JP2013001387A - Heat pump system for vehicle and method for controlling the same - Google Patents

Heat pump system for vehicle and method for controlling the same Download PDF

Info

Publication number
JP2013001387A
JP2013001387A JP2012125635A JP2012125635A JP2013001387A JP 2013001387 A JP2013001387 A JP 2013001387A JP 2012125635 A JP2012125635 A JP 2012125635A JP 2012125635 A JP2012125635 A JP 2012125635A JP 2013001387 A JP2013001387 A JP 2013001387A
Authority
JP
Japan
Prior art keywords
refrigerant
cooling
vehicle
valve
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012125635A
Other languages
Japanese (ja)
Other versions
JP6041423B2 (en
Inventor
Yong Hyun Choi
龍 鉉 崔
Jae Yeon Kim
載 然 金
Yong Woong Cha
龍 雄 車
Wan Je Cho
完 濟 趙
Jungha Park
重 夏 朴
Jaesan Kim
在 山 金
Man Hee Park
萬 煕 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Kia Corp
Original Assignee
Hyundai Motor Co
Kia Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co, Kia Motors Corp filed Critical Hyundai Motor Co
Publication of JP2013001387A publication Critical patent/JP2013001387A/en
Application granted granted Critical
Publication of JP6041423B2 publication Critical patent/JP6041423B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00792Arrangement of detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle heat pump system which enhances heating performance and efficiency and dehumidification performance, and prevents external dew condensation in extremely low temperature, and a method for controlling the same.SOLUTION: The vehicle heat pump system includes a cooling means that is constituted in a vehicle to supply and circulate cooling water to electronic equipment through a cooling line, and an air-conditioning means that is connected by a coolant line so as to adjust the air conditioning in the vehicle room. The cooling means includes: a radiator which is constituted at the front of vehicles to circulate the cooling water along the cooling line with a water pump, and to cool the supplied cooling water by heat exchange with the open air; a cooling fan for blowing wind to the radiator; and a heat-exchanger which is connected to the cooling line to circulate the cooling water, changes the water temperature of the cooling water by using selectively a source of waste heat generated from the electronic equipment depending on modes, and heat-exchanges between the coolant by connecting with the coolant line of the air-conditioning means, with the cooling water.

Description

本発明は、車両用ヒートポンプシステム及びその制御方法に係り、より詳しくは、電装品から発生する廃熱を利用して暖房性能と除湿性能を向上させ、極低温時には外部凝縮器の外部結露を防止すると同時に、走行距離を増加させた車両用ヒートポンプスシステム及びその制御方法に関する。   The present invention relates to a heat pump system for a vehicle and a control method thereof, and more specifically, uses waste heat generated from electrical components to improve heating performance and dehumidification performance, and prevents external condensation on an external condenser at extremely low temperatures. At the same time, the present invention relates to a vehicle heat pump system having an increased travel distance and a control method thereof.

一般に、自動車用空気調和装置は自動車の室内を冷暖房するためのエアコンモジュールを含む。
このようなエアコンモジュールは、圧縮器の駆動によって吐出される熱交換媒体が凝縮器、レシーバードライヤー、膨張バルブ、及び蒸発器を経てさらに圧縮器に循環する過程で、蒸発器による熱交換によって自動車の室内を冷房するか、または冷却水をヒータに流入して熱交換させることによって室内を暖房するように構成される。
一方、最近、エネルギー効率と環境汚染の問題に対する関心が高まり、内燃機関自動車を実質的に代替できる環境にやさしい自動車の開発が要求されており、このような親環境自動車は、普通、燃料電池や電気を動力源として駆動される電気自動車と、エンジンと電気バッテリを併用して駆動されるハイブリッド自動車に大別される。
2. Description of the Related Art In general, an automotive air conditioner includes an air conditioner module for cooling and heating a vehicle interior.
In such an air conditioner module, the heat exchange medium discharged by driving the compressor is circulated to the compressor through the condenser, the receiver dryer, the expansion valve, and the evaporator. The room is cooled, or the room is heated by flowing heat into the heater to exchange heat.
On the other hand, recently, interest in the problems of energy efficiency and environmental pollution has increased, and there has been a demand for the development of environmentally friendly vehicles that can substantially replace internal combustion engine vehicles. It is roughly classified into an electric vehicle driven by using electricity as a power source and a hybrid vehicle driven by using an engine and an electric battery together.

このような親環境車両のうちの電気自動車は内燃機関エンジンが装着されていないため、ヒータ熱源として使用できるエンジン廃熱がない。このため、熱源として電気式ヒータを使用している。しかし、電気式ヒータの過度な電力消耗によって車両の走行距離が減少する短所がある。これを克服するために、暖房時に効率が良い車両用ヒートポンプシステムが電気式ヒータの代わりに提示されている。
このようなヒートポンプシステムは、夏季冷房モードの時には圧縮器で圧縮された高温、高圧の気相冷媒が、凝縮器によって凝縮された後に、レシーバードライヤー及び膨張バルブを経て、蒸発器での蒸発によって室内の温度及び湿度を低くするが、冬季暖房モードの時には高温、高圧の気相冷媒をヒータ媒体として利用するという特徴を有している。(例えば、特許文献1,2参照)。
Since such an environmentally friendly vehicle is not equipped with an internal combustion engine, there is no engine waste heat that can be used as a heater heat source. For this reason, an electric heater is used as a heat source. However, there is a disadvantage that the travel distance of the vehicle is reduced due to excessive power consumption of the electric heater. In order to overcome this problem, a vehicle heat pump system that is efficient during heating has been presented instead of an electric heater.
In such a heat pump system, in the summer cooling mode, the high-temperature and high-pressure gas-phase refrigerant compressed by the compressor is condensed by the condenser, then passed through the receiver dryer and the expansion valve, and then evaporated by the evaporator. However, in the winter heating mode, a high-temperature and high-pressure gas-phase refrigerant is used as a heater medium. (For example, refer to Patent Documents 1 and 2).

つまり、電気自動車は、暖房モードで高温、高圧の気相冷媒がバルブによって室外凝縮器でない室内凝縮器に流動して、吸入された外気との熱交換が行われ、熱交換された外気がPTC(Positive Temperature Coefficient)ヒータを通過して車両の室内に流入することによって、車両の室内温度を高める。
そして、室内凝縮器に流入した高温、高圧の気相冷媒は吸入された外気との熱交換によって凝縮されて、さらに液冷媒として吐出される。
That is, in the electric vehicle, high-temperature and high-pressure gas-phase refrigerant flows in the heating mode to the indoor condenser that is not the outdoor condenser through the valve, and heat exchange with the sucked outside air is performed. (Positive Temperature Coefficient) The temperature inside the vehicle is raised by passing through the heater and flowing into the vehicle interior.
The high-temperature and high-pressure gas-phase refrigerant flowing into the indoor condenser is condensed by heat exchange with the sucked outside air and further discharged as liquid refrigerant.

上記のような従来のヒートポンプシステムは、外部空気を冷媒との熱交換媒体として利用する空冷式が適用される。
また、冬季の極低温または低温状態の外気と熱交換された冷媒が、室内凝縮器から熱交換されて超低温状態で排出されて外部凝縮器に流入することにより、外部凝縮器の表面に結露または結氷が発生して、熱交換媒体の熱交換効率と暖房性能及び効率が低下し、冷房モードから暖房モードへ切り替わる時、蒸発器の外部に残留した凝縮水によって湿度が増加して、車両の車窓が曇る現象が発生する。
The conventional heat pump system as described above employs an air cooling system that uses external air as a heat exchange medium with a refrigerant.
In addition, the refrigerant that has exchanged heat with the cold or low temperature outside air in winter undergoes heat exchange from the indoor condenser, is discharged at an ultra-low temperature state, and flows into the external condenser, causing condensation or condensation on the surface of the external condenser. When freezing occurs, the heat exchange efficiency and heating performance and efficiency of the heat exchange medium decrease, and when switching from the cooling mode to the heating mode, the humidity increases due to the condensed water remaining outside the evaporator, and the vehicle window of the vehicle The phenomenon of clouding occurs.

これを防止するために、外部凝縮器の表面の結露や結氷を除去する除霜モードではコンプレッサーの作動を中止して、PTCヒータだけで暖房を行わなければならないことによって、暖房性能がきわめて低下すると同時に、電源使用量の増加により暖房走行時に走行距離が短縮される問題点がある。
また、室内凝縮器からの液冷媒が圧縮器に吸入される時、気相冷媒に切り替えられる熱源が不足しているため、圧縮効率が低下し、外気温度が低い場合には暖房性能が顕著に劣り、システムが不安定になる。このため、大量の液冷媒が圧縮器に流入することになり、圧縮器の耐久性が低下する問題点もある。
さらに、車両室内の湿気除去のための別途の除湿モードでは、2ウェイ(2−way)バルブの頻繁な開閉作動による騒音及び振動が発生する問題点も有している。
In order to prevent this, in the defrost mode that removes dew condensation and icing on the surface of the external condenser, the operation of the compressor must be stopped and heating must be performed only with the PTC heater. At the same time, there is a problem in that the travel distance is shortened during heating traveling due to an increase in power consumption.
In addition, when the liquid refrigerant from the indoor condenser is sucked into the compressor, the heat source that can be switched to the gas-phase refrigerant is insufficient, so that the compression efficiency is lowered, and the heating performance is remarkable when the outside air temperature is low. Inferior, system becomes unstable. For this reason, a large amount of liquid refrigerant flows into the compressor, and there is a problem that durability of the compressor is lowered.
Furthermore, in a separate dehumidifying mode for removing moisture in the vehicle compartment, there is a problem that noise and vibration are generated due to frequent opening and closing operations of the 2-way (2-way) valve.

特開平06−293211号公報Japanese Patent Laid-Open No. 06-293211 特開2009−280020号公報JP 2009-280020 A

本発明は上記の問題を解決するためになされたものであって、その目的とするところは、暖房性能及び効率と除湿性能を向上させ、かつ極低温時には外部結露を防止する車両用ヒートポンプシステム及びその制御方法を提供することにある。
また、他の目的とするところは、車両の全体的な走行距離を増加させた車両用ヒートポンプシステム及びその制御方法を提供することにある。
The present invention has been made to solve the above-mentioned problems, and the object of the present invention is to improve a heating performance, efficiency and dehumidifying performance, and to prevent external condensation at extremely low temperatures and It is in providing the control method.
Another object of the present invention is to provide a vehicle heat pump system in which the overall travel distance of the vehicle is increased, and a control method therefor.

