JP2013024570A - Phosphorescence measuring method - Google Patents

Phosphorescence measuring method Download PDF

Info

Publication number
JP2013024570A
JP2013024570A JP2011156274A JP2011156274A JP2013024570A JP 2013024570 A JP2013024570 A JP 2013024570A JP 2011156274 A JP2011156274 A JP 2011156274A JP 2011156274 A JP2011156274 A JP 2011156274A JP 2013024570 A JP2013024570 A JP 2013024570A
Authority
JP
Japan
Prior art keywords
data
measured
phosphorescence
excitation light
emission intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011156274A
Other languages
Japanese (ja)
Other versions
JP5732337B2 (en
Inventor
Gokichi Watabe
剛吉 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2011156274A priority Critical patent/JP5732337B2/en
Publication of JP2013024570A publication Critical patent/JP2013024570A/en
Application granted granted Critical
Publication of JP5732337B2 publication Critical patent/JP5732337B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a simple phosphorescence measuring method which allows troublesome separation of fluorescence and phosphorescence to be accurately performed based on a conventional measurement method at low temperature without new modification of a device.SOLUTION: A phosphorescence measuring method comprises the steps of: sequentially irradiating an object to be measured with two excitation lights having different output intensity, sequentially detecting two kinds of data (emission intensity versus wavelength) for the light emitted from the object to be measured, calculating two kinds of normalized data through normalization processing on the basis of the maximum emission intensity of the respective data, and detecting the phosphorescence spectrum of the object to be measured by obtaining the absolute value of difference between the two kinds of normalized data.

Description

本発明は、被測定物の燐光測定方法に関する。   The present invention relates to a method for measuring phosphorescence of an object to be measured.

物質は、電磁波や熱、摩擦などによりエネルギーを受け取って励起され、その受け取ったエネルギーを特定波長の光として放出する性質、いわゆるルミネセンス(luminescence)を有しており、このような性質を利用して物質の光学的特性を調べることは、物質の有効な用途を探る上で、とても重要である。   Substances are excited by receiving energy by electromagnetic waves, heat, friction, etc., and have the property of emitting the received energy as light of a specific wavelength, so-called luminescence. It is very important to investigate the optical properties of materials in order to find effective uses of materials.

通常、励起光を物質に照射することにより、物質由来の蛍光、燐光等の発光が得られるが、これらの発光寿命は、蛍光の場合には数ナノ秒〜数百ナノ秒、また、燐光の場合にはマイクロ〜ミリ秒(場合によってはもっと長い)であり、燐光は蛍光に比べて非常に寿命が長いという特徴を有している。   Usually, by irradiating a substance with excitation light, light emission such as fluorescence derived from the substance, phosphorescence, etc. can be obtained. In the case of fluorescence, the emission lifetime is several nanoseconds to several hundred nanoseconds, In some cases, it is micro-millisecond (longer in some cases), and phosphorescence is characterized by a very long lifetime compared to fluorescence.

そのため、これらの発光のうち燐光のみを測定しようとする場合には、時間分解測定法を利用した燐光の測定が行われるが、その他にも燐光が検出されやすい極低温(具体的には、10K=−263℃)付近での測定(低温測定法)が行われている。しかし、時間分解測定法では、測定に十分な燐光強度が得られず、また、低温測定法では、同時に検出される蛍光との分離が難しいという問題がある。さらに、時間分解法と低温測定とを組み合わせた測定方法も検討されているが、測定環境の調整などに多くの課題を有している。   Therefore, when only phosphorescence is to be measured out of these emissions, phosphorescence is measured using a time-resolved measurement method, but in addition, extremely low temperatures (specifically, 10K) at which phosphorescence is easily detected. == 263 ° C.) Measurement (low temperature measurement method) is performed. However, in the time-resolved measurement method, there is a problem that phosphorescence intensity sufficient for measurement cannot be obtained, and in the low-temperature measurement method, it is difficult to separate from fluorescence detected at the same time. Furthermore, a measurement method combining a time-resolved method and a low-temperature measurement has been studied, but has many problems in adjusting the measurement environment.

この他にも、測定環境や測定系の改良などを行うことにより、蛍光と燐光の測定の高精度化を図る方法や、測定装置に複数の回路を組み込むことにより検出結果を演算処理し、燐光と蛍光を同時に精度よく測定する方法などが提案されている。(例えば、特許文献1、2参照)。   In addition, the measurement environment and the measurement system can be improved to improve the accuracy of fluorescence and phosphorescence measurements, and the detection results can be processed by incorporating multiple circuits into the measurement device. And a method for measuring fluorescence simultaneously and accurately have been proposed. (For example, refer to Patent Documents 1 and 2).

特開平8−136458号公報JP-A-8-136458 特開2002−71566号公報JP 2002-71566 A

これに対して、本発明の一態様では、新たな装置の改良などを行わず、従来の低温測定法を基本とした上で、問題となる蛍光と燐光との分離を精度よく行い、燐光測定を簡便に行う方法を提供する。   On the other hand, in one embodiment of the present invention, no new apparatus is improved, and the conventional low-temperature measurement method is used as a basis, and the problem of fluorescence and phosphorescence is accurately separated, and phosphorescence measurement is performed. A method for simply carrying out the above is provided.

