JP2013021843A - Initial magnetic pole position adjustment device for permanent magnet synchronous motor - Google Patents

Initial magnetic pole position adjustment device for permanent magnet synchronous motor Download PDF

Info

Publication number
JP2013021843A
JP2013021843A JP2011154379A JP2011154379A JP2013021843A JP 2013021843 A JP2013021843 A JP 2013021843A JP 2011154379 A JP2011154379 A JP 2011154379A JP 2011154379 A JP2011154379 A JP 2011154379A JP 2013021843 A JP2013021843 A JP 2013021843A
Authority
JP
Japan
Prior art keywords
magnetic pole
phase difference
pole position
motor
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011154379A
Other languages
Japanese (ja)
Inventor
Akio Toba
章夫 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2011154379A priority Critical patent/JP2013021843A/en
Priority to CN2012102300393A priority patent/CN102882451A/en
Publication of JP2013021843A publication Critical patent/JP2013021843A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an initial magnetic pole position adjustment device capable of detecting a phase difference between an induced voltage and a magnetic pole position detection signal without detecting an output voltage of an inverter, and correcting the phase difference.SOLUTION: An initial magnetic pole position adjustment device for estimating a phase difference between the induced electromotive force of a permanent magnet synchronous motor driven by an inverter and a magnetic pole position detection signal by a magnetic pole position sensor when the motor starts, and controlling the inverter by using the magnetic pole position detection signal corrected on the basis of the phase difference, comprises: means for detecting current flowing in a stator winding of the motor; means for estimating the phase difference by using the detected current; and means for correcting the magnetic pole position detection signal by using the estimated phase difference. Phase difference estimation means 302 makes the stator winding of the motor 200 be short-circuited by controlling a switching element of the inverter 101 when the motor 200 is idling, and estimates the phase difference on the basis of flowing winding current caused by non-load induced electromotive force.

Description

本発明は、インバータにより駆動される永久磁石同期電動機の初期磁極位置調整装置に関するものである。   The present invention relates to an initial magnetic pole position adjusting device for a permanent magnet synchronous motor driven by an inverter.

永久磁石同期電動機をインバータにより駆動する場合、電動機の回転子の磁極位置を正確に検出するために、磁極位置センサ(角度センサ)が使用されている。しかし、電動機の製造時には、磁極位置センサの取付位置を厳密に管理していないので、電動機の誘導起電力の位相と磁極位置センサによる磁極位置検出信号の位相との間には誤差(位相差)が存在するのが一般的である。
上記の位相差を放置したままでは、インバータから電動機に供給する電流ベクトルを電動機の回転に応じて正確に回転させることができないため、電動機の起動時に、何らかの方法によって位相差を検出し、磁極位置検出信号の位相を補正(位置ずれ補正)する必要がある。
When the permanent magnet synchronous motor is driven by an inverter, a magnetic pole position sensor (angle sensor) is used to accurately detect the magnetic pole position of the rotor of the motor. However, since the mounting position of the magnetic pole position sensor is not strictly managed when the motor is manufactured, there is an error (phase difference) between the phase of the induced electromotive force of the motor and the phase of the magnetic pole position detection signal by the magnetic pole position sensor. Is generally present.
If the phase difference is left as it is, the current vector supplied from the inverter to the motor cannot be accurately rotated according to the rotation of the motor. It is necessary to correct the phase of the detection signal (correction of misalignment).

上記の点に鑑み、例えば特許文献1には、永久磁石同期モータの誘起電圧のゼロクロス点に基づいて角度基準信号を生成し、この角度基準信号と角度センサによる磁極位置検出信号との位相差を求めて磁極位置検出信号の位相を補正し、補正後の位相を用いてモータの電流指令を生成するようにしたモータ制御装置が記載されている。   In view of the above points, for example, in Patent Document 1, an angle reference signal is generated based on the zero-cross point of the induced voltage of the permanent magnet synchronous motor, and the phase difference between the angle reference signal and the magnetic pole position detection signal by the angle sensor is calculated. A motor control device is described in which the phase of the magnetic pole position detection signal is obtained and corrected, and a motor current command is generated using the corrected phase.

特開2002−325493号公報(段落[0016]〜[0029]、図1〜図6等)JP 2002-325493 A (paragraphs [0016] to [0029], FIGS. 1 to 6 and the like)

特許文献1に係る従来技術によれば、角度センサの取付位置の厳密な管理を不要にして位相差を自ら補正することが可能であるが、基準信号発生装置をモータの制御回路に内蔵するか、あるいは、モータを始動するたびに基準信号発生装置を主回路に繋ぎ込まなくてはならず、制御回路の複雑化や位相調整作業の煩雑化を招くという問題がある。
また、この従来技術では、誘起電圧のゼロクロス点を検出するために波形測定器やセンサが必要であり、これらの波形測定器等を使用しない場合には、インバータの出力電圧検出器を代用することが考えられる。しかし、例えば電気自動車用のインバータシステムには、コスト上の観点から出力電圧検出器を備えていないものも多くあり、その場合には、前記従来技術を適用することができなかった。
According to the prior art according to Patent Document 1, it is possible to correct the phase difference by itself without requiring strict management of the mounting position of the angle sensor, but whether the reference signal generator is built in the motor control circuit. Alternatively, each time the motor is started, the reference signal generator must be connected to the main circuit, which causes a problem that the control circuit becomes complicated and the phase adjustment work becomes complicated.
In addition, this conventional technique requires a waveform measuring instrument or sensor to detect the zero crossing point of the induced voltage. If these waveform measuring instruments are not used, the inverter output voltage detector should be substituted. Can be considered. However, for example, many inverter systems for electric vehicles are not equipped with an output voltage detector from the viewpoint of cost, and in that case, the conventional technology cannot be applied.