上記目的を達成するためになされた本発明の車両用ヒートポンプシステムは、車両に構成されて冷却ラインを通して電装品に冷却水を供給及び循環させるクーリング手段と、車両室内の冷暖房を調節するように冷媒ラインによって連結するエアコン手段とを含む車両用ヒートポンプシステムにおいて、クーリング手段は車両の前面に構成されて、ウォータポンプによって冷却ラインに沿って冷却水を循環させ、供給される冷却水を外気との熱交換によって冷却させるラジエータと、ラジエータに風を送風するクーリングファンとを含み、冷却ラインと連結して冷却水が循環し、モードによって電装品から発生する廃熱源を選択的に利用して冷却水の水温を変化させ、エアコン手段の冷媒ラインと連結して流入した冷媒を冷却水と熱交換させる熱交換器をさらに含むことを特徴とする。   The vehicle heat pump system of the present invention, which has been made to achieve the above object, includes a cooling means configured to supply and circulate cooling water to an electrical component through a cooling line, and a refrigerant so as to adjust air conditioning in the vehicle interior. In the vehicle heat pump system including the air-conditioning means connected by the line, the cooling means is configured on the front surface of the vehicle, the cooling water is circulated along the cooling line by the water pump, and the supplied cooling water is heated to the outside air. A radiator that is cooled by replacement, and a cooling fan that blows air to the radiator, and is connected to a cooling line to circulate the cooling water, and selectively uses the waste heat source generated from the electrical equipment depending on the mode, Change the water temperature and connect it to the refrigerant line of the air conditioner means to exchange heat with the coolant. And further comprising a exchanger.

エアコン手段は、暖房、冷房、及び除湿モードによって蒸発器を通過した外気が内部凝縮器とPTCヒータに流入するように選択的に調節する開閉ドアを内部に備えたHVAC(heating, ventilation, and air conditioning)モジュール、蒸発器と冷媒ラインによって連結され、気体状態の冷媒を圧縮させる圧縮器、圧縮器と蒸発器の間の冷媒ライン上に備えられ、圧縮器に気体冷媒だけを供給するアキュムレータ、車両のエンジンルームに備えられて冷媒ラインによって連結され、冷媒を凝縮させる外部凝縮器、圧縮器から排出される冷媒を車両のモードによって内部凝縮器または外部凝縮器に選択的に供給する第1バルブ、内部凝縮器を通過した冷媒の供給を受けて膨張させる第1膨張バルブ、第1膨張バルブによって膨張した冷媒を外部凝縮器または熱交換器に選択的に供給する第2バルブ、外部凝縮器または熱交換器を通過した冷媒を蒸発器またはアキュムレータに選択的に供給する第3バルブ、及び蒸発器と第3バルブの間に備えられ、第3バルブの開閉によって流入する冷媒を膨張させる第2膨張バルブを含むことを特徴とする。   The air conditioner means is an HVAC (heating, ventilation, and air) that is internally provided with an open / close door that selectively adjusts the outside air that has passed through the evaporator through heating, cooling, and dehumidifying modes to flow into the internal condenser and the PTC heater. a conditioning) module, a compressor connected by an evaporator and a refrigerant line and compressing the refrigerant in a gaseous state, an accumulator provided on the refrigerant line between the compressor and the evaporator, and supplying only the gaseous refrigerant to the compressor, vehicle An external condenser connected to the refrigerant line and condensed by the refrigerant line, a first valve for selectively supplying the refrigerant discharged from the compressor to the internal condenser or the external condenser according to the mode of the vehicle, A first expansion valve that expands upon receiving the supply of refrigerant that has passed through the internal condenser A second valve for selectively supplying the refrigerant expanded by the first expansion valve to the external condenser or heat exchanger; a second valve for selectively supplying the refrigerant having passed through the external condenser or heat exchanger to the evaporator or accumulator; 3 valve | bulb and the 2nd expansion valve which is provided between an evaporator and a 3rd valve, and expands the refrigerant | coolant which flows in by opening and closing of a 3rd valve | bulb is characterized by the above-mentioned.

圧縮器と第1バルブを連結する冷媒ライン上には、圧力センサーが装着されたこと特徴とする。
第1、第2、第3バルブは、3ウェイ(3−way)バルブからなることを特徴とする。
クーリング手段とエアコン手段はそれぞれ制御器と連結され、制御器の制御信号によって作動することを特徴とする。
A pressure sensor is mounted on the refrigerant line connecting the compressor and the first valve.
The first, second, and third valves are three-way valves.
The cooling means and the air conditioner means are respectively connected to a controller and actuated by a control signal of the controller.

上記の構成を有する本発明の車両用ヒートポンプシステムの制御方法は、制御器と連結され、それぞれ冷却ラインによって相互連結され、ラジエータ、ウォータポンプ、及び電装品を含むクーリング手段と、それぞれ冷媒ラインによって相互連結され、複数個のバルブ、複数個の膨張バルブ、圧縮器、アキュムレータ、蒸発器、外部凝縮器、内部凝縮器、PTCヒータ、及び開閉ドアで構成されたHAVCモジュールを含むエアコン手段とで構成され、冷却ラインと冷媒ラインに連結された熱交換器をさらに含むヒートポンプシステムに適用され、使用者の選択によって暖房モード、冷房モード、及び除湿モードでそれぞれ作動させるための車両用ヒートポンプシステム制御方法において、暖房モードで、クーリング手段は、電装品から発生する廃熱源によって熱交換器に流入した冷却水の温度を上昇させ、冷媒ラインを通して熱交換器に流入した冷媒との熱交換によって冷媒の温度を上昇させ、エアコン手段は、熱交換器で冷却水との熱交換によって温度が上昇した冷媒を、第3バルブの開放によって冷媒ラインに沿ってアキュムレータと圧縮器を通過させて高温高圧状態の気体冷媒に圧縮させた状態で、第1バルブの作動によってHAVCモジュールの内部凝縮器に供給し、内部凝縮器を通過した冷媒は、第1膨張バルブによって膨張させた状態で、第2バルブの作動によって熱交換器に供給して循環させ、外部からHAVCモジュールの蒸発器を通過した外気が内部凝縮器を通過するように開閉ドアを開放させ、流入した外気が内部凝縮器を通過しながらPTCヒータの選択的な作動と共に車両の室内を暖房することを特徴とする。   A control method for a vehicle heat pump system according to the present invention having the above-described configuration is connected to a controller and interconnected by a cooling line, and includes a cooling means including a radiator, a water pump, and electrical components, and a coolant line. The air conditioner unit is composed of a plurality of valves, a plurality of expansion valves, a compressor, an accumulator, an evaporator, an external condenser, an internal condenser, a PTC heater, and an HAVC module including an open / close door. In the vehicle heat pump system control method, which is applied to a heat pump system further including a heat exchanger connected to a cooling line and a refrigerant line, and operates in a heating mode, a cooling mode, and a dehumidifying mode according to a user's selection, In heating mode, the cooling means originates from electrical components The temperature of the cooling water flowing into the heat exchanger is increased by the waste heat source, and the temperature of the refrigerant is increased by heat exchange with the refrigerant flowing into the heat exchanger through the refrigerant line. The refrigerant whose temperature has increased due to heat exchange with the refrigerant is compressed into a high-temperature and high-pressure gaseous refrigerant by passing the accumulator and the compressor along the refrigerant line by opening the third valve. The refrigerant supplied to the internal condenser of the HAVC module and passed through the internal condenser is expanded by the first expansion valve, supplied to the heat exchanger by the operation of the second valve and circulated, and the HAVC module is externally supplied. The PTC heater is selected while the open / close door is opened so that the outside air that has passed through the evaporator passes through the internal condenser, and the inflowing outside air passes through the internal condenser Characterized by heating the interior of the vehicle with Do operation.

冷房モードにおいて、クーリング手段は、クーリングファンが作動してラジエータに流入した冷却水を冷却させた状態で、ウォータポンプの作動によって電装品を冷却しながら熱交換器に流入させて、熱交換器に流入した低温の冷却水と熱交換によって冷媒の温度を低くし、エアコン手段は、外部凝縮器を通過しながら冷却された低温の冷媒が、HAVCモジュールの蒸発器と連結された第2膨張バルブに流入するように第3バルブを作動させて膨張した冷媒を蒸発器に供給し、蒸発器で外気との熱交換によって蒸発した冷媒を排出して、アキュムレータと圧縮器を通過して圧縮させた状態で、第1バルブの作動によって外部凝縮器と連結された冷媒ラインを開放させて外部凝縮器に供給して循環させ、蒸発器に流入した冷媒によって蒸発器を通過しながら冷却された外気が内部凝縮器に流入しないように開閉ドアを閉鎖して、冷却された外気を車両の内部に直接流入させて車両の室内を冷房することを特徴とする。   In the cooling mode, the cooling means is in a state in which the cooling fan is activated and the cooling water flowing into the radiator is cooled, and the water pump is operated to cool the electrical components while flowing into the heat exchanger. The temperature of the refrigerant is lowered by heat exchange with the low-temperature cooling water that has flowed in, and the air conditioner means that the low-temperature refrigerant cooled while passing through the external condenser is supplied to the second expansion valve connected to the evaporator of the HAVC module. The refrigerant expanded by operating the third valve to flow into the evaporator is supplied to the evaporator, the refrigerant evaporated by heat exchange with the outside air is discharged by the evaporator, and the refrigerant is compressed through the accumulator and the compressor. Then, the refrigerant line connected to the external condenser is opened by operating the first valve, supplied to the external condenser and circulated, and the evaporator flows into the evaporator by the refrigerant flowing into the evaporator. Pass while cooled outside air by closing the door so as not to flow into the condenser, the cooled outside air allowed to flow directly into the interior of the vehicle, characterized in that cooling the interior of the vehicle.

除湿モードにおいて、クーリング手段は、クーリングファンが作動してラジエータに流入した冷却水を冷却させ、ウォータポンプの作動によって電装品を冷却しながら熱交換器に流入させて、熱交換器に流入した低温の冷却水と熱交換によって冷媒の温度を低くし、エアコン手段は熱交換器を通過して冷却された低温の冷媒が、HAVCモジュールの蒸発器と連結された第2膨張バルブに流入するように第3バルブを開放させて膨張した冷媒を蒸発器に供給し、蒸発器で外気との熱交換によって蒸発した冷媒を排出してアキュムレータと圧縮器を通過して圧縮させた状態で、第1バルブの作動によって内部凝縮器と連結された冷媒ラインを開放させて内部凝縮器に冷媒を供給し、内部凝縮器を通過した冷媒は第1膨張バルブによって膨張させた状態で、熱交換器に供給されるように第2バルブを作動させて循環させ、外部からHAVCモジュールの蒸発器を通過しながら冷却された外気が内部凝縮器を通過するように開閉ドアを開放させて、流入した外気が内部凝縮器とPTCヒータを通過しながら車両の室内を除湿することを特徴とする。   In the dehumidifying mode, the cooling means operates the cooling fan to cool the cooling water flowing into the radiator, cools the electrical components by operating the water pump, flows into the heat exchanger, and cools the low temperature flowing into the heat exchanger. The temperature of the refrigerant is lowered by heat exchange with the cooling water, and the air conditioner means passes the heat exchanger so that the low-temperature refrigerant cooled and flows into the second expansion valve connected to the evaporator of the HAVC module. In the state where the third valve is opened and the expanded refrigerant is supplied to the evaporator, the refrigerant evaporated by heat exchange with the outside air in the evaporator is discharged and compressed through the accumulator and the compressor. The refrigerant line connected to the internal condenser is opened by the operation of to supply the refrigerant to the internal condenser, and the refrigerant that has passed through the internal condenser is expanded by the first expansion valve. In this state, the second valve is operated and circulated so as to be supplied to the heat exchanger, and the open / close door is opened so that the cooled outside air passes through the internal condenser while passing through the evaporator of the HAVC module from the outside. The outside air that has flowed in is then dehumidified inside the vehicle while passing through the internal condenser and the PTC heater.

