JP2013003083A - Steam separator and boiling-water reactor with the same - Google Patents

Steam separator and boiling-water reactor with the same Download PDF

Info

Publication number
JP2013003083A
JP2013003083A JP2011137237A JP2011137237A JP2013003083A JP 2013003083 A JP2013003083 A JP 2013003083A JP 2011137237 A JP2011137237 A JP 2011137237A JP 2011137237 A JP2011137237 A JP 2011137237A JP 2013003083 A JP2013003083 A JP 2013003083A
Authority
JP
Japan
Prior art keywords
stage
steam
flow path
inner cylinder
diffuser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011137237A
Other languages
Japanese (ja)
Inventor
Takashi Sumikawa
隆 住川
Naoyuki Ishida
直行 石田
Kenichi Katono
健一 上遠野
Hisamichi Inoue
久道 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2011137237A priority Critical patent/JP2013003083A/en
Publication of JP2013003083A publication Critical patent/JP2013003083A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Separating Particles In Gases By Inertia (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce pressure loss and a liquid film quantity increasing a carryover without increasing a carryunder.SOLUTION: A steam separator 54 has a swirler including a hub 2 which is provided in the axis center of a cylindrical body forming a flow passage of a gas-liquid two-phase flow W from below to above, and a plurality of swivel blades 3 fitted around the hub 2 radially so as to face the cylindrical body, and also having an inner edge fixed to the hub 2 in radial directions of the swivel blades 3 and an outer edge fixed to an inner wall of the cylindrical body in the radial directions of the swivel blades 3. The steam separator 54 is provided with a hole or a slit 11 including in its opening a nodal line of a swivel blade surface 13 and an inner wall surface of a diffuser 9 or a nodal line of the swivel blade surface and an inner wall surface of a first-stage inner cylinder.

Description

本発明は気水分離器及びそれを備えた沸騰水型原子炉に係り、特に、水と炉心で発生した蒸気を分離するために、炉心上部に配置されているものに好適な気水分離器及びそれを備えた沸騰水型原子炉に関する。   The present invention relates to a steam / water separator and a boiling water reactor equipped with the steam / water separator, and more particularly to a steam / water separator suitable for an upper part of a core for separating water and steam generated in the core. And a boiling water reactor including the same.

一般的な沸騰水型原子炉には、水と炉心で発生した蒸気を分離するために、炉心上部に気水分離器が設置されている。この気水分離器内では、旋回羽根とハブから構成されるスワラによって水と蒸気の気液二相流に旋回速度が与えられ、遠心力により気液密度差を利用して水と蒸気が分離される。   In general boiling water reactors, a steam separator is installed in the upper part of the core in order to separate water and steam generated in the core. In this steam separator, swirling speed is given to the two-phase flow of water and steam by a swirler composed of swirling blades and a hub, and water and steam are separated by utilizing the gas-liquid density difference by centrifugal force. Is done.

分離された水は、気水分離器の下方から排水されてダウンカマに戻り、再循環ポンプにより再び炉心へ送られる。一方、分離された蒸気は、蒸気乾燥器を通して更に湿分が取り除かれた後、タービンへ送られる。つまり、炉心で発生させた蒸気から極力湿分を取り除くことにより、発電効率を向上させている。   The separated water is drained from below the steam separator, returns to the downcomer, and is sent to the core again by the recirculation pump. On the other hand, the separated steam is sent to a turbine after moisture is further removed through a steam dryer. That is, power generation efficiency is improved by removing moisture from the steam generated in the core as much as possible.

ところで、気水分離器の性能は、内部を通る気液二相流の圧力損失と蒸気中に含まれる水分を取り除く気水分離効率で表される。この気水分離効率は、気水分離器を通過した後の蒸気中に含まれる水分の重量比で表されるキャリーオーバ、及び蒸気から分離した水分中に含まれる蒸気量の重量比として表されるキャリーアンダで評価される。   By the way, the performance of the steam separator is expressed by the pressure loss of the gas-liquid two-phase flow passing through the inside and the steam-water separation efficiency that removes moisture contained in the steam. This steam-water separation efficiency is expressed as a carry-over expressed by the weight ratio of the moisture contained in the steam after passing through the steam-water separator, and as a weight ratio of the steam contained in the moisture separated from the steam. It is evaluated by carry under.

図1及び図2は、気水分離器を構成するスワラ部分とその周辺を拡大して示したものである。   FIG.1 and FIG.2 expands and shows the swirler part which comprises a steam-water separator, and its periphery.

図1及び図2において、ハブ2の周囲には、旋回羽根3が複数枚設置されてスワラ80を形成している。このスワラ80は、テーパ状の拡大管、即ちスタンドパイプ1の上側端面の流路断面積よりも上方に向けて流路断面積が拡大する拡大管であるディフューザ9の内壁面に固定されている。そして、下方に位置する炉心からの水と蒸気の気液二相流Wは、スタンドパイプ1から進入してスワラ80に到達すると、旋回羽根3により周方向に旋回速度を与えられ、旋回流となった気液二相流Wは、水と蒸気の密度差により遠心分離される。蒸気に比べ密度の大きい水は、第一段内筒4内を径方向に移動し第一段内筒4の内壁面に液膜30を形成する。   1 and 2, a plurality of swirl blades 3 are installed around the hub 2 to form a swirler 80. The swirler 80 is fixed to the inner wall surface of the diffuser 9 which is a tapered expansion pipe, that is, an expansion pipe whose flow path cross-sectional area expands upward from the flow path cross-sectional area of the upper end surface of the stand pipe 1. . Then, when the gas-liquid two-phase flow W of water and steam from the core located below enters the swirler 80 after entering from the stand pipe 1, the swirl blade 3 gives a swirl speed in the circumferential direction, The gas-liquid two-phase flow W thus formed is centrifuged by the density difference between water and steam. The water having a higher density than the steam moves in the radial direction in the first stage inner cylinder 4 and forms a liquid film 30 on the inner wall surface of the first stage inner cylinder 4.

液膜30は、第一段内筒4の内壁面上を旋回しながら上昇し、その大部分は第一段ピックオフリング6と第一段環状板7によって第一段排水流路12に導かれ、分離された水として気水分離器54の下方から排水されてダウンカマ(図示せず)に戻る。   The liquid film 30 rises while turning on the inner wall surface of the first stage inner cylinder 4, and most of the liquid film 30 is guided to the first stage drainage flow path 12 by the first stage pickoff ring 6 and the first stage annular plate 7. Then, the separated water is drained from below the steam separator 54 and returned to the downcomer (not shown).

この現象において、液膜30の量が多い場合、液膜30が第一段内筒4の内壁面上から第一ピックオフリング6、第一段環状板7を通り第一段排水流路12の長い距離を移動することに起因する圧力損失が大きい。更に、第一段内筒4の内壁上の液膜30から離脱する液滴31の量も増加することでキャリーオーバが増加し、気水分離性能を悪化させてしまうことになる。   In this phenomenon, when the amount of the liquid film 30 is large, the liquid film 30 passes from the inner wall surface of the first-stage inner cylinder 4 through the first pick-off ring 6 and the first-stage annular plate 7 to the first-stage drain passage 12. The pressure loss caused by moving over a long distance is large. Furthermore, the amount of the liquid droplets 31 separating from the liquid film 30 on the inner wall of the first stage inner cylinder 4 also increases, so that carry-over increases and the steam-water separation performance is deteriorated.

従って、第一段内筒4の内壁上の液膜30量を減少させれば、気水分離器54の圧力損失とキャリーオーバの両者を改善させることができる。   Therefore, if the amount of the liquid film 30 on the inner wall of the first stage inner cylinder 4 is reduced, both the pressure loss and carryover of the steam separator 54 can be improved.

この第一段内筒の内壁面上の液膜量を減少させる手段として、第一段内筒にスリットを設け、このスリットに液膜をフローディバイダで案内することが、特許文献1に記載されている。   Patent Document 1 describes that as a means for reducing the liquid film amount on the inner wall surface of the first stage inner cylinder, a slit is provided in the first stage inner cylinder and the liquid film is guided to the slit by a flow divider. ing.

図3に、特許文献1に記載されている第一段内筒にスリットを設けた気水分離器54を示す。該図に示す如く、特許文献1に記載されている気水分離器54は、第一段内筒4の途中に軸方向に延びるスリット10が、周方向に所定間隔をもって複数個設けられている。   FIG. 3 shows a steam / water separator 54 provided with a slit in the first stage inner cylinder described in Patent Document 1. As shown in the figure, the steam separator 54 described in Patent Document 1 is provided with a plurality of slits 10 extending in the axial direction in the middle of the first stage inner cylinder 4 at predetermined intervals in the circumferential direction. .