そこで、本発明の解決課題は、インバータの出力電圧を検出しなくても誘起電圧と磁極位置検出信号との位相差を検出し、磁極位置検出信号の位相を補正可能とした初期磁極位置調整装置を提供することにある。   Therefore, the problem to be solved by the present invention is to detect the phase difference between the induced voltage and the magnetic pole position detection signal without detecting the output voltage of the inverter, and to correct the phase of the magnetic pole position detection signal. Is to provide.

上記課題を解決するため、請求項1に係る発明は、インバータにより駆動される永久磁石同期電動機の起動時に、前記電動機の誘導起電力と磁極位置センサによる磁極位置検出信号との位相差を推定し、この位相差により補正した前記磁極位置検出信号を用いて前記インバータを制御するための初期磁極位置調整装置において、
前記電動機の固定子巻線を流れる電流を検出する電流検出手段と、
前記電流検出手段により検出した電流を用いて前記位相差を推定する位相差推定手段と、
前記位相差推定手段により推定した位相差を用いて前記磁極位置検出信号を補正する手段と、を備えたものである。
In order to solve the above-mentioned problem, the invention according to claim 1 estimates the phase difference between the induced electromotive force of the motor and the magnetic pole position detection signal from the magnetic pole position sensor when starting the permanent magnet synchronous motor driven by the inverter. In the initial magnetic pole position adjusting device for controlling the inverter using the magnetic pole position detection signal corrected by the phase difference,
Current detecting means for detecting a current flowing through the stator winding of the motor;
Phase difference estimation means for estimating the phase difference using the current detected by the current detection means;
Means for correcting the magnetic pole position detection signal using the phase difference estimated by the phase difference estimation means.

請求項2に係る発明は、請求項1に記載した初期磁極位置調整装置において、
前記位相差推定手段は、
前記電動機を空転させた状態で前記インバータの半導体スイッチング素子を制御して前記電動機の固定子巻線を短絡させ、前記固定子巻線に発生する無負荷誘導起電力によって流れる巻線電流から前記位相差を推定するものである。
The invention according to claim 2 is the initial magnetic pole position adjusting device according to claim 1,
The phase difference estimating means includes
In a state where the electric motor is idling, the stator switching of the electric motor is short-circuited by controlling the semiconductor switching element of the inverter, and the position from the winding current flowing by the no-load induced electromotive force generated in the stator winding is reduced. The phase difference is estimated.

請求項3に係る発明は、請求項1に記載した初期磁極位置調整装置において、
前記位相差推定手段は、
前記電動機を静止させた状態で前記インバータの半導体スイッチング素子を制御して前記電動機の固定子巻線に所定の大きさの電圧を印加し、そのときに流れる巻線電流が前記電動機の回転子の磁気異方性に起因して変化することに基づいて前記位相差を推定するものである。
The invention according to claim 3 is the initial magnetic pole position adjusting device according to claim 1,
The phase difference estimating means includes
A voltage of a predetermined magnitude is applied to the stator winding of the motor by controlling the semiconductor switching element of the inverter while the motor is stationary, and a winding current flowing at that time is applied to the rotor of the motor. The phase difference is estimated based on a change due to magnetic anisotropy.

請求項4に係る発明は、インバータにより駆動される永久磁石同期電動機の起動時に、前記電動機の誘導起電力と磁極位置センサによる磁極位置検出信号との位相差を推定する位相差推定手段と、前記位相差推定手段により推定した位相差を用いて前記磁極位置検出信号を補正する手段と、を備え、補正後の前記磁極位置検出信号を用いて前記インバータを制御するための初期磁極位置調整装置において、
前記位相差推定手段は、
前記電動機を静止させた状態で前記インバータの半導体スイッチング素子を制御して前記電動機の固定子巻線に所定の大きさの電流を通流し、そのときに前記固定子巻線に印加される電圧が前記電動機の回転子の磁気異方性に起因して変化することに基づいて前記位相差を推定するものである。
According to a fourth aspect of the present invention, there is provided a phase difference estimating means for estimating a phase difference between an induced electromotive force of the motor and a magnetic pole position detection signal by a magnetic pole position sensor at the time of starting a permanent magnet synchronous motor driven by an inverter, Means for correcting the magnetic pole position detection signal using the phase difference estimated by the phase difference estimation means, and an initial magnetic pole position adjusting device for controlling the inverter using the magnetic pole position detection signal after correction. ,
The phase difference estimating means includes
While the motor is stationary, the semiconductor switching element of the inverter is controlled to pass a predetermined amount of current through the stator winding of the motor. At that time, the voltage applied to the stator winding is The phase difference is estimated based on a change due to magnetic anisotropy of the rotor of the electric motor.

本発明によれば、永久磁石同期電動機の誘導起電力を検出せずに誘導起電力と磁極位置検出信号との位相差を検出して磁極位置検出信号を補正することができ、これによって電動機を支障なく制御することができる。このため、出力電圧検出器を備えていないインバータシステムにも適用可能であると共に、磁極位置の調整に要する煩雑な作業を解消することができる。   According to the present invention, the magnetic pole position detection signal can be corrected by detecting the phase difference between the induced electromotive force and the magnetic pole position detection signal without detecting the induced electromotive force of the permanent magnet synchronous motor. It can be controlled without hindrance. For this reason, the present invention can be applied to an inverter system that does not include an output voltage detector, and it is possible to eliminate troublesome work required for adjusting the magnetic pole position.

