JP2013030394A - Storage battery charging apparatus - Google Patents

Storage battery charging apparatus Download PDF

Info

Publication number
JP2013030394A
JP2013030394A JP2011166456A JP2011166456A JP2013030394A JP 2013030394 A JP2013030394 A JP 2013030394A JP 2011166456 A JP2011166456 A JP 2011166456A JP 2011166456 A JP2011166456 A JP 2011166456A JP 2013030394 A JP2013030394 A JP 2013030394A
Authority
JP
Japan
Prior art keywords
battery
unit
heating
temperature difference
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011166456A
Other languages
Japanese (ja)
Inventor
Takashi Iida
崇 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2011166456A priority Critical patent/JP2013030394A/en
Publication of JP2013030394A publication Critical patent/JP2013030394A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a storage battery charging apparatus that charges a storage battery comprising a plurality of battery units connected in series and suppresses performance variations among the battery units.SOLUTION: A storage battery charging apparatus includes: a storage battery comprising a plurality of battery units (for example, battery packs 6) connected in series; a temperature difference measuring/recording section for classifying the battery units into at least two groups (for example, a rack-peripheral group G1 and a rack-central group G2), and measuring and recording a temperature difference between the groups of battery units according to a past charging history; a warming section capable of warming the battery units by the group; and a warming control section for deciding a degree of warming by the warming section prior to a start of charging by the group and controlling the warming section on the basis of the temperature difference between the groups of battery units recorded in the temperature difference measuring/recording section such that the temperature difference between the groups of battery units decreases after charging.

Description

本発明は、蓄電池の充電装置に関する。   The present invention relates to a storage battery charging device.

近年、蓄電池の大容量化が進み、ビルや工場、店舗、家庭などで消費される電力を貯蔵する電力供給システムの導入が進められている。このような電力供給システムは、事前に蓄電池を充電する(電力を消費する)ことで、任意のタイミングで蓄電池を放電する(電力を供給する)ことができるシステムであって、蓄電池の充電及び放電のタイミングを制御することで、系統電力(電力会社から供給される電力)を消費するタイミングを制御することを可能にしている。   In recent years, the capacity of storage batteries has been increasing, and the introduction of power supply systems that store power consumed in buildings, factories, stores, homes, and the like has been promoted. Such a power supply system is a system capable of discharging a storage battery (supplying power) at an arbitrary timing by charging the storage battery in advance (consuming power), and charging and discharging the storage battery. By controlling this timing, it is possible to control the timing of consuming grid power (power supplied from an electric power company).

一般的に、系統電力の電力料金には、固定制の基本料金と、従量制の使用料金とが含まれる。そして、電力会社は、単位時間に消費する系統電力の電力量の最大値が小さくなるほど、基本料金が安くなるように基本料金を設定している。また、電力消費が大きい日中よりも電力消費が小さい夜間の方が、使用料金の単位電力当りの価格が安くなるように使用料金を設定している。そのため、系統電力を利用する利用者は、系統電力の消費を平準化するほど、系統電力の電力料金を安くすることができる。   In general, the power charge of the grid power includes a fixed basic charge and a usage-based charge. The electric power company sets the basic charge so that the basic charge becomes cheaper as the maximum value of the amount of grid power consumed per unit time becomes smaller. In addition, the usage fee is set so that the price per unit power of the usage fee is lower at night when the power consumption is lower than during the day when the power consumption is high. Therefore, the user who uses the system power can reduce the power charge of the system power as the consumption of the system power is leveled.

したがって、電力供給システムにおいて、系統電力を利用する利用者の電力需要が小さい時間帯や夜間電気料金が適用される時間帯に系統電力を利用して蓄電池を充電し、系統電力を利用する利用者の電力需要が所定の閾値を越えているときに所定の閾値を越えている分の電力を蓄電池の放電で補うことによって、系統電力の電力料金を抑制することができる。   Therefore, in a power supply system, a user who uses the grid power to charge the storage battery using grid power during a time zone when the power demand of the grid power user is small or a nighttime electricity rate is applied When the demand for power exceeds the predetermined threshold, the amount of power exceeding the predetermined threshold is supplemented by the discharge of the storage battery, whereby the power charge of the grid power can be suppressed.

電力供給システムでは、通常、リチウムイオン電池などの充放電を繰り返して行うことができる蓄電池が、電池セルを複数並列接続した電池ブロックを複数直列接続した構成の電池パックの形態で用いられている。また、一般的な大型電力供給システムでは、上記電池パックを複数直列接続した電池パックストリングを複数並列接続した集合体がラックに収納される。   In a power supply system, a storage battery that can be repeatedly charged and discharged, such as a lithium ion battery, is usually used in the form of a battery pack having a configuration in which a plurality of battery blocks in which a plurality of battery cells are connected in parallel are connected in series. Further, in a general large-scale power supply system, an assembly in which a plurality of battery pack strings in which a plurality of battery packs are connected in series is connected in parallel is stored in a rack.

特開2007−330008号公報JP 2007-330008 A 特開2003−274565号公報JP 2003-274565 A

電力供給システムで蓄電池の充放電を行う場合、外気温が低い環境下では充放電効率が悪くなるという問題が発生する。特に、大型電力供給システムでは、電池パック間の温度差に起因して、使用できる電力量や劣化度にばらつきが発生する。このとき、使用できる電力量が少ない電池パックの影響によって、システム全体において使用できる総電力量が、各電池パックの使用できる電力量の総和に比べて大きく減少するという問題や、劣化度が大きい電池パックの影響によって、システム全体の寿命が、各電池パックの寿命の平均に比べて著しく短くなるという問題が発生する。   When charging / discharging a storage battery with an electric power supply system, the problem that charging / discharging efficiency worsens in the environment where external temperature is low generate | occur | produces. In particular, in a large power supply system, variations in the amount of power that can be used and the degree of deterioration occur due to a temperature difference between battery packs. At this time, due to the influence of a battery pack that has a small amount of power that can be used, the total amount of power that can be used in the entire system is greatly reduced compared to the total amount of power that can be used by each battery pack, and batteries that have a large degree of deterioration Due to the influence of the pack, there arises a problem that the life of the entire system is remarkably shortened compared to the average life of each battery pack.

なお、特許文献1では二次電池を加熱するためのヒータ及びファンが設けられている充電回路が提案されているが、当該充電回路は、ヒータ及びファンを用いて二次電池全体を加熱するので、二次電池を構成する複数の電池単位(例えば電池パック)間の温度差に起因して複数の電池単位の性能にばらつきが発生することを抑えることはできない。   In Patent Document 1, a charging circuit provided with a heater and a fan for heating the secondary battery is proposed. However, the charging circuit heats the entire secondary battery using the heater and the fan. In addition, it is impossible to suppress the occurrence of variations in the performance of the plurality of battery units due to the temperature difference between the plurality of battery units (for example, battery packs) constituting the secondary battery.