除湿モードは、制御器が第1膨張バルブ及び第2膨張バルブの開度量の調節によって冷媒の膨張量を調節することを特徴とする。
暖房モード、冷房モード、及び除湿モードは、制御器が電装品から発生する廃熱源の温度状態と、冷却水と冷媒の温度状態に応じて、クーリングファンの風量とウォータポンプの流量を制御することを特徴とする。
クーリング手段は、熱交換器とウォータポンプを直接繋ぐバイパスとバイパスの入口に設けた第4バルブ190をさら含み、暖房モード及び除湿モードによって、冷却水がラジエータをバイパスするように調節することを特徴とする。
The dehumidifying mode is characterized in that the controller adjusts the expansion amount of the refrigerant by adjusting the opening amounts of the first expansion valve and the second expansion valve.
In the heating mode, cooling mode, and dehumidification mode, the controller controls the air volume of the cooling fan and the flow rate of the water pump according to the temperature state of the waste heat source generated from the electrical components and the temperature state of the cooling water and the refrigerant. It is characterized by.
The cooling means further includes a bypass valve directly connecting the heat exchanger and the water pump and a fourth valve 190 provided at the inlet of the bypass, and the cooling water is adjusted to bypass the radiator according to the heating mode and the dehumidifying mode. And

本発明の車両用ヒートポンプシステム及びその制御方法によれば、冷却水を熱交換媒体として使用する熱交換器を適用し、電装品から発生する廃熱源を利用して冷媒と熱交換させることによって、全体的な暖房性能及び効率と除湿性能を向上させ、極低温時に、外部に設けられた外部凝縮器の外部結露を防止することができる。
また、暖房モードにおいて、極低温時のアイドル状態及び走行条件では、PTCヒータと共に全体的なシステムを同時に駆動させることによって、電源使用量が増加することを防止すると同時に、暖房負荷を減少させて同一のエネルギーで車両の全体的な走行距離を増加させる長所がある。
そして、車両の冷房モードでは外部凝縮器を通じた空冷式方式のエアコンシステムを維持することができるので、冷房性能を維持することができ、除湿モードでは3ウェイ(3−Way)バルブを採用することよって頻繁な開閉作動を減らし、バルブの開閉作動による騒音及び振動発生を低減させることができる。。
According to the vehicle heat pump system and the control method thereof of the present invention, by applying a heat exchanger that uses cooling water as a heat exchange medium, heat is exchanged with the refrigerant using a waste heat source generated from the electrical component, The overall heating performance and efficiency and dehumidification performance can be improved, and external condensation of the external condenser provided outside can be prevented at extremely low temperatures.
Also, in the heating mode, in the idling state and traveling conditions at extremely low temperatures, the entire system is driven simultaneously with the PTC heater to prevent an increase in power consumption and at the same time reduce the heating load. This has the advantage of increasing the overall mileage of the vehicle with less energy.
In the cooling mode of the vehicle, an air-cooled air conditioner system through an external condenser can be maintained, so that the cooling performance can be maintained. In the dehumidifying mode, a 3-way (3-Way) valve should be adopted. Therefore, frequent opening / closing operations can be reduced, and noise and vibration caused by opening / closing operations of the valve can be reduced. .

本発明の実施例に係る車両用ヒートポンプシステムの構成図である。It is a lineblock diagram of the heat pump system for vehicles concerning the example of the present invention. 本発明の実施例に係る車両用ヒートポンプシステムの暖房モード作動状態図である。It is a heating mode operation state figure of the heat pump system for vehicles concerning the example of the present invention. 本発明の実施例に係る車両用ヒートポンプシステムの冷房モード作動状態図である。It is a cooling mode operation state figure of the heat pump system for vehicles concerning the example of the present invention. 本発明の実施例に係る車両用ヒートポンプシステムの除湿モード作動状態図である。It is a dehumidification mode operation state figure of the heat pump system for vehicles concerning the example of the present invention.

以下、本発明の好ましい実施例について、添付した図面に基づいて詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明の実施例に係る車両用ヒートポンプシステムの構成図である。
図面に示したとおり、本発明の実施例に係る車両用ヒートポンプシステム100及びその制御方法は、電装品111から発生する廃熱源を利用して冷却水と冷媒を相互熱交換させることによって、暖房性能、暖房効率及び除湿性能を向上させ、極低温時には外部凝縮器164の外部結露を防止する。
また、車両の暖房モードでの暖房負荷を減少させることによって、同一のエネルギー量に対する車両の全体的な走行距離を増加させる。
そのために、本発明の実施例に係る車両用ヒートポンプシステム100は、図1に示したとおり、基本的に車両に搭載されて、冷却水が流動する冷却ライン(Colling Line:以下、「C.L」という)を通して、電装品111とハイブリッド車両の場合、図示しないエンジンに冷却水を供給及び循環させるクーリング手段110と、車両の室内の冷暖房を調節するように冷媒が流動する冷媒ライン(Refrigerant Line:以下、「R.L」という)を有するエアコン手段150とを含んで構成される。
FIG. 1 is a configuration diagram of a vehicle heat pump system according to an embodiment of the present invention.
As shown in the drawings, the vehicle heat pump system 100 and the control method thereof according to the embodiment of the present invention use the waste heat source generated from the electrical component 111 to exchange heat between the coolant and the refrigerant, thereby heating performance. In addition, heating efficiency and dehumidification performance are improved, and external condensation of the external condenser 164 is prevented at extremely low temperatures.
Also, the overall travel distance of the vehicle for the same amount of energy is increased by reducing the heating load in the vehicle heating mode.
For this purpose, the vehicle heat pump system 100 according to the embodiment of the present invention is basically mounted on a vehicle and a cooling line (hereinafter referred to as “C.L. In the case of the electrical component 111 and the hybrid vehicle, a cooling means 110 that supplies and circulates cooling water to an engine (not shown), and a refrigerant line (Refrigerant Line) through which the refrigerant flows so as to adjust the heating and cooling of the vehicle interior. Hereinafter, the air conditioner means 150 having “RL” is included.

本実施例において、クーリング手段110は、車両の前面に構成され、ウォータポンプ113によって冷却ライン(C.L)に沿って冷却水を循環させて、供給される冷却水を外気との熱交換によって冷却させるラジエータ115と、ラジエータ115に風を送風するようにラジエータ115の後方に装着されるクーリングファン117とを含んで構成される。
そして、車両用ヒートポンプシステム100は、電装品111とラジエータ115の間に配置されて、冷却ライン(C.L)と冷媒ライン(R.L)がそれぞれ連結される熱交換器130をさらに含む。
熱交換器130は、冷却ライン(C.L)と連結されて内部に冷却水が循環し、車両の暖房、冷房、及び除湿モードによって電装品111から発生する廃熱源を選択的に利用して冷却水の水温を変化させることによって、冷媒ライン(R.L)を通して流入した冷媒を冷却水と熱交換させる。
つまり、熱交換器130は、冷却水を熱交換媒体として使用して、冷媒と熱交換させる水冷式熱交換器からなる。
In the present embodiment, the cooling means 110 is configured on the front surface of the vehicle, circulates the cooling water along the cooling line (CL) by the water pump 113, and exchanges the supplied cooling water with heat from the outside air. A radiator 115 to be cooled and a cooling fan 117 attached to the rear of the radiator 115 so as to blow air to the radiator 115 are configured.
The vehicle heat pump system 100 further includes a heat exchanger 130 that is disposed between the electrical component 111 and the radiator 115 and is connected to the cooling line (CL) and the refrigerant line (RL).
The heat exchanger 130 is connected to a cooling line (CL) so that cooling water circulates therein, and selectively uses a waste heat source generated from the electrical component 111 by heating, cooling, and dehumidifying modes of the vehicle. By changing the water temperature of the cooling water, the refrigerant flowing through the refrigerant line (RL) is heat-exchanged with the cooling water.
That is, the heat exchanger 130 is a water-cooled heat exchanger that uses cooling water as a heat exchange medium to exchange heat with the refrigerant.

このような熱交換器130は、内部に温度センサー(図示せず)が取り付けられ、温度センサーは流入した冷却水の水温と冷媒の温度を感知する。
本実施例において、エアコン手段150は、HVAC(Heating、Ventilation、and Air Conditioning)モジュール151、圧縮器161、アキュムレータ163、外部凝縮器164、第1バルブ165、第2バルブ167、第3バルブ169、第1膨張バルブ171、及び第2膨張バルブ173で構成される。これらの各構成についてさらに詳細に説明する。
まず、HVACモジュール151は、通過する空気を冷却する蒸発器157と、蒸発器157を通過した空気を加熱する内部凝縮器153を含み、冷房、暖房、及び除湿モードによって、蒸発器157を通過した外気が内部凝縮器153とPTCヒータ155に選択的に流入するように調節する開閉ドア159が内部に具備される。
Such a heat exchanger 130 has a temperature sensor (not shown) attached therein, and the temperature sensor senses the temperature of the coolant flowing in and the temperature of the refrigerant.
In the present embodiment, the air conditioner means 150 includes an HVAC (Heating, Ventilation, and Air Conditioning) module 151, a compressor 161, an accumulator 163, an external condenser 164, a first valve 165, a second valve 167, a third valve 169, The first expansion valve 171 and the second expansion valve 173 are configured. Each of these components will be described in more detail.
First, the HVAC module 151 includes an evaporator 157 that cools the air that passes through and an internal condenser 153 that heats the air that passes through the evaporator 157, and has passed through the evaporator 157 by cooling, heating, and dehumidifying modes. An open / close door 159 for adjusting the outside air to selectively flow into the internal condenser 153 and the PTC heater 155 is provided inside.

つまり、開閉ドア159は、車両の暖房時に、蒸発器157を通過した外気が内部凝縮器153とPTCヒータ155に流入するように内部凝縮器153とPTCヒータ155への流路を開放し、一方、冷房時には、蒸発器157を通過して冷却された外気が車両の内部に直接流入するように、内部凝縮器153とPTCヒータ155への流路を閉鎖する。
本実施例において、圧縮器161は蒸発器157と冷媒ライン(R.L)によって連結され、気体状態の冷媒を圧縮する。
そして、アキュムレータ163は圧縮器161と蒸発器157の間の冷媒ライン(R.L)上に備えられ、圧縮器161に気体冷媒だけが供給されるように内部に液体冷媒を貯蔵し、貯蔵された液体冷媒を気化させてさらに圧縮器161に気体冷媒を供給して、圧縮器161の効率及び耐久性を向上させる。
That is, the open / close door 159 opens the flow path to the internal condenser 153 and the PTC heater 155 so that the outside air that has passed through the evaporator 157 flows into the internal condenser 153 and the PTC heater 155 when the vehicle is heated. During cooling, the flow path to the internal condenser 153 and the PTC heater 155 is closed so that the external air cooled through the evaporator 157 flows directly into the vehicle.
In this embodiment, the compressor 161 is connected to the evaporator 157 by a refrigerant line (RL), and compresses the refrigerant in the gaseous state.
The accumulator 163 is provided on a refrigerant line (RL) between the compressor 161 and the evaporator 157, and stores and stores the liquid refrigerant so that only the gaseous refrigerant is supplied to the compressor 161. The liquid refrigerant thus vaporized is further supplied to the compressor 161 to improve the efficiency and durability of the compressor 161.