本発明の第1実施形態の主要部を示すブロック図である。It is a block diagram which shows the principal part of 1st Embodiment of this invention. 第1実施形態の原理を説明するための波形図である。It is a wave form diagram for demonstrating the principle of 1st Embodiment. 第1実施形態の動作を示すフローチャートである。It is a flowchart which shows operation | movement of 1st Embodiment. 本発明の第2実施形態を説明するための、IPMモータの回転子の一例を示す図である。It is a figure which shows an example of the rotor of an IPM motor for describing 2nd Embodiment of this invention. 第2実施形態における固定子巻線のインダクタンス及びその変化を示す波形図であるIt is a wave form diagram which shows the inductance of the stator coil | winding in 2nd Embodiment, and its change. 第2実施形態の主要部を示すブロック図である。It is a block diagram which shows the principal part of 2nd Embodiment.

以下、図に沿って本発明の実施形態を説明する。
まず、本発明の第1実施形態は請求項1,2に相当するものであり、この第1実施形態では、例えば特許第3636340号公報に記載された永久磁石同期電動機の空転時における起動技術を応用して電動機の誘導起電力と磁極位置検出信号との位相差を推定し、磁極位置検出信号の位相を補正することとした。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, a first embodiment of the present invention corresponds to claims 1 and 2, and in this first embodiment, for example, a startup technique at the time of idling of a permanent magnet synchronous motor described in Japanese Patent No. 3636340 is disclosed. The phase difference between the induced electromotive force of the motor and the magnetic pole position detection signal was estimated and the phase of the magnetic pole position detection signal was corrected.

図1は、第1実施形態の主要部を示すブロック図である。
図1において、101はIGBT等の半導体スイッチング素子からなる三相電圧形インバータ、102は直流電源、200は永久磁石同期電動機、201は回転子の磁極位置検出センサである。
FIG. 1 is a block diagram showing a main part of the first embodiment.
In FIG. 1, 101 is a three-phase voltage source inverter made of a semiconductor switching element such as IGBT, 102 is a DC power supply, 200 is a permanent magnet synchronous motor, and 201 is a rotor magnetic pole position detection sensor.

また、301は電動機200の相電流を検出する電流検出器、302は電流検出値iと磁極位置検出センサ201による磁極位置検出信号θ’が入力される位相差推定手段、303は位相差推定手段302から出力される位相差Δθと磁極位置検出信号θ’とが入力される位相補正手段、304は、位相補正手段303から出力される補正後の位相θと巻線短絡指令とが入力され、更に、インバータ101の出力電流検出値及びトルク指令等に基づいてインバータ101のスイッチング素子の駆動信号を生成する電流制御手段である。   Reference numeral 301 denotes a current detector that detects the phase current of the electric motor 200. Reference numeral 302 denotes a phase difference estimation unit that receives the current detection value i and the magnetic pole position detection signal .theta. ' The phase correction unit 304 to which the phase difference Δθ output from 302 and the magnetic pole position detection signal θ ′ are input, and the phase θ after correction output from the phase correction unit 303 and the winding short-circuit command are input. Furthermore, the current control means generates a drive signal for the switching element of the inverter 101 based on the output current detection value of the inverter 101, the torque command, and the like.

次に、この実施形態による磁極位置調整原理を、図2に基づいて説明する。
特許第3636340号公報にも記載されているように、インバータ101の運転を停止した状態で電動機200の回転子を空転させ、そのときに固定子巻線の少なくとも一相を短絡させると、固定子巻線に無負荷誘導起電力が発生して電流が流れる。
ここで、電動機200の回転子を空転させるには、例えばシャシダイナモ等を利用すればよい。また、固定子巻線の少なくとも一相を短絡させるには、電流制御手段304の出力信号により、インバータ101の当該相の上アームまたは下アームの半導体スイッチング素子をオンさせればよい。
Next, the principle of adjusting the magnetic pole position according to this embodiment will be described with reference to FIG.
As described in Japanese Patent No. 3636340, if the rotor of the electric motor 200 is idled while the operation of the inverter 101 is stopped, and at least one phase of the stator winding is short-circuited at that time, the stator A no-load induced electromotive force is generated in the winding and a current flows.
Here, in order to idle the rotor of the electric motor 200, for example, a chassis dynamo or the like may be used. Further, in order to short-circuit at least one phase of the stator winding, the semiconductor switching element of the upper arm or the lower arm of the inverter 101 may be turned on by the output signal of the current control means 304.

いま、インバータ101の運転を停止したまま電動機200の回転子を空転させ、図1に示すごとく、電流制御手段304に巻線短絡指令を与えて電動機200の一相の固定子巻線を短絡する。これにより、図2に示すように当該相に誘導起電力EMFが発生し、この誘導起電力EMFにより電流iが流れるが、この電流iは、誘導起電力EMFのゼロクロス点(時刻t)に同期して通流を開始する。
ここで、特許第3636340号公報に記載されているように、短絡動作の所定の手順を繰り返すことにより、回転子の回転方向、回転速度、及び、誘導起電力EMFの位相すなわち磁極位置の情報をすべて得ることができる。
従って、電流iから誘導起電力EMFの位相を推定することができる。
Now, the rotor of the electric motor 200 is idled while the operation of the inverter 101 is stopped, and as shown in FIG. 1, a winding short-circuit command is given to the current control means 304 to short-circuit the one-phase stator winding of the electric motor 200. . As a result, as shown in FIG. 2, an induced electromotive force EMF is generated in the phase, and a current i flows by the induced electromotive force EMF. This current i is at a zero cross point (time t 1 ) of the induced electromotive force EMF. Synchronize and start flowing.
Here, as described in Japanese Patent No. 3636340, by repeating a predetermined procedure of the short-circuit operation, information on the rotation direction of the rotor, the rotation speed, and the phase of the induced electromotive force EMF, that is, the magnetic pole position is obtained. All you can get.
Therefore, the phase of the induced electromotive force EMF can be estimated from the current i.