本発明の一態様は、被測定物に対して、出力強度の異なる2種類の励起光を順次照射し、被測定物から放出される光に基づく2種類のデータ(波長に対する発光強度)を順次検出し、これらのデータを各データの最大発光強度に基づき、それぞれ規格化処理することによって2種類の規格化データを算出し、2種類の規格化データの差分の絶対値を求めることによって、被測定物の燐光スペクトルを検出することを特徴とする燐光測定方法である。   In one embodiment of the present invention, two types of excitation light having different output intensities are sequentially irradiated onto a measurement object, and two types of data (emission intensity with respect to wavelength) based on light emitted from the measurement object are sequentially By detecting and standardizing each of these data based on the maximum emission intensity of each data, two types of standardized data are calculated, and the absolute value of the difference between the two types of standardized data is obtained. A phosphorescence measuring method characterized by detecting a phosphorescence spectrum of a measurement object.

本発明の一態様は、被測定物に出力強度の異なる2種類の励起光を順次照射し、被測定物から放出される光に基づく2種類のデータ(例えば、光の波長に対する発光強度)を順次検出し、2種類のデータのそれぞれにおいて最大発光強度に基づく規格化処理により得られる2種類の規格化データを算出し、2種類の規格化データの差分の絶対値から被測定物の燐光スペクトルが得られることを特徴とする燐光測定方法である。   In one embodiment of the present invention, two types of excitation light with different output intensities are sequentially irradiated onto the object to be measured, and two types of data based on the light emitted from the object to be measured (for example, emission intensity with respect to the wavelength of light). Two types of normalized data obtained by a normalization process based on the maximum emission intensity in each of the two types of data are calculated sequentially, and the phosphorescence spectrum of the object to be measured is calculated from the absolute value of the difference between the two types of normalized data. Is a method for measuring phosphorescence.

また、本発明の別の構成は、被測定物に第1の励起光を照射し、被測定物から放出される光に基づく第1のデータ(例えば、光の波長に対する発光強度)を検出し、被測定物に第1の励起光とは出力強度が異なる第2の励起光を照射し、被測定物から放出される光に基づく第2のデータ(例えば、光の波長に対する発光強度)を検出し、第1のデータにおいて最大発光強度に基づく規格化処理により得られる第1の規格化データと、第2のデータにおいて最大発光強度に基づく規格化処理により得られる第2の規格化データとの差分の絶対値から被測定物の燐光スペクトルが得られることを特徴とする燐光測定方法である。   In another configuration of the present invention, the object to be measured is irradiated with the first excitation light, and the first data (for example, emission intensity with respect to the wavelength of the light) based on the light emitted from the object to be measured is detected. Irradiating the object to be measured with second excitation light having an output intensity different from that of the first excitation light, and obtaining second data (for example, emission intensity with respect to the wavelength of the light) based on the light emitted from the object to be measured. First normalization data detected and obtained by normalization processing based on the maximum light emission intensity in the first data, and second normalization data obtained by normalization processing based on the maximum light emission intensity in the second data, A phosphorescence measurement method characterized in that a phosphorescence spectrum of an object to be measured is obtained from the absolute value of the difference between the two.

本発明の一態様により、新たな装置の改良などを行わず、従来の低温測定法を基本とした上で、問題となる蛍光と燐光との分離を精度よく行い、燐光測定を簡便に行う方法を実現することができる。   According to one embodiment of the present invention, a method for performing phosphorescence measurement simply by accurately separating fluorescent light and phosphorescence, which is based on the conventional low-temperature measurement method, without improving a new apparatus or the like. Can be realized.

本発明の一態様である燐光測定方法について説明する図。4A and 4B illustrate a phosphorescence measurement method which is one embodiment of the present invention. 本発明の一態様である燐光測定方法について説明する図。4A and 4B illustrate a phosphorescence measurement method which is one embodiment of the present invention. 本発明の一態様であるNPB(略称)の発光スペクトルを示す図。FIG. 6 shows an emission spectrum of NPB (abbreviation) which is one embodiment of the present invention. 本発明の一態様であるNPB(略称)の励起光の出力強度に対する発光強度を示す図。FIG. 10 shows light emission intensity with respect to output intensity of excitation light of NPB (abbreviation) which is one embodiment of the present invention. 本発明の一態様であるNPB(略称)の規格化データを示す図。FIG. 9 shows normalized data of NPB (abbreviation) which is one embodiment of the present invention. 本発明の一態様であるNPB(略称)の燐光スペクトルを示す図。FIG. 13 shows a phosphorescence spectrum of NPB (abbreviation) which is one embodiment of the present invention.