また、特許文献2では二次電池の充放電の繰り返しで発生する内部発熱によって二次電池を加熱する蓄電装置が提案されているが、当該蓄電装置は、充放電の繰り返しによって二次電池全体を加熱するので、二次電池を構成する複数の電池単位(例えば電池パック)間の温度差に起因して複数の電池単位の性能にばらつきが発生することを抑えることはできない。さらに、当該蓄電装置では、加熱のために二次電池の充放電の繰り返すため、二次電池の寿命が短くなるという問題も発生する。   Patent Document 2 proposes a power storage device that heats a secondary battery by internal heat generated by repeated charging and discharging of the secondary battery. However, the power storage device is configured to recharge the entire secondary battery by repeating charging and discharging. Since the heating is performed, it is impossible to suppress the occurrence of variations in the performance of the plurality of battery units due to the temperature difference between the plurality of battery units (for example, battery packs) constituting the secondary battery. Further, in the power storage device, since the secondary battery is repeatedly charged and discharged for heating, there is a problem that the life of the secondary battery is shortened.

本発明は、上記の状況に鑑み、複数の電池単位が直列接続されている蓄電池を充電することができ、複数の電池単位の性能ばらつきを抑えることができる蓄電池の充電装置を提供することを目的とする。   An object of the present invention is to provide a storage battery charging device that can charge a storage battery in which a plurality of battery units are connected in series in view of the above situation, and can suppress performance variations among the plurality of battery units. And

上記目的を達成するために本発明に係る蓄電池の充電装置は、複数の電池単位が直列接続されている蓄電池と、複数の前記電池単位を少なくとも二つのグループに分類し、過去の充電履歴から前記グループ間の前記電池単位の温度差を測定して記録する温度差測定記録部と、前記グループ毎に前記電池単位を加温することができる加温部と、充電後の前記グループ間の前記電池単位の温度差が小さくなるように、前記温度差測定記録部に記録されている前記グループ間の前記電池単位の温度差に基づいて、前記グループ毎に前記加温部による充電開始前の加温量を決定し、前記加温部を制御する加温制御部とを備える構成(第1の構成)とする。   In order to achieve the above object, a storage battery charging device according to the present invention classifies a storage battery in which a plurality of battery units are connected in series, and a plurality of the battery units into at least two groups. A temperature difference measurement recording unit that measures and records a temperature difference of the battery unit between groups, a heating unit that can heat the battery unit for each group, and the battery between the groups after charging Heating before the start of charging by the heating unit for each group based on the temperature difference of the battery units between the groups recorded in the temperature difference measurement recording unit so as to reduce the temperature difference of the unit. It is set as the structure (1st structure) provided with the heating control part which determines quantity and controls the said heating part.

上記第1の構成の蓄電池の充電装置において、前記加温部が、前記電池単位毎に前記電池単位を加温することができ、前記電池単位に並列接続される抵抗を有する構成(第2の構成)としてもよい。   In the storage battery charging device according to the first configuration, the heating unit can heat the battery unit for each battery unit and includes a resistor connected in parallel to the battery unit (second Configuration).

上記第2の構成の蓄電池の充電装置において、前記電池単位毎に設置され、前記電池単位をバイパスすることができるバイパス回路を備える構成(第3の構成)としてもよい。   The storage battery charging device of the second configuration may be configured (third configuration) including a bypass circuit that is installed for each battery unit and can bypass the battery unit.

上記第1〜3のいずれかの構成の蓄電池の充電装置において、前記加温制御部が、前記温度差測定記録部に記録されている前記グループ間の前記電池単位の温度差に基づいて、前記グループ毎に前記加温部による加温の開始時間を決定する構成(第4の構成)としてもよい。   In the storage battery charging device according to any one of the first to third configurations, the heating control unit is based on the temperature difference of the battery unit between the groups recorded in the temperature difference measurement recording unit. It is good also as a structure (4th structure) which determines the start time of the heating by the said heating part for every group.

上記第1〜4のいずれかの構成の蓄電池の充電装置において、前記充電装置の外気温を測定又は推定する外気温検知部を備え、前記外気温検知部によって測定又は推定された前記充電装置の外気温が所定値以上である場合、前記加温制御部による前記加温部の制御を停止する構成(第5の構成)としてもよい。   The storage battery charging device having any one of the first to fourth configurations includes an outside air temperature detecting unit that measures or estimates the outside air temperature of the charging device, and the charging device measured or estimated by the outside air temperature detecting unit. When the outside air temperature is equal to or higher than a predetermined value, a configuration (fifth configuration) may be employed in which control of the heating unit by the heating control unit is stopped.

上記第1〜5のいずれかの構成の蓄電池の充電装置において、前記加温部の抵抗が、前記電池単位間の充電量差を少なくするバランス放電を行うバランス放電部の抵抗を兼ねる構成としてもよい。   In the storage battery charging device according to any one of the first to fifth configurations, the resistance of the heating unit also serves as a resistance of a balance discharge unit that performs balance discharge to reduce a charge amount difference between the battery units. Good.

本発明に係る蓄電池の充電装置は、複数の電池単位が直列接続されている蓄電池と、複数の前記電池単位を少なくとも二つのグループに分類し、過去の充電履歴から前記グループ間の前記電池単位の温度差を測定して記録する温度差測定記録部と、前記グループ毎に前記電池単位を加温することができる加温部と、充電後の前記グループ間の前記電池単位の温度差が小さくなるように、前記温度差測定記録部に記録されている前記グループ間の前記電池単位の温度差に基づいて、前記グループ毎に前記加温部による充電開始前の加温量を決定し、前記加温部を制御する加温制御部とを備える構成である。このような構成によると、充電後の前記グループ間の前記電池単位の温度差が小さくなるので、複数の電池単位の性能(例えば、使用できる電力量や劣化度等)がばらつくことを抑えることができる。   A storage battery charging device according to the present invention includes a storage battery in which a plurality of battery units are connected in series, and a plurality of the battery units are classified into at least two groups. A temperature difference measurement recording unit that measures and records a temperature difference, a heating unit that can heat the battery unit for each group, and a temperature difference of the battery unit between the groups after charging is reduced. Thus, based on the temperature difference of the battery unit between the groups recorded in the temperature difference measurement recording unit, a heating amount before the start of charging by the heating unit is determined for each group, and the heating is performed. It is the structure provided with the heating control part which controls a warm part. According to such a configuration, since the temperature difference of the battery units between the groups after charging is reduced, it is possible to suppress variations in performance (for example, the amount of power that can be used and the degree of deterioration) of the plurality of battery units. it can.