一方、磁極位置センサ201から出力される磁極位置検出信号θ’は、一般的に、図2に示すごとく電気角0°の位置が誘導起電力EMFのゼロクロス点と一致しておらず、誘導起電力EMFと磁極位置検出信号θ’との間には位相差がある。
しかしながら、図2に示した時刻tは図1における位相差推定手段302によって検出可能であり、また、磁極位置検出信号θ’が0°になる時刻tも検出可能である。このため、位相差推定手段302は、誘導起電力EMFと磁極位置検出信号θ’との位相差に相当する図2の時間Δtを求めることができ、この時間Δtから位相差Δθを換算可能である。
On the other hand, the magnetic pole position detection signal θ ′ output from the magnetic pole position sensor 201 generally has a position where the electrical angle of 0 ° does not coincide with the zero cross point of the induced electromotive force EMF as shown in FIG. There is a phase difference between the power EMF and the magnetic pole position detection signal θ ′.
However, the time t 3 when shown in FIG. 2 is detectable by the phase difference estimating means 302 in FIG. 1, also the time t 2 when the magnetic pole position detection signal theta 'becomes 0 ° is also detectable. Therefore, the phase difference estimating means 302 can obtain the time Δt in FIG. 2 corresponding to the phase difference between the induced electromotive force EMF and the magnetic pole position detection signal θ ′, and the phase difference Δθ can be converted from the time Δt. is there.

位相差推定手段302により求められた位相差Δθは図1の位相補正手段303に入力されており、位相差Δθを用いて磁極位置検出信号θ’の位相を補正すれば、図2に破線で示すように誤差補正後の正規の磁極位置検出信号θを得ることができる。
電流制御手段304では、この磁極位置検出信号θを磁極位置の初期値として、所定のトルク指令に基づいてインバータ101のスイッチング素子の駆動信号を生成し、出力する。
なお、推定した位相差Δθを位相補正手段303内のメモリに記憶させておき、通常運転時には、メモリ内の位相差Δθにより磁極位置検出信号θ’を補正して正規の磁極位置検出信号θを得ることにより、通常運転時には位相差推定手段302の動作を停止させることができる。
つまり、本発明に係る初期磁極位置調整動作は、インバータ101と電動機200とを接続した後で、通常運転を行う前に一度実施すればよい。
The phase difference Δθ obtained by the phase difference estimation means 302 is input to the phase correction means 303 in FIG. 1, and if the phase of the magnetic pole position detection signal θ ′ is corrected using the phase difference Δθ, a broken line in FIG. As shown, a normal magnetic pole position detection signal θ after error correction can be obtained.
The current control means 304 uses the magnetic pole position detection signal θ as an initial value of the magnetic pole position to generate and output a drive signal for the switching element of the inverter 101 based on a predetermined torque command.
The estimated phase difference Δθ is stored in the memory in the phase correction unit 303, and during normal operation, the magnetic pole position detection signal θ ′ is corrected by the phase difference Δθ in the memory to obtain the normal magnetic pole position detection signal θ. As a result, the operation of the phase difference estimating means 302 can be stopped during normal operation.
That is, the initial magnetic pole position adjusting operation according to the present invention may be performed once after the inverter 101 and the electric motor 200 are connected and before the normal operation is performed.

図3は、上述した一連の磁極位置調整動作を示すフローチャートであり、電動機200の空転開始(ステップS1)、インバータ101のスイッチング素子の動作による固定子巻線の短絡(ステップS2)、電流iの検出による誘導起電力EMFの位相推定、及び、誘導起電力EMFと磁極位置検出信号θ’との位相差Δθの検出(ステップS3)、位相差Δθを用いた磁極位置検出信号θ’の位相補正(ステップS4)により、起動時の磁極位置調整動作が完了するものである。   FIG. 3 is a flowchart showing the above-described series of magnetic pole position adjusting operations. The idling start of the electric motor 200 (step S1), the stator winding short-circuited by the operation of the switching element of the inverter 101 (step S2), Phase estimation of induced electromotive force EMF by detection, detection of phase difference Δθ between induced electromotive force EMF and magnetic pole position detection signal θ ′ (step S3), phase correction of magnetic pole position detection signal θ ′ using phase difference Δθ (Step S4) completes the magnetic pole position adjusting operation at the time of activation.

次に、請求項3に相当する本発明の第2実施形態を説明する。
この第2実施形態では、IPMモータのように突極性を有する同期電動機において回転子に磁気異方性があることに着目して磁極位置検出信号θ’の位相差を検出するものである。
図4は、IPMモータの回転子の一例を示したものであり、205は回転子、206は回転子コア、207は永久磁石を示す。
Next, a second embodiment of the present invention corresponding to claim 3 will be described.
In the second embodiment, the phase difference of the magnetic pole position detection signal θ ′ is detected by paying attention to the fact that the rotor has magnetic anisotropy in a synchronous motor having saliency, such as an IPM motor.
FIG. 4 shows an example of the rotor of the IPM motor, where 205 is a rotor, 206 is a rotor core, and 207 is a permanent magnet.