以下、本発明の実施の態様について図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることが可能である。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。また、異なる図面であっても共通の符号が付されているものは同じものを示すこととし、説明は省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and various changes can be made in form and details without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below. Moreover, even if it is different drawing, what attached | subjected the same code | symbol shall show the same thing, and abbreviate | omits description.

(実施の形態1)
本実施の形態では、本発明の一態様である燐光測定方法について説明する。
(Embodiment 1)
In this embodiment, a phosphorescence measurement method which is one embodiment of the present invention will be described.

本発明の一態様である燐光測定方法の具体的な構成について、図1により説明する。   A specific structure of the phosphorescence measurement method which is one embodiment of the present invention will be described with reference to FIG.

図1に示すように、はじめに被測定物に所定の出力強度を有する第1の励起光(Ex)を照射する。そして、第1の励起光が照射されることにより、被測定物から放出される光(PL)に基づく第1のデータを検出器で検出する。   As shown in FIG. 1, first, a first excitation light (Ex) having a predetermined output intensity is irradiated on the object to be measured. Then, the first data based on the light (PL) emitted from the object to be measured is detected by the detector by being irradiated with the first excitation light.

なお、ここで検出される第1のデータは、被測定物の蛍光発光および燐光発光に基づくスペクトルデータである。   The first data detected here is spectral data based on the fluorescence emission and phosphorescence emission of the object to be measured.

次に、第1の励起光とは出力強度の異なる第2の励起光(Ex’)を被測定物に照射する。そして、第2の励起光が照射されることにより、被測定物から放出される光(PL’)に基づく第2のデータを検出器で検出する。なお、第2のデータも被測定物の蛍光発光および燐光発光に基づくスペクトルデータである。   Next, the object to be measured is irradiated with second excitation light (Ex ′) having an output intensity different from that of the first excitation light. Then, when the second excitation light is irradiated, second data based on the light (PL ′) emitted from the object to be measured is detected by the detector. The second data is also spectral data based on the fluorescence emission and phosphorescence emission of the object to be measured.

次に、第1のデータに対して、第1のデータにおける蛍光発光の最大発光強度を基準とする規格化処理を行うことにより、第1の規格化データを算出し、また、第2のデータに対して、第2のデータにおける蛍光発光の最大発光強度を基準とする規格化処理を行うことにより、第2の規格化データを算出する。   Next, normalization processing is performed on the first data with reference to the maximum emission intensity of the fluorescence emission in the first data, thereby calculating the first normalized data, and the second data On the other hand, the second normalized data is calculated by performing a standardization process based on the maximum emission intensity of the fluorescence emission in the second data.

最後に、第1の規格化データと第2の規格化データとの差分の絶対値を取る演算処理を行うことにより、被測定物の燐光スペクトルを精度よく検出することができる。   Finally, the phosphorescence spectrum of the object to be measured can be detected with high accuracy by performing an arithmetic process that takes the absolute value of the difference between the first normalized data and the second normalized data.

なお、本実施の形態では、燐光測定を行うためにLabRAM HR−PL:株式会社堀場社製の蛍光燐光測定装置200を用いることとする。蛍光燐光測定装置200の簡単な構造は、図2(A)に示す通りであり、測定は、低温(10K=−263℃以下)で行う。低温(10K=−263℃以下)での測定を行うことにより、測定中に被測定物の三重項励起エネルギー準位(T1準位)からのエネルギーの熱失活を防ぐことができるため、発光スペクトルの強度損失を極力抑えた測定が可能となる。   In this embodiment, a fluorescent phosphorescence measurement apparatus 200 manufactured by LabRAM HR-PL: Horiba, Ltd. is used to perform phosphorescence measurement. A simple structure of the fluorescent phosphorescence measuring apparatus 200 is as shown in FIG. 2A, and the measurement is performed at a low temperature (10K = −263 ° C. or lower). Since measurement at a low temperature (10K = −263 ° C. or lower) can prevent thermal deactivation of energy from the triplet excitation energy level (T1 level) of the object to be measured during measurement, light emission Measurements with as little spectral intensity loss as possible are possible.

図2(A)に示す蛍光燐光測定装置200は、励起光を出力する光源201、測定サンプル202を備えるためのホルダ203、光路を制御するビームスプリッター204および対物レンズ205、また、測定サンプルから放出される光を分光させるための分光器206、さらに分光した光を検出するための検出器207などを備えている。   2A includes a light source 201 that outputs excitation light, a holder 203 for providing a measurement sample 202, a beam splitter 204 and an objective lens 205 that control an optical path, and also emits from the measurement sample. A spectroscope 206 for splitting the light to be split, and a detector 207 for detecting the split light.

光源201から出力される励起光は、1nW以上、15mW以下の範囲での出力が可能であり、出力強度の異なる励起光を順次、測定サンプルに照射することができる。なお、本実施の形態では、励起光の出力には、He−Cdレーザ[325nm](金門光波社製)を用いることとする。   The excitation light output from the light source 201 can be output in the range of 1 nW or more and 15 mW or less, and excitation light having different output intensities can be sequentially irradiated onto the measurement sample. In the present embodiment, a He—Cd laser [325 nm] (manufactured by Kinmon Konami Co., Ltd.) is used for the output of excitation light.