本発明に係る蓄電池の充電装置を備える電力供給システムの概略構成を示す図である。It is a figure which shows schematic structure of an electric power supply system provided with the charging device of the storage battery which concerns on this invention. 蓄電池の一構成例を示す図である。It is a figure which shows the example of 1 structure of a storage battery. 蓄電池の他の構成例を示す図である。It is a figure which shows the other structural example of a storage battery. 本発明に係る蓄電池の充電装置を備える電力供給システムの要部の一配置例を示す図である。It is a figure which shows one example of arrangement | positioning of the principal part of an electric power supply system provided with the charging device of the storage battery which concerns on this invention. 本発明に係る蓄電池の充電装置を備える電力供給システムの要部の他の配置例を示す図である。It is a figure which shows the other example of arrangement | positioning of the principal part of an electric power supply system provided with the charging device of the storage battery which concerns on this invention. BMUの要部構成例を示す図である。It is a figure which shows the principal part structural example of BMU. 本発明に係る蓄電池の充電装置における電池単位の温度及び充電量を示すタイムチャートである。It is a time chart which shows the temperature and charge amount of a battery unit in the charging device of the storage battery which concerns on this invention. 本発明に係る蓄電池の充電装置における動作状態の推移を示す図である。It is a figure which shows transition of the operation state in the charging device of the storage battery which concerns on this invention. 従来の蓄電池の充電装置における電池単位の温度及び充電量を示すタイムチャートである。It is a time chart which shows the temperature and charge amount of a battery unit in the conventional charging device of a storage battery.

本発明の実施形態について図面を参照して以下に説明する。以下の説明では、本発明に係る蓄電池の充電装置を電力供給システムに設けているが、本発明はこれに限定されることはない。本発明に係る蓄電池の充電装置は、例えば、いわゆる充電器として単独で用いられてもよく、また、蓄電池を動力源として利用する電気自動車等の移動体に設けられてもよい。なお、本発明に係る蓄電池の充電装置は、定期的に蓄電池の充電が実行される充電装置であることが望ましい。   Embodiments of the present invention will be described below with reference to the drawings. In the following description, the storage battery charging device according to the present invention is provided in the power supply system, but the present invention is not limited to this. The storage battery charging device according to the present invention may be used alone, for example, as a so-called charger, or may be provided in a moving body such as an electric vehicle using the storage battery as a power source. The storage battery charging device according to the present invention is preferably a charging device that periodically charges the storage battery.

図1は、本発明に係る蓄電池の充電装置を備える電力供給システムの概略構成を示すブロック図である。尚、図1において、各ブロック間をつなぐ太線は電力線を示しており、各ブロック間をつなぐ細線は通信線を示している。尚、本実施形態では、各通信線は信頼性を重視する観点から有線通信で実現しているが、無線通信で実現することも可能である。また、通信は例えばTCP(Transmission Control Protocol)によって行うとよい。   FIG. 1 is a block diagram showing a schematic configuration of a power supply system including a storage battery charging device according to the present invention. In FIG. 1, thick lines connecting the blocks indicate power lines, and thin lines connecting the blocks indicate communication lines. In the present embodiment, each communication line is realized by wired communication from the viewpoint of emphasizing reliability, but can also be realized by wireless communication. The communication may be performed by TCP (Transmission Control Protocol), for example.

図1に示す電力供給システムは、PCS(Power Conditioning System)管理制御部1と、PCS2と、蓄電池3と、BMU(Battery Management Unit)4と、マスタBMU5とを備えている。図1に示す電力供給システムでは、複数の蓄電池3が並列に接続されるように各蓄電池3の充放電を行う各PCS2同士がPCS管理制御部1を介して接続されている。尚、本実施形態では、請求項に記載されている「温度差測定記録部」及び「加温制御部」がBMU4に設けられ、請求項に記載されている「加温部」、「抵抗」、及び「バイパス回路」が蓄電池3に内蔵され、蓄電池3に設けられている温度センサを用いて請求項に記載されている「外気温検知部」を実現している。   The power supply system shown in FIG. 1 includes a PCS (Power Conditioning System) management control unit 1, a PCS 2, a storage battery 3, a BMU (Battery Management Unit) 4, and a master BMU 5. In the power supply system shown in FIG. 1, the PCSs 2 that charge and discharge the storage batteries 3 are connected via the PCS management control unit 1 so that the plurality of storage batteries 3 are connected in parallel. In this embodiment, the “temperature difference measurement recording unit” and the “heating control unit” described in the claims are provided in the BMU 4, and the “heating unit” and “resistance” described in the claims are provided. And the “bypass circuit” is built in the storage battery 3, and the “outside air temperature detection unit” described in the claims is realized by using a temperature sensor provided in the storage battery 3.

PCS管理制御部1は、外部の負荷100及び電力系統200に接続されている。負荷100はAC電源入力端子を有する負荷であり、電力系統200はAC電力を供給する電力系統である。PCS管理制御部1は、マスタBMU5からの充放電指令に基づいて各PCS2の動作を制御するとともに、各PCS2の状態を監視している。   The PCS management control unit 1 is connected to an external load 100 and a power system 200. The load 100 is a load having an AC power input terminal, and the power system 200 is a power system that supplies AC power. The PCS management control unit 1 controls the operation of each PCS 2 based on the charge / discharge command from the master BMU 5 and monitors the state of each PCS 2.

各PCS2は、双方向AC/DC電力変換器であり、充電時に電力系統200からPCS管理制御部1を経由して供給されるAC電力をDC電力に変換し、放電時に直列に接続されている蓄電池3から供給されるDC電力をAC電力に変換する。尚、本実施形態とは異なり、PCS管理制御部1が外部のDC負荷(DC電源入力端子を有する負荷)及びDC電源(例えば太陽電池)に接続される場合には、各PCS2を双方向DC/DC電力変換器に変更すればよい。   Each PCS 2 is a bi-directional AC / DC power converter, which converts AC power supplied from the power system 200 via the PCS management controller 1 during charging into DC power and is connected in series during discharging. DC power supplied from the storage battery 3 is converted into AC power. Unlike this embodiment, when the PCS management control unit 1 is connected to an external DC load (a load having a DC power input terminal) and a DC power source (for example, a solar cell), each PCS 2 is connected to a bidirectional DC. / DC power converter may be changed.

各BMU4は、対応する蓄電池3の状態を監視するとともに、対応する蓄電池3の状態、自己(BMU4)の状態などに関するログ情報をマスタBMU5に送信する。   Each BMU 4 monitors the state of the corresponding storage battery 3 and transmits log information regarding the state of the corresponding storage battery 3 and the state of itself (BMU 4) to the master BMU 5.

マスタBMU5は、各蓄電池3および各BMU4を統合的に監視・制御する。また、マスタBMU5は、外部から送られてくる充放電要求に基づいて、充放電指令をPCS管理制御部1に送信する。尚、本実施形態では、マスタBMU5が外部から送られてくる充放電要求を受け取る構成であるが、例えば、PCS管理制御部1が外部から送られてくる充放電要求を受け取るようにし、マスタBMU5が各蓄電池3の状態に関する情報をPCS管理制御部1に送るようにしても構わない。   The master BMU 5 monitors and controls each storage battery 3 and each BMU 4 in an integrated manner. The master BMU 5 transmits a charge / discharge command to the PCS management control unit 1 based on a charge / discharge request sent from the outside. In this embodiment, the master BMU 5 receives a charge / discharge request sent from the outside. For example, the PCS management control unit 1 receives a charge / discharge request sent from the outside, and the master BMU 5 However, you may make it send the information regarding the state of each storage battery 3 to the PCS management control part 1. FIG.