特開平4−315993JP-A-4-315993

しかしながら、特許文献1に記載されている気水分離器54では、第一段内筒4の内壁面に形成された液膜30は、スリット10によって第一段内筒4外に排出されるが、液膜30の厚さは一般的に薄いため、液膜30と同時に蒸気も経路34のように第一段内筒4外の第一段排水流路12に排出されてしまう可能性が高いため、気水分離器の圧力損失とキャリーオーバを増加させる液膜量を低減させると、キャリーアンダが増加する可能性が高いという問題があった。   However, in the steam / water separator 54 described in Patent Document 1, the liquid film 30 formed on the inner wall surface of the first stage inner cylinder 4 is discharged out of the first stage inner cylinder 4 by the slit 10. Since the thickness of the liquid film 30 is generally thin, there is a high possibility that the vapor is discharged to the first-stage drainage flow path 12 outside the first-stage inner cylinder 4 as in the path 34 at the same time as the liquid film 30. Therefore, if the amount of liquid film that increases the pressure loss and carryover of the steam separator is reduced, there is a problem that the carry under possibility is likely to increase.

本発明は上述の点に鑑みなされたもので、その目的とするところは、キャリーアンダを増加させずに圧力損失とキャリーオーバを増加させる液膜量を低減できる気水分離器及びこれを備えた沸騰水型原子炉を提供することにある。   The present invention has been made in view of the above-described points, and an object of the present invention is to provide a steam / water separator that can reduce the amount of liquid film that increases pressure loss and carryover without increasing carry under, and the same. It is to provide a boiling water reactor.

本発明の気水分離器は、上記目的を達成するために、気液二相流を下方から上方に向かって導くスタンドパイプと、該スタンドパイプの上側端面に連通して流路を形成し、前記上側端面の流路断面積よりも上方に向けて流路断面積を拡大するディフューザと、該ディフューザの上側端面に連通して流路を形成する第一段内筒と、該第一段内筒を同心円状に間隔を空けて囲んで環状の流路を形成する第一段外筒と、該第一段外筒の上側端面の内周縁を塞ぐと共に、前記第一段内筒よりも小径の円形孔を形成した第一段環状板と、該第一段環状板の前記円形孔を形成している内周縁から下方に向けて円筒状に起立させて前記円形孔を第二段内筒への流路として形成する第一段ピックオフリングとを少なくとも備え、気液二相流の流路の軸中心を通るハブ及び該ハブを中心にして放射状に取り付ける複数の旋回羽根を含み、前記旋回羽根の径方向に内側縁が前記ハブに固定されており、前記ディフューザの内壁又は前記第一段内筒の内壁に前記旋回羽根の径方向に外側縁が固定されているスワラを備えた気水分離器において、前記旋回羽根の表面と前記ディフューザの内壁面の交線を開口部に含む前記ディフューザ内壁面上に、穴又はスリットを設けるか、
又は前記旋回羽根の表面と前記第一段内筒の内壁面の交線を開口部に含む前記第一段内筒の内壁面上に、穴又はスリットを設けるか、
若しくは前記旋回羽根の前記ディフューザの内壁面と対向する端面の気液二層流が当接する側の辺を開口部に含む前記ディフューザの内壁面上に、穴又はスリットを設けたことを特徴とする。
In order to achieve the above object, the steam-water separator of the present invention forms a flow path in communication with a stand pipe that guides a gas-liquid two-phase flow from below to above, and an upper end face of the stand pipe, A diffuser that expands the cross-sectional area of the channel upward from the cross-sectional area of the channel on the upper end surface, a first-stage inner cylinder that communicates with the upper end surface of the diffuser to form a channel, A first-stage outer cylinder that concentrically surrounds the cylinder to form an annular flow path, closes the inner peripheral edge of the upper end surface of the first-stage outer cylinder, and has a smaller diameter than the first-stage inner cylinder A first-stage annular plate in which a circular hole is formed, and the circular hole in the second-stage inner cylinder by standing downward in a cylindrical shape from an inner peripheral edge forming the circular hole of the first-stage annular plate At least a first-stage pick-off ring formed as a flow path to the gas-liquid two-phase flow path. A hub, and a plurality of swirl vanes attached radially about the hub, the inner edge of the swirl vane being fixed in the radial direction to the hub, the inner wall of the diffuser or the inner wall of the first stage inner cylinder In the steam-water separator provided with a swirler whose outer edge is fixed in the radial direction of the swirl vane, on the inner wall surface of the diffuser including an intersection line between the surface of the swirl vane and the inner wall surface of the diffuser, Providing a hole or slit,
Or, a hole or a slit is provided on the inner wall surface of the first stage inner cylinder including the intersection line between the surface of the swirl blade and the inner wall surface of the first stage inner cylinder in the opening,
Alternatively, a hole or a slit is provided on the inner wall surface of the diffuser including the side on the side where the gas-liquid two-layer flow abuts the end surface of the swirl blade facing the inner wall surface of the diffuser. .

また、本発明の沸騰水型原子炉は、上記目的を達成するために、原子炉圧力容器と、該原子炉圧力容器内に設けられ、複数の燃料集合体が装荷された炉心と、該炉心が配置されるシュラウドと、前記原子炉圧力容器内の前記炉心の上方に複数並列に配置され、前記炉心で発生した蒸気と水の気水混合流を蒸気と水に分離する気水分離器と、該気水分離器の上方に位置し、該気水分離器で分離された湿り蒸気を乾燥させる蒸気乾燥器と、該蒸気乾燥器で乾燥された蒸気をタービンに供給する主蒸気配管と、前記原子炉圧力容器とシュラウド間に形成され、前記気水分離器で分離された水が循環するダウンカマと、該ダウンカマの下方に配置され、該ダウンカマ内の水を前記炉心に供給するインターナルポンプとを備えた沸騰水型原子炉において、前記気水分離器は、上記した構成の気水分離器であることを特徴とする。   In order to achieve the above object, the boiling water reactor of the present invention includes a reactor pressure vessel, a core provided in the reactor pressure vessel and loaded with a plurality of fuel assemblies, and the core. A plurality of shrouds disposed in parallel above the core in the reactor pressure vessel, and a steam / water separator that separates a steam / water mixture flow generated in the core into steam and water. A steam dryer located above the steam separator for drying the wet steam separated by the steam separator, and a main steam pipe for supplying steam dried by the steam dryer to the turbine; A downcomer formed between the reactor pressure vessel and the shroud, in which water separated by the steam separator is circulated, and an internal pump disposed below the downcoma and supplying water in the downcoma to the core In a boiling water reactor equipped with The steam separator is characterized by a steam separator having the above configuration.

上記のようにすることによって、キャリーアンダ増加の原因となる第一段排水流路への蒸気の混入を防ぎながら、圧力損失とキャリーオーバ増加の原因となる第一段内筒の内壁面上の液膜量を低減させることができる。   By doing the above, on the inner wall surface of the first-stage inner cylinder that causes pressure loss and carry-over increase, while preventing steam from entering the first-stage drainage flow path that causes an increase in carry-under. The amount of liquid film can be reduced.

本発明によれば、キャリーアンダを増加させずに圧力損失とキャリーオーバを増加させる液膜量を低減させることができる。   According to the present invention, it is possible to reduce the amount of liquid film that increases pressure loss and carryover without increasing carry under.

従来の気水分離器を示し、スワラ部分とその周辺を拡大して示す断面図である。It is sectional drawing which shows the conventional steam separator and expands and shows a swirler part and its periphery. 図1のA−A´線に沿う断面図である。It is sectional drawing which follows the AA 'line of FIG. 特許文献1に記載されている気水分離器を示し、スワラ部分とその周辺を拡大して示す断面図である。It is sectional drawing which shows the steam-water separator described in patent document 1, and expands and shows a swirler part and its periphery. 本発明の気水分離器が適用される沸騰水型原子炉の概略構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the boiling water reactor to which the steam-water separator of this invention is applied. 従来の気水分離器を示す縦断面図である。It is a longitudinal cross-sectional view which shows the conventional steam separator. 本発明の気水分離器の一実施例を示し、スワラ部分とその周辺を拡大して示す断面図である。It is sectional drawing which shows one Example of the steam-water separator of this invention, and expands and shows a swirler part and its periphery. 図6のB−B´線に沿う断面図である。It is sectional drawing which follows the BB 'line of FIG. 本発明の気水分離器の一実施例における液膜の厚さとディフューザ内壁面との関係を示す特性図である。It is a characteristic view which shows the relationship between the thickness of a liquid film and the diffuser inner wall surface in one Example of the steam-water separator of this invention. 図5のC−C´線に沿う断面図である。It is sectional drawing which follows the CC 'line of FIG. 本発明の気水分離器の一実施例における要点を説明するためのスワラ部分とその周辺を拡大して示す断面斜視図である。It is a cross-sectional perspective view which expands and shows the swirler part for demonstrating the principal point in one Example of the steam-water separator of this invention, and its periphery. 本発明の気水分離器の一実施例を、本発明に該当しない場合と比較して説明するためのスワラ部とその周辺の拡大断面図である。It is an expanded sectional view of the swirler part and its periphery for demonstrating one Example of the steam-water separator of this invention compared with the case where it does not correspond to this invention.