図4において、回転子205の位置(磁極位置)に応じてインダクタンス値が異なる、すなわち回転子が突極性を有するため、固定子巻線のインダクタンスLは、例えば図5(a)に示すように変化する。更に、回転子205における位相角θのある値(方向)に対して、固定子巻線に電流を流して直流的な起磁力を発生させた場合、インダクタンスLは図5(a)に示した値から変化し、その変化率は図5(b)のようになる。
すなわち、回転子205が静止した状態で、固定子巻線に交流電圧を印加した場合に流れる電流は、図5(a)に示した突極性によるインダクタンスの回転子位置依存性に従った値になるため、この固定子巻線電流を観測することにより、図5(a)に示したように回転子位置を割り出すことができる。
In FIG. 4, the inductance value differs depending on the position (magnetic pole position) of the rotor 205, that is, the rotor has saliency, so that the inductance L of the stator winding is, for example, as shown in FIG. Change. Further, when a direct current magnetomotive force is generated by passing a current through the stator winding for a certain value (direction) of the phase angle θ r in the rotor 205, the inductance L is shown in FIG. The rate of change is as shown in FIG.
That is, the current that flows when an AC voltage is applied to the stator winding while the rotor 205 is stationary is a value according to the rotor position dependency of the inductance due to the saliency shown in FIG. Therefore, by observing this stator winding current, the rotor position can be determined as shown in FIG.

ただし、図5(a)から明らかなごとく、突極性は電気角1周期に対して2周期のインダクタンスの変化を生じさせるため、これだけでは、回転子位置として電気角で180度離れた2箇所の可能性があり、回転子位置を特定できない。そこで、図5(b)に示した特性を利用して回転子位置を特定する。
すなわち、大電流が流れるような電圧をインバータ101から電動機200の固定子巻線に印加した場合に、固定子巻線を流れる電流によって発生する磁束と、永久磁石207によって発生する磁束との方向の関係により、インダクタンスLが異なる。例えば、固定子巻線の電流による磁束と永久磁石207による磁束とが同方向の場合には、磁束が強め合って固定子及び回転子の鉄心が磁気飽和する方向に動作点が移り、インダクタンスLは小さくなる。逆に、固定子巻線の電流による磁束と永久磁石207による磁束とが逆方向の場合には、磁束が弱め合うため鉄心の動作点は磁気飽和しにくい方向に移り、インダクタンスLは大きくなる。
このため、ある大きさの電圧を固定子巻線に印加した場合、この固定子巻線を流れる電流は、回転子205の位置を反映させたものとなる。従って、この電流を観測することにより、磁極位置のずれ(図4における電気角0°からの位相差θ)を求めることができる。なお、この位相差θは、図1における位相差Δθに相当する。
よって、巻線電流の変化を観測することにより、前記位相差θだけでなく、その位相差θを持つ磁極の極性も知ることができる。
However, as apparent from FIG. 5 (a), the saliency causes an inductance change of two periods with respect to one period of the electrical angle. There is a possibility that the rotor position cannot be specified. Therefore, the rotor position is specified using the characteristics shown in FIG.
That is, when a voltage at which a large current flows is applied from the inverter 101 to the stator winding of the electric motor 200, the direction of the magnetic flux generated by the current flowing through the stator winding and the magnetic flux generated by the permanent magnet 207 is changed. The inductance L varies depending on the relationship. For example, when the magnetic flux due to the current of the stator winding and the magnetic flux due to the permanent magnet 207 are in the same direction, the operating point shifts in the direction in which the magnetic flux is intensified and the stator and rotor cores are magnetically saturated, and the inductance L Becomes smaller. On the other hand, when the magnetic flux generated by the stator winding current and the magnetic flux generated by the permanent magnet 207 are in opposite directions, the magnetic flux weakens each other, so that the operating point of the iron core moves in a direction in which magnetic saturation is difficult to occur, and the inductance L increases.
For this reason, when a voltage of a certain magnitude is applied to the stator winding, the current flowing through the stator winding reflects the position of the rotor 205. Therefore, by observing this current, it is possible to determine the deviation of the magnetic pole position (phase difference θ r from electrical angle 0 ° in FIG. 4). This phase difference θ r corresponds to the phase difference Δθ in FIG.
Therefore, by observing the change in the winding current, not only the phase difference θ r but also the polarity of the magnetic pole having the phase difference θ r can be known.

なお、上述した磁極位置や界磁の極性検出原理は、例えば、渡辺博巳ほか2名による「永久磁石界磁同期電動機の回転子位置と速度のセンサレス検出の一方法」(電気学会論文誌D,110巻11号,平成2年11月)等に記載されている。   The magnetic pole position and field polarity detection principle described above is, for example, “One Method for Sensorless Detection of Rotor Position and Speed of Permanent Magnet Field Synchronous Motor” by Hiroaki Watanabe et al. 110, No. 11, November 1990).