また、被測定物を備える測定サンプルの一例を図2(B)に示す。一対の基板(210、211)間に被測定物212の薄膜を備え、シール材213によって封入された構造を有する。なお、基板(210、211)の材料としては、透光性を有するものが好ましく、例えばガラス基板や石英基板の他、FRP(Fiberglass−Reinforced Plastics)、PVF(ポリビニルフロライド)、ポリエステルまたはアクリル等からなるプラスチック基板などを用いることができるが、特に石英基板が好ましい。また、被測定物212の薄膜が配置された空間214は、不活性気体(窒素やアルゴン等)雰囲気にすることが好ましい。また、被測定物212としては、蛍光および燐光を呈する有機化合物を用いることとする。また、シール材213にはエポキシ系樹脂を用いるのが好ましい。また、これらの材料はできるだけ水分や酸素を透過しない材料であることが望ましい。   An example of a measurement sample provided with the object to be measured is shown in FIG. A thin film of an object to be measured 212 is provided between a pair of substrates (210, 211) and sealed with a sealant 213. In addition, as a material of a board | substrate (210, 211), what has translucency is preferable, for example, FRP (Fiberglass-Reinforced Plastics), PVF (polyvinyl fluoride), polyester, an acrylic other than a glass substrate or a quartz substrate A plastic substrate made of, for example, can be used, and a quartz substrate is particularly preferable. The space 214 in which the thin film of the object to be measured 212 is disposed is preferably an inert gas (nitrogen, argon, or the like) atmosphere. In addition, as the object to be measured 212, an organic compound exhibiting fluorescence and phosphorescence is used. Further, it is preferable to use an epoxy resin for the sealant 213. Moreover, it is desirable that these materials are materials that do not transmit moisture and oxygen as much as possible.

ここでは、被測定物として、有機EL素子に用いるEL材料として知られている有機化合物である4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPBまたはα−NPD)を用いた場合における具体的な燐光測定について示す。   Here, as an object to be measured, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPB or an organic compound known as an EL material used for an organic EL element) Specific phosphorescence measurement in the case of using (α-NPD) will be described.

NPB(略称)を備えた測定サンプルは、一方の石英基板上に蒸着法により、NPB(略称)の薄膜を50nmの膜厚で形成した後、一方の石英基板と他方の石英基板とをシール材により張り合わせることにより形成される。すなわち、一対の基板とシール材で囲まれた空間214にNPB(略称)の薄膜が配置されている。なお、空間214は、窒素で充填されている。   In a measurement sample provided with NPB (abbreviation), a thin film of NPB (abbreviation) is formed with a film thickness of 50 nm on one quartz substrate by vapor deposition, and then one quartz substrate and the other quartz substrate are sealed together. It is formed by pasting together. That is, a thin film of NPB (abbreviation) is disposed in a space 214 surrounded by a pair of substrates and a sealing material. Note that the space 214 is filled with nitrogen.

作製した測定サンプルを用いて被測定物を測定するために、図2(A)に示した蛍光燐光測定装置200のホルダ203にNPB(略称)を有する測定サンプル202を備えた後、光源201から測定サンプル202に対して第1の励起光としてレーザ光(Ex=4μW)を照射する。なお、第1の励起光の光路上には、ビームスプリッター204および対物レンズ205が配置されている。   In order to measure an object to be measured using the produced measurement sample, the measurement sample 202 having NPB (abbreviation) is provided in the holder 203 of the fluorescent phosphorescence measurement apparatus 200 shown in FIG. The measurement sample 202 is irradiated with laser light (Ex = 4 μW) as the first excitation light. A beam splitter 204 and an objective lens 205 are arranged on the optical path of the first excitation light.

第1の励起光が照射されることによって、測定サンプル202から放出される光(PL)は、分光器206で分光された後、検出器207によって第1のデータとして検出される。同様に、光源201から測定サンプル202に対して第1の励起光とは出力強度の異なる第2の励起光としてレーザ光(Ex’ =400μW)を照射する。第2の励起光が照射されることによって、測定サンプル202から放出される光(PL’)は、検出器207によって第2のデータとして検出される。   The light (PL) emitted from the measurement sample 202 by being irradiated with the first excitation light is dispersed by the spectroscope 206 and then detected as first data by the detector 207. Similarly, laser light (Ex ′ = 400 μW) is irradiated from the light source 201 to the measurement sample 202 as second excitation light having a different output intensity from the first excitation light. The light (PL ′) emitted from the measurement sample 202 by being irradiated with the second excitation light is detected as second data by the detector 207.