以下、図示した実施例に基づいて、本発明の気水分離器について説明する。尚、符号は、従来と同一のものについては同符号を使用する。   Hereinafter, based on the illustrated embodiment, the steam separator of the present invention will be described. Note that the same reference numerals are used for the same reference numerals.

先ず、本実施例の気水分離器を説明する前に、この気水分離器が適用される沸騰水型原子炉の概略の構造について、図4を用いて説明する。   First, before explaining the steam separator of the present embodiment, the schematic structure of a boiling water reactor to which the steam separator is applied will be described with reference to FIG.

図4は、改良型沸騰水型原子炉(以下、ABWRという)を示すものである。   FIG. 4 shows an improved boiling water reactor (hereinafter referred to as ABWR).

該図に示す如く、ABWRは、原子炉圧力容器51を有し、この原子炉圧力容器51の内部に炉心シュラウド50が設置され、複数の燃料集合体(図示せず)が装荷された炉心53が炉心シュラウド50内に配置されている。また、原子炉圧力容器51内の炉心53の上方には、炉心53で発生した蒸気と水の気水混合流を蒸気と水に分離する気水分離器54が複数並列に配置され、この気水分離器54の上方には、気水分離器54で分離された湿り蒸気を乾燥させる蒸気乾燥器55が配置されている。   As shown in the figure, ABWR has a reactor pressure vessel 51, a reactor core 53 in which a core shroud 50 is installed, and a plurality of fuel assemblies (not shown) are loaded. Is disposed in the core shroud 50. Further, above the core 53 in the reactor pressure vessel 51, a plurality of steam-water separators 54 for separating the steam-water mixed flow generated in the core 53 into steam and water are arranged in parallel. Above the water separator 54, a steam dryer 55 for drying the wet steam separated by the steam separator 54 is disposed.

更に、原子炉圧力容器51と炉心シュラウド50の間に形成される環状のダウンカマ52の下方には、炉心53に水を供給するためのインターナルポンプ57(再循環ポンプ)が配置されており、このインターナルポンプ57を運転することにより、ダウンカマ52にある冷却水が炉心へ供給される。   Further, an internal pump 57 (recirculation pump) for supplying water to the core 53 is disposed below the annular downcomer 52 formed between the reactor pressure vessel 51 and the core shroud 50. By operating this internal pump 57, the cooling water in the downcomer 52 is supplied to the core.

一方、炉心53では、核分裂により発生した熱で冷却水が沸騰し、蒸気と水の二相流状態となる。炉心53で発生した気液二相流は気水分離器54に流入し、気水分離器54内にあるスワラにより旋回速度が与えられ、この旋回速度により二相流に遠心力が作用し、水と蒸気の密度差により水と蒸気が分離される。気水分離器54を通過した二相流は、蒸気乾燥器55に流入し、更に湿分が取り除かれる。   On the other hand, in the core 53, the cooling water boils with the heat generated by the nuclear fission, resulting in a two-phase flow state of steam and water. The gas-liquid two-phase flow generated in the core 53 flows into the steam-water separator 54, and a swirl speed is given by the swirler in the steam-water separator 54, and centrifugal force acts on the two-phase flow by this swirl speed, Water and steam are separated due to the density difference between water and steam. The two-phase flow that has passed through the steam separator 54 flows into the steam dryer 55, and moisture is further removed.

このようにして、湿分0.1重量パーセント以下に抑えた蒸気を、主蒸気配管56を通してタービン(図示せず)に送り発電を行っている。   In this way, steam with a moisture content reduced to 0.1 weight percent or less is sent to a turbine (not shown) through the main steam pipe 56 to generate electricity.

図5を用いて気水分離器54の構成について詳しく説明する。   The configuration of the steam separator 54 will be described in detail with reference to FIG.

図5に示す如く、気水分離器54は、気液二相流を下方から上方に向かって導くスタンドパイプ1と、このスタンドパイプ1の上側端面に連通して流路を形成し、前記上側端面の流路断面積よりも上方に向けて流路断面積を拡大するディフューザ9と、このディフューザ9の上側端面に連通して流路を形成する第一段内筒4と、この第一段内筒4を同心円状に間隔を空けて囲んで環状の第一段排出流路12を形成する第一段外筒5と、この第一段外筒5の上側端面の内周縁を塞ぐと共に、第一段内筒4よりも小径の円形孔を形成した第一段環状板7と、第一段環状板7の前記円形孔を形成している内周縁から下方に向けて円筒状に起立させて前記円形孔を第二段内筒8への流路として形成する第一段ピックオフリング6と、第一段環状板7上に設置され流路を形成する第二段内筒8と、第二段内筒8を同心円状に間隔を空けて囲んで環状の第二段排出流路76を形成する第二段外筒70と、第二段外筒70の上側端面の内周縁を塞ぐと共に、前記第二段内筒8よりも小径の円形孔を形成した第二段環状板71と、第二段環状板71の前記円形孔を形成している内周縁から下方に向けて円筒状に起立させて前記円形孔を第三段内筒72への流路として形成する第二段ピックオフリング79と、第二段環状板71上に設置され流路を形成する前記第三段内筒72と、第三段内筒72を同心円状に間隔を空けて囲んで環状の第三段排出流路77を形成する第三段外筒74と、第三段外筒74の上側端面の内周縁を塞ぐと共に、前記第三段内筒72よりも小径の円形孔を形成した第三段環状板75と、第三段環状板75の前記円形孔を形成している内周縁から下方に向けて円筒状に起立させて前記円形孔を気水分離器出口流路として形成する第三段ピックオフリング73と、気液二相流の流路の軸中心を通るハブ2及びハブ2を中心にして放射状に取り付ける複数の旋回羽根3を含み、該旋回羽根3の径方向に内側縁がハブ2に固定されており、ディフューザ9の内壁又は第1段内筒4の内壁に旋回羽根3の径方向に外側縁が固定されているスワラ80とで構成されている。   As shown in FIG. 5, the steam separator 54 forms a flow path in communication with the stand pipe 1 that guides the gas-liquid two-phase flow from below to above and the upper end face of the stand pipe 1. A diffuser 9 that expands the flow path cross-sectional area upward from the flow path cross-sectional area of the end surface, a first stage inner cylinder 4 that communicates with the upper end face of the diffuser 9 to form a flow path, and the first stage A first stage outer cylinder 5 that forms an annular first stage discharge passage 12 by concentrically surrounding the inner cylinder 4 with a space therebetween, and the inner peripheral edge of the upper end surface of the first stage outer cylinder 5 are closed, A first-stage annular plate 7 in which a circular hole having a smaller diameter than the first-stage inner cylinder 4 is formed, and the first-stage annular plate 7 is erected in a cylindrical shape downward from the inner peripheral edge forming the circular hole. The first stage pick-off ring 6 that forms the circular hole as a flow path to the second stage inner cylinder 8, and the first stage annular plate 7 A second-stage inner cylinder 8 that is installed to form a flow path, and a second-stage outer cylinder 70 that concentrically surrounds the second-stage inner cylinder 8 to form an annular second-stage discharge flow path 76. The second stage annular plate 71 which closes the inner peripheral edge of the upper end surface of the second stage outer cylinder 70 and has a circular hole having a smaller diameter than the second stage inner cylinder 8, and the circular shape of the second stage annular plate 71. A second-stage pick-off ring 79 which forms a circular hole as a flow path to the third-stage inner cylinder 72 by standing upright from the inner peripheral edge forming the hole downward and a second-stage annular plate 71 The third-stage inner cylinder 72 that is installed above and forms a flow path, and the third-stage outer cylinder 72 that concentrically surrounds the third-stage inner cylinder 72 to form an annular third-stage discharge flow path 77. A third stage annular ring that closes the inner periphery of the upper end surface of the cylinder 74 and the third stage outer cylinder 74 and that has a circular hole with a smaller diameter than the third stage inner cylinder 72 75, and a third stage pick-off ring that forms a circular hole as a steam-water separator outlet channel by standing upward in a cylindrical shape from the inner peripheral edge forming the circular hole of the third stage annular plate 75 73, a hub 2 passing through the axial center of the gas-liquid two-phase flow channel, and a plurality of swirl vanes 3 that are attached radially about the hub 2, and the inner edges of the swirl vanes 3 are formed in the hub 2 in the radial direction. The swirler 80 is fixed to the inner wall of the diffuser 9 or the inner wall of the first stage inner cylinder 4 and has an outer edge fixed in the radial direction of the swirl vane 3.