次に、蓄電池3の一構成例を図2に示す。図2に示す構成例では、蓄電池3は、複数の電池パック6が直列接続されている構成であり、電池パック6が請求項に記載されている「電池単位」に相当する。   Next, one structural example of the storage battery 3 is shown in FIG. In the configuration example shown in FIG. 2, the storage battery 3 has a configuration in which a plurality of battery packs 6 are connected in series, and the battery pack 6 corresponds to a “battery unit” recited in the claims.

各電池パック6は、複数の電池セルが並列接続された電池ブロック7を複数備えている。なお、電池ブロック7は、図2に示す構成例に限定されず、単一の電池セルであってもよい。複数の電池ブロック7は電池パック6内で直列接続されている。   Each battery pack 6 includes a plurality of battery blocks 7 in which a plurality of battery cells are connected in parallel. In addition, the battery block 7 is not limited to the structural example shown in FIG. 2, A single battery cell may be sufficient. The plurality of battery blocks 7 are connected in series within the battery pack 6.

また、電池ブロック7の温度を検出する温度センサ8が電池ブロック7毎に設置されている。各温度センサ8の検出結果は電池パック制御部9に出力される。電池パック9は、温度以外の各電池ブロックの状態あるいは電池パックの状態を検出する状態検出部を備えるようにしてもよい。上記状態検出部は、例えば、各電池ブロック7の電圧値を検出すると共に、電池パックの+−電極間の電流値および電圧値、電池パックの残容量を検出し、それらの検出データを電池パック制御部9に出力する。電池パックの残容量は、電池パックに流れる充放電電流の積算値から求められる他、予め決定された電池パックの開放電圧(OCV:Open Circuit Voltage)と残容量との関係を示す計算式或いはテーブルを参照することにより求めることができる。電池パック制御部9は、各温度センサ8の検出結果や上記状態検出部から取得した検出データを電池データとして通信部10を介してBMU4(図1参照)に送信する。BMU4は、例えば、一つの電池パック6に設けられている電池ブロック7の平均温度を電池パック6の温度として認識してもよく、一つの電池パック6に設けられている電池ブロック7の最高温度を電池パック6の温度として認識してもよく、一つの電池パック6に設けられている電池ブロック7の最低温度を電池パック6の温度として認識してもよい。   A temperature sensor 8 that detects the temperature of the battery block 7 is provided for each battery block 7. The detection result of each temperature sensor 8 is output to the battery pack controller 9. The battery pack 9 may include a state detection unit that detects the state of each battery block other than the temperature or the state of the battery pack. The state detection unit detects, for example, the voltage value of each battery block 7, and also detects the current value and voltage value between the + and-electrodes of the battery pack, the remaining capacity of the battery pack, and uses the detected data as the battery pack. Output to the control unit 9. The remaining capacity of the battery pack is obtained from the integrated value of the charge / discharge current flowing in the battery pack, and is a calculation formula or table showing the relationship between the predetermined open circuit voltage (OCV) of the battery pack and the remaining capacity. Can be obtained by referring to. The battery pack control unit 9 transmits the detection result of each temperature sensor 8 and the detection data acquired from the state detection unit as battery data to the BMU 4 (see FIG. 1) via the communication unit 10. For example, the BMU 4 may recognize the average temperature of the battery block 7 provided in one battery pack 6 as the temperature of the battery pack 6, and the maximum temperature of the battery block 7 provided in one battery pack 6. May be recognized as the temperature of the battery pack 6, and the lowest temperature of the battery block 7 provided in one battery pack 6 may be recognized as the temperature of the battery pack 6.

複数の電池ブロック7の直列回路に対して、抵抗を有する電池パック加温部11とスイッチを有する電池パックバイパス回路12との並列回路が並列接続されている。また、電池パック6は、通信部10からの指示に基づいて相補的にON/OFFされるスイッチSW1及びSW2を備えている。スイッチSW1がONであるときには、複数の電池ブロック7の直列回路が選択され、電池ブロック7の充放電が可能な状態になる。一方、スイッチSW2がONであるときには、電池パック加温部11と電池パックバイパス回路12との並列回路が選択され、電池パックバイパス回路12のスイッチがONであれば、複数の電池ブロック7の直列回路が電池パックバイパス回路12によってバイパスされ、電池パックバイパス回路12のスイッチがOFFであれば、電池パック加温部11の抵抗が発熱し、電池パック6が加温される。なお、電池パック加温部11の抵抗は、加温専用に設けられた抵抗であってもよく、各電池パック6間の充電量差を少なくするバランス放電を行うバランス放電部の抵抗を兼ねていてもよく、両者を組み合わせたものであってもよい。   A parallel circuit of a battery pack heating unit 11 having a resistance and a battery pack bypass circuit 12 having a switch is connected in parallel to the series circuit of the plurality of battery blocks 7. Further, the battery pack 6 includes switches SW1 and SW2 that are complementarily turned on / off based on an instruction from the communication unit 10. When the switch SW1 is ON, a series circuit of the plurality of battery blocks 7 is selected, and the battery block 7 can be charged / discharged. On the other hand, when the switch SW2 is ON, a parallel circuit of the battery pack warming unit 11 and the battery pack bypass circuit 12 is selected. If the switch of the battery pack bypass circuit 12 is ON, a plurality of battery blocks 7 are connected in series. If the circuit is bypassed by the battery pack bypass circuit 12 and the switch of the battery pack bypass circuit 12 is OFF, the resistance of the battery pack heating unit 11 generates heat and the battery pack 6 is heated. The resistance of the battery pack heating unit 11 may be a resistor provided exclusively for heating, and also serves as a resistance of a balance discharge unit that performs balance discharge for reducing the charge amount difference between the battery packs 6. It may be a combination of both.

蓄電池3の他の構成例を図3に示す。図3に示す構成例では、蓄電池3は、複数の電池パック13が直列接続されている構成であり、後述する電池ブロック14が請求項に記載されている「電池単位」に相当する。なお、蓄電池3は、図3に示す構成例に限定されず、単一の電池パック13であってもよい。   Another configuration example of the storage battery 3 is shown in FIG. In the configuration example shown in FIG. 3, the storage battery 3 has a configuration in which a plurality of battery packs 13 are connected in series, and a later-described battery block 14 corresponds to a “battery unit” recited in the claims. The storage battery 3 is not limited to the configuration example shown in FIG. 3 and may be a single battery pack 13.

各電池パック13は、複数の電池セルが並列接続された電池ブロック14を複数備えている。なお、電池ブロック14は、図3に示す構成例に限定されず、単一の電池セルであってもよい。複数の電池ブロック14は、後述する各スイッチSW3がONである場合に直列接続される。   Each battery pack 13 includes a plurality of battery blocks 14 in which a plurality of battery cells are connected in parallel. In addition, the battery block 14 is not limited to the structural example shown in FIG. 3, A single battery cell may be sufficient. The plurality of battery blocks 14 are connected in series when each switch SW3 described later is ON.