第1の励起光(Ex=4μW)を出力することにより検出器207によって検出される第1のデータ、および第2の励起光(Ex’=400μW)を出力することにより検出器207によって検出される第2のデータをそれぞれ図3に示す。なお、図3では、横軸に波長(nm)を示し、縦軸にその発光強度(任意単位)を示す。   First data detected by the detector 207 by outputting the first excitation light (Ex = 4 μW) and detected by the detector 207 by outputting the second excitation light (Ex ′ = 400 μW) The second data are shown in FIG. In FIG. 3, the horizontal axis indicates the wavelength (nm), and the vertical axis indicates the emission intensity (arbitrary unit).

図3の結果から、第1のデータおよび第2のデータのいずれにおいても450nm付近に発光ピークを示す蛍光が見られるが、550nm付近に見られるはずの燐光の発光ピークは、蛍光の発光ピークに重なっているためか確認が困難であることが分かる。   From the results of FIG. 3, in both the first data and the second data, fluorescence showing an emission peak around 450 nm is seen, but the phosphorescence emission peak that should be seen around 550 nm is the fluorescence emission peak. It can be seen that it is difficult to confirm whether they overlap.

ここで、励起光の出力強度に応じて被測定物から放出される蛍光と燐光の発光強度の違いについて、被測定物としてNPB(略称)を用いて測定した結果を図4に示す。なお、図4において、横軸は励起光の出力強度(W)を示し、縦軸は、励起光の出力強度(W)に対する発光強度(任意単位)を示す。図4の結果から、励起光の出力強度が大きくなるのに対して、蛍光における発光強度も強くなるため(線形傾向である)、発光効率はあまり変化しないが、燐光に関しては励起光の出力強度が大きくなるのに対して、燐光における発光強度は弱くなるため(飽和傾向である)、発光効率が低下することがわかる。なお、燐光発光に見られるこの傾向は、他の物質においても既に知られており、濃度消光によるものであるといわれている。   Here, FIG. 4 shows the result of measurement using NPB (abbreviation) as the object to be measured, regarding the difference between the emission intensity of fluorescence and phosphorescence emitted from the object to be measured in accordance with the output intensity of the excitation light. In FIG. 4, the horizontal axis indicates the output intensity (W) of the excitation light, and the vertical axis indicates the emission intensity (arbitrary unit) with respect to the output intensity (W) of the excitation light. From the result of FIG. 4, the output intensity of the excitation light increases, but the emission intensity in the fluorescence also increases (it tends to be linear), so the emission efficiency does not change much, but the output intensity of the excitation light with respect to phosphorescence. In contrast, the emission intensity in phosphorescence becomes weak (it tends to be saturated), so that the light emission efficiency decreases. This tendency seen in phosphorescence emission is already known in other materials and is said to be due to concentration quenching.

そこで、本発明の一態様である燐光測定法では、この現象を利用し、被測定物に対して、燐光発光の発光効率があまり低下しない領域(励起光出力強度に対する発光強度が線形傾向にある領域)の出力強度の第1の励起光と、第1の励起光とは出力強度が異なり、被測定物に対する燐光発光の発光効率が低下する領域(励起光出力強度に対する発光強度が飽和傾向にある領域)(図4中400で示す)、すなわち、濃度消光が生じる領域に含まれる出力強度の励起光である第2の励起光とを順次照射し、得られた2種類のスペクトルデータを、それぞれ最大発光強度に基づいて規格化処理し、得られた2種類の規格化されたスペクトルデータの差分の絶対値を取ることにより、被測定物の燐光スペクトルを検出することとする。   Therefore, in the phosphorescence measurement method which is one embodiment of the present invention, this phenomenon is used, and a region in which the emission efficiency of phosphorescence emission is not significantly reduced with respect to the object to be measured (the emission intensity with respect to the excitation light output intensity tends to be linear). The first excitation light having the output intensity of the region is different from the first excitation light, and the emission efficiency of phosphorescence emission to the object to be measured decreases (the emission intensity with respect to the excitation light output intensity tends to be saturated). (A certain region) (indicated by 400 in FIG. 4), that is, the second excitation light that is the excitation light of the output intensity included in the region where concentration quenching occurs, and sequentially obtained two types of spectral data, The phosphorescence spectrum of the object to be measured is detected by performing normalization processing based on the respective maximum emission intensities and taking the absolute value of the difference between the obtained two types of normalized spectrum data.

すなわち、本実施の形態では、被測定物の燐光における発光効率があまり変化しない領域(励起光出力強度に対する発光強度が線形傾向にある領域)の出力強度を第1の励起光の出力強度(Ex=4μW)とし、被測定物の燐光における発光効率の低下が生じる領域(励起光出力強度に対する発光強度が飽和傾向にある領域)(図4中400で示す)にある出力強度を第2の励起光の出力強度(Ex’=400μW)とし、これらの出力強度の異なる2種類の励起光を順次照射して、2種類のスペクトルデータを検出する場合について示している。   That is, in the present embodiment, the output intensity in the region where the emission efficiency in the phosphorescence of the object to be measured does not change much (the region where the emission intensity with respect to the excitation light output intensity tends to be linear) is set to the output intensity of the first excitation light (Ex = 4 μW), and the output intensity in the region where the emission efficiency in phosphorescence of the object to be measured is reduced (the region where the emission intensity with respect to the excitation light output intensity tends to be saturated) (indicated by 400 in FIG. 4) is the second excitation. In this example, the light output intensity (Ex ′ = 400 μW) is set, and two types of excitation light having different output intensities are sequentially irradiated to detect two types of spectrum data.