外部凝縮器164は、車両の乗客室の外部にあるラジエータ115の前方に備えられ、冷媒ライン(R.L)によって圧縮器161と連結されて、圧縮器161から排出された冷媒の供給を受けて凝縮させる。
本実施例において、第1バルブ165は、圧縮器161から排出される冷媒を車両のモードに応じて内部凝縮器153または外部凝縮器164に選択的に供給する。
第1膨張バルブ171は、内部凝縮器153を通過した冷媒を冷媒ライン(R.L)によって供給を受けて膨張させる。
ここで、圧縮器161と第1バルブ165の間の冷媒ライン(R.L)上には圧力センサー175が装着されて、圧縮器161から圧縮された状態で排出される冷媒の圧力を感知する。
The external condenser 164 is provided in front of the radiator 115 outside the passenger compartment of the vehicle, is connected to the compressor 161 by a refrigerant line (RL), and receives supply of refrigerant discharged from the compressor 161. To condense.
In the present embodiment, the first valve 165 selectively supplies the refrigerant discharged from the compressor 161 to the internal condenser 153 or the external condenser 164 according to the mode of the vehicle.
The first expansion valve 171 expands the refrigerant that has passed through the internal condenser 153 by being supplied by the refrigerant line (RL).
Here, a pressure sensor 175 is mounted on the refrigerant line (RL) between the compressor 161 and the first valve 165 to detect the pressure of the refrigerant discharged from the compressor 161 in a compressed state. .

第2バルブ167は、第1膨張バルブ171によって膨張した冷媒を外部凝縮器164または熱交換器130に選択的に供給する。
第3バルブ169は、熱交換器130または外部凝縮器164を通過した冷媒を蒸発器157またはアキュムレータ163に選択的に供給する。
そして、第2膨張バルブ173は、蒸発器157と第3バルブ169の間に備えられ、第3バルブ169の開閉によって流入する冷媒を膨張させて蒸発器157に供給する。
ここで、第1バルブ165は冷媒を内部凝縮器153または熱交換器130に供給し、第2バルブ167は冷媒を熱交換器130または外部凝縮器164に供給し、第3バルブ169は冷媒をアキュムレータ163または第2膨張バルブ173に供給するように、冷媒ライン(R.L)を選択的に開閉して連結させる3ウェイ(3−way)バルブからなる。
The second valve 167 selectively supplies the refrigerant expanded by the first expansion valve 171 to the external condenser 164 or the heat exchanger 130.
The third valve 169 selectively supplies the refrigerant that has passed through the heat exchanger 130 or the external condenser 164 to the evaporator 157 or the accumulator 163.
The second expansion valve 173 is provided between the evaporator 157 and the third valve 169, expands the refrigerant flowing in by opening and closing the third valve 169, and supplies the refrigerant to the evaporator 157.
Here, the first valve 165 supplies the refrigerant to the internal condenser 153 or the heat exchanger 130, the second valve 167 supplies the refrigerant to the heat exchanger 130 or the external condenser 164, and the third valve 169 supplies the refrigerant. It comprises a 3-way valve that selectively opens and closes the refrigerant line (RL) so as to be supplied to the accumulator 163 or the second expansion valve 173.

上記の構成を有するクーリング手段110とエアコン手段150はそれぞれ制御器180と連結され、制御器180の制御信号によって作動する。
つまり、制御器180は使用者の選択による車両の暖房モード、冷房モード、及び除湿モードと、熱交換器130の温度センサーから出力された信号によって、クーリング手段110のクーリングファン117とウォータポンプ113を制御する。
また、制御器180は、車両のモードによってエアコン手段150でHVACモジュール151の開閉ドア159の開閉作動を制御すると同時に、第1バルブ165、第2バルブ167、及び第3バルブ169の開閉作動を制御し、第1膨張バルブ171及び第2膨張バルブ173を制御して冷媒の膨張量を制御する。
The cooling unit 110 and the air conditioner unit 150 having the above-described configuration are respectively connected to the controller 180 and operated by a control signal from the controller 180.
That is, the controller 180 controls the cooling fan 117 and the water pump 113 of the cooling means 110 according to a signal output from the temperature sensor of the heat exchanger 130 and the heating mode, the cooling mode, and the dehumidifying mode of the vehicle selected by the user. Control.
The controller 180 controls the opening / closing operation of the opening / closing door 159 of the HVAC module 151 by the air conditioner means 150 according to the mode of the vehicle, and simultaneously controls the opening / closing operation of the first valve 165, the second valve 167, and the third valve 169. Then, the first expansion valve 171 and the second expansion valve 173 are controlled to control the expansion amount of the refrigerant.

以下、上記のとおり構成された本発明の実施例に係る車両用ヒータポンプシステムの作動及び制御方法について、図2乃至図4に基づいて具体的に説明する。
図2乃至図4は、それぞれ本発明の実施例に係る車両用ヒートポンプシステムの暖房モード、冷房モード、及び除湿モードの作動状態図である。
ここで、車両用ヒートポンプスシステム100の暖房モード、冷房モード、及び除湿モードは、使用者の選択または自動調節によって作動できる。
Hereinafter, the operation and control method of the vehicle heater pump system configured as described above according to the embodiment of the present invention will be described in detail with reference to FIGS.
2 to 4 are operational state diagrams of the heating mode, the cooling mode, and the dehumidifying mode of the vehicle heat pump system according to the embodiment of the present invention, respectively.
Here, the heating mode, the cooling mode, and the dehumidifying mode of the vehicle heat pump system 100 can be operated by a user's selection or automatic adjustment.

最初に、車両用ヒートポンプシステム100の暖房モード時の作動及び制御方法について、図2に基づいて説明する。
図2に示したとおり、暖房モードで、クーリング手段110は、電装品111から発生する廃熱源を利用して冷却水の温度を上昇させた状態で、冷却ライン(C.L)によって連結された熱交換器130に流入させる。
この時、クーリングファン117は、作動が中止されるか、または風速を低下させることによって、ラジエータ115に流入した冷却水の冷却を遅延または防止する。
このような状態で、熱交換器130は、冷媒ライン(R.L)を通して流入した冷媒との熱交換によって、冷媒の温度を上昇させる。
First, the operation and control method in the heating mode of the vehicle heat pump system 100 will be described with reference to FIG.
As shown in FIG. 2, in the heating mode, the cooling means 110 is connected by the cooling line (CL) in a state where the temperature of the cooling water is increased using the waste heat source generated from the electrical component 111. It flows into the heat exchanger 130.
At this time, the cooling fan 117 delays or prevents cooling of the cooling water flowing into the radiator 115 by stopping the operation or reducing the wind speed.
In such a state, the heat exchanger 130 raises the temperature of the refrigerant by exchanging heat with the refrigerant flowing in through the refrigerant line (RL).

ここで、制御器180は、熱交換器130に装着された温度センサー(図示せず)によって冷却水と冷媒の温度を判断し、電装品111から発生する廃熱源の温度状態、冷却水の温度状態、及び冷媒の圧力状態によって、ウォータポンプ113の流量を制御したり、クーリングファン117の風量を制御する。
そして、エアコン手段150は、熱交換器130の内部で冷却水との熱交換によって温度が上昇した冷媒を、第3バルブ169の開放によって冷媒ライン(R.L)に沿ってアキュムレータ163と圧縮器161を順に通過させる。
そのために、冷媒は、圧縮器161を通過しながら高温高圧状態の気体冷媒に圧縮されて、内部凝縮器153と連結された冷媒ライン(R.L)が第1バルブ165によって開放されて、内部凝縮器153に流入する。
Here, the controller 180 determines the temperature of the cooling water and the refrigerant by a temperature sensor (not shown) attached to the heat exchanger 130, the temperature state of the waste heat source generated from the electrical component 111, the temperature of the cooling water. The flow rate of the water pump 113 and the air volume of the cooling fan 117 are controlled according to the state and the refrigerant pressure state.
Then, the air conditioner means 150 uses the accumulator 163 and the compressor along the refrigerant line (RL) when the third valve 169 is opened by opening the third valve 169 by the heat exchange with the cooling water inside the heat exchanger 130. 161 are sequentially passed.
Therefore, the refrigerant is compressed into a high-temperature and high-pressure gaseous refrigerant while passing through the compressor 161, and the refrigerant line (RL) connected to the internal condenser 153 is opened by the first valve 165, It flows into the condenser 153.

ここで、圧縮器161と第1バルブ165の間の冷媒ライン(R.L)上に装着された圧力センサー175は、圧縮器161から排出される冷媒の圧力を測定して、制御器180にその測定値を出力する。
制御器180は、圧力センサー175から出力された測定値によって冷媒の圧力を判断し、要求された車両状態に応じて第1バルブ165の開度量を調節する。
内部凝縮器153を通過した冷媒は、第1膨張バルブ171によって膨張した状態で冷媒ライン(R.L)に沿って移動し、第2バルブ167の作動によって熱交換器130に流入して、前述のような作動を繰り返すことによって冷媒ライン(R.L)に沿って循環する。
Here, the pressure sensor 175 mounted on the refrigerant line (RL) between the compressor 161 and the first valve 165 measures the pressure of the refrigerant discharged from the compressor 161, and sends it to the controller 180. The measured value is output.
The controller 180 determines the refrigerant pressure based on the measurement value output from the pressure sensor 175, and adjusts the opening amount of the first valve 165 according to the requested vehicle state.
The refrigerant that has passed through the internal condenser 153 moves along the refrigerant line (RL) while being expanded by the first expansion valve 171, and flows into the heat exchanger 130 by the operation of the second valve 167. By repeating the above operation, the refrigerant circulates along the refrigerant line (RL).

つまり、暖房モードでは、高温高圧状態の気体冷媒が内部凝縮器153に供給されると、制御器180が、外部からHAVCモジュール151の蒸発器157を通過した外気が内部凝縮器153を通過するように、開閉ドア159を作動させる。
そのために、外部から流入した外気は、冷媒が供給されない蒸発器157を通過する時、冷却されない状態で流入し、内部凝縮器153を通過する時、高温状態に加熱され、PTCヒータ155の選択的な作動よりさらに加熱されて車両の室内に供給される。これによって、車両の室内の暖房が行われる。
That is, in the heating mode, when high-temperature and high-pressure gaseous refrigerant is supplied to the internal condenser 153, the controller 180 causes the external air that has passed through the evaporator 157 of the HAVC module 151 to pass through the internal condenser 153. Then, the open / close door 159 is operated.
Therefore, the outside air flowing in from the outside flows in an uncooled state when passing through the evaporator 157 to which no refrigerant is supplied, and is heated to a high temperature state when passing through the internal condenser 153, and is selectively used by the PTC heater 155. It is heated further than normal operation and supplied to the interior of the vehicle. As a result, the vehicle interior is heated.