また、電池ブロック14の温度を検出する温度センサ15が電池ブロック14毎に設置されている。各温度センサ15の検出結果は電池パック制御部16に出力される。電池パック13は、温度以外の各電池ブロックの状態あるいは電池パックの状態を検出する状態検出部を備えるようにしてもよい。上記状態検出部は、例えば、各電池ブロック14の電圧値を検出すると共に、電池パックの+−電極間の電流値および電圧値、電池パックの残容量を検出し、それらの検出データを電池パック制御部16に出力する。電池パック制御部16は、各温度センサ15の検出結果や上記状態検出部から取得した検出データを電池データとして通信部17を介してBMU4(図1参照)に送信する。   A temperature sensor 15 that detects the temperature of the battery block 14 is provided for each battery block 14. The detection result of each temperature sensor 15 is output to the battery pack control unit 16. The battery pack 13 may include a state detection unit that detects the state of each battery block other than the temperature or the state of the battery pack. For example, the state detection unit detects the voltage value of each battery block 14, detects the current value and voltage value between the + and-electrodes of the battery pack, the remaining capacity of the battery pack, and uses the detected data as the battery pack. Output to the control unit 16. The battery pack control unit 16 transmits the detection result of each temperature sensor 15 and the detection data acquired from the state detection unit as battery data to the BMU 4 (see FIG. 1) via the communication unit 17.

各電池ブロック14に対して、抵抗を有する電池ブロック加温部18とスイッチを有する電池ブロックバイパス回路19との並列回路が並列接続されている。また、電池パック13は、通信部17からの指示に基づいて相補的にON/OFFされるスイッチSW3及びSW4を電池ブロック14毎に備えている。スイッチSW3がONであるときには、対応する電池ブロック14が選択され、対応する電池ブロック14の充放電が可能な状態になる。一方、スイッチSW4がONであるときには、対応する電池ブロック加温部18と対応する電池ブロックバイパス回路19との並列回路が選択され、対応する電池ブロックバイパス回路19のスイッチがONであれば、対応する電池ブロック14が対応する電池ブロックバイパス回路19によってバイパスされ、対応する電池ブロックバイパス回路19のスイッチがOFFであれば、対応する電池ブロック加温部18の抵抗が発熱し、対応する電池ブロック14が加温される。なお、電池ブロック加温部18の抵抗は、加温専用に設けられた抵抗であってもよく、各電池ブロック14間の充電量差を少なくするバランス放電を行うバランス放電部の抵抗を兼ねていてもよく、両者を組み合わせたものであってもよい。   A parallel circuit of a battery block heating unit 18 having resistance and a battery block bypass circuit 19 having a switch is connected in parallel to each battery block 14. The battery pack 13 includes switches SW3 and SW4 that are complementarily turned on / off based on instructions from the communication unit 17 for each battery block 14. When the switch SW3 is ON, the corresponding battery block 14 is selected, and the corresponding battery block 14 can be charged / discharged. On the other hand, when the switch SW4 is ON, a parallel circuit of the corresponding battery block warming unit 18 and the corresponding battery block bypass circuit 19 is selected, and if the switch of the corresponding battery block bypass circuit 19 is ON, the corresponding When the corresponding battery block 14 is bypassed by the corresponding battery block bypass circuit 19 and the switch of the corresponding battery block bypass circuit 19 is OFF, the resistance of the corresponding battery block heating unit 18 generates heat, and the corresponding battery block 14 Is warmed. The resistance of the battery block heating unit 18 may be a resistor provided exclusively for heating, and also serves as a resistance of a balance discharge unit that performs balance discharge that reduces the charge amount difference between the battery blocks 14. It may be a combination of both.

ここで、図2に示す構成の蓄電池3を備える図1に示す電力供給システムの要部の配置例を図4に示し、図3に示す構成の蓄電池3を備える図1に示す電力供給システムの要部の配置例を図5に示す。図4及び図5の配置例では、蓄電池3、BMU4、PCS2等がラック20に収納されている。また、BMU4の要部構成例を図6に示す。   Here, the example of arrangement | positioning of the principal part of the electric power supply system shown in FIG. 1 provided with the storage battery 3 of the structure shown in FIG. 2 is shown in FIG. 4, and the electric power supply system shown in FIG. 1 provided with the storage battery 3 of the structure shown in FIG. An example of the arrangement of the main parts is shown in FIG. In the arrangement examples of FIGS. 4 and 5, the storage battery 3, BMU 4, PCS 2, and the like are stored in the rack 20. Further, FIG. 6 shows a configuration example of a main part of the BMU 4.

図6に示す通り、BMU4は、温度差測定記録部21と、加温制御部22とを有している。   As shown in FIG. 6, the BMU 4 includes a temperature difference measurement recording unit 21 and a heating control unit 22.

図4に示す配置例では、温度差測定記録部21は、電池パック6を、ラック外側のグループG1とラック中央のグループG2とに分類し、電池パック6の通信部10から送られてくる電池ブロック7の温度データを用いて、ラック外側のグループG1とラック中央のグループG2との間の電池パック6の温度差を測定して記録する。加温制御部22は、温度差測定記録部21に記録されているラック外側のグループG1とラック中央のグループG2との間の電池パック6の温度差に基づいて、グループ毎に充電開始前の加温開始時間を決定し、その決定に従って電池パック6の通信部10を介してスイッチSW1、スイッチSW2、及び電池パックバイパス回路12のスイッチを制御する。なお、充電開始前の加温開始時間が充電開始時間と一致する場合には、加温量は零となる。   In the arrangement example shown in FIG. 4, the temperature difference measurement recording unit 21 classifies the battery pack 6 into a group G1 on the outside of the rack and a group G2 on the center of the rack, and the batteries sent from the communication unit 10 of the battery pack 6 are sent. Using the temperature data of the block 7, the temperature difference of the battery pack 6 between the group G1 outside the rack and the group G2 at the center of the rack is measured and recorded. Based on the temperature difference of the battery pack 6 between the group G1 on the outside of the rack and the group G2 on the center of the rack recorded in the temperature difference measurement recording unit 21, the heating control unit 22 is set for each group before starting charging. The heating start time is determined, and the switch SW1, the switch SW2, and the switch of the battery pack bypass circuit 12 are controlled via the communication unit 10 of the battery pack 6 according to the determination. Note that if the heating start time before the start of charging coincides with the charging start time, the heating amount becomes zero.