2種類のスペクトルデータを検出した後は、第1の励起光(Ex=4μW)を出力して得られる第1のデータを第1のデータにおける最大発光強度(蛍光発光)で規格化して、第1の規格化データを得る。同様に、第2の励起光(Ex’=400μW)を出力して得られる第2のデータを第2のデータにおける最大発光強度(蛍光発光)で規格化して、第2の規格化データを得る。規格化により得られた第1の規格化データおよび第2の規格化データは、図5に示す通りである。なお、図5において、横軸に波長(nm)を取り、縦軸に発光強度(任意単位)を示す。   After detecting the two types of spectrum data, the first data obtained by outputting the first excitation light (Ex = 4 μW) is normalized by the maximum emission intensity (fluorescence emission) in the first data, and the first data 1 standardized data is obtained. Similarly, the second data obtained by outputting the second excitation light (Ex ′ = 400 μW) is normalized by the maximum emission intensity (fluorescence emission) in the second data to obtain second normalized data. . The first normalized data and the second normalized data obtained by normalization are as shown in FIG. In FIG. 5, the horizontal axis represents wavelength (nm) and the vertical axis represents emission intensity (arbitrary unit).

図5の結果からは、第1の励起光(Ex=4μW)の出力により得られる第1の規格化データにおいて、550nm付近における燐光の発光ピークを確認することができる。すなわち、第1のデータにおける蛍光の発光強度に対する燐光の発光強度と、第2のデータにおける蛍光の発光強度に対する燐光の発光強度は、図4で説明したように励起光の出力強度に応じて発光効率が異なる(すなわち、線形傾向である領域と飽和傾向である領域がある)ため、規格化することにより、その差が現れるため、燐光の発光ピークを確認することができる。   From the result of FIG. 5, the emission peak of phosphorescence near 550 nm can be confirmed in the first normalized data obtained by the output of the first excitation light (Ex = 4 μW). That is, the phosphorescence emission intensity with respect to the fluorescence emission intensity in the first data and the phosphorescence emission intensity with respect to the fluorescence emission intensity in the second data are emitted according to the output intensity of the excitation light as described in FIG. Since the efficiency is different (that is, there is a region having a linear tendency and a region having a saturation tendency), the difference appears by normalization, so that the emission peak of phosphorescence can be confirmed.

さらに、図5に示す第1の規格化データおいて確認された第1のデータにおける燐光の発光ピークのみを取り出すために、第1の規格化データから第2の規格化データを差し引き、その絶対値をとる演算処理を行うことにより、図6に示すような第1のデータにおける燐光の発光ピークのみを得ることができる。従って、上記方法を用いることにより、被測定物の燐光の発光ピークを精度よく、かつ簡便に検出することができる。   Further, in order to extract only the emission peak of phosphorescence in the first data confirmed in the first normalized data shown in FIG. 5, the second normalized data is subtracted from the first normalized data, and the absolute By performing a calculation process that takes a value, only the emission peak of phosphorescence in the first data as shown in FIG. 6 can be obtained. Therefore, by using the above method, the emission peak of phosphorescence of the object to be measured can be detected accurately and easily.

なお、本実施の形態に示す構成は、本実施の形態で示したNPB(略称)の燐光測定のみならず、蛍光および燐光を呈するその他の有機化合物の燐光測定の際にも適用することができる。   Note that the structure described in this embodiment can be applied not only to the phosphorescence measurement of NPB (abbreviation) described in this embodiment but also to the phosphorescence measurement of other organic compounds exhibiting fluorescence and phosphorescence. .

200 蛍光燐光測定装置
201 光源
202 測定サンプル
203 ホルダ
204 ビームスプリッター
205 対物レンズ
206 分光器
207 検出器
210、211 基板
212 被測定物
213 シール材
214 空間
400 飽和傾向である領域
200 fluorescent phosphorescence measuring apparatus 201 light source 202 measurement sample 203 holder 204 beam splitter 205 objective lens 206 spectroscope 207 detector 210, 211 substrate 212 object to be measured 213 sealing material 214 space 400 area which tends to be saturated

Claims (4)