次に、本実施例において、車両用ヒートポンプシステム100の冷房モード時の作動及び制御方法について、図3に基づいて説明する。
まず、冷房モードにおいてクーリング手段110は、図3に示したとおり、制御器180によってクーリングファン117が作動して、ラジエータ115に流入した冷却水を冷却する。
この時、クーリングファン117は、最大速度で作動して、ラジエータ115を通過する冷却水を最大限冷却する。
このような状態で、冷却された冷却水は、ウォータポンプ113の作動によって冷却ライン(C.L)に沿って循環して、電装品111を冷却させる。
ここで、制御器180は、熱交換器130に装着された温度センサーによって冷却水の温度を判断し、電装品111から発生する廃熱源の温度状態、冷却水の温度状態に応じて、ウォータポンプ113の流量を制御したり、クーリングファン117の風量を制御する。
Next, in the present embodiment, the operation and control method in the cooling mode of the vehicle heat pump system 100 will be described with reference to FIG.
First, in the cooling mode, as shown in FIG. 3, in the cooling mode 110, the cooling fan 117 is operated by the controller 180 to cool the cooling water flowing into the radiator 115.
At this time, the cooling fan 117 operates at the maximum speed to cool the cooling water passing through the radiator 115 to the maximum.
In such a state, the cooled cooling water is circulated along the cooling line (CL) by the operation of the water pump 113 to cool the electrical component 111.
Here, the controller 180 determines the temperature of the cooling water using a temperature sensor attached to the heat exchanger 130, and the water pump according to the temperature state of the waste heat source generated from the electrical component 111 and the temperature state of the cooling water. The flow rate of 113 is controlled and the air volume of the cooling fan 117 is controlled.

そして、エアコン手段150は、第1バルブ165が外部凝縮器164と連結された冷媒ライン(R.L)を開放することによって、圧縮器161から排出された冷媒を外部凝縮器164に供給して凝縮させる。
この時、外部凝縮器164は、車両の前方でラジエータ115の前面に配置されることによって、内部に流入した冷媒を走行風とクーリングファン117の風量によって冷却及び凝縮させる。
その後、制御器180は、外部凝縮器164を通過した冷媒がHAVCモジュール151の蒸発器157と連結された第2膨張バルブ173に流入するように第3バルブ169を作動させて、冷媒ライン(R.L)を開放する。
第2膨張バルブ173に流入した低温の冷媒は膨張した状態で、冷媒ライン(R.L)に沿って蒸発器157に供給される。
The air conditioner means 150 supplies the refrigerant discharged from the compressor 161 to the external condenser 164 by opening the refrigerant line (RL) in which the first valve 165 is connected to the external condenser 164. Condense.
At this time, the external condenser 164 is disposed in front of the radiator 115 in front of the vehicle, and thereby cools and condenses the refrigerant flowing into the interior by the traveling wind and the air volume of the cooling fan 117.
Thereafter, the controller 180 operates the third valve 169 so that the refrigerant that has passed through the external condenser 164 flows into the second expansion valve 173 connected to the evaporator 157 of the HAVC module 151, and the refrigerant line (R .L) is released.
The low-temperature refrigerant flowing into the second expansion valve 173 is expanded and supplied to the evaporator 157 along the refrigerant line (RL).

その後、冷媒は、蒸発器157で外気との熱交換によって蒸発し、冷媒ライン(R.L)に沿って、アキュムレータ163と圧縮器161を通過して圧縮される。
上記の作動によって圧縮された冷媒は、第1バルブ165の作動によってさらに外部凝縮器164と連結された冷媒ライン(R.L)の開放によって外部凝縮器164に流入し、上記の作動を繰り返して冷媒ライン(R.L)に沿って循環する。
ここで、HVACモジュール151に流入した外気は、蒸発器157に流入した低温状態の冷媒によって蒸発器157を通過する時、冷却される。
この時、開閉ドア159は、冷却された外気が内部凝縮器153とPTCヒータ155を通過しないように、内部凝縮器153に向かう流路を閉鎖して、冷却された外気を車両の内部に直接流入させることによって冷房が行われる。
Thereafter, the refrigerant evaporates by heat exchange with the outside air in the evaporator 157, and is compressed through the accumulator 163 and the compressor 161 along the refrigerant line (RL).
The refrigerant compressed by the above operation flows into the external condenser 164 by opening the refrigerant line (RL) connected to the external condenser 164 by the operation of the first valve 165, and the above operation is repeated. It circulates along a refrigerant line (RL).
Here, the outside air flowing into the HVAC module 151 is cooled when passing through the evaporator 157 by the low-temperature refrigerant flowing into the evaporator 157.
At this time, the opening / closing door 159 closes the flow path toward the internal condenser 153 so that the cooled outside air does not pass through the internal condenser 153 and the PTC heater 155, and the cooled outside air is directly passed into the interior of the vehicle. Cooling is performed by letting it flow in.

次に、車両用ヒートポンプシステム100の除湿モード時の作動及び制御方法について、図4に基づいて説明する。
まず、除湿モードにおいてクーリング手段110は、図4に示したとおり、制御器180によってクーリングファン117が作動して、ラジエータ115に流入した冷却水を冷却させる。
このような状態で、冷却された冷却水は、ウォータポンプ113の作動によって冷却ライン(C.L)に沿って循環して、電装品111を冷却させながら熱交換器130に流入し、熱交換器130に流入した低温の冷却水との熱交換によって冷媒の温度を下げる。
Next, an operation and control method in the dehumidifying mode of the vehicle heat pump system 100 will be described with reference to FIG.
First, in the dehumidifying mode, as shown in FIG. 4, the cooling means 110 causes the cooling fan 117 to be operated by the controller 180 to cool the cooling water flowing into the radiator 115.
In such a state, the cooled cooling water is circulated along the cooling line (CL) by the operation of the water pump 113 and flows into the heat exchanger 130 while cooling the electrical component 111 to exchange heat. The temperature of the refrigerant is lowered by heat exchange with the low-temperature cooling water that has flowed into the vessel 130.

ここで、制御器180は、熱交換器130に装着された温度センサーによって冷却水と冷媒の温度を判断し、電装品111から発生する廃熱源の温度状態、冷却水の温度状態、及び冷媒の圧力状態に応じて、ウォータポンプ113の流量や、クーリングファン117の風量を制御する。
そして、エアコン手段150は、熱交換器130を通過する時、低温状態の冷却水との熱交換によって冷却された低温の冷媒を、HAVCモジュール151の蒸発器157と連結された第2膨張バルブ173に流入するように、第3バルブ169の作動によって冷媒ライン(R.L)を開放する。
これにより、第2膨張バルブ173に流入した低温の冷媒は、膨張した状態で冷媒ライン(R.L)に沿って蒸発器157に供給される。
Here, the controller 180 determines the temperature of the cooling water and the refrigerant by a temperature sensor attached to the heat exchanger 130, and the temperature state of the waste heat source generated from the electrical component 111, the temperature state of the cooling water, and the refrigerant The flow rate of the water pump 113 and the air volume of the cooling fan 117 are controlled according to the pressure state.
When the air conditioner means 150 passes through the heat exchanger 130, the second expansion valve 173 connected to the evaporator 157 of the HAVC module 151 is supplied with the low-temperature refrigerant cooled by heat exchange with the low-temperature cooling water. The refrigerant line (RL) is opened by the operation of the third valve 169 so as to flow into the refrigerant.
Thereby, the low-temperature refrigerant that has flowed into the second expansion valve 173 is supplied to the evaporator 157 along the refrigerant line (RL) in an expanded state.

その後、冷媒は蒸発器157で外気との熱交換によって蒸発され、冷媒ライン(R.L)に沿ってアキュムレータ163と圧縮器161を通過しながら高温高圧状態の気体冷媒に圧縮される。
圧縮された気体冷媒は、内部凝縮器153と連結された冷媒ライン(R.L)が第1バルブ165によって開放されて、内部凝縮器153に供給される。
ここで、圧縮器161と第1バルブ165の間の冷媒ライン(R.L)上に装着された圧力センサー175は、圧縮器161から排出される冷媒の圧力を測定して、制御器180にその測定値を出力する。
制御器180は、圧力センサー175から出力された測定値によって冷媒の圧力を判断して、要求された車両状態に応じて第1バルブ165の開度量を調節する。
Thereafter, the refrigerant is evaporated by heat exchange with the outside air in the evaporator 157 and compressed into a high-temperature and high-pressure gaseous refrigerant while passing through the accumulator 163 and the compressor 161 along the refrigerant line (RL).
The compressed gas refrigerant is supplied to the internal condenser 153 after the refrigerant line (RL) connected to the internal condenser 153 is opened by the first valve 165.
Here, the pressure sensor 175 mounted on the refrigerant line (RL) between the compressor 161 and the first valve 165 measures the pressure of the refrigerant discharged from the compressor 161, and sends it to the controller 180. The measured value is output.
The controller 180 determines the refrigerant pressure based on the measurement value output from the pressure sensor 175, and adjusts the opening amount of the first valve 165 according to the requested vehicle state.

そして、内部凝縮器153を通過した冷媒は、第1膨張バルブ171によって膨張した状態で、第2バルブ167の作動によって熱交換器130と連結された冷媒ライン(R.L)に沿って熱交換器130に流入し、上記の作動を繰り返して冷媒ライン(R.L)に沿って循環する。
この場合、制御器180は、第1膨張バルブ171及び第2膨張バルブ173の開度量を調節することによって、冷媒の膨張量を調節する。
ここで、HVACモジュール151に流入する外気は、蒸発器157に流入した低温状態の冷媒によって、蒸発器157を通過する時、冷却されると同時に除湿される。
この時、開閉ドア159は、除湿され冷却された外気が内部凝縮器153を通過するように、内部凝縮器153と連結された側の流路を開放させる。蒸発器157において冷却され除湿された外気は、内部凝縮器153によって再び加熱されて車両の内部に流入する。これによって、車両の室内を除湿することができる。
The refrigerant that has passed through the internal condenser 153 is heat-exchanged along the refrigerant line (RL) connected to the heat exchanger 130 by the operation of the second valve 167 in a state where the refrigerant has expanded by the first expansion valve 171. It flows into the vessel 130 and circulates along the refrigerant line (RL) by repeating the above operation.
In this case, the controller 180 adjusts the expansion amount of the refrigerant by adjusting the opening amounts of the first expansion valve 171 and the second expansion valve 173.
Here, the outside air flowing into the HVAC module 151 is cooled and dehumidified simultaneously with being cooled by the low-temperature refrigerant flowing into the evaporator 157 when passing through the evaporator 157.
At this time, the opening / closing door 159 opens the flow path on the side connected to the internal condenser 153 so that the dehumidified and cooled outside air passes through the internal condenser 153. The outside air cooled and dehumidified in the evaporator 157 is heated again by the internal condenser 153 and flows into the vehicle. As a result, the interior of the vehicle can be dehumidified.

一方、本発明の実施例に係る車両用ヒートポンプシステム制御方法の説明において、暖房モードで外気と共にPTCヒータ155が作動することを一実施例として説明しているが、これに限定されるものではなく、使用者の選択による暖房温度の設定によってPTCヒータ155の作動有無を選択して実現することができる。
本発明に係る車両用ヒートポンプシステム100及びその制御方法によれば、冷却水を熱交換媒体として使用する熱交換器130を適用し、電装品111から発生する廃熱源を利用して冷媒と熱交換させることによって、全体的な暖房性能及び効率と除湿性能を向上させ、極低温時に、外部に設けられた外部凝縮器164の外部結露を防止することができる。
On the other hand, in the description of the vehicle heat pump system control method according to the embodiment of the present invention, the PTC heater 155 is operated together with the outside air in the heating mode as one embodiment. However, the present invention is not limited to this. The operation of the PTC heater 155 can be selected and realized by setting the heating temperature according to the user's selection.
According to the vehicle heat pump system 100 and the control method thereof according to the present invention, the heat exchanger 130 using the cooling water as a heat exchange medium is applied, and heat exchange with the refrigerant is performed using the waste heat source generated from the electrical component 111. As a result, the overall heating performance and efficiency and dehumidification performance can be improved, and external condensation of the external condenser 164 provided outside can be prevented at extremely low temperatures.

また、暖房モードにおいて、極低温時のアイドル状態及び走行条件では、PTCヒータ155と共に全体的なシステムを同時に駆動させることによって、電源使用量が増加することを防止して暖房負荷を減少させて、エネルギー消費単位当りの車両の全体的な走行距離を増加させることができる。
そして、車両の冷房モードにおいては、冷却水を低温の冷媒と熱交換させて水温を下げることができるので、冷房性能を向上させることができる。また、各モードで作動する第1バルブ165、第2バルブ167、及び第3バルブ169を3ウェイ(3−Way)バルブとすることにより、頻繁な開閉作動を減らして、バルブ開閉作動による騒音及び振動発生を低減させることができる。
さらに、熱交換器130において、熱交換媒体として冷却水を使用することによって、各構成要素の構造を簡素化すると同時に、一つのラジエータ115で電装品111を冷却させることができるので、全体的なシステムパッケージをコンパクトにすることができ、ラジエータ115の効率を向上させることができる。
Also, in the heating mode, in the idling state and traveling conditions at extremely low temperatures, by simultaneously driving the entire system together with the PTC heater 155, it is possible to prevent an increase in power consumption and reduce the heating load. The overall mileage of the vehicle per energy consumption unit can be increased.
In the cooling mode of the vehicle, the cooling water can be heat-exchanged with a low-temperature refrigerant to lower the water temperature, so that the cooling performance can be improved. Further, by making the first valve 165, the second valve 167, and the third valve 169 operating in each mode into three-way valves, the frequent opening and closing operations are reduced, and noise caused by the valve opening and closing operations is reduced. Vibration generation can be reduced.
Furthermore, in the heat exchanger 130, by using cooling water as a heat exchange medium, the structure of each component can be simplified, and at the same time, the electrical component 111 can be cooled by a single radiator 115. The system package can be made compact, and the efficiency of the radiator 115 can be improved.

一方、本発明の実施例に係る車両用ヒートポンプシステム及びその制御方法の説明において、第1、第2、第3バルブを設けたものを一実施例として説明したが、これに限定されるものではなく、冷却ラインと冷媒ライン上に別途の2ウェイ(2−Way)バルブを適用して、作動流体をバイパスさせたり、流量を調節することができる。
例えば、図4に示したとおり、クーリング手段110は、熱交換器130とウォータポンプ113を直接繋ぐバイパスとバイパスの入口に設けた第4バルブ190をさら含み、これによって、ヒートポンプシステム制御方法は、第4バルブ190によって暖房モード及び除湿モードにおいて、冷却水がラジエータ115をバイパスするように制御することができる。
On the other hand, in the description of the vehicle heat pump system and the control method thereof according to the embodiment of the present invention, the first, second, and third valves are provided as one embodiment. However, the present invention is not limited to this. Alternatively, a separate 2-way (2-Way) valve may be applied on the cooling line and the refrigerant line to bypass the working fluid and adjust the flow rate.
For example, as shown in FIG. 4, the cooling means 110 further includes a bypass that directly connects the heat exchanger 130 and the water pump 113 and a fourth valve 190 provided at an inlet of the bypass. The fourth valve 190 can be controlled so that the cooling water bypasses the radiator 115 in the heating mode and the dehumidifying mode.

以上、本発明に関する好ましい実施例を説明したが、本発明の範囲は特定の実施例に限定されるものではなく、特許請求の範囲によって解釈されなければならない。また、この技術分野で通常の知識を有する者なら、本発明の技術的範囲内で多くの修正と変形ができることはいうまでもない。   As mentioned above, although the preferable Example regarding this invention was described, the scope of the present invention is not limited to a specific Example, and should be interpreted by a claim. Further, it goes without saying that a person having ordinary knowledge in this technical field can make many modifications and variations within the technical scope of the present invention.

100 車両用ヒートポンプシステム
110 クーリング手段
111 電装品
113 ウォータポンプ(W/P)
115 ラジエータ
117 クーリングファン
130 熱交換器
150 エアコン手段
151 HVACモジュール
153 内部凝縮器
155 PTCヒータ
157 蒸発器
159 開閉ドア
161 圧縮器
163 アキュムレータ
164 外部凝縮器
165 第1バルブ
167 第2バルブ
169 第3バルブ
171 第1膨張バルブ
173 第2膨張バルブ
175 圧力センサー
180 制御器
190 第4バルブ
C.L 冷却ライン
R.L 冷媒ライン
DESCRIPTION OF SYMBOLS 100 Heat pump system for vehicles 110 Cooling means 111 Electrical component 113 Water pump (W / P)
115 Radiator 117 Cooling fan 130 Heat exchanger 150 Air conditioner means 151 HVAC module 153 Internal condenser 155 PTC heater 157 Evaporator 159 Open / close door 161 Compressor 163 External condenser 165 First valve 167 Second valve 169 Third valve 171 First expansion valve 173 Second expansion valve 175 Pressure sensor 180 Controller 190 Fourth valve C.I. L cooling line L refrigerant line

Claims (11)