上述のスワラ80は、ハブ2と呼ばれる円柱状の構造物に二相流に旋回速度を与えるための旋回羽根3が複数取り付けられており、旋回羽根3の外側縁は、ディフューザ9に固定されている。このため、スワラ80自身は回転することなく、スワラ80を通過した流体が回転するようになっている。   In the swirler 80 described above, a plurality of swirling blades 3 for giving a swirling speed to the two-phase flow are attached to a cylindrical structure called the hub 2, and the outer edge of the swirling blade 3 is fixed to the diffuser 9. Yes. For this reason, the swirler 80 itself does not rotate, but the fluid that has passed through the swirler 80 rotates.

また、旋回羽根3は、スワラ80の入口では鉛直方向と平行になっており、スワラ80の出口に向かって鉛直方向に対する角度を増していく。即ち、スワラ80の入口では鉛直方向と平行になっているが、そこからスワラ80の出口に向かって鉛直方向に対する角度を増しながら旋回できる形状になっている。旋回羽根3は、スワラ出口の旋回羽根3の鉛直方向に対する角度をスワラ出口角度と呼び、このスワラ出口角度が大きいほど、流体の大きな旋回速度を与えることができる。   In addition, the swirl blade 3 is parallel to the vertical direction at the entrance of the swirler 80, and increases in angle with respect to the vertical direction toward the exit of the swirler 80. That is, although it is parallel to the vertical direction at the entrance of the swirler 80, it can be turned while increasing the angle with respect to the vertical direction toward the exit of the swirler 80. In the swirl vane 3, the angle of the swirler outlet with respect to the vertical direction of the swirl vane 3 is referred to as a swirler exit angle, and the larger the swirler exit angle, the greater the swirl speed of the fluid.

このように構成される気水分離器54において、炉心53で発生した気液二相流Wは、スタンドパイプ1から進入し、ディフューザ9部分に設置されたスワラ80に至り、スワラ80において、気液二相流Wは旋回流となり、水と蒸気に遠心分離される。   In the gas / water separator 54 configured as described above, the gas-liquid two-phase flow W generated in the core 53 enters from the stand pipe 1 and reaches the swirler 80 installed in the diffuser 9 portion. The liquid two-phase flow W becomes a swirl flow and is centrifuged into water and steam.

また、気水分離器54では、スワラ80で気液分離された水分をダウンカマ52に戻すと共に、蒸気をタービンに導くための経路が、第三段内筒72と第三段外筒74により形成されている。   In the steam / water separator 54, the water separated by the swirler 80 is returned to the downcomer 52, and a path for guiding steam to the turbine is formed by the third-stage inner cylinder 72 and the third-stage outer cylinder 74. Has been.

更に、第一段内筒4の頂部と第一段環状板7の間には空隙が形成されており、また第一段内筒4と第一段外筒5の間の空間が第一段排水流路12を形成しているため、スワラ80により気液二相流Wから遠心分離され第一段内筒4の内壁に形成された液膜は、第一段内筒4の頂部に至り、第一段環状板7との間の空隙、第一段内筒4と第一段外筒5の間の第一段排水流路12を経由してダウンカマ52に戻される。   Further, a gap is formed between the top of the first stage inner cylinder 4 and the first stage annular plate 7, and the space between the first stage inner cylinder 4 and the first stage outer cylinder 5 is the first stage. Since the drainage flow path 12 is formed, the liquid film formed on the inner wall of the first stage inner cylinder 4 after being centrifuged from the gas-liquid two-phase flow W by the swirler 80 reaches the top of the first stage inner cylinder 4. The first stage annular plate 7 is returned to the downcomer 52 via the first stage drain pipe 12 between the first stage inner cylinder 4 and the first stage outer cylinder 5.

気水分離器54内における水と蒸気の動きについて、更に詳しく説明する。   The movement of water and steam in the steam separator 54 will be described in more detail.

図5に示した構成の気水分離器54に導入される炉心53からの気液二相流Wは、クオリティが約15%であり、スタンドパイプ1に流入した気液二相流Wは、スワラ80により旋回速度が与えられると、気液密度差による遠心力の違いにより水と蒸気は分離され、壁面へ移動した水は液膜を形成する。   The gas-liquid two-phase flow W from the core 53 introduced into the gas-water separator 54 having the configuration shown in FIG. 5 has a quality of about 15%, and the gas-liquid two-phase flow W flowing into the stand pipe 1 is When the swirl speed is given by the swirler 80, water and steam are separated by the difference in centrifugal force due to the gas-liquid density difference, and the water that has moved to the wall surface forms a liquid film.

第一段内筒4の壁面に形成された液膜は、第一段ピックオフリング6により、第一段内筒4と第一段外筒5で形成された第一段排水流路12を通って気水分離器54の外に排出される。第一段排水流路12から排出された水は、再びダウンカマ52に流入しインターナルポンプ57により炉心53に送られる。   The liquid film formed on the wall surface of the first stage inner cylinder 4 passes through the first stage drainage flow path 12 formed by the first stage inner cylinder 4 and the first stage outer cylinder 5 by the first stage pick-off ring 6. And discharged to the outside of the steam separator 54. The water discharged from the first-stage drain flow channel 12 flows again into the downcomer 52 and is sent to the core 53 by the internal pump 57.

一方、第一段排水流路12に巻き込まれた蒸気は、水と共にダウンカマ52、インターナルポンプ57に導かれ、インターナルポンプ57のインペラにキャビテーションなどの悪影響を及ぼすことがある。   On the other hand, the steam entrained in the first-stage drainage flow path 12 is guided to the downcomer 52 and the internal pump 57 together with the water, and the impeller of the internal pump 57 may have an adverse effect such as cavitation.

上記のような第一段排水流路12に巻き込まれる蒸気量を表す数値としてキャリーアンダがあり、気水分離器54から下方に排出された流体中に含まれる蒸気の重量率として定義され、気水分離性能を表す指標の一つとなっている。   Carry under is a numerical value representing the amount of steam entrained in the first stage drainage channel 12 as described above, and is defined as the weight ratio of steam contained in the fluid discharged downward from the steam separator 54, It is one of the indices that represent water separation performance.

蒸気質量流量をWg[kg/s]、液質量流量をWl[kg/s]とすると、キャリーアンダ(CU)は、次式で表される。
[数1]
CU=Wg/(Wg+Wl)×100(%) (1)
ところで、第一段内筒4で壁面に到達しなかった蒸気中の液滴は、第二段内筒8又は第三段内筒72で内筒壁面に到達し、第二段ピックオフリング79又は第三段ピックオフリング73から第二段排水流路76又は第三段排水流路77を通って気水分離器54の外へ排出される。第三段ピックオフリング73を通過するまでに、内筒壁面に到達しなった液滴は、そのまま蒸気とともに気水分離器出口78から蒸気乾燥器55に流出する。
When the vapor mass flow rate is Wg [kg / s] and the liquid mass flow rate is Wl [kg / s], the carry under (CU) is expressed by the following equation.
[Equation 1]
CU = Wg / (Wg + Wl) × 100 (%) (1)
By the way, the droplets in the vapor that have not reached the wall surface in the first stage inner cylinder 4 reach the inner cylinder wall surface in the second stage inner cylinder 8 or the third stage inner cylinder 72, and the second stage pick-off ring 79 or The water is discharged from the third stage pick-off ring 73 through the second stage drainage flow path 76 or the third stage drainage flow path 77 to the outside of the steam / water separator 54. The droplets that have not reached the wall surface of the inner cylinder before passing through the third stage pick-off ring 73 flow out from the steam / water separator outlet 78 to the steam dryer 55 together with the steam.

(1)式のキャリーアンダと並ぶ気水分離器の分離効率の指標として、キャリーオーバがあり、気水分離器から流出した流体中に含まれる液の重量率として定義され、蒸気質量流量をWg[kg/s]、液質量流量をWl[kg/s]とすると、キャリーオーバ(CO)は、次式で表される。
[数2]
CO=Wl/(Wg+Wl)×100(%) (2)
次に、ディフューザ9の内壁面又は第一段内筒4の内壁面に形成される液膜の厚さに周方向分布が生じるメカニズムを図1及び図2を用いて説明する。
(1) Carry-over as an index of the separation efficiency of the steam / water separator along with the carry under is defined as the weight ratio of the liquid contained in the fluid flowing out of the steam / water separator, and the steam mass flow rate is expressed as Wg. If [kg / s] and the liquid mass flow rate are Wl [kg / s], the carryover (CO) is expressed by the following equation.
[Equation 2]
CO = Wl / (Wg + Wl) × 100 (%) (2)
Next, the mechanism in which the circumferential distribution occurs in the thickness of the liquid film formed on the inner wall surface of the diffuser 9 or the inner wall surface of the first stage inner cylinder 4 will be described with reference to FIGS.