図6は、この第2実施形態の主要部を示すブロック図である。図1との主な相違点は、電動機200を空転させずに静止させた状態で、位相差推定手段302Aが前述の磁気異方性に基づいて位相差を推定すること、位相差推定手段302Aが磁極位置検出信号θ’を入力情報として用いないこと、電流制御手段304が巻線短絡指令を入力情報として用いず、静止した電動機200の固定子巻線に所定の電流を流すようにインバータ101のスイッチング素子を制御すること等である。
なお、位相補正手段303により磁極位置検出信号θ’を位相差θにより補正した後の動作は、第1実施形態と同様である。
FIG. 6 is a block diagram showing the main part of the second embodiment. The main difference from FIG. 1 is that the phase difference estimating means 302A estimates the phase difference based on the magnetic anisotropy while the electric motor 200 is stationary without idling, and the phase difference estimating means 302A. Does not use the magnetic pole position detection signal θ ′ as input information, and the current control means 304 does not use the winding short-circuit command as input information, so that a predetermined current flows through the stator winding of the stationary electric motor 200. For example, the switching element is controlled.
The operation after corrected by the phase difference theta r a magnetic pole position detection signal theta 'by the phase correcting unit 303 is similar to the first embodiment.

上記の説明は、請求項3に係る発明の実施形態として、固定子巻線に所定の大きさの電圧を印加した結果流れる電流を観測するものであるが、請求項4に記載するように、電動機を静止させた状態でインバータの半導体スイッチング素子を制御し、固定子巻線に所定の大きさの電流を通流させた場合の印加電圧を観測することによっても、請求項3と同様の原理に基づいて初期磁極位置を推定することができる。
すなわち、インバータが出力電圧検出器を備えていなくても、電流制御のフィードバックループを組んでおけば、固定子巻線に所定の電流を流すための印加電圧の指令値は決まる。この電圧指令値は、突極性に起因するインダクタンスに依存した値、言い換えれば磁極位置に依存した値になるはずであり、インダクタンスが大きければ大きくなり、インダクタンスが小さければ小さくなるようにフィードバック作用により自動的に決まるものである。従って、このことを利用すれば、所定の大きさの電流通流時における固定子巻線に印加される電圧の変化を観測することにより、前記同様に、位相差θ及びその位相差θを持つ磁極の極性を知ることができる。
なお、上述した磁極位置推定方法は、例えば、山田和範ほか3名による「センサレス突極形PMモータの静止時における磁極位置推定法の提案」(平成7年電気学会産業応用部門全国大会講演論文集,p.187〜p.190,平成7年)等にも記載されている。
In the above description, as an embodiment of the invention according to claim 3, a current flowing as a result of applying a voltage of a predetermined magnitude to the stator winding is observed. As described in claim 4, The same principle as in claim 3 is also obtained by controlling the semiconductor switching element of the inverter while the motor is stationary and observing the applied voltage when a current of a predetermined magnitude is passed through the stator winding. Can be used to estimate the initial magnetic pole position.
That is, even if the inverter does not include an output voltage detector, if a current control feedback loop is provided, the command value of the applied voltage for allowing a predetermined current to flow through the stator winding is determined. This voltage command value should be a value that depends on the inductance due to the saliency, in other words, a value that depends on the magnetic pole position, and is automatically increased by a feedback action so that it increases as the inductance increases and decreases as the inductance decreases. It is determined by the way. Therefore, if this is used, the phase difference θ r and its phase difference θ r are similarly observed by observing the change in the voltage applied to the stator winding when a predetermined amount of current flows. The polarity of the magnetic pole with
The magnetic pole position estimation method described above is, for example, “Proposal of magnetic pole position estimation method when sensorless salient pole type PM motor is stationary” by Kazunori Yamada and others (Proceedings of National Conference of Industrial Applications Division, 1995 IEEJ) , P.187 to p.190, 1995).

以上のように、各実施形態によれば、出力電圧検出器を持たない比較的安価なインバータシステムにより永久磁石同期電動機を駆動する場合でも、磁極位置センサの位置ずれ補正を容易に行うことができる。   As described above, according to each embodiment, even when the permanent magnet synchronous motor is driven by a relatively inexpensive inverter system that does not have an output voltage detector, the positional deviation correction of the magnetic pole position sensor can be easily performed. .

101:インバータ
102:直流電源
200:永久磁石同期電動機
201:磁極位置センサ
205:回転子
206:回転子コア
207:永久磁石
301:電流検出器
302,302A:位相差推定手段
303:位相補正手段
304:電流制御手段
DESCRIPTION OF SYMBOLS 101: Inverter 102: DC power supply 200: Permanent magnet synchronous motor 201: Magnetic pole position sensor 205: Rotor 206: Rotor core 207: Permanent magnet 301: Current detector 302, 302A: Phase difference estimation means 303: Phase correction means 304 : Current control means

Claims (4)

インバータにより駆動される永久磁石同期電動機の起動時に、前記電動機の誘導起電力と磁極位置センサによる磁極位置検出信号との位相差を推定し、この位相差により補正した前記磁極位置検出信号を用いて前記インバータを制御するための初期磁極位置調整装置において、
前記電動機の固定子巻線を流れる電流を検出する電流検出手段と、
前記電流検出手段により検出した電流を用いて前記位相差を推定する位相差推定手段と、
前記位相差推定手段により推定した位相差を用いて前記磁極位置検出信号を補正する手段と、
を備えたことを特徴とする永久磁石同期電動機の初期磁極位置調整装置。
When starting the permanent magnet synchronous motor driven by the inverter, the phase difference between the induced electromotive force of the motor and the magnetic pole position detection signal by the magnetic pole position sensor is estimated, and the magnetic pole position detection signal corrected by this phase difference is used. In the initial magnetic pole position adjusting device for controlling the inverter,
Current detecting means for detecting a current flowing through the stator winding of the motor;
Phase difference estimation means for estimating the phase difference using the current detected by the current detection means;
Means for correcting the magnetic pole position detection signal using the phase difference estimated by the phase difference estimation means;
An initial magnetic pole position adjusting device for a permanent magnet synchronous motor.
請求項1に記載した初期磁極位置調整装置において、
前記位相差推定手段は、
前記電動機を空転させた状態で前記インバータの半導体スイッチング素子を制御して前記電動機の固定子巻線を短絡させ、前記固定子巻線に発生する無負荷誘導起電力によって流れる巻線電流から前記位相差を推定することを特徴とする永久磁石同期電動機の初期磁極位置調整装置。
In the initial magnetic pole position adjusting device according to claim 1,
The phase difference estimating means includes
In a state where the electric motor is idling, the stator switching of the electric motor is short-circuited by controlling the semiconductor switching element of the inverter, and the position from the winding current flowing by the no-load induced electromotive force generated in the stator winding is reduced. An initial magnetic pole position adjusting device for a permanent magnet synchronous motor characterized by estimating a phase difference.
請求項1に記載した初期磁極位置調整装置において、
前記位相差推定手段は、
前記電動機を静止させた状態で前記インバータの半導体スイッチング素子を制御して前記電動機の固定子巻線に所定の大きさの電圧を印加し、そのときに流れる巻線電流が前記電動機の回転子の磁気異方性に起因して変化することに基づいて前記位相差を推定することを特徴とする永久磁石同期電動機の初期磁極位置調整装置。
In the initial magnetic pole position adjusting device according to claim 1,
The phase difference estimating means includes
A voltage of a predetermined magnitude is applied to the stator winding of the motor by controlling the semiconductor switching element of the inverter while the motor is stationary, and a winding current flowing at that time is applied to the rotor of the motor. An initial magnetic pole position adjusting device for a permanent magnet synchronous motor, wherein the phase difference is estimated based on a change due to magnetic anisotropy.
インバータにより駆動される永久磁石同期電動機の起動時に、前記電動機の誘導起電力と磁極位置センサによる磁極位置検出信号との位相差を推定する位相差推定手段と、前記位相差推定手段により推定した位相差を用いて前記磁極位置検出信号を補正する手段と、 を備え、補正後の前記磁極位置検出信号を用いて前記インバータを制御するための初期磁極位置調整装置において、
前記位相差推定手段は、
前記電動機を静止させた状態で前記インバータの半導体スイッチング素子を制御して前記電動機の固定子巻線に所定の大きさの電流を通流し、そのときに前記固定子巻線に印加される電圧が前記電動機の回転子の磁気異方性に起因して変化することに基づいて前記位相差を推定することを特徴とする永久磁石同期電動機の初期磁極位置調整装置。
A phase difference estimating means for estimating a phase difference between an induced electromotive force of the motor and a magnetic pole position detection signal from the magnetic pole position sensor at the time of starting a permanent magnet synchronous motor driven by an inverter; and a position estimated by the phase difference estimating means. Means for correcting the magnetic pole position detection signal using a phase difference; and an initial magnetic pole position adjusting device for controlling the inverter using the magnetic pole position detection signal after correction,
The phase difference estimating means includes
While the motor is stationary, the semiconductor switching element of the inverter is controlled to pass a predetermined amount of current through the stator winding of the motor. At that time, the voltage applied to the stator winding is An initial magnetic pole position adjusting device for a permanent magnet synchronous motor, wherein the phase difference is estimated based on a change due to magnetic anisotropy of a rotor of the motor.
JP2011154379A 2011-07-13 2011-07-13 Initial magnetic pole position adjustment device for permanent magnet synchronous motor Pending JP2013021843A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011154379A JP2013021843A (en) 2011-07-13 2011-07-13 Initial magnetic pole position adjustment device for permanent magnet synchronous motor
CN2012102300393A CN102882451A (en) 2011-07-13 2012-07-04 Initial pole position adjusting device of permanent magnet synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011154379A JP2013021843A (en) 2011-07-13 2011-07-13 Initial magnetic pole position adjustment device for permanent magnet synchronous motor

Publications (1)

Publication Number Publication Date
JP2013021843A true JP2013021843A (en) 2013-01-31

Family

ID=47483653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011154379A Pending JP2013021843A (en) 2011-07-13 2011-07-13 Initial magnetic pole position adjustment device for permanent magnet synchronous motor

Country Status (2)

Country Link
JP (1) JP2013021843A (en)
CN (1) CN102882451A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401504A (en) * 2013-08-06 2013-11-20 中国科学院光电技术研究所 Method of correcting initial position of rotor of permanent magnet synchronous motor
CN104104288A (en) * 2014-07-04 2014-10-15 中国西电电气股份有限公司 Detection device and processing method of high-speed motor rotor position
WO2019207754A1 (en) * 2018-04-27 2019-10-31 三菱電機株式会社 Electric motor control device
EP3736969A1 (en) * 2019-05-07 2020-11-11 Bombardier Transportation GmbH A method of determining the position of a freely rotating rotor in a permanent magnet motor, and a control ciruit and a system therefore
WO2022009599A1 (en) * 2020-07-08 2022-01-13 日立Astemo株式会社 Motor control device and motor control method
CN114221588A (en) * 2021-11-03 2022-03-22 中冶南方(武汉)自动化有限公司 Method and system for identifying initial phase of permanent magnet synchronous motor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104518714A (en) 2013-10-08 2015-04-15 英飞凌科技股份有限公司 Resolver calibration for permanent magnet synchronous motor
JP6165877B2 (en) * 2013-11-22 2017-07-19 株式会社日立産機システム Power converter and method for controlling permanent magnet synchronous motor
CN104767456A (en) * 2015-04-20 2015-07-08 上海力信电气技术有限公司 Method for correcting installation errors of rotary transformer of permanent magnet synchronous driving motor
CN106787995B (en) * 2017-01-22 2020-02-28 精进电动科技股份有限公司 Method for testing initial position angle of motor rotor
CN109495030A (en) * 2018-10-22 2019-03-19 深圳市汇川技术股份有限公司 Permanent magnet synchronous motor rotating-speed tracking method, equipment and computer readable storage medium
CN110932637B (en) * 2019-12-27 2021-05-18 浙江大学台州研究院 Method for identifying rotor position of permanent magnet synchronous motor in static state

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1175394A (en) * 1997-06-30 1999-03-16 Fuji Electric Co Ltd Ac dynamoelectric machine power converter
JP2001157481A (en) * 1999-11-29 2001-06-08 Nissan Motor Co Ltd Phase angle detector for synchronous motor
JP2001309694A (en) * 2000-04-19 2001-11-02 Hitachi Building Systems Co Ltd Regulation method of permanent magnet synchronous motor for elevator and its device
JP2007307940A (en) * 2006-05-16 2007-11-29 Jtekt Corp Electric power steering device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002325493A (en) * 2001-04-27 2002-11-08 Hitachi Ltd Motor controller
ITTO20040399A1 (en) * 2004-06-16 2004-09-16 Univ Catania CONTROL SYSTEM AND METHOD FOR ELECTRIC DRIVES WITH AC MOTORS.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1175394A (en) * 1997-06-30 1999-03-16 Fuji Electric Co Ltd Ac dynamoelectric machine power converter
JP2001157481A (en) * 1999-11-29 2001-06-08 Nissan Motor Co Ltd Phase angle detector for synchronous motor
JP2001309694A (en) * 2000-04-19 2001-11-02 Hitachi Building Systems Co Ltd Regulation method of permanent magnet synchronous motor for elevator and its device
JP2007307940A (en) * 2006-05-16 2007-11-29 Jtekt Corp Electric power steering device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401504A (en) * 2013-08-06 2013-11-20 中国科学院光电技术研究所 Method of correcting initial position of rotor of permanent magnet synchronous motor
CN104104288A (en) * 2014-07-04 2014-10-15 中国西电电气股份有限公司 Detection device and processing method of high-speed motor rotor position
WO2019207754A1 (en) * 2018-04-27 2019-10-31 三菱電機株式会社 Electric motor control device
JPWO2019207754A1 (en) * 2018-04-27 2020-12-03 三菱電機株式会社 Electric motor control device
US11251727B2 (en) 2018-04-27 2022-02-15 Mitsubishi Electric Corporation Electric motor control device
EP3736969A1 (en) * 2019-05-07 2020-11-11 Bombardier Transportation GmbH A method of determining the position of a freely rotating rotor in a permanent magnet motor, and a control ciruit and a system therefore
US11228264B2 (en) 2019-05-07 2022-01-18 Bombardier Transportation Gmbh Method of determining the position of a freely rotating rotor in a permanent magnet motor, and a control ciruit and a system therefor
WO2022009599A1 (en) * 2020-07-08 2022-01-13 日立Astemo株式会社 Motor control device and motor control method
CN114221588A (en) * 2021-11-03 2022-03-22 中冶南方(武汉)自动化有限公司 Method and system for identifying initial phase of permanent magnet synchronous motor
CN114221588B (en) * 2021-11-03 2023-08-29 中冶南方(武汉)自动化有限公司 Method and system for identifying initial phase of permanent magnet synchronous motor

Also Published As

Publication number Publication date
CN102882451A (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP2013021843A (en) Initial magnetic pole position adjustment device for permanent magnet synchronous motor
JP5011771B2 (en) Synchronous motor drive
US20070296371A1 (en) Position sensorless control apparatus for synchronous motor
JP2014513911A (en) Method and apparatus for controlling electrical equipment
JPWO2008120737A1 (en) Brushless motor, brushless motor control system, and brushless motor control method
JP5305933B2 (en) Motor drive system
WO2007114058A1 (en) Permanent magnet synchronization motor magnetic pole position detecting method
US10879751B2 (en) Rotating electric machine
JP2007068354A (en) Controller of permanent magnet-type rotary electric machine
JP2019208329A (en) Sensorless vector control device and sensorless vector control method
JP2007282367A (en) Motor driving controller
JP2019033582A (en) Control device and control method
JP2012165585A (en) Synchronous motor drive system
JP2013220007A (en) Control method of sensorless motor, control device of sensorless motor and electric device
JP5405224B2 (en) Motor driving device and method for determining relative position of rotor provided in motor
JP3469218B2 (en) Motor control device
JP2010268599A (en) Control device for permanent magnet motor
JP3557958B2 (en) Synchronous motor control device and control method
JP2007282319A (en) Synchronous motor control device
JP5426221B2 (en) Current detecting device in variable current path and control method of variable magnetic flux motor
WO2021200389A1 (en) Motor control device, motor system, and motor control method
JP5257661B2 (en) Synchronous motor control method and control apparatus
JP5923437B2 (en) Synchronous motor drive system
JP4168287B2 (en) Brushless DC motor drive device and synchronous operation pull-in method
JP7108834B2 (en) power generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150908