車両に構成されて冷却ラインを通して電装品に冷却水を供給及び循環させるクーリング手段と、車両室内の冷暖房を調節するように冷媒ラインによって連結するエアコン手段とを含む車両用ヒートポンプシステムにおいて、
前記クーリング手段は車両の前面に構成されて、ウォータポンプによって前記冷却ラインに沿って冷却水を循環させ、供給される冷却水を外気との熱交換によって冷却させるラジエータと、前記ラジエータに風を送風するクーリングファンとを含み、
前記冷却ラインと連結して冷却水が循環し、モードによって前記電装品から発生する廃熱源を選択的に利用して冷却水の水温を変化させ、前記エアコン手段の前記冷媒ラインと連結して流入した冷媒を冷却水と熱交換させる熱交換器をさらに含むことを特徴とする車両用ヒートポンプシステム。
In a vehicle heat pump system including a cooling means configured to supply and circulate cooling water to and from an electrical component through a cooling line, and an air conditioner connected by a refrigerant line so as to adjust cooling and heating in the vehicle compartment,
The cooling means is configured in front of the vehicle, circulates the cooling water along the cooling line by a water pump, and cools the supplied cooling water by heat exchange with the outside air, and blows air to the radiator. Including a cooling fan
The cooling water circulates in connection with the cooling line, and the water temperature of the cooling water is changed by selectively using the waste heat source generated from the electrical equipment according to the mode, and the inflow is connected to the refrigerant line of the air conditioner means. The vehicle heat pump system further includes a heat exchanger for exchanging heat with the coolant.
前記エアコン手段は、
暖房、冷房、及び除湿モードによって蒸発器を通過した外気が内部凝縮器とPTCヒータに流入するように選択的に調節する開閉ドアを内部に備えたHVACモジュール、
前記蒸発器と前記冷媒ラインによって連結され、気体状態の冷媒を圧縮させる圧縮器、
前記圧縮器と前記蒸発器の間の前記冷媒ライン上に備えられ、前記圧縮器に気体冷媒だけを供給するアキュムレータ、
車両のエンジンルームに備えられて前記冷媒ラインによって連結され、冷媒を凝縮させる外部凝縮器、
前記圧縮器から排出される冷媒を車両のモードによって前記内部凝縮器または前記外部凝縮器に選択的に供給する第1バルブ、
前記内部凝縮器を通過した冷媒の供給を受けて膨張させる第1膨張バルブ、
前記第1膨張バルブによって膨張した冷媒を前記外部凝縮器または前記熱交換器に選択的に供給する第2バルブ、
前記外部凝縮器または前記熱交換器を通過した冷媒を前記蒸発器または前記アキュムレータに選択的に供給する第3バルブ、及び
前記蒸発器と前記第3バルブの間に備えられ、前記第3バルブの開閉によって流入する冷媒を膨張させる第2膨張バルブ、
を含むことを特徴とする請求項1に記載の車両用ヒートポンプシステム。
The air conditioner means includes
An HVAC module having an open / close door for selectively adjusting the outside air that has passed through the evaporator through heating, cooling, and dehumidifying modes to flow into the internal condenser and the PTC heater;
A compressor connected by the evaporator and the refrigerant line to compress the refrigerant in a gaseous state;
An accumulator which is provided on the refrigerant line between the compressor and the evaporator and supplies only the gaseous refrigerant to the compressor;
An external condenser that is provided in an engine room of a vehicle and connected by the refrigerant line to condense the refrigerant;
A first valve that selectively supplies refrigerant discharged from the compressor to the internal condenser or the external condenser according to a vehicle mode;
A first expansion valve that expands upon receiving supply of the refrigerant that has passed through the internal condenser;
A second valve for selectively supplying the refrigerant expanded by the first expansion valve to the external condenser or the heat exchanger;
A third valve that selectively supplies the refrigerant that has passed through the external condenser or the heat exchanger to the evaporator or the accumulator, and is provided between the evaporator and the third valve. A second expansion valve for expanding the refrigerant flowing in by opening and closing;
The vehicle heat pump system according to claim 1, comprising:
前記圧縮器と前記第1バルブを連結する前記冷媒ライン上には、圧力センサーが装着されたことを特徴とする請求項2に記載の車両用ヒートポンプシステム。   The vehicle heat pump system according to claim 2, wherein a pressure sensor is mounted on the refrigerant line connecting the compressor and the first valve. 前記第1、第2、第3バルブは、3ウェイ(3−way)バルブからなることを特徴とする請求項2に記載の車両用ヒートポンプシステム。   3. The vehicle heat pump system according to claim 2, wherein the first, second, and third valves are 3-way valves. 前記クーリング手段と前記エアコン手段はそれぞれ制御器と連結され、前記制御器の制御信号によって作動することを特徴とする請求項1に記載の車両用ヒートポンプシステム。   2. The vehicle heat pump system according to claim 1, wherein the cooling unit and the air conditioner unit are respectively connected to a controller and are operated by a control signal of the controller. 制御器と連結され、それぞれ冷却ラインによって相互連結され、ラジエータ、ウォータポンプ、及び電装品を含むクーリング手段と、それぞれ冷媒ラインによって相互連結され、複数個のバルブ、複数個の膨張バルブ、圧縮器、アキュムレータ、蒸発器、外部凝縮器、内部凝縮器、PTCヒータ、及び開閉ドアで構成されたHAVCモジュールを含むエアコン手段とで構成され、前記冷却ラインと前記冷媒ラインに連結された熱交換器をさらに含むヒートポンプシステムに適用され、使用者の選択によって暖房モード、冷房モード、及び除湿モードでそれぞれ作動させるための車両用ヒートポンプシステム制御方法において、
前記暖房モードにおいて、前記クーリング手段は、
前記電装品から発生する廃熱源によって前記熱交換器に流入した冷却水の温度を上昇させ、前記冷媒ラインを通して前記熱交換器に流入した冷媒との熱交換によって冷媒の温度を上昇させ、
前記エアコン手段は、
前記熱交換器で冷却水との熱交換によって温度が上昇した冷媒を、第3バルブの開放によって前記冷媒ラインに沿って前記アキュムレータと前記圧縮器を通過させて高温高圧状態の気体冷媒に圧縮させた状態で、第1バルブの作動によって前記HAVCモジュールの前記内部凝縮器に供給し、
前記内部凝縮器を通過した冷媒は、第1膨張バルブによって膨張させた状態で、第2バルブの作動によって前記熱交換器に供給して循環させ、外部から前記HAVCモジュールの前記蒸発器を通過した外気が前記内部凝縮器を通過するように前記開閉ドアを開放させ、流入した外気が前記内部凝縮器を通過しながら前記PTCヒータの選択的な作動と共に車両室内を暖房することを特徴とする車両用ヒートポンプシステム制御方法。
Connected to the controller, each interconnected by a cooling line, and cooling means including a radiator, a water pump, and electrical components, each interconnected by a refrigerant line, a plurality of valves, a plurality of expansion valves, a compressor, A heat exchanger connected to the cooling line and the refrigerant line, further comprising: an accumulator, an evaporator, an external condenser, an internal condenser, a PTC heater, and an air conditioner means including a HAVC module. In a vehicle heat pump system control method, which is applied to a heat pump system including, and is operated in a heating mode, a cooling mode, and a dehumidifying mode, respectively, according to a user's selection,
In the heating mode, the cooling means is
Increasing the temperature of cooling water flowing into the heat exchanger by a waste heat source generated from the electrical component, and increasing the temperature of the refrigerant by heat exchange with the refrigerant flowing into the heat exchanger through the refrigerant line,
The air conditioner means includes
The refrigerant whose temperature has been raised by heat exchange with the cooling water in the heat exchanger is compressed into a high-temperature and high-pressure gaseous refrigerant by passing the accumulator and the compressor along the refrigerant line by opening the third valve. In this state, the first valve is operated to supply the internal condenser of the HAVC module,
The refrigerant that has passed through the internal condenser is expanded by the first expansion valve, supplied to the heat exchanger by the operation of the second valve, circulated, and passed through the evaporator of the HAVC module from the outside. A vehicle characterized in that the open / close door is opened so that outside air passes through the internal condenser, and the inside of the vehicle is heated together with the selective operation of the PTC heater while the outside air that has flowed in passes through the internal condenser. Heat pump system control method.
前記冷房モードにおいて、前記クーリング手段は、
クーリングファンが作動して前記ラジエータに流入した冷却水を冷却させた状態で、前記ウォータポンプの作動によって前記電装品を冷却しながら前記熱交換器に流入させて、前記熱交換器に流入した低温の冷却水と熱交換によって冷媒の温度を低くし、
前記エアコン手段は、
前記外部凝縮器を通過しながら冷却された低温の冷媒が、前記HAVCモジュールの蒸発器と連結された第2膨張バルブに流入するように前記第3バルブを作動させて膨張した冷媒を前記蒸発器に供給し、
前記蒸発器で外気との熱交換によって蒸発した冷媒を排出して、前記アキュムレータと前記圧縮器を通過して圧縮させた状態で、前記第1バルブの作動によって前記外部凝縮器と連結された前記冷媒ラインを開放させて前記外部凝縮器に供給して循環させ、
前記蒸発器に流入した冷媒によって前記蒸発器を通過しながら冷却された外気が前記内部凝縮器に流入しないように前記開閉ドアを閉鎖して、冷却された外気を車両の内部に直接流入させて車両の室内を冷房することを特徴とする請求項6に記載の車両用ヒートポンプシステム制御方法。
In the cooling mode, the cooling means is
In a state in which the cooling water that has flowed into the radiator is cooled by operating a cooling fan, the low temperature that has flowed into the heat exchanger while flowing into the heat exchanger while cooling the electrical components by operating the water pump. Reduce the temperature of the refrigerant by heat exchange with the cooling water of
The air conditioner means includes
The low-temperature refrigerant cooled while passing through the external condenser is operated by the third valve so that the low-temperature refrigerant flows into the second expansion valve connected to the evaporator of the HAVC module. To supply
The refrigerant evaporated by heat exchange with the outside air in the evaporator is discharged and compressed through the accumulator and the compressor, and is connected to the external condenser by the operation of the first valve. Open the refrigerant line and supply it to the external condenser for circulation;
The open / close door is closed so that the outside air cooled while passing through the evaporator by the refrigerant flowing into the evaporator does not flow into the internal condenser, and the cooled outside air flows directly into the vehicle. The vehicle heat pump system control method according to claim 6, wherein the interior of the vehicle is cooled.
前記除湿モードにおいて、前記クーリング手段は、
クーリングファンが作動して前記ラジエータに流入した冷却水を冷却させ、前記ウォータポンプの作動によって前記電装品を冷却しながら前記熱交換に流入させて、前記熱交換器に流入した低温の冷却水と熱交換によって冷媒の温度を低くし、
前記エアコン手段は、
前記熱交換器を通過して冷却された低温の冷媒が前記HAVCモジュールの蒸発器と連結された第2膨張バルブに流入するように前記第3バルブを開放させて、膨張した冷媒を前記蒸発器に供給し、
前記蒸発器で外気との熱交換によって蒸発した冷媒を排出して、前記アキュムレータと前記圧縮器を通過して圧縮させた状態で、前記第1バルブの作動によって前記内部凝縮器と連結された前記冷媒ラインを開放させて前記内部凝縮器に冷媒を供給し、
前記内部凝縮器を通過した冷媒は第1膨張バルブによって膨張させた状態で、前記熱交換器に供給されるように前記第2バルブを作動させて循環させ、外部から前記HAVCモジュールの前記蒸発器を通過しながら冷却された外気が前記内部凝縮器を通過するように前記開閉ドアを開放させて、流入した外気が前記内部凝縮器と前記PTCヒータを通過しながら車両室内を除湿することを特徴とする請求項6に記載の車両用ヒートポンプシステム制御方法。
In the dehumidifying mode, the cooling means is
A cooling fan that operates to cool the cooling water that flows into the radiator, and cools the electrical components by operating the water pump and flows into the heat exchange, and the low-temperature cooling water that flows into the heat exchanger; Reduce the temperature of the refrigerant by heat exchange,
The air conditioner means includes
The third valve is opened so that the low-temperature refrigerant cooled through the heat exchanger flows into the second expansion valve connected to the evaporator of the HAVC module, and the expanded refrigerant is removed from the evaporator. To supply
The refrigerant evaporated by heat exchange with the outside air in the evaporator is discharged and compressed through the accumulator and the compressor, and is connected to the internal condenser by the operation of the first valve. Open the refrigerant line to supply the refrigerant to the internal condenser,
The refrigerant passing through the internal condenser is circulated by operating the second valve so that the refrigerant is supplied to the heat exchanger in a state where the refrigerant is expanded by the first expansion valve, and the evaporator of the HAVC module is externally supplied. The open / close door is opened so that the outside air cooled while passing through the internal condenser passes through the internal condenser, and the inflowing outside air dehumidifies the vehicle interior while passing through the internal condenser and the PTC heater. The vehicle heat pump system control method according to claim 6.
前記除湿モードは、
前記制御器が前記第1膨張バルブ及び前記第2膨張バルブの開度量の調節によって冷媒の膨張量を調節することを特徴とする請求項8に記載の車両用ヒートポンプシステム制御方法。
The dehumidifying mode is
The vehicle heat pump system control method according to claim 8, wherein the controller adjusts an expansion amount of the refrigerant by adjusting an opening amount of the first expansion valve and the second expansion valve.
前記暖房モード、前記冷房モード、及び前記除湿モードは、
前記制御器が、前記電装品から発生する廃熱源の温度状態と、冷却水と冷媒の温度状態に応じて、クーリングファンの風量と前記ウォータポンプの流量を制御することを特徴とする請求項6に記載の車両用ヒートポンプシステム制御方法。
The heating mode, the cooling mode, and the dehumidifying mode are:
The said controller controls the air volume of a cooling fan and the flow volume of the said water pump according to the temperature state of the waste heat source which generate | occur | produces from the said electrical component, and the temperature state of cooling water and a refrigerant | coolant. The heat pump system control method for vehicles described in 2.
前記クーリング手段は、
前記熱交換器と前記ウォータポンプを直接繋ぐバイパスと、前記バイパスの入口に設けた第4バルブをさら含み、
暖房モード及び除湿モードによって、冷却水がラジエータをバイパスするように調節することを特徴とする請求項6に記載の車両用ヒートポンプシステム制御方法。
The cooling means includes
A bypass directly connecting the heat exchanger and the water pump; and a fourth valve provided at an inlet of the bypass;
The vehicle heat pump system control method according to claim 6, wherein the cooling water is adjusted so as to bypass the radiator according to the heating mode and the dehumidifying mode.
JP2012125635A 2011-06-20 2012-06-01 Vehicular heat pump system and control method thereof Active JP6041423B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0059768 2011-06-20
KR1020110059768A KR101339226B1 (en) 2011-06-20 2011-06-20 Heat pump system for vehicle

Publications (2)

Publication Number Publication Date
JP2013001387A true JP2013001387A (en) 2013-01-07
JP6041423B2 JP6041423B2 (en) 2016-12-07

Family

ID=47228602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012125635A Active JP6041423B2 (en) 2011-06-20 2012-06-01 Vehicular heat pump system and control method thereof

Country Status (5)

Country Link
US (1) US20120318012A1 (en)
JP (1) JP6041423B2 (en)
KR (1) KR101339226B1 (en)
CN (1) CN102840710B (en)
DE (1) DE102012105314B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159142A1 (en) * 2017-02-28 2018-09-07 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air-conditioning apparatus