該図に示す如く、スタンドパイプ1内を上昇してきた気液二相流Wは、スワラ80に到達すると旋回羽根3の曲面13に衝突する。すると水と蒸気の衝突分離が起き、衝突した曲面13に液膜が形成されることが解析により確認されている。形成された液膜は、もともと持っていた上方向の速度成分のため旋回羽根3の曲面13上を上昇しながら、旋回羽根3の捻り構造より得られる遠心力により径方向に移動し、ディフューザ9の内壁面に達する。図2のディフューザ9の内壁面には液膜35が存在するが、旋回羽根3の曲面13付近では、曲面13上に形成される液膜が移動してくるので、厚くなる部分36が生じる。   As shown in the figure, when the gas-liquid two-phase flow W rising in the stand pipe 1 reaches the swirler 80, it collides with the curved surface 13 of the swirl vane 3. Then, the collision separation of water and steam occurs, and it has been confirmed by analysis that a liquid film is formed on the curved surface 13 that has collided. The formed liquid film moves in the radial direction due to the centrifugal force obtained from the twisted structure of the swirl vane 3 while rising on the curved surface 13 of the swirl vane 3 due to the upward velocity component originally possessed, and the diffuser 9 Reaches the inner wall of A liquid film 35 exists on the inner wall surface of the diffuser 9 in FIG. 2, but the liquid film formed on the curved surface 13 moves in the vicinity of the curved surface 13 of the swirl blade 3, so that a thickened portion 36 is generated.

上記のような原理でディフューザ9の内壁面又は第一段内筒4の内壁面に形成される液膜35の厚さは、周方向に分布を持ち、旋回羽根3の曲面13とディフューザ9の内壁面との交線14付近が特に厚くなる。液膜の厚い部分36は、スワラ80を通過直後も続きスジ状の液膜32になる。しかし、液膜30の厚さの周方向分布は、第一段内筒4の内壁面を上昇していくと共に平滑化され、スジ状の液膜32も消えていく。   The thickness of the liquid film 35 formed on the inner wall surface of the diffuser 9 or the inner wall surface of the first stage inner cylinder 4 according to the principle as described above has a distribution in the circumferential direction, and the curved surface 13 of the swirl vane 3 and the diffuser 9 The vicinity of the intersection line 14 with the inner wall surface is particularly thick. The thick portion 36 of the liquid film continues immediately after passing through the swirler 80 and becomes a streaky liquid film 32. However, the circumferential distribution of the thickness of the liquid film 30 rises as the inner wall surface of the first stage inner cylinder 4 is smoothed, and the streaky liquid film 32 disappears.

液膜厚さの周方向分布について、図8の数値解析結果を用いて更に詳しく説明する。   The distribution in the circumferential direction of the liquid film thickness will be described in more detail using the numerical analysis results of FIG.

図9は、図5に示す気水分離器54のC−C’線に沿う断面図であり、図8は、図9のディフューザ9の内壁面15上の液膜厚さの周方向分布である。図8の横軸は、図9におけるディフューザ9の内壁面15を表しており、図8と図9にある地点ア、イ、ウは互いに対応している。   9 is a cross-sectional view taken along the line CC ′ of the steam separator 54 shown in FIG. 5, and FIG. 8 shows a circumferential distribution of the liquid film thickness on the inner wall surface 15 of the diffuser 9 shown in FIG. is there. The horizontal axis of FIG. 8 represents the inner wall surface 15 of the diffuser 9 in FIG. 9, and points A, A, and C in FIGS. 8 and 9 correspond to each other.

解析結果によると、図5のC−C’線に沿う断面における液膜35の厚さの周方向分布は図8の実線のようになり、図5のD−D’線に沿う断面における液膜30厚さの周方向分布は図8の破線のようになる。解析によると、図8の実線と破線の交点は、点アから10mm前後である。   According to the analysis result, the circumferential distribution of the thickness of the liquid film 35 in the cross section along the line CC ′ in FIG. 5 is as shown by the solid line in FIG. 8, and the liquid in the cross section along the line DD ′ in FIG. The circumferential distribution of the thickness of the film 30 is as shown by the broken line in FIG. According to the analysis, the intersection of the solid line and the broken line in FIG. 8 is about 10 mm from point a.

以上の説明を考慮して得られた本発明の特徴を、図6及び図7用いて説明する。   The characteristics of the present invention obtained in consideration of the above description will be described with reference to FIGS.

本発明では、図6及び図7に示すように、旋回羽根表面とディフューザ9の内壁面の交線、又は旋回羽根表面と第一段内筒4の内壁面の交線を開口部に含む穴又はスリット11を設けている。即ち、旋回羽根3のディフューザ9内壁面と対向する端面の気液二層流が当接する側の辺を開口部に含むディフューザ9内壁面上に、穴又はスリット11を設けているものである。   In the present invention, as shown in FIGS. 6 and 7, the opening includes the intersection line of the swirling blade surface and the inner wall surface of the diffuser 9 or the intersection line of the swirling blade surface and the inner wall surface of the first stage inner cylinder 4 in the opening. Or the slit 11 is provided. That is, a hole or a slit 11 is provided on the inner wall surface of the diffuser 9 including the side on the side where the gas-liquid two-layer flow on the end surface of the swirl blade 3 facing the inner wall surface of the diffuser 9 contacts.

上記の「旋回羽根表面とディフューザ9の内壁面の交線、又は旋回羽根表面と第一段内筒4の内壁面の交線」の位置について図10を用いて詳しく説明する。   The position of the “intersection line between the swirling blade surface and the inner wall surface of the diffuser 9, or the intersecting line between the swirling blade surface and the inner wall surface of the first stage inner cylinder 4” will be described in detail with reference to FIG.

図10では、スワラ80を確認するために、便宜上第一段外筒5、第一段内筒4、ディフューザ9とスタンドパイプ1を軸半周でカットしてある。また、図10では、旋回羽根3は4枚である。   In FIG. 10, in order to confirm the swirler 80, the first-stage outer cylinder 5, the first-stage inner cylinder 4, the diffuser 9, and the stand pipe 1 are cut on a half axis for convenience. Further, in FIG. 10, there are four swirl vanes 3.

図10において、旋回羽根表面とは、各旋回羽根3のうち、気液二相流Wの上昇流が衝突する曲面13を指す。また、ディフューザ9の内壁面とは、ディフューザ9の内壁面15を指す。   In FIG. 10, the surface of the swirling blade refers to the curved surface 13 of each swirling blade 3 on which the upward flow of the gas-liquid two-phase flow W collides. The inner wall surface of the diffuser 9 refers to the inner wall surface 15 of the diffuser 9.

従って、「旋回羽根表面とディフューザ9の内壁面の交線」とは、上記の2つの面が交わる図10中に太線で示される交線14である。図10では、旋回羽根3は4枚なので、交線14の数も4本となる。また、「旋回羽根表面と第一段内筒4の内壁面の交線」とは、スワラ80が図10のように、ディフューザ9内に設置されず、第一段内筒4内に設置されている場合の交線14を指している。   Therefore, the “intersection line between the surface of the swirl blade and the inner wall surface of the diffuser 9” is an intersection line 14 indicated by a thick line in FIG. 10 where the two surfaces intersect. In FIG. 10, since the swirl vanes 3 are four, the number of intersection lines 14 is also four. Further, the “intersection line between the surface of the swirl blade and the inner wall surface of the first stage inner cylinder 4” means that the swirler 80 is not installed in the diffuser 9 as shown in FIG. 10 but is installed in the first stage inner cylinder 4. The crossing line 14 is indicated.

以上が「旋回羽根表面とディフューザ9の内壁面の交線、又は旋回羽根表面と第一段内筒4の内壁面の交線」の位置についての説明である。   The above is the description of the position of “the intersecting line between the swirling blade surface and the inner wall surface of the diffuser 9, or the intersecting line between the swirling blade surface and the inner wall surface of the first stage inner cylinder 4”.

上記の交線14上の位置は、既述の説明の通り液膜が厚くなる箇所であるので、その位置に穴又はスリット11を設ければ、第一段排水流路12へ気液二相流W中の蒸気を排出させずに液膜のみを排出することができる。   Since the position on the intersection line 14 is a portion where the liquid film becomes thicker as described above, if a hole or slit 11 is provided at that position, the gas-liquid two-phase is supplied to the first-stage drainage flow path 12. Only the liquid film can be discharged without discharging the vapor in the stream W.