図5に示す配置例では、電池パック13が全てラック外側に配置されているため、電池パック13でグループ分けを行わず、電池ブロック14(図3参照)でグループ分けを行う。具体的には、温度差測定記録部21は、電池ブロック14を、電池パック外側のグループと電池パック中央のグループとに分類し、電池パック13の通信部17から送られてくる電池ブロック14の温度データを用いて、電池パック外側のグループと電池パック中央のグループとの間の電池ブロック14の温度差を測定して記録する。加温制御部22は、温度差測定記録部21に記録されている電池パック外側のグループと電池パック中央のグループとの間の電池ブロック14の温度差に基づいて、グループ毎に充電開始前の加温開始時間を決定し、その決定に従って電池パック13の通信部17を介してスイッチSW3、スイッチSW4、及び電池ブロックバイパス回路19のスイッチを制御する。なお、充電開始前の加温開始時間が充電開始時間と一致する場合には、加温量は零となる。   In the arrangement example shown in FIG. 5, since the battery packs 13 are all arranged outside the rack, grouping is not performed on the battery pack 13 but on the battery block 14 (see FIG. 3). Specifically, the temperature difference measurement recording unit 21 classifies the battery block 14 into a group outside the battery pack and a group at the center of the battery pack, and the battery block 14 sent from the communication unit 17 of the battery pack 13 Using the temperature data, the temperature difference of the battery block 14 between the group outside the battery pack and the group at the center of the battery pack is measured and recorded. Based on the temperature difference of the battery block 14 between the group outside the battery pack and the group at the center of the battery pack recorded in the temperature difference measurement recording unit 21, the heating control unit 22 pre-charges for each group. The heating start time is determined, and the switches SW3, SW4, and the battery block bypass circuit 19 are controlled via the communication unit 17 of the battery pack 13 according to the determination. Note that if the heating start time before the start of charging coincides with the charging start time, the heating amount becomes zero.

次に、本発明に係る蓄電池の充電装置における電池単位の温度推移について説明する。図7は、本発明に係る蓄電池の充電装置における電池単位の温度及び充電量を示すタイムチャートである。電池単位の温度に関するタイムチャートにおいて、実線は充電中に温度が上がりやすいグループの電池単位(例えば、図4に示すラック中央のグループG2に属する電池パック6)の温度を示しており、点線は充電中に温度が上がりにくいグループの電池単位(例えば、図4に示すラック外側のグループG1に属する電池パック6)の温度を示している。ここでは、1日1回定期的に充電が行われる場合について説明するが、充電の周期は1日に限らない。また、充電の周期が変動しても構わない。   Next, the temperature transition of the battery unit in the storage battery charging device according to the present invention will be described. FIG. 7 is a time chart showing the temperature and charge amount of each battery in the storage battery charging device according to the present invention. In the time chart regarding the temperature of the battery unit, the solid line indicates the temperature of the battery unit (for example, the battery pack 6 belonging to the group G2 at the center of the rack shown in FIG. 4) of the group whose temperature is likely to increase during charging, and the dotted line is the charge The temperature of the battery unit (for example, the battery pack 6 belonging to the group G1 outside the rack shown in FIG. 4) of the group in which the temperature is difficult to rise is shown. Here, a case where charging is performed periodically once a day will be described, but the charging cycle is not limited to one day. Further, the charging cycle may vary.

温度差測定記録部21は、PCS2が充電のモードを定電流充電から定電圧充電に切り替える時間tCHにおける充電中に温度が上がりやすいグループの電池単位と充電中に温度が上がりにくいグループの電池単位との温度差D(day)を測定して記録する。 Temperature difference measuring recording unit 21, PCS2 battery unit of the group is difficult temperature rises during charging the battery unit of the group easily rise temperature during charging at time t CH to switch to constant voltage charging mode of charging from the constant current charging Measure and record the temperature difference D (day).

加温制御部22は、加温を考慮した充電開始時間tCSにおける定常的な温度差D~(day)を、前日に温度差測定記録部21が測定して記録した温度差D(day−1)と、前日に加温制御部22が算出した定常的な温度差D~(day−1)とを用いて、下記(1)式により算出する。なお、下記(1)式中のαは実験的に求めた固定定数である。
D~(day)=α×D(day−1)+D~(day−1) ・・・(1)
Heating control unit 22, a constant temperature difference D ~ in the charging start time t CS Considering warming (day), the temperature difference the temperature difference measuring recording unit 21 was measured and recorded the day before D (DAY- 1) and the steady temperature difference D ~ (day-1) calculated by the heating control unit 22 on the previous day, and is calculated by the following equation (1). In the following formula (1), α is a fixed constant obtained experimentally.
D ~ (day) = α × D (day-1) + D ~ (day-1) (1)

そして、加温制御部22は、充電中に温度が上がりやすいグループの電池単位の加熱開始時間を充電開始時間tCSと一致させ、充電中に温度が上がりやすいグループの電池単位の加温量を零とし、充電中に温度が上がりにくいグループの電池単位の加熱開始時間tを下記(2)式により算出する。なお、下記(2)式中のtCSはユーザが指定する習慣的な充電開始時間或いは定刻に設定されている充電開始時間であり、t1DEGは充電中に温度が上がりにくいグループの電池単位を加温により1℃温度を上げるのにかかる時間である。t1DEGは例えば実験的に算出し、加温制御部22がルックアップテーブルの形式で保持しておけばよい。
=tCS−D~(day)×t1DEG ・・・(2)
Then, the heating control unit 22 matches the heating start time of the battery unit of the group whose temperature is likely to rise during charging with the charging start time tCS, and sets the heating amount of the battery unit of the group whose temperature is likely to rise during charging. and zero, the heating start time t W of the battery unit of the group difficult to increase the temperature calculated by the following equation (2) during charging. Incidentally, the following (2) t CS in the formula is the charging start time set in the habitual charging start time or scheduled user specifies, t 1 deg is a battery unit of the group is difficult temperature rises during charging This is the time taken to raise the temperature by 1 ° C. by heating. The t 1DEG may be calculated experimentally, for example, and the heating control unit 22 may hold it in the form of a lookup table.
t W = t CS −D˜ (day) × t 1 DEG (2)

加温制御部22は、上記の算出結果を基に電池パック内のスイッチの制御を行い、図8に示す通り、充電を休止している状態から、加温開始時間tになると、充電中に温度が上がりにくいグループの電池単位の加温を開始させ、充電開始時間tCSになるか、あるいは、充電開始時間tCSになっていなくても加温中の各電池単位の温度が各電池単位の目標温度(加温開始時間tにおける温度に前記(2)式中のD~(day)×t1DEGを加算した値)を越えるかすると、加温を停止して充電を開始して充電を行っている状態になる。そして、充電が完了すると、再び充電を休止している状態になる。 The warming control unit 22 controls the switches in the battery pack based on the above calculation result. As shown in FIG. 8, when the warming start time t W is reached from the state where charging is suspended, charging is in progress. in to start the warming of the battery unit of the group difficult to increase the temperature is, or becomes the charging start time t CS, or, the temperature of each battery unit of even during the heating not have to become the charging start time t CS each battery If either exceeds a target temperature of the units (the temperature in the heating start time t W (a value obtained by adding a D ~ (day) × t 1DEG in 2)), to start the charging to stop heating The battery is charging. When the charging is completed, the charging is stopped again.