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6073651B2 (en) * 2012-11-09 2017-02-01 サンデンホールディングス株式会社 Air conditioner for vehicles
KR101448790B1 (en) * 2013-09-27 2014-10-08 현대자동차 주식회사 Heat pump system for vehicle
US9702605B2 (en) 2013-12-05 2017-07-11 Ford Global Technologies, Llc Method for adjusting fan and compressor power for a vehicle cabin heating system
DE102014200224A1 (en) 2014-01-09 2015-07-09 Bayerische Motoren Werke Aktiengesellschaft Method for controlling a pump in the heat transfer medium circuit of a heat pump system
KR101859512B1 (en) * 2014-01-21 2018-06-29 한온시스템 주식회사 Heat pump system for vehicle
KR101748209B1 (en) * 2014-01-24 2017-06-19 한온시스템 주식회사 Heat pump system for vehicle
KR101592734B1 (en) * 2014-07-11 2016-02-15 현대자동차주식회사 Heat pump apparatus for vehicle
US9863671B2 (en) 2014-07-29 2018-01-09 Ford Global Technologies, Llc Heat pump assisted engine cooling for electrified vehicles
WO2016017939A1 (en) * 2014-07-31 2016-02-04 한온시스템 주식회사 Automotive heat pump system
DE102014217959A1 (en) * 2014-09-09 2016-03-10 Bayerische Motoren Werke Aktiengesellschaft Method and air conditioning device for air conditioning an interior of an electrically driven vehicle
KR102047749B1 (en) * 2014-09-18 2019-11-25 한온시스템 주식회사 Heat pump system for vehicle
KR102111322B1 (en) * 2014-09-18 2020-05-18 한온시스템 주식회사 Heat pump system for vehicle
KR101628558B1 (en) * 2014-12-05 2016-06-09 현대자동차주식회사 Air conditioner of vehicle
KR102172936B1 (en) * 2014-12-05 2020-11-02 한온시스템 주식회사 Air conditioning module, air conditioner for vehicles and controlling method of the same
JPWO2016103578A1 (en) * 2014-12-24 2017-10-12 パナソニックIpマネジメント株式会社 Air conditioner for vehicles
KR102182343B1 (en) * 2015-01-12 2020-11-25 한온시스템 주식회사 Heat pump system for vehicle
US10457111B2 (en) * 2015-02-04 2019-10-29 Ford Global Technologies, Llc Climate control system for a vehicle
KR102170463B1 (en) * 2015-03-16 2020-10-29 한온시스템 주식회사 Heat pump system for vehicle
KR101703604B1 (en) * 2015-10-19 2017-02-07 현대자동차 주식회사 Betterly cooling system for vehicle
KR101846911B1 (en) * 2016-10-31 2018-05-28 현대자동차 주식회사 Heat pump system for vehicle
KR102579716B1 (en) * 2016-12-07 2023-09-18 한온시스템 주식회사 Vehicle thermal management system
KR101811762B1 (en) * 2016-12-29 2017-12-22 이래오토모티브시스템 주식회사 Heat Pump For a Vehicle
KR101787075B1 (en) * 2016-12-29 2017-11-15 이래오토모티브시스템 주식회사 Heat Pump For a Vehicle
KR102173319B1 (en) * 2017-03-08 2020-11-04 한온시스템 주식회사 Water cooling system for battery
DE102017204526A1 (en) * 2017-03-17 2018-09-20 Robert Bosch Gmbh Method for cooling an inverter, in particular a frequency converter in a heat pump cycle
US10350967B2 (en) 2017-03-21 2019-07-16 Hyundai Motor Company Heat pump system for a vehicle
CN106938601B (en) * 2017-03-23 2023-05-26 中国科学院广州能源研究所 Electric automobile heat pump air conditioning system and control method thereof
KR102373420B1 (en) * 2017-03-30 2022-03-14 현대자동차주식회사 Hvac system of electric vehicle
KR102510377B1 (en) * 2017-04-05 2023-03-16 한온시스템 주식회사 Method for controlling a cooling water type heater of heat pump system for automobile
KR20180130044A (en) * 2017-05-25 2018-12-06 현대자동차주식회사 Hvac system of vehicle
US10315493B2 (en) * 2017-06-27 2019-06-11 Hyundai Motor Company HVAC system for a vehicle and method of use
CN107444071B (en) * 2017-08-03 2023-06-09 协众国际热管理系统(江苏)股份有限公司 Using CO 2 Heat pump type electric automobile air conditioning system of refrigerant and working method thereof
KR102450408B1 (en) * 2017-08-09 2022-10-06 현대자동차주식회사 Hvac system of vehicle
KR102429009B1 (en) * 2017-08-09 2022-08-03 현대자동차 주식회사 Heat pump system for vehicle
KR102609407B1 (en) * 2017-08-21 2023-12-04 한온시스템 주식회사 Air conditioning system for automotive vehicles and control method using the same
KR102474358B1 (en) * 2017-12-08 2022-12-05 현대자동차 주식회사 Heat pump system for vehicle
CN110108055A (en) * 2018-02-01 2019-08-09 上海银轮热交换系统有限公司 The heat pump integrated system of car air-conditioner
CN110271378A (en) * 2018-03-13 2019-09-24 上海银轮热交换系统有限公司 Automobile-used regenerative heat pump system
DE102018205169A1 (en) * 2018-04-06 2019-10-10 Volkswagen Aktiengesellschaft Method for controlling an air conditioning device of a motor vehicle and air conditioning device for a motor vehicle with a heat pump unit
JP2019199113A (en) * 2018-05-14 2019-11-21 トヨタ自動車株式会社 Vehicle heat management device
KR20200011842A (en) * 2018-07-25 2020-02-04 현대자동차주식회사 Heating and cooling system for vehicle
CN108973592B (en) * 2018-08-02 2024-04-05 威马智慧出行科技(上海)有限公司 Electric automobile temperature regulation and control system and control method thereof
KR102537052B1 (en) * 2018-08-21 2023-05-30 한온시스템 주식회사 Thermal management system
CN109373505A (en) * 2018-10-26 2019-02-22 奥克斯空调股份有限公司 A kind of air-conditioning cleaning prompting control method and air conditioner
FR3092651B1 (en) * 2019-02-13 2021-04-30 Valeo Systemes Thermiques Thermal management device for an electric or hybrid motor vehicle
KR20210013858A (en) * 2019-07-29 2021-02-08 현대자동차주식회사 Heat pump system control method for vehicle
KR20210017119A (en) * 2019-08-07 2021-02-17 현대자동차주식회사 Air conditioning system for vehicle
KR20210059276A (en) * 2019-11-15 2021-05-25 현대자동차주식회사 Heat pump system for vehicle
KR20210104354A (en) * 2020-02-17 2021-08-25 현대자동차주식회사 Heat pump system for vehicle
KR102473096B1 (en) * 2020-08-12 2022-11-30 서울대학교산학협력단 Cooling and heating system for electrical vehicle
KR20220056920A (en) 2020-10-28 2022-05-09 현대자동차주식회사 Air conditioner device for electric motor vehicle and air conditioner system for electric motor vehicle using the same
CN113237145B (en) * 2021-05-27 2022-05-20 深圳昂湃技术有限公司 Heat pump air conditioning device and implementation method thereof
CN114103592B (en) * 2021-11-22 2023-11-21 泉州装备制造研究所 Movable container type heat pump drying system, transport vehicle and drying method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289698A (en) * 1992-09-14 1994-03-01 General Motors Corporation Modular nested vapor compression heat pump for automotive applications
JP2002005532A (en) * 1999-10-20 2002-01-09 Denso Corp Freezing cycle apparatus
JP2007278624A (en) * 2006-04-07 2007-10-25 Denso Corp Heat pump cycle
US20080223064A1 (en) * 2007-02-23 2008-09-18 Behr Gmbh & Co. Kg Cooling system for a motor vehicle
US20110016902A1 (en) * 2009-07-27 2011-01-27 Nissan Technical Center North America, Inc. Vehicle air handling system
JP2011017474A (en) * 2009-07-08 2011-01-27 Denso Corp Air conditioning device for vehicle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0478613A (en) * 1990-04-11 1992-03-12 Nippondenso Co Ltd Heat pump type air conditioner
FR2753412B1 (en) * 1996-09-17 1998-11-13 Valeo Climatisation HEATING DEVICE FOR VEHICLE USING AN EVAPORATOR AS A HEAT SOURCE
JP2000062446A (en) * 1998-08-20 2000-02-29 Zexel Corp Air conditioner for vehicle
US20030182955A1 (en) * 1999-06-07 2003-10-02 Toyotaka Hirao Vehicular air conditioner
DE60031808T2 (en) 1999-07-26 2007-09-20 Denso Corp., Kariya A refrigeration cycle apparatus
KR101015640B1 (en) * 2003-04-30 2011-02-22 한라공조주식회사 Air conditioning system for vehicle
SE0802203L (en) 2008-10-16 2010-03-02 Alfa Laval Corp Ab Hard brazed heat exchanger and method of manufacturing brazed heat exchanger
FR2937589B1 (en) 2008-10-29 2012-07-13 Valeo Systemes Thermiques AIR CONDITIONING THERMODYNAMIC LOOP INTEGRATED WITH A HEATING, VENTILATION AND / OR AIR CONDITIONING EQUIPMENT EQUIPPED WITH A VEHICLE, IN PARTICULAR ELECTRIC PROPULSION.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289698A (en) * 1992-09-14 1994-03-01 General Motors Corporation Modular nested vapor compression heat pump for automotive applications
JP2002005532A (en) * 1999-10-20 2002-01-09 Denso Corp Freezing cycle apparatus
JP2007278624A (en) * 2006-04-07 2007-10-25 Denso Corp Heat pump cycle
US20080223064A1 (en) * 2007-02-23 2008-09-18 Behr Gmbh & Co. Kg Cooling system for a motor vehicle
JP2011017474A (en) * 2009-07-08 2011-01-27 Denso Corp Air conditioning device for vehicle
US20110016902A1 (en) * 2009-07-27 2011-01-27 Nissan Technical Center North America, Inc. Vehicle air handling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159142A1 (en) * 2017-02-28 2018-09-07 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air-conditioning apparatus

Also Published As

Publication number Publication date
KR101339226B1 (en) 2013-12-09
DE102012105314B4 (en) 2022-10-13
DE102012105314A1 (en) 2012-12-20
JP6041423B2 (en) 2016-12-07
US20120318012A1 (en) 2012-12-20
CN102840710B (en) 2016-08-31
CN102840710A (en) 2012-12-26
KR20120140101A (en) 2012-12-28

Similar Documents

Publication Publication Date Title
JP6041423B2 (en) Vehicular heat pump system and control method thereof
KR101241223B1 (en) Heat pump system for vehicle
JP5892774B2 (en) Control method of heat pump system for vehicle
KR101416357B1 (en) Heat pump system for vehicle
KR101283592B1 (en) Heat pump system for vehicle
JP7271395B2 (en) Vehicle heat pump system
KR101443645B1 (en) Air conditoner for electric vehicle
JP5297154B2 (en) Vehicle air conditioning system and operation control method thereof
US20140116673A1 (en) Air conditioner for an electric vehicle
WO2018161907A1 (en) Thermal management system
WO2011132429A1 (en) Vehicle air conditioning device
JP5640485B2 (en) Air conditioner for vehicles
CN113022261B (en) Heat management system for electric vehicle
JP2020142789A (en) Heat management system
CN206579445U (en) Heat pump type air conditioning system and electric automobile
JP2012237499A (en) Heat storage defrosting device
KR20220040794A (en) Heat pump system for vehicle
KR101178945B1 (en) Heat Pump System Using Dual Heat Sources for Electric Vehicle
JP2004042759A (en) Air conditioner for automobile
WO2019058826A1 (en) Vehicle air conditioner
KR101927153B1 (en) Heat pump system for vehicle
US20210260955A1 (en) Heat pump system
WO2023160198A1 (en) Vehicle thermal management system and new energy vehicle
JP2012171522A (en) Air conditioner for vehicle
CN111854215A (en) Heat pump system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161107

R150 Certificate of patent or registration of utility model

Ref document number: 6041423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250