被測定物に出力強度の異なる2種類の励起光を順次照射し、
前記被測定物から放出される光に基づく2種類のデータを順次検出し、
前記2種類のデータのそれぞれにおいて、最大発光強度に基づく規格化処理を行うことにより得られる2種類の規格化データを算出し、
前記2種類の規格化データの差分の絶対値から前記被測定物の燐光スペクトルが得られることを特徴とする燐光測定方法。
Sequentially irradiate two types of excitation light with different output intensities
Two types of data based on light emitted from the object to be measured are sequentially detected,
In each of the two types of data, two types of standardized data obtained by performing a standardization process based on the maximum emission intensity are calculated,
A phosphorescence measuring method, wherein a phosphorescence spectrum of the object to be measured is obtained from an absolute value of a difference between the two kinds of normalized data.
被測定物に出力強度の異なる2種類の励起光を順次照射し、
前記被測定物から放出される光の波長に対する発光強度を示す2種類のデータを順次検出し、
前記2種類のデータのそれぞれにおいて、最大発光強度に基づく規格化処理を行うことにより得られる2種類の規格化データを算出し、
前記2種類の規格化データの差分の絶対値から前記被測定物の燐光スペクトルが得られることを特徴とする燐光測定方法。
Sequentially irradiate two types of excitation light with different output intensities
Two types of data indicating the emission intensity with respect to the wavelength of light emitted from the object to be measured are sequentially detected,
In each of the two types of data, two types of standardized data obtained by performing a standardization process based on the maximum emission intensity are calculated,
A phosphorescence measuring method, wherein a phosphorescence spectrum of the object to be measured is obtained from an absolute value of a difference between the two kinds of normalized data.
被測定物に第1の励起光を照射し、前記被測定物から放出される光に基づく第1のデータを検出し、
前記被測定物に前記第1の励起光とは出力強度が異なる第2の励起光を照射し、前記被測定物から放出される光に基づく第2のデータを検出し、
前記第1のデータにおいて最大発光強度に基づく規格化処理を行うことにより得られる第1の規格化データと、前記第2のデータにおいて最大発光強度に基づく規格化処理を行うことにより得られる第2の規格化データとの差分の絶対値から前記被測定物の燐光スペクトルが得られることを特徴とする燐光測定方法。
Irradiating an object to be measured with first excitation light, detecting first data based on light emitted from the object to be measured;
Irradiating the object to be measured with second excitation light having an output intensity different from that of the first excitation light, and detecting second data based on light emitted from the object to be measured;
First normalization data obtained by performing standardization processing based on maximum emission intensity in the first data, and second obtained by performing normalization processing based on maximum emission intensity in the second data. A phosphorescence measuring method, wherein a phosphorescence spectrum of the object to be measured is obtained from an absolute value of a difference from the normalized data.
被測定物に第1の励起光を照射し、前記被測定物から放出される光の波長に対する発光強度を示す第1のデータを検出し、
前記被測定物に前記第1の励起光とは出力強度が異なる第2の励起光を照射し、前記被測定物から放出される光の波長に対する発光強度を示す第2のデータを検出し、
前記第1のデータにおいて最大発光強度に基づく規格化処理を行うことにより得られる第1の規格化データと、前記第2のデータにおいて最大発光強度に基づく規格化処理を行うことにより得られる第2の規格化データとの光の波長に対する発光強度の差分の絶対値から前記被測定物の燐光スペクトルが得られることを特徴とする燐光測定方法。
Irradiating the object to be measured with the first excitation light, detecting first data indicating the emission intensity with respect to the wavelength of the light emitted from the object to be measured;
Irradiating the object to be measured with second excitation light having an output intensity different from that of the first excitation light, and detecting second data indicating emission intensity with respect to a wavelength of light emitted from the object to be measured;
First normalization data obtained by performing standardization processing based on maximum emission intensity in the first data, and second obtained by performing normalization processing based on maximum emission intensity in the second data. A phosphorescence measuring method, wherein a phosphorescence spectrum of the object to be measured is obtained from an absolute value of a difference in emission intensity with respect to a wavelength of light from the normalized data.
JP2011156274A 2011-07-15 2011-07-15 Phosphorescence measurement method Expired - Fee Related JP5732337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011156274A JP5732337B2 (en) 2011-07-15 2011-07-15 Phosphorescence measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011156274A JP5732337B2 (en) 2011-07-15 2011-07-15 Phosphorescence measurement method

Publications (2)

Publication Number Publication Date
JP2013024570A true JP2013024570A (en) 2013-02-04
JP5732337B2 JP5732337B2 (en) 2015-06-10

Family

ID=47783118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011156274A Expired - Fee Related JP5732337B2 (en) 2011-07-15 2011-07-15 Phosphorescence measurement method

Country Status (1)