図9に示す従来の蓄電池の充電装置における電池単位の温度推移のように充電前の加温を実施しない場合に比べて、本発明に係る蓄電池の充電装置では、上記のような加温制御部22の動作によって、充電後における、充電中に温度が上がりやすいグループの電池単位と充電中に温度が上がりにくいグループの電池単位との温度差が小さくなる。したがって、複数の電池単位の性能(例えば、使用できる電力量や劣化度等)がばらつくことを抑えることができる。   Compared to the case where the pre-charging is not performed as in the temperature transition of the battery unit in the conventional storage battery charging device shown in FIG. 9, in the storage battery charging device according to the present invention, the above-described heating control unit By the operation of 22, the temperature difference between the battery unit of the group whose temperature is likely to rise during charging and the battery unit of the group whose temperature is difficult to rise during charging is reduced after charging. Therefore, it is possible to suppress variation in performance (for example, the amount of power that can be used and the degree of deterioration) of a plurality of battery units.

なお、上述した実施形態では、温度差測定記録部21が、PCS2が充電のモードを定電流充電から定電圧充電に切り替える時間tCHにおける充電中に温度が上がりやすいグループの電池単位と充電中に温度が上がりにくいグループの電池単位との温度差D(day)を測定して記録するようにしたが、温度差D(day)を充電終了時間tCEにおける充電中に温度が上がりやすいグループの電池単位と充電中に温度が上がりにくいグループの電池単位との温度差に変更してもよい。 In the embodiment described above, the temperature difference measuring recording unit 21, during charging the battery unit of the group easily rise temperature during charging at time t CH of PCS2 switches to the constant voltage charging mode of charging from the constant current charging Although the temperature difference D (day) with the battery unit of the group that is difficult to rise in temperature is measured and recorded, the temperature difference D (day) is the battery in the group that easily rises during charging at the charge end time tCE . You may change into the temperature difference between the unit and the battery unit of the group in which the temperature does not easily rise during charging.

また、加温制御部22が、図1に示す電力供給システムの外気温を測定又は推定する外気温検知部を備えるようにしてもよい。外気温検知部は、例えば、図4に示す配置例においてラック外側のグループG1に分類される電池パック6の通信部10から送られてくる電池ブロック7の温度データを用いて、外気温検知部を推定する構成にすればよい。   Moreover, you may make it the heating control part 22 equip with the external temperature detection part which measures or estimates the external temperature of the electric power supply system shown in FIG. For example, the outside air temperature detecting unit uses the temperature data of the battery block 7 sent from the communication unit 10 of the battery pack 6 classified into the group G1 outside the rack in the arrangement example shown in FIG. May be configured to estimate.

そして、電池単位の温度が高くなり過ぎることを防止する観点から、外気温検知部によって測定又は推定された外気温が第1の所定値以上である場合、加温制御部22が加温の制御を停止することが望ましい。   Then, from the viewpoint of preventing the temperature of the battery unit from becoming too high, when the outside air temperature measured or estimated by the outside air temperature detection unit is equal to or higher than the first predetermined value, the heating control unit 22 controls the heating. It is desirable to stop.

また、本実施形態では、充電中に温度が上がりやすいグループの電池単位の加温量を零としているが、外気温検知部によって測定又は推定された外気温が第1の所定値よりも小さい第2の所定値以下である場合、低温による効率低下等を抑える観点から、充電中に温度が上がりやすいグループの電池単位も加温し、充電中に温度が上がりやすいグループの電池単位の加温量を、充電中に温度が上がりにくいグループの電池単位の加温量よりも小さくしてもよい。なお、グループ間の加温量の差は、例えば、グループ毎に加温開始時間を変えることによって容易に実現することができる。   Further, in the present embodiment, the heating amount of the battery unit of the group whose temperature is likely to rise during charging is set to zero, but the outside air temperature measured or estimated by the outside air temperature detection unit is smaller than the first predetermined value. 2. If the value is less than the predetermined value of 2, from the viewpoint of suppressing efficiency decrease due to low temperature, the battery unit of the group whose temperature is likely to rise during charging is also heated, and the heating amount of the battery unit of the group whose temperature is likely to rise during charging May be smaller than the heating amount of a battery unit of a group in which the temperature does not easily rise during charging. In addition, the difference of the heating amount between groups can be easily realized by changing the heating start time for each group, for example.

また、本実施形態では、電池単位を二つのグループに分類したが、三つ以上に分類しても構わない。三つ以上に分類した場合、加温制御が複雑になるが、その分きめ細かい加温制御が可能となり、同一グループ内での温度ばらつきを抑えることができる。   In the present embodiment, the battery units are classified into two groups, but may be classified into three or more. When classified into three or more, heating control becomes complicated, but finer heating control is possible, and temperature variation within the same group can be suppressed.

1 PCS管理制御部
2 PCS
3 蓄電池
4 BMU
5 マスタBMU
6、13 電池パック
7、14 電池ブロック
8、15 温度センサ
9、16 電池パック制御部
10、17 通信部
11 電池パック加温部
12 電池パックバイパス回路
18 電池ブロック加温部
19 電池ブロックバイパス回路
20 ラック
21 温度差測定記録部
22 加温制御部
SW1〜SW4 スイッチ
100 負荷
200 電力系統
1 PCS management control unit 2 PCS
3 Storage battery 4 BMU
5 Master BMU
6, 13 Battery pack 7, 14 Battery block 8, 15 Temperature sensor 9, 16 Battery pack control unit 10, 17 Communication unit 11 Battery pack heating unit 12 Battery pack bypass circuit 18 Battery block heating unit 19 Battery block bypass circuit 20 Rack 21 Temperature difference measurement recording unit 22 Heating control unit SW1 to SW4 Switch 100 Load 200 Power system

Claims (6)

複数の電池単位が直列接続されている蓄電池と、
複数の前記電池単位を少なくとも二つのグループに分類し、過去の充電履歴から前記グループ間の前記電池単位の温度差を測定して記録する温度差測定記録部と、
前記グループ毎に前記電池単位を加温することができる加温部と、
充電後の前記グループ間の前記電池単位の温度差が小さくなるように、前記温度差測定記録部に記録されている前記グループ間の前記電池単位の温度差に基づいて、前記グループ毎に前記加温部による充電開始前の加温量を決定し、前記加温部を制御する加温制御部とを備えることを特徴とする蓄電池の充電装置。
A storage battery in which a plurality of battery units are connected in series;
Classifying the plurality of battery units into at least two groups, and measuring and recording a temperature difference of the battery units between the groups from a past charge history; and a temperature difference measurement recording unit;
A heating unit capable of heating the battery unit for each group;
Based on the temperature difference of the battery units between the groups recorded in the temperature difference measurement recording unit, the temperature difference of the battery units between the groups after charging is reduced. A charging device for a storage battery, comprising: a heating control unit that determines a heating amount before starting charging by a heating unit and controls the heating unit.
前記加温部が、前記電池単位毎に前記電池単位を加温することができ、前記電池単位に並列接続される抵抗を有することを特徴とする請求項1に記載の蓄電池の充電装置。   2. The storage battery charging device according to claim 1, wherein the heating unit is capable of heating the battery unit for each battery unit, and has a resistor connected in parallel to the battery unit. 前記電池単位毎に設置され、前記電池単位をバイパスすることができるバイパス回路を備えることを特徴とする請求項2に記載の蓄電池の充電装置。   The storage battery charging device according to claim 2, further comprising a bypass circuit that is installed for each battery unit and can bypass the battery unit. 前記加温制御部が、前記温度差測定記録部に記録されている前記グループ間の前記電池単位の温度差に基づいて、前記グループ毎に前記加温部による加温の開始時間を決定することを特徴とする請求項1〜3のいずれか1項に記載の蓄電池の充電装置。   The heating control unit determines a heating start time by the heating unit for each group based on a temperature difference of the battery unit between the groups recorded in the temperature difference measurement recording unit. The charging device for a storage battery according to any one of claims 1 to 3. 前記充電装置の外気温を測定又は推定する外気温検知部を備え、
前記外気温検知部によって測定又は推定された前記充電装置の外気温が所定値以上である場合、前記加温制御部による前記加温部の制御を停止することを特徴とする請求項1〜4のいずれか1項に記載の蓄電池の充電装置。
An outside air temperature detection unit that measures or estimates the outside air temperature of the charging device,
The control of the heating unit by the heating control unit is stopped when the outside temperature of the charging device measured or estimated by the outside air temperature detection unit is a predetermined value or more. The storage battery charging device according to any one of the above.
前記加温部の抵抗が、前記電池単位間の充電量差を少なくするバランス放電を行うバランス放電部の抵抗を兼ねることを特徴とする請求項2に記載の蓄電池の充電装置。   The storage battery charging device according to claim 2, wherein the resistance of the heating unit also serves as a resistance of a balance discharge unit that performs balance discharge that reduces a charge amount difference between the battery units.
JP2011166456A 2011-07-29 2011-07-29 Storage battery charging apparatus Withdrawn JP2013030394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011166456A JP2013030394A (en) 2011-07-29 2011-07-29 Storage battery charging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011166456A JP2013030394A (en) 2011-07-29 2011-07-29 Storage battery charging apparatus

Publications (1)

Publication Number Publication Date
JP2013030394A true JP2013030394A (en) 2013-02-07

Family

ID=47787235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011166456A Withdrawn JP2013030394A (en) 2011-07-29 2011-07-29 Storage battery charging apparatus

Country Status (1)

Country Link
JP (1) JP2013030394A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016019412A (en) * 2014-07-10 2016-02-01 パナソニックIpマネジメント株式会社 Power storage system and control method for the same
KR20160062620A (en) * 2014-11-25 2016-06-02 현대자동차주식회사 Battery control device of vehicle
JP2016122529A (en) * 2014-12-24 2016-07-07 トヨタ自動車株式会社 Temperature increasing device and method for on-vehicle battery
JP2016524786A (en) * 2013-05-08 2016-08-18 エルジー・ケム・リミテッド Battery preheating system and battery preheating method using the same
JP2016184988A (en) * 2015-03-25 2016-10-20 トヨタ自動車株式会社 vehicle
CN108001272A (en) * 2017-11-30 2018-05-08 佛山市梦真营机电有限公司 A kind of shared battery charging factory
CN111009703A (en) * 2019-12-26 2020-04-14 上海派能能源科技股份有限公司 Heating control device and heating control method for battery
WO2022149852A1 (en) * 2021-01-08 2022-07-14 주식회사 엘지에너지솔루션 Apparatus and method for diagnosing battery pack
JP7488288B2 (en) 2021-08-31 2024-05-21 寧徳時代新能源科技股▲分▼有限公司 Battery pack heating method, battery heating system and power consumption device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016524786A (en) * 2013-05-08 2016-08-18 エルジー・ケム・リミテッド Battery preheating system and battery preheating method using the same
JP2016019412A (en) * 2014-07-10 2016-02-01 パナソニックIpマネジメント株式会社 Power storage system and control method for the same
KR20160062620A (en) * 2014-11-25 2016-06-02 현대자동차주식회사 Battery control device of vehicle
KR101664589B1 (en) * 2014-11-25 2016-10-24 현대자동차주식회사 Battery control device of vehicle
JP2016122529A (en) * 2014-12-24 2016-07-07 トヨタ自動車株式会社 Temperature increasing device and method for on-vehicle battery
US9640845B2 (en) 2014-12-24 2017-05-02 Toyota Jidosha Kabushiki Kaisha Temperature-raising device and temperature-raising method for in-car battery
JP2016184988A (en) * 2015-03-25 2016-10-20 トヨタ自動車株式会社 vehicle
CN108001272A (en) * 2017-11-30 2018-05-08 佛山市梦真营机电有限公司 A kind of shared battery charging factory
CN111009703A (en) * 2019-12-26 2020-04-14 上海派能能源科技股份有限公司 Heating control device and heating control method for battery
WO2022149852A1 (en) * 2021-01-08 2022-07-14 주식회사 엘지에너지솔루션 Apparatus and method for diagnosing battery pack
JP7424726B2 (en) 2021-01-08 2024-01-30 エルジー エナジー ソリューション リミテッド Battery pack diagnostic device and method
JP7488288B2 (en) 2021-08-31 2024-05-21 寧徳時代新能源科技股▲分▼有限公司 Battery pack heating method, battery heating system and power consumption device

Similar Documents

Publication Publication Date Title
JP2013030394A (en) Storage battery charging apparatus
US7489106B1 (en) Battery optimization system and method of use
JP5924346B2 (en) Battery status monitoring system
EP2083494B1 (en) Abnormality detecting device for storage element, abnormality detecting method for storage element, abnormality detecting program for storage element, and computer-readable recording medium storing abnormality detecting program
JP5857247B2 (en) Power management system
TWI276279B (en) Method and system for cell equalization using state of charge
KR102400501B1 (en) Uninterruptible power supply
JP5838313B2 (en) Storage battery charge / discharge control device and storage battery charge / discharge control method
JP3469228B2 (en) Power storage device charge / discharge control device, charge / discharge control method, and power storage system
JP4207984B2 (en) Charging system and control method thereof
WO2012050014A1 (en) Power management system
JP4691140B2 (en) Charge / discharge system and portable computer
WO2008065910A1 (en) Accumulator failure detecting device, accumulator failure detecting method, accumulator failure detecting program, and computer-readable recording medium containing the accumulator failure detecting program
CN104079056A (en) Direct current (DC) microgrid charge/discharge system for secondary batteries connected in series
JP7261803B2 (en) A method for managing the state of charge of a battery that remains dormant
WO2012176868A1 (en) Power supply system
JP2006311798A (en) Charger of battery
JP2006262612A5 (en)
JP6612022B2 (en) Charging station with battery cell balancing system
JP5861063B2 (en) Power storage device and power supply system
JP5899450B2 (en) Power management equipment
JP2013162599A (en) Power supply control device, power supply control method, and power interchange system
JP2005294141A (en) Charging control method of lithium-ion secondary battery pack
WO2012049973A1 (en) Power management system
KR101242455B1 (en) Battery charging apparatus and method of driving the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007