本実施例の図6及び図7に示した穴又はスリット11の最適な大きさについて説明する。   The optimum size of the hole or slit 11 shown in FIGS. 6 and 7 of this embodiment will be described.

図8で説明したように、ディフューザ9の内壁面15上において交線14から約10mm離れると、液膜の厚さは第一段内筒4の内壁面上の液膜30の厚さと同等になるので、穴又はスリット11の開口部は、交線14から10mm以内の距離に収めればよい。つまり、穴径又はスリット幅が10mm以内であればよい。また、開口部の大きさを上記のようにすることによって、穴又はスリット11の開口部上の液膜35は、十分厚い部分となるので、気液二相流W中の蒸気を第一段排出流路12に排出させてしまうことはなくなる。   As described with reference to FIG. 8, when the distance from the intersection line 14 is about 10 mm on the inner wall surface 15 of the diffuser 9, the thickness of the liquid film is equal to the thickness of the liquid film 30 on the inner wall surface of the first stage inner cylinder 4. Therefore, the hole or the opening of the slit 11 may be within a distance of 10 mm from the intersection line 14. That is, the hole diameter or slit width may be within 10 mm. In addition, by setting the size of the opening as described above, the liquid film 35 on the opening of the hole or slit 11 becomes a sufficiently thick portion, so that the vapor in the gas-liquid two-phase flow W is removed from the first stage. It will not be discharged into the discharge channel 12.

このような本実施例とすることにより、キャリーアンダ増加の原因となる第一段排水流路12への蒸気の混入を防ぎながら、圧力損失とキャリーオーバ増加の原因となる第一段内筒4の内壁面上の液膜量を低減させることができる。   By adopting such a present embodiment, the first stage inner cylinder 4 that causes an increase in pressure loss and carryover while preventing steam from being mixed into the first stage drainage flow path 12 that causes an increase in carry under. The amount of liquid film on the inner wall surface can be reduced.

次に、図11を用いて本発明による実施例の構成を、本発明に該当しない構成の例と比較して説明する。   Next, the configuration of the embodiment according to the present invention will be described using FIG. 11 in comparison with an example of a configuration not corresponding to the present invention.

図11において、太線で示される交線14は、前述した「旋回羽根表面とディフューザ9の内壁面の交線、又は旋回羽根表面と第一段内筒4の内壁面の交線」であり、穴又はスリット90〜95は、第一段内筒4又はディフューザ9上に開けられたものである。   In FIG. 11, the intersection line 14 indicated by a bold line is the aforementioned “intersection line between the swirling blade surface and the inner wall surface of the diffuser 9, or the intersection line between the swirling blade surface and the inner wall surface of the first stage inner cylinder 4”. The holes or slits 90 to 95 are formed on the first stage inner cylinder 4 or the diffuser 9.

本発明の実施例が備える「旋回羽根表面とディフューザ9の内壁面の交線、又は旋回羽根表面と第一段内筒4の内壁面の交線を開口部に含む穴又はスリット」に該当する穴又はスリットは、穴91、スリット92、穴93、穴95である。穴91と穴93は、その開口部の縁上に交線14を含み、スリット92と穴95は開口部内に交線14を含んでいる。一方、穴90と穴94は「旋回羽根表面とディフューザ9の内壁面の交線、又は旋回羽根表面と第一段内筒4の内壁面の交線を開口部に含む穴又はスリット」に該当せず、本発明には含まれない。穴90と穴94は、開口部に交線14を含んでいない。   The embodiment of the present invention corresponds to "a hole or a slit including an intersection line of the swirl blade surface and the inner wall surface of the diffuser 9 or an intersection line of the swirl blade surface and the inner wall surface of the first stage inner cylinder 4". The holes or slits are a hole 91, a slit 92, a hole 93, and a hole 95. The hole 91 and the hole 93 include the intersection line 14 on the edge of the opening, and the slit 92 and the hole 95 include the intersection line 14 in the opening. On the other hand, the hole 90 and the hole 94 correspond to “a hole or a slit including an intersection line of the swirling blade surface and the inner wall surface of the diffuser 9 or an intersection line of the swirling blade surface and the inner wall surface of the first stage inner cylinder 4”. It is not included in the present invention. The hole 90 and the hole 94 do not include the intersection line 14 at the opening.

穴90は、交線14から伸びる液膜の厚いスジ状の液膜32の軌跡から外れる可能性が高い。なぜなら、気液二相流Wの流量条件により、スジ状の液膜32の軌跡は変化し、軌跡33aから軌跡33bに移動することがあるためである。スジ状の液膜の軌跡が33bとなり、穴90の位置から外れた場合、穴90の開口部上では、液膜が薄くなり、液膜に加えて蒸気も第一段排出流路12へ排出し、キャリーアンダを増加させてしまう可能性が高い。   The hole 90 is likely to deviate from the trajectory of the liquid film 32 having a thick liquid film extending from the intersection line 14. This is because the locus of the streak-like liquid film 32 changes depending on the flow rate condition of the gas-liquid two-phase flow W and may move from the locus 33a to the locus 33b. When the locus of the streaky liquid film becomes 33b and deviates from the position of the hole 90, the liquid film becomes thin on the opening of the hole 90, and in addition to the liquid film, the vapor is also discharged to the first stage discharge flow path 12. However, there is a high possibility that the carry under will increase.

穴94の位置は、交線14から外れており、液膜35が薄い部分であるので、穴90と同様に蒸気を排出し、キャリーアンダを増加させてしまう。   Since the position of the hole 94 is off the intersection line 14 and the liquid film 35 is a thin part, the vapor is discharged similarly to the hole 90, and the carry under is increased.

特許文献1に記載された気水分離器は、図3のように、第一段内筒4上にスリット10を備えるが、スリット10の開口部は上記交線14を含んでおらず、図11の穴90と同様のケースに分類される。スリット10の位置は、スジ状の液膜32の軌跡から外れ、液膜に加えて蒸気も第一段排出流路12に排出してしまい、キャリーアンダを増加させてしまう可能性が高い。   As shown in FIG. 3, the steam separator described in Patent Document 1 includes a slit 10 on the first stage inner cylinder 4, but the opening of the slit 10 does not include the intersection line 14. It is classified into the same case as the 11 holes 90. The position of the slit 10 deviates from the locus of the streak-like liquid film 32, and in addition to the liquid film, the vapor is also discharged to the first-stage discharge flow path 12, and there is a high possibility of increasing the carry under.

上記問題を解決するためには、本実施例の穴91、スリット92、穴93、穴95のように、スリット10の開口部が「旋回羽根表面とディフューザ9の内壁面の交線、又は旋回羽根表面と第一段内筒4の内壁面の交線」を含む位置となるようにスリット10の位置を移動させることにより、液膜の厚い部分とスリット10の開口部を対応させればよい。   In order to solve the above problem, as in the hole 91, the slit 92, the hole 93, and the hole 95 of the present embodiment, the opening of the slit 10 is “an intersection line between the swirl blade surface and the inner wall surface of the diffuser 9, or swirl. By moving the position of the slit 10 so as to be at a position including the intersection line of the blade surface and the inner wall surface of the first stage inner cylinder 4, the thick part of the liquid film and the opening of the slit 10 may be made to correspond to each other. .

本発明は、気水分離器を有する原子力プラント及び沸騰水型原子力プラントに適用可能である。   The present invention is applicable to a nuclear plant having a steam separator and a boiling water nuclear plant.

1…スタンドパイプ、2…ハブ、3…旋回羽根、4…第一段内筒、5…第一段外筒、6…第一段ピックオフリング、7…第一段環状板、8…第二段内筒、9…ディフューザ、10…スリット、11…穴又はスリット、12…第一段排水流路、13…旋回羽根の曲面、14…旋回羽根の曲面とディフューザ内壁面による交線、15…ディフューザの内壁面、30…液膜、31…液滴、32…スジ状の液膜、33a、33b…スジ状の液膜の軌跡、34…蒸気の経路、35…ディフューザ内壁面上の液膜、36…ディフューザ内壁面上の液膜の厚い部分、50…炉心シュラウド、51…原子炉圧力容器、52…ダウンカマ、53…炉心、54…気水分離器、55…蒸気乾燥器、56…主蒸気配管、57…インターナルポンプ、70…第二段外筒、71…第二段環状板、72…第三段内筒、73…第三段ピックオフリング、74…第三段外筒、75…第三段環状板、76…第二段排水流路、77…第三段排水流路、78…気水分離器出口、79…第二段ピックオフリング、80…スワラ、90、94…本発明に該当しない穴、91、93、95…本発明に該当する穴、92…本発明に該当するスリット。   DESCRIPTION OF SYMBOLS 1 ... Stand pipe, 2 ... Hub, 3 ... Swirling blade, 4 ... First stage inner cylinder, 5 ... First stage outer cylinder, 6 ... First stage pick-off ring, 7 ... First stage annular plate, 8 ... Second Step inner cylinder, 9 ... Diffuser, 10 ... Slit, 11 ... Hole or slit, 12 ... First stage drainage channel, 13 ... Curved surface of swirl vane, 14 ... Intersection line between swirl vane curved surface and diffuser inner wall, 15 ... Inner wall surface of diffuser, 30 ... liquid film, 31 ... droplet, 32 ... stripe-like liquid film, 33a, 33b ... locus of stripe-like liquid film, 34 ... path of vapor, 35 ... liquid film on inner wall surface of diffuser 36 ... Thick portion of liquid film on the inner wall of the diffuser, 50 ... Core shroud, 51 ... Reactor pressure vessel, 52 ... Downcomer, 53 ... Core, 54 ... Steam separator, 55 ... Steam dryer, 56 ... Main Steam piping, 57 ... internal pump, 70 ... second stage outer cylinder, DESCRIPTION OF SYMBOLS 1 ... Second stage annular plate, 72 ... Third stage inner cylinder, 73 ... Third stage pick-off ring, 74 ... Third stage outer cylinder, 75 ... Third stage annular plate, 76 ... Second stage drainage flow path, 77 ... third-stage drainage flow path, 78 ... gas / water separator outlet, 79 ... second-stage pick-off ring, 80 ... swirler, 90, 94 ... hole not corresponding to the present invention, 91, 93, 95 ... corresponding to the present invention Hole, 92 ... slit corresponding to the present invention.

Claims (7)

気液二相流を下方から上方に向かって導くスタンドパイプと、該スタンドパイプの上側端面に連通して流路を形成し、前記上側端面の流路断面積よりも上方に向けて流路断面積を拡大するディフューザと、該ディフューザの上側端面に連通して流路を形成する第一段内筒と、該第一段内筒を同心円状に間隔を空けて囲んで環状の流路を形成する第一段外筒と、該第一段外筒の上側端面の内周縁を塞ぐと共に、前記第一段内筒よりも小径の円形孔を形成した第一段環状板と、該第一段環状板の前記円形孔を形成している内周縁から下方に向けて円筒状に起立させて前記円形孔を第二段内筒への流路として形成する第一段ピックオフリングとを少なくとも備え、気液二相流の流路の軸中心を通るハブ及び該ハブを中心にして放射状に取り付ける複数の旋回羽根を含み、前記旋回羽根の径方向に内側縁が前記ハブに固定されており、前記ディフューザの内壁又は前記第一段内筒の内壁に前記旋回羽根の径方向に外側縁が固定されているスワラを備えた気水分離器において、
前記旋回羽根の表面と前記ディフューザの内壁面の交線を開口部に含む前記ディフューザ内壁面上に、穴又はスリットを設けたことを特徴とする気水分離器。
A stand pipe that guides the gas-liquid two-phase flow from below to above, and a flow path that communicates with the upper end surface of the stand pipe to form a flow path. A diffuser that expands the area, a first stage inner cylinder that communicates with the upper end surface of the diffuser to form a flow path, and an annular flow path that surrounds the first stage inner cylinder in a concentric manner to form an annular flow path A first-stage outer cylinder, a first-stage annular plate that closes the inner periphery of the upper end surface of the first-stage outer cylinder, and that has a circular hole having a smaller diameter than the first-stage inner cylinder, and the first-stage outer cylinder At least a first stage pick-off ring that rises in a cylindrical shape from the inner peripheral edge forming the circular hole of the annular plate downward and forms the circular hole as a flow path to the second stage inner cylinder, A hub that passes through the axial center of the gas-liquid two-phase flow path and a radial mounting centered on the hub. The inner edge of the swirl vane is fixed to the hub in the radial direction, and the outer edge is fixed to the inner wall of the diffuser or the inner wall of the first stage inner cylinder in the radial direction of the swirl vane. In the steam separator with a swirler,
An air / water separator, wherein a hole or a slit is provided on the inner wall surface of the diffuser including an intersection between the surface of the swirl vane and the inner wall surface of the diffuser.
気液二相流を下方から上方に向かって導くスタンドパイプと、該スタンドパイプの上側端面に連通して流路を形成し、前記上側端面の流路断面積よりも上方に向けて流路断面積を拡大するディフューザと、該ディフューザの上側端面に連通して流路を形成する第一段内筒と、該第一段内筒を同心円状に間隔を空けて囲んで環状の流路を形成する第一段外筒と、該第一段外筒の上側端面の内周縁を塞ぐと共に、前記第一段内筒よりも小径の円形孔を形成した第一段環状板と、該第一段環状板の前記円形孔を形成している内周縁から下方に向けて円筒状に起立させて前記円形孔を第二段内筒への流路として形成する第一段ピックオフリングとを少なくとも備え、気液二相流の流路の軸中心を通るハブ及び該ハブを中心にして放射状に取り付ける複数の旋回羽根を含み、前記旋回羽根の径方向に内側縁が前記ハブに固定されており、前記ディフューザの内壁又は前記第1段内筒の内壁に前記旋回羽根の径方向に外側縁が固定されているスワラを備えた気水分離器において、
前記旋回羽根の表面と前記第一段内筒の内壁面の交線を開口部に含む前記第一段内筒の内壁面上に、穴又はスリットを設けたことを特徴とする気水分離器。
A stand pipe that guides the gas-liquid two-phase flow from below to above, and a flow path that communicates with the upper end surface of the stand pipe to form a flow path. A diffuser that expands the area, a first stage inner cylinder that communicates with the upper end surface of the diffuser to form a flow path, and an annular flow path that surrounds the first stage inner cylinder in a concentric manner to form an annular flow path A first-stage outer cylinder, a first-stage annular plate that closes the inner periphery of the upper end surface of the first-stage outer cylinder, and that has a circular hole having a smaller diameter than the first-stage inner cylinder, and the first-stage outer cylinder At least a first stage pick-off ring that rises in a cylindrical shape from the inner peripheral edge forming the circular hole of the annular plate downward and forms the circular hole as a flow path to the second stage inner cylinder, A hub that passes through the axial center of the gas-liquid two-phase flow path and a radial mounting centered on the hub. The inner edge of the swirl vane is fixed to the hub in the radial direction, and the outer edge is fixed to the inner wall of the diffuser or the inner wall of the first stage inner cylinder in the radial direction of the swirl vane. In the steam separator with a swirler,
A steam / water separator, wherein a hole or a slit is provided on the inner wall surface of the first stage inner cylinder including an intersection line between the surface of the swirl vane and the inner wall surface of the first stage inner cylinder in an opening. .
気液二相流を下方から上方に向かって導くスタンドパイプと、該スタンドパイプの上側端面に連通して流路を形成し、前記上側端面の流路断面積よりも上方に向けて流路断面積を拡大するディフューザと、該ディフューザの上側端面に連通して流路を形成する第一段内筒と、該第一段内筒を同心円状に間隔を空けて囲んで環状の流路を形成する第一段外筒と、該第一段外筒の上側端面の内周縁を塞ぐと共に、前記第一段内筒よりも小径の円形孔を形成した第一段環状板と、該第一段環状板の前記円形孔を形成している内周縁から下方に向けて円筒状に起立させて前記円形孔を第二段内筒への流路として形成する第一段ピックオフリングとを少なくとも備え、気液二相流の流路の軸中心を通るハブ及び該ハブを中心にして放射状に取り付ける複数の旋回羽根を含み、前記旋回羽根の径方向に内側縁が前記ハブに固定されており、前記ディフューザの内壁又は前記第1段内筒の内壁に前記旋回羽根の径方向に外側縁が固定されているスワラを備えた気水分離器において、
前記旋回羽根の前記ディフューザの内壁面と対向する端面の気液二層流が当接する側の辺を開口部に含む前記ディフューザの内壁面上に、穴又はスリットを設けたことを特徴とする気水分離器。
A stand pipe that guides the gas-liquid two-phase flow from below to above, and a flow path that communicates with the upper end surface of the stand pipe to form a flow path. A diffuser that expands the area, a first stage inner cylinder that communicates with the upper end surface of the diffuser to form a flow path, and an annular flow path that surrounds the first stage inner cylinder in a concentric manner to form an annular flow path A first-stage outer cylinder, a first-stage annular plate that closes the inner periphery of the upper end surface of the first-stage outer cylinder, and that has a circular hole having a smaller diameter than the first-stage inner cylinder, and the first-stage outer cylinder At least a first stage pick-off ring that rises in a cylindrical shape from the inner peripheral edge forming the circular hole of the annular plate downward and forms the circular hole as a flow path to the second stage inner cylinder, A hub that passes through the axial center of the gas-liquid two-phase flow path and a radial mounting centered on the hub. The inner edge of the swirl vane is fixed to the hub in the radial direction, and the outer edge is fixed to the inner wall of the diffuser or the inner wall of the first stage inner cylinder in the radial direction of the swirl vane. In the steam separator with a swirler,
A gas or a slit is provided on the inner wall surface of the diffuser including an opening on the side of the swirl vane that faces the inner wall surface of the diffuser on the side facing the gas-liquid two-layer flow. Water separator.
請求項1乃至3のいずれかに記載の気水分離器において、
前記気水分離器は、前記第一段環状板上に設置され流路を形成する前記第二段内筒と、該第二段内筒を同心円状に間隔を空けて囲んで環状の第二段排出流路を形成する第二段外筒と、該第二段外筒の上側端面の内周縁を塞ぐと共に前記第二段内筒よりも小径の円形孔を形成した第二段環状板と、前記第二段環状板上に設置され流路を形成する第三段内筒と、前記第二段環状板の前記円形孔を形成している内周縁から下方に向けて円筒状に起立させて前記円形孔を前記第三段内筒への流路として形成する第二段ピックオフリングと、前記第三段内筒を同心円状に間隔を空けて囲んで環状の第三段排出流路を形成する第三段外筒と、該第三段外筒の上側端面の内周縁を塞ぐと共に、前記第三段内筒よりも小径の円形孔を形成した第三段環状板と、該第三段環状板の前記円形孔を形成している内周縁から下方に向けて円筒状に起立させて前記円形孔を気水分離器出口流路として形成する第三段ピックオフリングとを更に備えていることを特徴とする気水分離器。
The steam-water separator according to any one of claims 1 to 3,
The steam separator is provided on the first-stage annular plate and forms a flow path, and the second-stage inner cylinder surrounds the second-stage inner cylinder at a concentrically spaced interval to form an annular second A second-stage outer cylinder that forms a stage discharge passage, and a second-stage annular plate that closes the inner peripheral edge of the upper end surface of the second-stage outer cylinder and forms a circular hole having a smaller diameter than the second-stage inner cylinder; A third-stage inner cylinder that is installed on the second-stage annular plate and forms a flow path; and an inner peripheral edge that forms the circular hole of the second-stage annular plate, and is raised in a cylindrical shape downward. A second-stage pick-off ring that forms the circular hole as a flow path to the third-stage inner cylinder, and an annular third-stage discharge flow path that surrounds the third-stage inner cylinder in a concentrically spaced manner. A third-stage outer cylinder to be formed, a third-stage annular plate that closes the inner peripheral edge of the upper end surface of the third-stage outer cylinder, and that has a circular hole with a smaller diameter than the third-stage inner cylinder; A third-stage pick-off ring that rises in a cylindrical shape downward from the inner peripheral edge forming the circular hole of the third-stage annular plate and forms the circular hole as a steam-water separator outlet channel; A steam separator that is characterized by
請求項1又は2に記載の気水分離器において、
前記穴又はスリットの開口部は、前記旋回羽根の表面と前記ディフューザの内壁面の交線、若しくは前記旋回羽根の表面と前記第一段内筒の内壁面の交線から10mm以内の距離にあることを特徴とする気水分離器。
The steam-water separator according to claim 1 or 2,
The opening of the hole or slit is at a distance within 10 mm from the line of intersection of the surface of the swirl vane and the inner wall surface of the diffuser, or the line of intersection of the surface of the swirl vane and the inner wall surface of the first stage inner cylinder. A steam separator characterized by that.
請求項1又は2に記載の気水分離器において、
前記旋回羽根の表面は、複数の旋回羽根のうち気液二相流の上昇流が衝突する曲面であることを特徴とする気水分離器。
The steam-water separator according to claim 1 or 2,
The surface of the swirl vane is a curved surface where a gas-liquid two-phase upward flow of a plurality of swirl vanes collides.
原子炉圧力容器と、該原子炉圧力容器内に設けられ、複数の燃料集合体が装荷された炉心と、該炉心が配置されるシュラウドと、前記原子炉圧力容器内の前記炉心の上方に複数並列に配置され、前記炉心で発生した蒸気と水の気水混合流を蒸気と水に分離する気水分離器と、該気水分離器の上方に位置し、該気水分離器で分離された湿り蒸気を乾燥させる蒸気乾燥器と、該蒸気乾燥器で乾燥された蒸気をタービンに供給する主蒸気配管と、前記原子炉圧力容器とシュラウド間に形成され、前記気水分離器で分離された水が循環するダウンカマと、該ダウンカマの下方に配置され、該ダウンカマ内の水を前記炉心に供給するインターナルポンプとを備えた沸騰水型原子炉において、
前記気水分離器は、請求項1乃至6のいずれかに記載の気水分離器であることを特徴とする沸騰水型原子炉。
A reactor pressure vessel, a core provided in the reactor pressure vessel and loaded with a plurality of fuel assemblies, a shroud in which the core is disposed, and a plurality of the reactor pressure vessel above the core in the reactor pressure vessel A steam-water separator that is arranged in parallel and separates the steam-water mixture flow generated in the core into steam and water, and is located above the steam-water separator and separated by the steam-water separator. A steam dryer for drying the wet steam, a main steam pipe for supplying steam dried by the steam dryer to the turbine, and formed between the reactor pressure vessel and the shroud and separated by the steam separator. A boiling water reactor comprising a downcomer through which water is circulated and an internal pump that is disposed below the downcoma and supplies water in the downcoma to the core.
The boiling water reactor according to claim 1, wherein the steam separator is the steam separator according to claim 1.
JP2011137237A 2011-06-21 2011-06-21 Steam separator and boiling-water reactor with the same Withdrawn JP2013003083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011137237A JP2013003083A (en) 2011-06-21 2011-06-21 Steam separator and boiling-water reactor with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011137237A JP2013003083A (en) 2011-06-21 2011-06-21 Steam separator and boiling-water reactor with the same

Publications (1)

Publication Number Publication Date
JP2013003083A true JP2013003083A (en) 2013-01-07

Family

ID=47671782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011137237A Withdrawn JP2013003083A (en) 2011-06-21 2011-06-21 Steam separator and boiling-water reactor with the same

Country Status (1)

Country Link
JP (1) JP2013003083A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2541331A1 (en) * 2014-01-17 2015-07-17 Ge-Hitachi Nuclear Energy Americas, Llc Steam separator and boiling water nuclear reactor that includes the same (Machine-translation by Google Translate, not legally binding)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2541331A1 (en) * 2014-01-17 2015-07-17 Ge-Hitachi Nuclear Energy Americas, Llc Steam separator and boiling water nuclear reactor that includes the same (Machine-translation by Google Translate, not legally binding)
US10847273B2 (en) 2014-01-17 2020-11-24 Ge-Hitachi Nuclear Energy Americas Llc Steam separator and nuclear boiling water reactor including the same

Similar Documents

Publication Publication Date Title
KR101434063B1 (en) Multi-stage gas-water separation device and gas-water separator
US7835483B2 (en) Steam separator, boiling water reactor and swirler assembly
US5130082A (en) Low pressure drop gas-liquid separator
WO2011129063A1 (en) Gas-water separator and nuclear reactor system using same
US10847273B2 (en) Steam separator and nuclear boiling water reactor including the same
JP2013003083A (en) Steam separator and boiling-water reactor with the same
JP5663324B2 (en) Steam separator and boiling water reactor using the same
US9916909B2 (en) Swirler, steam separator including the swirler, and nuclear boiling water reactor including the same
JP3762598B2 (en) Steam separator and boiling water reactor
JP2012117917A (en) Steam separation facility for nuclear reactor
JP2012058113A (en) Steam separation facility for nuclear reactor
JP2013120068A (en) Steam separator and reactor facility
JP5562908B2 (en) Steam separator and boiling water reactor equipped with the same
JP2012117857A (en) Steam separator
JP2003307584A (en) Steam separation device
JP3964587B2 (en) Reactor steam separator
JP5089485B2 (en) Jet pump and reactor
JPH10186079A (en) Steam separator and steam separating device
JP2009192354A (en) Steam separator and boiling water reactor
JP2010210450A (en) Gas-water separator
US20200152342A1 (en) Apparatuses for steam separation, and nuclear boiling water reactors including the same
JPH11326576A (en) Steam separator
JP2000329889A (en) Steam separator
JP6038742B2 (en) Steam dryer
JP2012037319A (en) Steam separator, steam separation method and nuclear reactor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902