Country Link
JP (1) JP5732337B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132415A1 (en) * 2013-02-28 2014-09-04 グローリー株式会社 Fluorescence and phosphorescence detecting method and device, and valuable media authenticity determining method and device
WO2018185599A1 (en) * 2017-04-04 2018-10-11 株式会社半導体エネルギー研究所 Method for analyzing organic semiconductor elements
CN113175884A (en) * 2021-04-26 2021-07-27 合肥多彩谱色科技有限公司 Calibration device and calibration method of spectrum confocal measurement system
CN113175883A (en) * 2021-04-26 2021-07-27 合肥多彩谱色科技有限公司 Light source normalization processing method of spectrum confocal measurement system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06500390A (en) * 1990-08-30 1994-01-13 ファイバーケム、インコーポレイテッド Self-compensated fiber optic chemical sensors and other chemical sensors
JP2001516012A (en) * 1997-08-13 2001-09-25 ドゥ ラ リュ インターナショナル リミティド Detection method and device
JP2007081014A (en) * 2005-09-13 2007-03-29 Konica Minolta Holdings Inc Organic electroluminescence element, display device, and lighting system
US20070083122A1 (en) * 2005-09-29 2007-04-12 Research Foundation Of The City University Of New York Phosphorescence and fluorescence spectroscopy for detection of cancer and pre-cancer from normal/benign regions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06500390A (en) * 1990-08-30 1994-01-13 ファイバーケム、インコーポレイテッド Self-compensated fiber optic chemical sensors and other chemical sensors
JP2001516012A (en) * 1997-08-13 2001-09-25 ドゥ ラ リュ インターナショナル リミティド Detection method and device
JP2007081014A (en) * 2005-09-13 2007-03-29 Konica Minolta Holdings Inc Organic electroluminescence element, display device, and lighting system
US20070083122A1 (en) * 2005-09-29 2007-04-12 Research Foundation Of The City University Of New York Phosphorescence and fluorescence spectroscopy for detection of cancer and pre-cancer from normal/benign regions

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132415A1 (en) * 2013-02-28 2014-09-04 グローリー株式会社 Fluorescence and phosphorescence detecting method and device, and valuable media authenticity determining method and device
WO2018185599A1 (en) * 2017-04-04 2018-10-11 株式会社半導体エネルギー研究所 Method for analyzing organic semiconductor elements
JPWO2018185599A1 (en) * 2017-04-04 2020-03-19 株式会社半導体エネルギー研究所 Analysis method of organic semiconductor device
US11088328B2 (en) 2017-04-04 2021-08-10 Semiconductor Energy Laboratory Co., Ltd. Method of analyzing organic semiconductor element
JP7185620B2 (en) 2017-04-04 2022-12-07 株式会社半導体エネルギー研究所 Analysis method for organic semiconductor element
CN113175884A (en) * 2021-04-26 2021-07-27 合肥多彩谱色科技有限公司 Calibration device and calibration method of spectrum confocal measurement system
CN113175883A (en) * 2021-04-26 2021-07-27 合肥多彩谱色科技有限公司 Light source normalization processing method of spectrum confocal measurement system
CN113175883B (en) * 2021-04-26 2022-04-26 合肥多彩谱色科技有限公司 Light source normalization processing method of spectrum confocal measurement system
CN113175884B (en) * 2021-04-26 2022-04-26 合肥多彩谱色科技有限公司 Calibration device and calibration method of spectrum confocal measurement system

Also Published As

Publication number Publication date
JP5732337B2 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
Hatami et al. Absolute photoluminescence quantum yields of IR26 and IR-emissive Cd 1− x Hg x Te and PbS quantum dots–method-and material-inherent challenges
JP5732337B2 (en) Phosphorescence measurement method
CN104823300B (en) Electrical device, in particular organic light emitting device
WO2020155819A1 (en) Method for characterizing defect in two-dimensional material and application thereof
WO1989002072A1 (en) Method and apparatus for optically measuring concentration of material
JP2015010834A (en) Method for estimating emission wavelength of luminous body and device therefore
US20230266247A1 (en) Metrology for oled manufacturing using photoluminescence spectroscopy
JP5370286B2 (en) Fluorescence detection device
US11204321B2 (en) Humidity sensor
JP4209747B2 (en) Spectral measurement method using slab type optical waveguide
JP2016070687A (en) Concentration measurement device
JP4983355B2 (en) Temperature measuring method or electronic device temperature measuring apparatus
Tsuji et al. Temperature measurements of organic light-emitting diodes by stokes and anti-stokes Raman scattering
JP2019113389A (en) Gas detector and gas concentration measurement device
JP2005077246A (en) Method and apparatus for analyzing material for forming organic electronic element
JP4381067B2 (en) Method for selecting materials for forming organic electronic elements
JP5505769B2 (en) Semiconductor wafer surface layer evaluation method
RU2424501C1 (en) Method of determining temperature ranging from 4 to 300 k
Yaoming et al. An Apparatus for Studying Phosphor Luminescence upon Excitation by Atomic–Molecular Beams
Tscherner et al. Opto-chemical method for ultra-low oxygen transmission rate measurement
JP2005106711A (en) Organic laminate and organic device
JP2017098163A (en) Evaluation method of multilayer film
King et al. Frequency-domain time-resolved luminescence for In-operando study of efficiency roll-off in organic light-emitting diodes
Bolse et al. Temperature-control for optical vapor sensors based on photoluminescence quenching
JP2018125524A (en) Carbon concentration measurement method and carbon concentration measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R150 Certificate of patent or registration of utility model

Ref document number: 5732337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees