element H2. Then, the control unit 100 takes in the temperature detection signal output from the temperature detection element 112, and controls the triac 21 so that the temperature detection element 112 maintains the fixing temperature based on the temperature detection signal.

加圧ローラ108を回転させ、かつ温度検知素子112の温度が所定の定着温度に維持された状態でトナー画像tを担持した記録材Pがトナー画像担持面を上向きにして定着ニップ部Nに導入(通紙)される。そして定着ニップ部Nにおいて記録材Pは定着フィルム102表面と加圧ローラ108表面とで挟持されその状態に搬送(挟持搬送)される。この搬送過程においてトナー画像に熱と圧力が印加され、これによりトナー画像tは記録材上に加熱定着される。定着ニップ部Nを通った記録材Pは定着フィルム102表面から分離されて定着ニップ部Nから排出される。   The recording material P carrying the toner image t in the state where the pressure roller 108 is rotated and the temperature of the temperature detecting element 112 is maintained at a predetermined fixing temperature is introduced into the fixing nip portion N with the toner image carrying surface facing upward. (Pass through). Then, in the fixing nip portion N, the recording material P is nipped between the surface of the fixing film 102 and the surface of the pressure roller 108 and conveyed to that state (nipping conveyance). In this conveying process, heat and pressure are applied to the toner image, whereby the toner image t is heated and fixed on the recording material. The recording material P that has passed through the fixing nip N is separated from the surface of the fixing film 102 and discharged from the fixing nip N.

本実施例の定着装置6では、電源電圧検知部401による判断に基づいて、ヒータ300の第1の抵抗発熱体H1と第2の抵抗発熱体H2の接続を直列接続或いは並列接続に切り替えている。   In the fixing device 6 of the present embodiment, the connection of the first resistance heating element H1 and the second resistance heating element H2 of the heater 300 is switched to a serial connection or a parallel connection based on the determination by the power supply voltage detection unit 401. .

即ち、電源電圧検知部401が200V系と判断した場合、第2の通電制御リレー401bによって第1の抵抗発熱体H1と第2の抵抗発熱体H2は直列に接続され、ヒータ300の総抵抗値が40Ωとなるようにする。一方、電源電圧検知部401が100V系と判断した場合は、第1の通電制御リレー401aと第2の通電制御リレー402bによって第1の抵抗発熱体H1と第2の抵抗発熱体H2は並列に接続され、ヒータ300の総抵抗値が10Ωとなるようにする。このように100V系と200V系で総抵抗値を切り替えることで、100V系と200V系で投入される最大電力を同等とすることができる。   That is, when the power supply voltage detection unit 401 determines that the system is 200V, the first resistance heating element H1 and the second resistance heating element H2 are connected in series by the second energization control relay 401b, and the total resistance value of the heater 300 is determined. To be 40Ω. On the other hand, when the power supply voltage detector 401 determines that the system is a 100V system, the first resistance heating element H1 and the second resistance heating element H2 are connected in parallel by the first energization control relay 401a and the second energization control relay 402b. Connected so that the total resistance of the heater 300 is 10Ω. Thus, by switching the total resistance value between the 100V system and the 200V system, the maximum power input in the 100V system and the 200V system can be made equal.

以下、図4、図5を用いて、本実施例のヒータ300を備えた定着装置6を搭載する画像形成装置と、比較例1のヒータを備えた定着装置(不図示)を搭載する画像形成装置を用いて、プリントを行ったときの、各々のヒータの発熱について説明する。   Hereinafter, referring to FIGS. 4 and 5, an image forming apparatus equipped with the fixing device 6 equipped with the heater 300 of this embodiment and an image forming apparatus equipped with the fixing device (not shown) equipped with the heater of Comparative Example 1 are used. The heat generation of each heater when printing is performed using the apparatus will be described.

比較例1のヒータは、常温での直列接続時と並列接続時の総抵抗値が本実施例のヒータ300と同じとなる、発熱抵抗体H1、H2の抵抗値を各々20Ω、またTCRが1000ppm/℃のものを用いた点を除き、本実施例のヒータ300と同じ構成としてある。比較例1のヒータを備えた定着装置は、上記のようにヒータの構成が異なる点を除き、本実施例の定着装置6と同じ構成としてある。また、比較例1のヒータを備えた定着装置では、定着温度を本実施例の定着装置と同じ185℃に設定した。   In the heater of Comparative Example 1, the resistance values of the heating resistors H1 and H2 are 20Ω each, and the TCR is 1000 ppm. The configuration is the same as that of the heater 300 of the present embodiment, except that a heater at / ° C is used. The fixing device provided with the heater of Comparative Example 1 has the same configuration as that of the fixing device 6 of the present embodiment except that the configuration of the heater is different as described above. In the fixing device provided with the heater of Comparative Example 1, the fixing temperature was set to 185 ° C., which is the same as that of the fixing device of this example.

図4は、本実施例のヒータ300を備えた定着装置6を搭載する画像形成装置と、比較例1のヒータを備えた定着装置を搭載する画像形成装置に、それぞれ、記録材を20枚通紙(導入)した際に、ヒータ300の短手方向の基板裏面の温度分布を示した図である。実線は発熱抵抗体H1,H2を直列接続した場合であり、点線は発熱抵抗体H1,H2を並列接続した場合である。   FIG. 4 shows that 20 sheets of recording material are passed through the image forming apparatus equipped with the fixing device 6 equipped with the heater 300 of this embodiment and the image forming apparatus equipped with the fixing device equipped with the heater of Comparative Example 1, respectively. It is the figure which showed the temperature distribution of the board | substrate back surface of the short side direction of the heater 300 when paper (introduction) was carried out. The solid line shows the case where the heating resistors H1 and H2 are connected in series, and the dotted line shows the case where the heating resistors H1 and H2 are connected in parallel.

本実施例のヒータ300を備えた定着装置6を搭載する画像形成装置では、ヒータ300の発熱抵抗体H1,H2を直列接続した場合および並列接続した場合の温度分布はほぼ同じであり、温度分布の差は3℃以内であった。   In the image forming apparatus equipped with the fixing device 6 including the heater 300 of this embodiment, the temperature distribution when the heating resistors H1 and H2 of the heater 300 are connected in series and in parallel is almost the same, and the temperature distribution. The difference was within 3 ° C.

一方、比較例1のヒータを備えた定着装置を搭載する画像形成装置では、ヒータにおいて特に温度が高くなる記録材搬送方向下流側で、発熱抵抗体H1,H2を直列接続した場合は293℃、並列接続した場合は288℃であった。よって本実施例よりも温度分布の差は5℃と大きくなっていることが分かる。   On the other hand, in the image forming apparatus equipped with the fixing device provided with the heater of Comparative Example 1, when the heating resistors H1 and H2 are connected in series on the downstream side in the recording material conveyance direction where the temperature is particularly high in the heater, It was 288 ° C. when connected in parallel. Therefore, it can be seen that the difference in temperature distribution is as large as 5 ° C. compared to the present embodiment.

このように比較例1のヒータを備えた定着装置を搭載する画像形成装置で、発熱抵抗体H1,H2を直列接続した場合と並列接続した場合とで発熱量、温度分布に差異が生じた理由として、以下のように考えられる。   As described above, in the image forming apparatus equipped with the fixing device having the heater of Comparative Example 1, there is a difference in the amount of generated heat and the temperature distribution between the case where the heating resistors H1 and H2 are connected in series and the case where they are connected in parallel. Is considered as follows.

画像形成装置の電源投入直後や、プリント終了からの経過時間が長い場合など、定着装置6が冷えた状態でプリントを開始した直後は、発熱抵抗体H1,H2の抵抗値に応じた発熱量を示す。本実施例では、発熱抵抗体H1の抵抗値が発熱抵抗体H2の抵抗値より大きいので、直列接続の場合はヒータ300の短手方向上流側、並列接続の場合はヒータ300の短手方向下流側の発熱量が大きい。一方、比較例1では、発熱抵抗体H1と発熱抵抗体H2の抵抗値は同じであるので、直列接続と並列接続とも、ヒータ300の短手方向上流側と短手方向下流側の発熱量は同じとなる。   Immediately after the image forming apparatus is turned on, or when the fixing device 6 is cold, such as when the elapsed time from the end of printing is long, the amount of heat generated in accordance with the resistance values of the heating resistors H1 and H2 is increased. Show. In this embodiment, since the resistance value of the heating resistor H1 is larger than the resistance value of the heating resistor H2, in the case of series connection, the heater 300 is upstream in the short direction, and in the case of parallel connection, the heater 300 is downstream in the short direction. The side heat generation is large. On the other hand, in Comparative Example 1, since the resistance values of the heating resistor H1 and the heating resistor H2 are the same, the amount of heat generated on the upstream side in the short direction and the downstream side in the short direction of the heater 300 is the same in both the series connection and the parallel connection. It will be the same.

しかし、プリント開始とともに定着フィルム102が回転すると、発熱抵抗体H1と発熱抵抗体H2で発生した熱の一部は、定着フィルム102の回転によってヒータ300の記録材搬送方向下流側に熱が運ばれる。すると、ヒータ300の記録材搬送方向下流側の温度は記録材搬送方向上流側より高くなる。そのため、ヒータ300の記録材搬送方向上流部にある発熱抵抗体H1より、ヒータ300の記録材搬送方向下流部にある発熱抵抗体H2の方が、抵抗上昇が大きくなる。   However, when the fixing film 102 rotates with the start of printing, a part of the heat generated by the heating resistor H1 and the heating resistor H2 is carried to the downstream side of the heater 300 in the recording material conveyance direction by the rotation of the fixing film 102. . Then, the temperature of the heater 300 on the downstream side in the recording material conveyance direction becomes higher than that on the upstream side in the recording material conveyance direction. Therefore, the resistance increase is greater in the heating resistor H2 in the downstream portion of the heater 300 in the recording material conveyance direction than in the heating resistor H1 in the upstream portion in the recording material conveyance direction of the heater 300.

図5は、プリント開始からの経過時間(sec)による発熱体抵抗H1と発熱体抵抗H2の抵抗値変化を示した図である。   FIG. 5 is a diagram showing changes in the resistance values of the heating element resistance H1 and the heating element resistance H2 with respect to the elapsed time (sec) from the start of printing.

先ず図5(a)の比較例1の直列時(直列接続)の場合、プリント開始直後は、発熱抵抗体H1と発熱抵抗体H2の抵抗値は同じ20Ωである。プリント開始後、前述の通りヒータ300の記録材搬送方向下流側の温度は記録材搬送方向上流側より上昇するため、ヒータ300の記録材搬送方向下流側の発熱抵抗体H2の抵抗値の上昇が、記録材搬送方向上流側の発熱抵抗体H1より大きくなる。さらに、発熱抵抗体H1と発熱抵抗体H2に流れる電流は同じであるので、温度上昇により抵抗値が大きいヒータ300の記録材搬送方向下流側の発熱抵抗体H2の方が、記録材搬送方向上流側の発熱抵抗体H1より発熱量が多い。   First, in the case of the series of Comparative Example 1 in FIG. 5A (series connection), the resistance value of the heating resistor H1 and the heating resistor H2 is the same 20Ω immediately after the start of printing. After printing is started, the temperature on the downstream side in the recording material conveyance direction of the heater 300 increases from the upstream side in the recording material conveyance direction as described above. Therefore, the resistance value of the heating resistor H2 on the downstream side in the recording material conveyance direction of the heater 300 increases. It becomes larger than the heating resistor H1 on the upstream side in the recording material conveyance direction. Furthermore, since the currents flowing through the heating resistor H1 and the heating resistor H2 are the same, the heating resistor H2 on the downstream side in the recording material conveyance direction of the heater 300 having a large resistance value due to the temperature rise is upstream in the recording material conveyance direction. The amount of heat generated is larger than that of the side heating resistor H1.

よって、ヒータ300の記録材搬送方向上流側の発熱抵抗体H1と記録材搬送方向下流側の発熱抵抗体H2との温度差はさらに拡がっていく。結果、定常状態で発熱抵抗体H1の抵抗値は24.2Ω、発熱抵抗体H2の抵抗値は25.4Ωとなる。ここで、定常状態とはヒータ300内で温度変化がほぼ無くなる状態をいう。   Therefore, the temperature difference between the heating resistor H1 on the upstream side in the recording material conveyance direction of the heater 300 and the heating resistor H2 on the downstream side in the recording material conveyance direction is further widened. As a result, in the steady state, the resistance value of the heating resistor H1 is 24.2Ω, and the resistance value of the heating resistor H2 is 25.4Ω. Here, the steady state refers to a state in which there is almost no temperature change in the heater 300.

一方、図5(b)の比較例1の並列時(並列接続)の場合、プリント開始後、前述の通りヒータ300の記録材搬送方向下流側の温度は記録材搬送方向上流側より上昇する。そのため、ヒータ300の記録材搬送方向下流側の発熱抵抗体H2の抵抗値の上昇が、記録材搬送方向上流側の発熱抵抗体H1より大きくなる。しかし、発熱抵抗体H1と発熱抵抗体H2に印加される電圧は同じであるので、温度上昇の差により抵抗値が小さい発熱抵抗体H1に流れる電流の方が大きくなる。このため、ヒータ300の記録材搬送方向上流側の発熱抵抗体H1の方が、記録材搬送方向下流側の発熱抵抗体H2より発熱量は多くなる。   On the other hand, in the case of paralleling (parallel connection) in Comparative Example 1 in FIG. 5B, the temperature on the downstream side in the recording material conveyance direction of the heater 300 rises from the upstream side in the recording material conveyance direction as described above after starting printing. Therefore, the increase in the resistance value of the heating resistor H2 on the downstream side in the recording material conveyance direction of the heater 300 is larger than that on the heating resistor H1 on the upstream side in the recording material conveyance direction. However, since the voltage applied to the heating resistor H1 and the heating resistor H2 is the same, the current flowing through the heating resistor H1 having a small resistance value is larger due to the difference in temperature rise. For this reason, the heating resistor H1 on the upstream side in the recording material conveyance direction of the heater 300 generates more heat than the heating resistor H2 on the downstream side in the recording material conveyance direction.

これにより、ヒータ300の記録材搬送方向上流側の発熱抵抗体H1と記録材搬送方向下流側の発熱抵抗体H2との温度差を解消する方に作用する。結果、定常状態で発熱抵抗体H1の抵抗値は24.6Ω、発熱抵抗体H2の抵抗値は24.9Ωとなる。   This acts to eliminate the temperature difference between the heating resistor H1 on the upstream side in the recording material conveyance direction of the heater 300 and the heating resistor H2 on the downstream side in the recording material conveyance direction. As a result, in the steady state, the resistance value of the heating resistor H1 is 24.6Ω, and the resistance value of the heating resistor H2 is 24.9Ω.

上記説明した理由から、比較例1では直列時と並列時で、ヒータ300の記録材搬送方向上流側の発熱抵抗体H1と記録材搬送方向下流側の発熱抵抗体H2との温度分布に差が生じることになる。   For the reason described above, in Comparative Example 1, there is a difference in temperature distribution between the heating resistor H1 on the upstream side in the recording material conveyance direction of the heater 300 and the heating resistor H2 on the downstream side in the recording material conveyance direction in the case of series. Will occur.

図5(c)の本実施例の場合、直列時(直列接続)と並列時(並列接続)で定常時の発熱抵抗体H1と発熱抵抗体H2の抵抗値が同じとなるように、温度とTCRを考慮しつつ、発熱抵抗体H1と発熱抵抗体H2の抵抗値を設定している。ここで、定常時とはヒータ300の温度変化が小さい状態をいう(記録材が連続通紙されている状況)。   In the case of the present embodiment of FIG. 5C, the temperature and the heating resistor H1 and the heating resistor H2 are equal in temperature so that the resistance values of the heating resistor H1 and the heating resistor H2 in the steady state are the same in series (series connection) and parallel (parallel connection). The resistance values of the heating resistor H1 and the heating resistor H2 are set in consideration of the TCR. Here, the steady state means a state in which the temperature change of the heater 300 is small (a state where the recording material is continuously fed).

具体的には、先ず発熱抵抗体H1と発熱抵抗体H2の抵抗値を変えたヒータ300を試作し、直列時と並列時とも発熱体抵抗体H1と発熱抵抗体H2に流れる電流を測定できるようにした。そして、プリント中に直列時と並列時の電流が同じとなるような発熱体抵抗値の組み合わせを探した。本実施例では、発熱抵抗体H1の抵抗値を20.2Ω、H2の抵抗値を19.8Ωに設定した。   Specifically, first, a heater 300 in which the resistance values of the heating resistor H1 and the heating resistor H2 are changed is prototyped so that the current flowing through the heating resistor H1 and the heating resistor H2 can be measured both in series and in parallel. I made it. Then, a combination of heating element resistance values was found so that the currents in series and parallel were the same during printing. In this example, the resistance value of the heating resistor H1 was set to 20.2Ω, and the resistance value of H2 was set to 19.8Ω.

このように本実施例では、ヒータ300の記録材搬送方向上流側の発熱抵抗体H1の抵抗体値を記録材搬送方向下流側の発熱抵抗体H2よりも大きく設定している。そのため、直列時はヒータ300の短手方向上流側の発熱量も多く、ヒータ300の記録材搬送方向上流側の発熱抵抗体H1と記録材搬送方向下流側の発熱抵抗体H2との温度差が解消するように作用する。やがて、ヒータ300内で温度変化がほぼ無くなる定常状態となったとき、発熱抵抗体H1と発熱抵抗体H2の抵抗値が概ね同じとなる。並列時は、プリントを開始した直後は、ヒータ300の記録材搬送方向下流側の発熱抵抗体H2の方が記録材搬送方向上流側の発熱抵抗体H1より抵抗値が小さいので、発熱抵抗体H2の方が発熱抵抗体H1より発熱量が大きい。   Thus, in this embodiment, the resistance value of the heating resistor H1 on the upstream side in the recording material conveyance direction of the heater 300 is set to be larger than that of the heating resistor H2 on the downstream side in the recording material conveyance direction. For this reason, the amount of heat generated on the upstream side in the short direction of the heater 300 is large in series, and the temperature difference between the heating resistor H1 on the upstream side in the recording material conveyance direction of the heater 300 and the heating resistor H2 on the downstream side in the recording material conveyance direction. It works to eliminate. Eventually, when a steady state is reached in which there is almost no temperature change in the heater 300, the resistance values of the heating resistor H1 and the heating resistor H2 become substantially the same. At the time of parallel printing, immediately after printing is started, the heating resistor H2 on the downstream side in the recording material conveyance direction of the heater 300 has a smaller resistance value than the heating resistor H1 on the upstream side in the recording material conveyance direction. The heat generation amount is larger than that of the heating resistor H1.

しかし、定着フィルム102の回転によってヒータ300の記録材搬送方向下流側に熱が運ばれるため、ヒータ300の記録材搬送方向下流側の温度は記録材搬送方向上流側より高くなっていく。これにより、ヒータ300記録材搬送方向上流側の発熱抵抗体H1より、記録材搬送方向下流側の発熱抵抗体H2の抵抗上昇が大きくなる。やがて、ヒータ300内で温度変化が概ね無くなる定常状態となったとき、発熱抵抗体H1と発熱抵抗体H2の抵抗値がほぼ同じ24.8Ωとなる。上記説明した理由から、直列時と並列時での定常状態で発熱抵抗体H1とH2の抵抗値が概ね同じとなり、結果、ヒータ300の記録材搬送方向上流側の発熱抵抗体H1と記録材搬送方向下流側の発熱抵抗体H2との温度分布に差が無くなる。

図6は、本実施例の効果を確認するため、実際の画像形成装置を用い、200V系/100V系(直列時/並列時)で画出し評価を行ったときの記録材の温度、画像評価(定着性試験、オフセット評価)結果を示したものである。
However, since the heat is transferred to the downstream side in the recording material conveyance direction of the heater 300 by the rotation of the fixing film 102, the temperature on the downstream side in the recording material conveyance direction of the heater 300 becomes higher than the upstream side in the recording material conveyance direction. As a result, the resistance increase of the heating resistor H2 on the downstream side in the recording material conveyance direction is larger than that on the upstream side of the heater 300 in the recording material conveyance direction. Eventually, when the temperature in the heater 300 is almost constant, the resistance values of the heating resistor H1 and the heating resistor H2 become approximately the same 24.8Ω. For the reasons described above, the resistance values of the heating resistors H1 and H2 are substantially the same in the steady state in series and parallel, and as a result, the heating resistor H1 on the upstream side in the recording material transport direction of the heater 300 and the recording material transport. There is no difference in temperature distribution with the heating resistor H2 on the downstream side in the direction.

FIG. 6 shows the temperature and image of a recording material when an image formation evaluation is performed in a 200 V system / 100 V system (series / parallel) using an actual image forming apparatus in order to confirm the effect of this embodiment. The evaluation (fixability test, offset evaluation) results are shown.

ここで定着性とは、定着装置が冷えた状態から、ハーフトーン画像を印字したラフ紙を連続20枚、定着ニップ部へ搬送する。そして、ハーフトーン画像を定着処理済の記録材Pについて擦り試験をおこない、ある一定条件下で擦り試験前後での光学式濃度差を測定する。即ち記録材の画像形成面上に紙を介して所定重量(200g)のおもりを載せ、前記重量をかけつつ介在させた紙で画像形成面を摺擦し、その摺擦の前後で画像の濃度低下率を求める。20枚通紙した中で、濃度低下率が20%以上ある場合、市場にて許容できないレベルと判断し×、濃度低下率が20%未満の場合は市場にて許容できるレベルと判断し、○と表記している。   Here, the fixability means that 20 rough sheets on which halftone images are printed are conveyed continuously to the fixing nip portion from a state where the fixing device is cooled. Then, a rubbing test is performed on the recording material P on which the halftone image is fixed, and an optical density difference before and after the rubbing test is measured under a certain condition. That is, a weight (200 g) of a predetermined weight (200 g) is placed on the image forming surface of the recording material, and the image forming surface is rubbed with the interposed paper while applying the weight, and the image density before and after the rubbing. Find the rate of decline. If the density reduction rate is 20% or more after passing 20 sheets, it is judged as an unacceptable level in the market x. If the density reduction rate is less than 20%, it is judged as an acceptable level in the market It is written.

またオフセット評価は、定着装置が冷えた状態から、ハーフトーン画像、文字画像を織り交ぜた画像を連続50枚、定着フィルムの約1周分印字した平滑紙を定着ニップ部へ搬送する。オフセットが低い場合、記録材上にある未定着トナーの一部は、定着分より過剰な熱を受け、定着フィルム表面に付着する。そして、定着フィルム表面上のトナーは、定着フィルム1周後に、記録材に転移する。このため定着フィルム1周後に、オフセットした画像が現れることになる。オフセット評価では、この部分に着目し主観評価を行い、市場にて許容できるレベルと判断した際は○、市場にて許容できないレベルと判断した際は×とした。   In the offset evaluation, from the state where the fixing device is cooled, 50 sheets of halftone images and interlaced character images are continuously conveyed, and smooth paper on which about one turn of the fixing film is printed is conveyed to the fixing nip portion. When the offset is low, a part of the unfixed toner on the recording material receives heat more than the amount fixed and adheres to the surface of the fixing film. The toner on the surface of the fixing film is transferred to the recording material after one round of the fixing film. For this reason, an offset image appears after one round of the fixing film. In the offset evaluation, subjective evaluation was performed focusing on this part, and “◯” was given when it was judged as an acceptable level in the market, and “X” was judged when it was judged as an unacceptable level in the market.

本実施例(実施例1)においては制御目標温度を185℃に設定した。また、比較例1においては、温度検知素子111の検知温度誤差が概ね6℃あることを考慮し、制御目標温度を195℃、185℃、175℃に設定した。   In this example (Example 1), the control target temperature was set to 185 ° C. In Comparative Example 1, the control target temperatures were set to 195 ° C., 185 ° C., and 175 ° C. in consideration that the detected temperature error of the temperature detecting element 111 is approximately 6 ° C.

結果は、本実施例では直列時、並列時とも、定着性、オフセットを満足している。一方、比較例1については同じ制御目標温度で、直列時のオフセットと並列時の定着性を満足することができなかった。これは、本実施例においては直列時と並列時ともに紙温度が同じとなっており、温度差などによる画像不良の発生を抑制して、良好な画像品質が得られたためと考えられる。   As a result, in this embodiment, the fixing property and the offset are satisfied both in series and in parallel. On the other hand, in Comparative Example 1, it was not possible to satisfy the offset in series and the fixability in parallel at the same control target temperature. This is presumably because in the present embodiment, the paper temperature is the same both in series and in parallel, and the occurrence of image defects due to temperature differences or the like is suppressed, and good image quality is obtained.

一方、比較例1で制御目標温度を185℃とした場合、直列時は紙温度が並列時に比べ高くなり、ホットオフセットが低下したと考えられる。また逆に、並列時は紙温度が直列時に比べ低くなり、定着性が低下したと考えられる。制御目標温度を195℃に上げた場合は、紙温度が上がるので、並列時の定着性が良化するものの、直列時のオフセットが低下する。また、制御目標温度を175℃に下げた場合は紙温度が下がるので、直列時のオフセット良化するものの、並列時の定着性は低下する。   On the other hand, when the control target temperature is 185 ° C. in Comparative Example 1, it is considered that the paper temperature at the time of series becomes higher than that at the time of parallel and the hot offset is lowered. On the other hand, it is considered that the paper temperature at the time of parallel is lower than that at the time of serial, and the fixing property is lowered. When the control target temperature is increased to 195 ° C., the paper temperature increases, so that the fixing property in parallel is improved, but the offset in series is reduced. Further, when the control target temperature is lowered to 175 ° C., the paper temperature is lowered, so that the offset in the series is improved, but the fixing property in the parallel is lowered.

以上説明したように、ヒータの記録材搬送方向上流側の発熱抵抗体H1の抵抗値を、記録材搬送方向下流側の発熱抵抗体H2の抵抗値より大きくした場合は、直列と並列の接続状態に係らず、同じ制御目標温度で定着性、オフセットを両立することが可能となる。   As described above, when the resistance value of the heating resistor H1 on the upstream side in the recording material conveyance direction of the heater is larger than the resistance value of the heating resistor H2 on the downstream side in the recording material conveyance direction, the connected state in series and parallel Regardless of this, it is possible to achieve both fixability and offset at the same control target temperature.

また別の効果として、本実施例では、直列時、並列時ともヒータ300の基板裏面の最大温度を抑えることが可能となり、ヒータホルダ101の熱劣化を抑制することができる。   As another effect, in this embodiment, the maximum temperature of the back surface of the substrate of the heater 300 can be suppressed both in series and in parallel, and thermal deterioration of the heater holder 101 can be suppressed.

[実施例2]
実施例1のヒータ300に代えて用いられるヒータ300の他の例を説明する。図7の(a)は本実施例のヒータ300の基板表面側からの概略構成模式図、(b)は比較例2のヒータ300の基板表面側からの概略構成模式図である。
[Example 2]
Another example of the heater 300 used instead of the heater 300 of the first embodiment will be described. FIG. 7A is a schematic configuration schematic diagram from the substrate surface side of the heater 300 of this embodiment, and FIG. 7B is a schematic configuration schematic diagram from the substrate surface side of the heater 300 of Comparative Example 2.

本実施例に示すヒータ300は、第1の発熱抵抗体H1における基板105の長手方向の単位長さあたりの抵抗値が、第1の発熱抵抗体H1の一部が第1の発熱抵抗体H1の一部を除く他の箇所と比較して大きいことを特徴としている。   The heater 300 shown in this embodiment has a resistance value per unit length in the longitudinal direction of the substrate 105 in the first heating resistor H1, and a part of the first heating resistor H1 is the first heating resistor H1. It is characterized by being larger than other parts except for a part of.

図7の(a)に示すように、サーモスイッチ113は、ヒータ300の基板裏面上で第1の抵抗発熱体H1と第2の抵抗発熱体H2に接触させて配設してあるため、ヒータ300から熱を奪うことになる。すると、記録材Pに伝わる熱量が他の箇所よりも少なくなり、光沢のムラ、定着性の低下などの画像不良が発生する可能性がある。そこで、損失される熱量を補うように、発熱量を増やす必要がある。   As shown in FIG. 7A, the thermo switch 113 is disposed in contact with the first resistance heating element H1 and the second resistance heating element H2 on the back surface of the substrate of the heater 300. It will take heat from 300. As a result, the amount of heat transmitted to the recording material P is smaller than in other portions, and there is a possibility that image defects such as uneven gloss and a decrease in fixability may occur. Therefore, it is necessary to increase the amount of heat generation so as to compensate for the amount of heat lost.

本実施例では、図7の(a)のように、サーモスイッチ113が接触する箇所で、長手方向に8mm発熱抵抗体H1の幅を19.8mmから18.8mmに狭めた。これにより発熱抵抗体H1の長手方向の単位長さあたりの抵抗値を5%大きくし、サーモスイッチ113箇所で発生した光沢ムラを改善するようにした。   In the present embodiment, as shown in FIG. 7A, the width of the 8 mm heating resistor H1 is narrowed from 19.8 mm to 18.8 mm in the longitudinal direction at the place where the thermo switch 113 comes into contact. As a result, the resistance value per unit length in the longitudinal direction of the heating resistor H1 is increased by 5% to improve the gloss unevenness generated at the 113 thermoswitches.

本実施例のヒータ300は、発熱抵抗体H1,H2の長手方向において発熱抵抗体H1,H2のそれぞれにサーモスイッチ113が接触する一部の箇所の抵抗値を高くする際、ヒータ300の記録材搬送方向上流側の発熱抵抗体H1の方の抵抗値を高くしている。これにより、前述したように、直列時と並列時で、ヒータ300の記録材搬送方向上流側の発熱抵抗体H1と記録材搬送方向下流側の発熱抵抗体H2の温度分布の差を小さくすることができ、同じ温調制御温度で定着性とオフセットを両立することが可能となる。   In the heater 300 of this embodiment, the recording material of the heater 300 is increased when the resistance value of a part where the thermo switch 113 is in contact with each of the heating resistors H1 and H2 in the longitudinal direction of the heating resistors H1 and H2 is increased. The resistance value of the heating resistor H1 on the upstream side in the transport direction is increased. As a result, as described above, the difference in temperature distribution between the heating resistor H1 on the upstream side in the recording material conveyance direction of the heater 300 and the heating resistor H2 on the downstream side in the recording material conveyance direction is reduced, as described above. It is possible to achieve both fixing properties and offset at the same temperature control temperature.

さらには、以下のような効果もある。ヒータ300の基板裏面の温度は、前述のように記録材搬送方向上流側よりも記録材搬送方向下流側の方が高くなる。このため、図7の(b)に示す比較例2のヒータ300のように、ヒータ300の記録材搬送方向下流側の発熱抵抗体H2の抵抗値をサーモスイッチ113が接触する箇所で、長手方向に8mm発熱抵抗体H2の幅を20.2mmから19.2mmに狭める。このように発熱抵抗体H2の長手方向の単位長さあたりの抵抗値を5%大きくすると、サーモスイッチ113を配置した箇所でのヒータ300の基板裏面の記録材搬送方向下流側の温度は、さらに高くなる。   Furthermore, there are the following effects. As described above, the temperature of the back surface of the substrate of the heater 300 is higher on the downstream side in the recording material conveyance direction than on the upstream side in the recording material conveyance direction. For this reason, like the heater 300 of the comparative example 2 shown in FIG. 7B, the longitudinal direction of the heating switch H2 on the downstream side of the recording material conveyance direction of the heater 300 is the point where the thermo switch 113 contacts. The width of the 8 mm heating resistor H2 is reduced from 20.2 mm to 19.2 mm. When the resistance value per unit length in the longitudinal direction of the heating resistor H2 is increased by 5% in this way, the temperature on the downstream side in the recording material conveyance direction on the back surface of the substrate of the heater 300 at the location where the thermo switch 113 is disposed is further increased. Get higher.

このように比較例2のヒータ300では、ヒータ300の基板裏面の最大温度が高くなると、サーモスイッチ113、耐熱樹脂製のヒータホルダ101の熱劣化や、耐熱性を向上させるため、部品コストの増加、設計自由度の低下などが発生して好ましくない。   As described above, in the heater 300 of Comparative Example 2, when the maximum temperature on the back surface of the heater 300 is increased, the thermal switch 113 and the heat-resistant resin heater holder 101 are thermally deteriorated and the heat resistance is improved. This is not preferable because the degree of freedom in design occurs.

以上説明したように、サーモスイッチ113で奪われる熱量を補うため、発熱抵抗体H1,H2の一部で抵抗値を大きくする場合、サーモスイッチ113が接触する箇所で、発熱抵抗体H2より発熱抵抗体H1の抵抗を大きくしている。ここで、第1の発熱抵抗体H1の抵抗が大きい他の箇所は、第1の発熱抵抗体H1と第2の発熱抵抗体H2への通電を遮断するサーモスイッチ113と接触する箇所である。   As described above, when the resistance value is increased in a part of the heating resistors H1 and H2 in order to compensate for the amount of heat taken away by the thermo switch 113, the heating resistance is higher than that of the heating resistor H2 at the location where the thermo switch 113 is in contact. The resistance of the body H1 is increased. Here, the other portion where the resistance of the first heat generating resistor H1 is large is a portion in contact with the thermo switch 113 that cuts off the power supply to the first heat generating resistor H1 and the second heat generating resistor H2.

これにより、直列時と並列時で、ヒータ300の記録材搬送方向上流側の発熱抵抗体H1と記録材搬送方向下流側の発熱抵抗体H2の温度分布の差を小さくし、特別な制御を不要とすることが可能となる。更に直列時のヒータ300の記録材搬送方向下流側での温度上昇を抑えられ、サーモスイッチ113などの熱劣化を抑制することが可能となる。   This reduces the difference in temperature distribution between the heating resistor H1 on the upstream side in the recording material conveyance direction of the heater 300 and the heating resistor H2 on the downstream side in the recording material conveyance direction, and eliminates the need for special control. It becomes possible. Further, it is possible to suppress the temperature rise of the heater 300 at the downstream side in the recording material conveyance direction in series, and to suppress the thermal deterioration of the thermo switch 113 and the like.

[実施例3]
実施例1のヒータ300に代えて用いられるヒータ300の他の例を説明する。図8の(a)は本実施例のヒータ300の基板表面側からの概略構成模式図、(b)は比較例3のヒータ300の基板表面側からの概略構成模式図である。
[Example 3]
Another example of the heater 300 used instead of the heater 300 of the first embodiment will be described. FIG. 8A is a schematic configuration schematic diagram from the substrate surface side of the heater 300 of this embodiment, and FIG. 8B is a schematic configuration schematic diagram from the substrate surface side of the heater 300 of Comparative Example 3.

本実施例に示すヒータ300も、第1の発熱抵抗体H1における基板105の長手方向の単位長さあたりの抵抗値が、第1の発熱抵抗体H1の一部が第1の発熱抵抗体H1の一部を除く他の箇所と比較して大きいことを特徴としている。   The heater 300 shown in the present embodiment also has a resistance value per unit length in the longitudinal direction of the substrate 105 in the first heating resistor H1, and a part of the first heating resistor H1 is the first heating resistor H1. It is characterized by being larger than other parts except for a part of.

本実施例のヒータ300は、ヒータ300の長手方向両端部から熱の流出量が多く、ヒータ300の長手方向両端部の発熱量を高くしたい場合に用いて好適なものである。具体的には、ヒータ300の発熱抵抗体H1,H2の長手方向の単位長さあたりの抵抗値を、記録材搬送方向下流側の発熱抵抗体H1より記録材搬送方向上流側の発熱抵抗体H2の方を大きくすることを特徴とする。つまり、ヒータ300の長手方向両端部の温度低下を抑えるための構成で、記録材搬送方向上流側の発熱抵抗体H1の長手方向両端部の幅を狭め、長手方向の単位長さあたりの抵抗値を大きくし、長手方向両端部の発熱量を大きくしている。   The heater 300 of the present embodiment is suitable for use when there is a large amount of heat outflow from both longitudinal ends of the heater 300 and it is desired to increase the amount of heat generated at both longitudinal ends of the heater 300. Specifically, the resistance value per unit length in the longitudinal direction of the heating resistors H1 and H2 of the heater 300 is set to the heating resistor H2 on the upstream side in the recording material conveyance direction from the heating resistor H1 on the downstream side in the recording material conveyance direction. It is characterized by enlarging. That is, in the configuration for suppressing the temperature drop at both ends in the longitudinal direction of the heater 300, the width of both longitudinal ends of the heating resistor H1 on the upstream side in the recording material conveyance direction is narrowed, and the resistance value per unit length in the longitudinal direction. To increase the amount of heat generation at both ends in the longitudinal direction.

ヒータ300の長手方向両端部の温度が低下する理由としては、定着フィルム102、加圧ローラ108、ヒータホルダ101などに伝わる熱損失や、対流、輻射による熱損失が、より温度差のある定着装置の長手方向両端部で大きくなることに起因する。   The reason why the temperature at both ends in the longitudinal direction of the heater 300 decreases is that the heat loss transmitted to the fixing film 102, the pressure roller 108, the heater holder 101, etc., and the heat loss due to convection and radiation have a temperature difference. It originates in becoming large at both ends in the longitudinal direction.

本実施例のヒータ300では、図8(a)のように、発熱抵抗体H1の長手方向両端部の6mmの箇所を、発熱抵抗体H1の幅を19.8mmから18.8mmに狭めた。これにより、発熱抵抗体H1の長手方向の単位長さあたりの抵抗値を5%大きくし、ヒータ300の長手方向両端部での定着性を向上した。   In the heater 300 of the present embodiment, as shown in FIG. 8A, the width of the heating resistor H1 is narrowed from 19.8 mm to 18.8 mm at both ends in the longitudinal direction of the heating resistor H1. As a result, the resistance value per unit length in the longitudinal direction of the heating resistor H1 is increased by 5%, and the fixability at both ends in the longitudinal direction of the heater 300 is improved.

このように、発熱抵抗体H1,H2の長手方向においてヒータ300の長手方向両端部の抵抗値を高くする際、ヒータ300の記録材搬送方向上流側の発熱抵抗体H1の方の抵抗値を高くしている。これにより、前述したように、直列時と並列時で、ヒータ300の記録材搬送方向上流側の発熱抵抗体H1と記録材搬送方向下流側の発熱抵抗体H2の温度分布の差を小さくすることができ、同じ温調制御温度で定着性とオフセットを両立することが可能となる。   As described above, when the resistance value at both ends in the longitudinal direction of the heater 300 is increased in the longitudinal direction of the heating resistors H1 and H2, the resistance value of the heating resistor H1 on the upstream side in the recording material conveyance direction of the heater 300 is increased. doing. As a result, as described above, the difference in temperature distribution between the heating resistor H1 on the upstream side in the recording material conveyance direction of the heater 300 and the heating resistor H2 on the downstream side in the recording material conveyance direction is reduced, as described above. It is possible to achieve both fixing properties and offset at the same temperature control temperature.

さらには、以下のような効果もある。ヒータ300の基板裏面の温度は、前述のように記録材搬送方向上流側よりも記録材搬送方向下流側の方が高くなる。このため、図8の(b)に示す比較例3のヒータ300のように、発熱抵抗体H2の長手方向両端部の6mmの箇所を、発熱抵抗体H2の幅を20.2mmから19.2mmに狭めることで、長手方向の単位長さあたりの抵抗値を5%大きくする。すると、ヒータ300の記録材搬送方向下流側での発熱量がさらに大きくなる。これに加え、ヒータ300の長手端部での温度も発熱量も記録材搬送方向下流側で増やしているため、その箇所のヒータ300の基板裏面の記録材搬送方向下流側の温度は、さらに高くなる。   Furthermore, there are the following effects. As described above, the temperature of the back surface of the substrate of the heater 300 is higher on the downstream side in the recording material conveyance direction than on the upstream side in the recording material conveyance direction. For this reason, like the heater 300 of the comparative example 3 shown in FIG. 8B, the heating resistor H2 has a width of 6 mm at both ends in the longitudinal direction, and the width of the heating resistor H2 is 20.2 mm to 19.2 mm. The resistance value per unit length in the longitudinal direction is increased by 5%. As a result, the amount of heat generated on the downstream side of the heater 300 in the recording material conveyance direction is further increased. In addition, since the temperature and the amount of heat generated at the longitudinal end of the heater 300 are increased on the downstream side in the recording material conveyance direction, the temperature on the downstream side of the recording material conveyance direction on the back surface of the substrate of the heater 300 is further increased. Become.

このように比較例3のヒータ300では、ヒータ300の基板裏面の最大温度が高くなり、耐熱樹脂製のヒータホルダ101の熱劣化や、耐熱性を向上させるため、部品コストの増加、設計自由度の低下などが発生して好ましくない。   As described above, in the heater 300 of Comparative Example 3, the maximum temperature of the back surface of the heater 300 is increased, and the heat resistance and the heat resistance of the heater holder 101 made of heat resistant resin are improved. A decrease or the like is not preferable.

本実施例のヒータ300は、ヒータ300の発熱抵抗体H1,H2の長手方向の単位長さあたりの抵抗値を、記録材搬送方向下流側の発熱抵抗体H1より記録材搬送方向上流側の発熱抵抗体H2の方を大きくしている。   In the heater 300 of this embodiment, the resistance value per unit length in the longitudinal direction of the heating resistors H1 and H2 of the heater 300 is set to the heat generation upstream in the recording material conveyance direction from the heating resistor H1 in the recording material conveyance direction downstream. The resistor H2 is made larger.

これにより、直列時と並列時で、ヒータ300の記録材搬送方向上流側の発熱抵抗体H1と記録材搬送方向下流側の発熱抵抗体H2の温度分布の差を小さくし、特別な制御を不要とすることが可能となる。更に直列時のヒータ300の記録材搬送方向下流側での温度上昇を抑えられ、ヒータホルダ101の熱劣化を抑制することが可能となる。   This reduces the difference in temperature distribution between the heating resistor H1 on the upstream side in the recording material conveyance direction of the heater 300 and the heating resistor H2 on the downstream side in the recording material conveyance direction, and eliminates the need for special control. It becomes possible. Furthermore, the temperature rise on the downstream side of the recording material conveyance direction of the heater 300 in series can be suppressed, and the thermal deterioration of the heater holder 101 can be suppressed.

[実施例4]
実施例1のヒータ300に代えて用いられるヒータ300の他の例を説明する。図9の(a)は本実施例のヒータ300の基板表面側からの概略構成模式図、(b)は比較例4のヒータ300の基板表面側からの概略構成模式図である。
[Example 4]
Another example of the heater 300 used instead of the heater 300 of the first embodiment will be described. FIG. 9A is a schematic configuration schematic diagram from the substrate surface side of the heater 300 of this embodiment, and FIG. 9B is a schematic configuration schematic diagram from the substrate surface side of the heater 300 of Comparative Example 4.

本実施例に示すヒータ300は、ヒータ300の第2の発熱抵抗体H2における基板105の長手方向の単位長さあたりの抵抗値が、第1の発熱抵抗体H1の一部が第1の発熱抵抗体H1の一部を除く他の箇所と比較して小さい。そして第2の発熱抵抗体H2の抵抗値が小さい他の箇所は、基板105の長手方向において第2の発熱抵抗体H2の端部であることを特徴としている。   In the heater 300 shown in this embodiment, the second heating resistor H2 of the heater 300 has a resistance value per unit length in the longitudinal direction of the substrate 105, and a part of the first heating resistor H1 generates the first heat. It is smaller than other parts except for a part of the resistor H1. The other part where the resistance value of the second heating resistor H2 is small is the end of the second heating resistor H2 in the longitudinal direction of the substrate 105.

本実施例のヒータ300は、ヒータ300の長手方向両端部の昇温を抑える場合に用いて好適なものである。具体的には、ヒータ300端部の温度上昇を抑えるための構成で、発熱抵抗体H2の長手方向両端部の幅を大きくし、長手方向の単位長さあたりの抵抗値を小さくし、結果ヒータ300の長手方向両端部の発熱量を小さくしている。   The heater 300 of the present embodiment is suitable for use in suppressing the temperature rise at both ends in the longitudinal direction of the heater 300. Specifically, in the configuration for suppressing the temperature rise at the end of the heater 300, the width of both ends in the longitudinal direction of the heating resistor H2 is increased, the resistance value per unit length in the longitudinal direction is decreased, and as a result the heater The amount of heat generated at both ends in the longitudinal direction 300 is reduced.

ヒータ300の長手方向両端部の温度上昇を抑える理由としては、次のとおりである。記録材の幅に係らずヒータ300の長手方向の発熱量は変わらない。そのため、幅の狭い記録材が定着ニップ部Nに通紙された場合、本来記録材に伝わり失われる熱量が、ヒータ300、定着フィルム102、加圧ローラ108、ヒータホルダ101などの部材に蓄積される。このため、ヒータ300の長手方向両端部の温度が上がってしまい、各部材の耐久性、熱劣化などの観点からも好ましくない。一般的には、A4サイズ幅の210mmとLTRサイズ幅の216mmの両方に対応できるよう、発熱抵抗体H1,H2の長手方向両端部の形状が決定される。   The reason for suppressing the temperature rise at both ends in the longitudinal direction of the heater 300 is as follows. Regardless of the width of the recording material, the heat generation amount in the longitudinal direction of the heater 300 does not change. Therefore, when a narrow recording material is passed through the fixing nip portion N, the amount of heat originally lost to the recording material is accumulated in members such as the heater 300, the fixing film 102, the pressure roller 108, and the heater holder 101. . For this reason, the temperature of the longitudinal direction both ends of the heater 300 rises, which is not preferable from the viewpoint of durability and thermal deterioration of each member. Generally, the shape of the longitudinal ends of the heating resistors H1 and H2 is determined so as to be compatible with both the A4 size width of 210 mm and the LTR size width of 216 mm.

本実施例では、図9の(a)のように、発熱抵抗体H2の長手方向両端部の6mmの箇所を、発熱抵抗体H2の幅を20.2mmから21.2mmに太くした。これにより、発熱抵抗体H2の長手方向の単位長さあたりの抵抗値を5%小さくし、A4サイズとLTRサイズが通紙された場合においても、記録材の幅方向両端部の定着性と、ヒータ300の長手方向両端部の昇温抑制を両立できるようにした。   In the present embodiment, as shown in FIG. 9A, the width of the heating resistor H2 is increased from 20.2 mm to 21.2 mm at both ends in the longitudinal direction of the heating resistor H2. Thereby, the resistance value per unit length in the longitudinal direction of the heating resistor H2 is reduced by 5%, and even when the A4 size and the LTR size are passed, the fixing properties at both ends in the width direction of the recording material, The temperature increase suppression at both ends in the longitudinal direction of the heater 300 can be made compatible.

このように、発熱抵抗体H1,H2の長手方向においてヒータ300の長手方向端部の箇所の抵抗値を小さくする際、ヒータ300の記録材搬送方向下流側の発熱抵抗体H2の方の抵抗値を小さくしている。これにより、前述したように、直列時と並列時で、ヒータ300の記録材搬送方向上流側の発熱抵抗体H1と記録材搬送方向下流側の発熱抵抗体H2の温度分布の差が小さくすることができ、同じ温調制御温度で定着性とオフセットを両立することが可能となる。   As described above, when the resistance value of the end portion in the longitudinal direction of the heater 300 in the longitudinal direction of the heating resistors H1 and H2 is reduced, the resistance value of the heating resistor H2 on the downstream side in the recording material conveyance direction of the heater 300 is reduced. Is made smaller. As a result, as described above, the difference in temperature distribution between the heating resistor H1 on the upstream side in the recording material conveyance direction of the heater 300 and the heating resistor H2 on the downstream side in the recording material conveyance direction is reduced in series and parallel. It is possible to achieve both fixing properties and offset at the same temperature control temperature.

さらには、以下のような効果もある。ヒータ300の基板裏面の温度は、前述のように記録材搬送方向上流側よりも記録材搬送方向下流側の方が高くなる。このため、図9の(b)に示す比較例4のヒータ300のように、発熱抵抗体H1の長手方向両端部の6mmの箇所を、発熱抵抗体H1の幅を19.8mmから20.8mmに太めることで、長手方向の単位長さあたりの抵抗値を5%小さくする。この比較例4のヒータ300と本実施例のヒータ300では、本実施例のヒータ300方が、ヒータ300の長手方向両端部が昇温し、ヒータ300温度が最も高くなる記録材搬送方向下流側での発熱を抑えることができる。   Furthermore, there are the following effects. As described above, the temperature of the back surface of the substrate of the heater 300 is higher on the downstream side in the recording material conveyance direction than on the upstream side in the recording material conveyance direction. For this reason, like the heater 300 of the comparative example 4 shown in FIG. 9 (b), the width of the heating resistor H1 is changed from 19.8 mm to 20.8 mm at both ends in the longitudinal direction of the heating resistor H1. To increase the resistance value per unit length in the longitudinal direction by 5%. In the heater 300 of this comparative example 4 and the heater 300 of this embodiment, the heater 300 of this embodiment is heated downstream at both ends in the longitudinal direction of the heater 300 and the heater 300 temperature is the highest in the recording material conveyance direction. Heat generation at can be suppressed.

よって、本実施例のヒータ300の方がヒータ300の長手方向両端部の昇温を抑えることが可能となり、耐熱樹脂製のヒータホルダ101の熱劣化や、耐熱性を向上させるため、部品コストの増加、設計自由度の低下を抑制できる。   Therefore, the heater 300 of the present embodiment can suppress the temperature rise at both ends in the longitudinal direction of the heater 300, and the heat deterioration and the heat resistance of the heater holder 101 made of the heat resistant resin are improved. Therefore, it is possible to suppress a decrease in design freedom.

本実施例のヒータ300は、ヒータ300の発熱抵抗体H1,H2の長手方向の単位長さあたりの抵抗値を、発熱抵抗体の長手方向両端部において記録材搬送方向下流側より記録材搬送方向上流側の方を大きくしている。   In the heater 300 of this embodiment, the resistance value per unit length in the longitudinal direction of the heating resistors H1 and H2 of the heater 300 is determined from the downstream side in the recording material transport direction at both ends in the longitudinal direction of the heating resistor. The upstream side is enlarged.

これにより、直列時と並列時で、ヒータ300の記録材搬送方向上流側の発熱抵抗体H1と記録材搬送方向下流側の発熱抵抗体H2の温度分布の差を小さくし、特別な制御を不要とすることが可能となる。更に直列時のヒータ300の記録材搬送方向下流側での温度上昇を抑えられ、ヒータホルダ101の熱劣化を抑制することが可能となる。   This reduces the difference in temperature distribution between the heating resistor H1 on the upstream side in the recording material conveyance direction of the heater 300 and the heating resistor H2 on the downstream side in the recording material conveyance direction, and eliminates the need for special control. It becomes possible. Furthermore, the temperature rise on the downstream side of the recording material conveyance direction of the heater 300 in series can be suppressed, and the thermal deterioration of the heater holder 101 can be suppressed.

[他の実施例]
実施例1乃至実施例4に示す定着装置は未定着トナー画像を記録材に加熱定着する定着装置としての使用に限られない。例えば未定着トナー画像を加熱して記録材に仮定着する像加熱装置、或いは記録材に加熱定着されたトナー画像を加熱してトナー画像表面の光沢を増大させる像加熱装置としても使用することができる。
[Other embodiments]
The fixing devices shown in the first to fourth embodiments are not limited to use as a fixing device that heat-fixes an unfixed toner image on a recording material. For example, it can also be used as an image heating device that heats an unfixed toner image and attaches it to a recording material, or an image heating device that heats a toner image heat-fixed on a recording material to increase the gloss of the toner image surface. it can.

6‥‥像加熱装置、20‥‥商用電源、102‥‥定着フィルム、105‥‥基板、108‥‥加圧ローラ、300‥‥ヒータ、402‥‥切替え部、H1‥‥第1の発熱抵抗体、H2‥‥第2の発熱抵抗体、P‥‥記録材、t‥‥未定着トナー画像 6 ... Image heating device, 20 ... Commercial power supply, 102 ... Fixing film, 105 ... Substrate, 108 ... Pressure roller, 300 ... Heater, 402 ... Switching section, H1 ... First heating resistance H2, second heating resistor, P, recording material, t, unfixed toner image

Claims (5)

基板と前記基板の上に商用電源から供給される電力によって発熱する第1の発熱抵抗体と第2の発熱抵抗体とを有する加熱体と、前記加熱体と接触しつつ移動する筒状の可撓性部材と、前記可撓性部材を介して前記加熱体と共にニップ部を形成するバックアップ部材と、前記商用電源の電圧に応じて前記第1の発熱抵抗体と前記第2の発熱抵抗体を直列接続或いは並列接続に切り替える切替え手段と、を有し、前記ニップ部で画像を担持する記録材を挟持搬送しつつ画像を加熱する像加熱装置において、
前記基板の記録材搬送方向上流側にある前記第1の発熱抵抗体の抵抗値より、前記基板の記録材搬送方向下流側にある前記第2の発熱抵抗体の抵抗値の方が小さいことを特徴とする像加熱装置。
A heating body having a substrate, a first heating resistor that generates heat by electric power supplied from a commercial power source, and a second heating resistor on the substrate, and a cylindrical movable body that moves while contacting the heating body A flexible member, a backup member that forms a nip portion together with the heating body via the flexible member, and the first heating resistor and the second heating resistor according to the voltage of the commercial power source. Switching means for switching to serial connection or parallel connection, and an image heating apparatus that heats an image while nipping and conveying a recording material that carries an image at the nip portion,
The resistance value of the second heating resistor on the downstream side in the recording material conveyance direction of the substrate is smaller than the resistance value of the first heating resistor on the upstream side in the recording material conveyance direction of the substrate. An image heating apparatus.
前記第1の発熱抵抗体における前記基板の記録材搬送方向と直交する長手方向の単位長さあたりの抵抗値は、前記第1の発熱抵抗体の一部が前記第1の発熱抵抗体の前記一部を除く他の箇所と比較して大きいことを特徴とする請求項1に記載の像加熱装置。   The resistance value per unit length in the longitudinal direction perpendicular to the recording material conveyance direction of the substrate in the first heating resistor is such that a part of the first heating resistor is the same as that of the first heating resistor. The image heating apparatus according to claim 1, wherein the image heating apparatus is larger than other portions except a part. 前記第1の発熱抵抗体の抵抗が大きい他の箇所は、前記第1の発熱抵抗体と前記第2の発熱抵抗体への通電を遮断する通電遮断手段と接触する箇所であることを特徴とする請求項2に記載の像加熱装置。   The other location where the resistance of the first heat generating resistor is large is a location where the first heat generating resistor and the second heat generating resistor are in contact with the power supply interrupting means for cutting off the power supply to the second heat generating resistor. The image heating apparatus according to claim 2. 前記第1の発熱抵抗体の抵抗が大きい他の箇所は、前記基板の記録材搬送方向と直交する長手方向において前記第1の発熱抵抗体の端部であることを特徴とする請求項2に記載の像加熱装置。   The other portion where the resistance of the first heating resistor is large is an end portion of the first heating resistor in a longitudinal direction perpendicular to the recording material conveyance direction of the substrate. The image heating apparatus described. 前記第2の発熱抵抗体における前記基板の記録材搬送方向と直交する長手方向の単位長さあたりの抵抗値は、前記第1の発熱抵抗体の一部が前記第1の発熱抵抗体の前記一部を除く他の箇所と比較して小さく、前記第2の発熱抵抗体の抵抗値が小さい他の箇所は、前記基板の記録材搬送方向と直交する長手方向において前記第2の発熱抵抗体の端部であることを特徴とする請求項1に記載の像加熱装置。   The resistance value per unit length in the longitudinal direction perpendicular to the recording material conveyance direction of the substrate in the second heating resistor is such that a part of the first heating resistor is the same as that of the first heating resistor. Other portions where the resistance value of the second heating resistor is small compared to other portions except for a part are the second heating resistor in the longitudinal direction perpendicular to the recording material transport direction of the substrate. The image heating apparatus according to claim 1, wherein the image heating apparatus is an end portion of the image heating apparatus.
JP2011170957A 2011-08-04 2011-08-04 Image heating device Withdrawn JP2013037065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011170957A JP2013037065A (en) 2011-08-04 2011-08-04 Image heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011170957A JP2013037065A (en) 2011-08-04 2011-08-04 Image heating device

Publications (1)

Publication Number Publication Date
JP2013037065A true JP2013037065A (en) 2013-02-21

Family

ID=47886750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011170957A Withdrawn JP2013037065A (en) 2011-08-04 2011-08-04 Image heating device

Country Status (1)

Country Link
JP (1) JP2013037065A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019078818A (en) * 2017-10-20 2019-05-23 東芝テック株式会社 Fixing device and image forming apparatus
US11537070B2 (en) 2020-07-01 2022-12-27 Ricoh Company, Ltd. Heater, heating device, fixing device, and image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019078818A (en) * 2017-10-20 2019-05-23 東芝テック株式会社 Fixing device and image forming apparatus
US11537070B2 (en) 2020-07-01 2022-12-27 Ricoh Company, Ltd. Heater, heating device, fixing device, and image forming apparatus

Similar Documents

Publication Publication Date Title
JP5943559B2 (en) Fixing device
JP4659204B2 (en) Fixing apparatus and image forming apparatus provided with the fixing apparatus
JP5464902B2 (en) Fixing device
JPH10221986A (en) Image forming device and heater for heating for heating/ fixing device
JP2004085698A (en) Image forming apparatus
JP6573414B2 (en) Image heating device
US20040028423A1 (en) Image heating apparatus and image forming apparatus
US6718155B2 (en) Fixing apparatus in which fixing speed is switched during cleaning
JP7102255B2 (en) Image forming device
JP2013037065A (en) Image heating device
JP2018205698A (en) Image heating device
JP2013003503A (en) Image heating device
JP2002311749A (en) Image forming device
JP2004021079A (en) Fixing device and image forming apparatus
JP2013242468A (en) Image heating device
JP2018146822A (en) Heat generating device, image heating device, and image forming apparatus
JP3799296B2 (en) Image forming apparatus
JP3958108B2 (en) Image forming apparatus
JP7271134B2 (en) image heating device
JP2008268728A (en) Thermal fixing device
JP2941587B2 (en) Image heating device
JP2000260553A (en) Heating device, heating fixing device, and image forming device
JP2006084805A (en) Thermal fixing device
JP2002207386A (en) Image heating device and image forming device
JP2004093638A (en) Thermal fixing device and image forming apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007