JP2013000540A - Pulse wave detector, and pulse wave detection system - Google Patents

Pulse wave detector, and pulse wave detection system Download PDF

Info

Publication number
JP2013000540A
JP2013000540A JP2011138163A JP2011138163A JP2013000540A JP 2013000540 A JP2013000540 A JP 2013000540A JP 2011138163 A JP2011138163 A JP 2011138163A JP 2011138163 A JP2011138163 A JP 2011138163A JP 2013000540 A JP2013000540 A JP 2013000540A
Authority
JP
Japan
Prior art keywords
pulse wave
light
wave detection
living body
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011138163A
Other languages
Japanese (ja)
Inventor
Shinichiro Aikawa
慎一郎 相川
Tadayuki Abe
忠幸 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Media Electronics Co Ltd
Original Assignee
Hitachi Media Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Media Electronics Co Ltd filed Critical Hitachi Media Electronics Co Ltd
Priority to JP2011138163A priority Critical patent/JP2013000540A/en
Publication of JP2013000540A publication Critical patent/JP2013000540A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such the problems that a large number of components are used and a lot of time is needed for processing each of information obtained from a plurality of light receiving elements, since the plurality of light receiving elements and light emitting elements are provided and they are arranged near the artery with a high probability in a pulse wave detector.SOLUTION: The pulse wave detector includes one light receiving element and the plurality of light emitting elements having prescribed positional relation with one another. Thus, since one of the light emitting elements is arranged near the artery with the high probability and detection accuracy does not decline no matter from which light emitting element the light is detected by the light receiving element, there is provided the pulse wave detector which is capable of accurately detecting pulse waves, has the small number of components, consumes little power, and processes the information in a short time.

Description

本発明は、光を用いた脈波検出装置に関する。   The present invention relates to a pulse wave detection device using light.

一般的に病院などの医療施設において、患者の体を傷つけることなく生体情報を計測する際には、光を照射し生体内を透過し経由した光を受光素子で計測することにより、脈波、脈拍数、酸素飽和度等の生体情報を計測する手段が用いられる。近年、健康に関する関心が高まり、従来医療用に開発されたこれら生体計測装置を一般に使用できるようにした製品が市販されている。脈波、脈拍数を検出する装置は可視光、または赤外光を計測対象となる生体に照射し、血管における血流の変化を受光素子で検出し、演算処理を行い脈波、脈拍数を算出する。詳しくは、次の通りである。血液は心拍に応じた一定のリズムで心臓から排出され、動脈は拍動している。動脈血に含まれるヘモグロビンは光の波長に対して、他の人体組織とは違う吸光特性を持っているため、その特性を利用して動脈血の拍動変化を計測し、処理を行うことで脈波および脈拍数を算出している。これら光を用いた脈波検出装置において、最も適した計測場所は指先腹部分である。この部分は毛細血管の密度が高く、医療用においては指先から検出する製品が一般的である。   In general, in a medical facility such as a hospital, when measuring biological information without damaging the patient's body, by measuring the light passing through the living body and passing through the living body with a light receiving element, Means for measuring biological information such as pulse rate and oxygen saturation is used. In recent years, interest in health has increased, and products that can generally use these biometric devices developed for medical use are commercially available. The device that detects the pulse wave and the pulse rate irradiates the living body to be measured with visible light or infrared light, detects a change in blood flow in the blood vessel with a light receiving element, performs calculation processing, and calculates the pulse wave and pulse rate. calculate. Details are as follows. Blood is drained from the heart at a constant rhythm according to the heartbeat, and the arteries are beating. Since hemoglobin contained in arterial blood has a light absorption characteristic different from that of other human tissues with respect to the wavelength of light, pulse waves can be measured by measuring and processing the pulsation change of arterial blood using that characteristic. And the pulse rate is calculated. In the pulse wave detection device using these lights, the most suitable measurement place is the fingertip abdomen. This portion has a high density of capillaries, and in medical use, products detected from the fingertips are common.

一方、一般人が運動中の脈波、脈拍数を記録し、運動方法の改善などに利用する場合、たとえばランニング時に指先腹に取り付けていては走行の邪魔になるため装置を腕時計のようにし、手首、腕から検出する製品もある。しかし、手首、腕等の生体部位は指先に比べて毛細血管密度が低く、かつ計測部位が広範囲なため、いかに動脈付近もしくは毛細血管密度が高い部位に測定装置を装着できるかが正確な脈波検出の要件になる。
そこで、広範囲に発光素子および受光素子を複数個並べることにより、解決を図る発明がなされている。一例として特許文献1,2に記載の発明は発光素子と受光素子とからなるセンサを複数個具備した検出装置を用い、計測対象の生体に装着し、いずれかの受光素子は、確率的に動脈直上またはその近くに位置する。動脈に近いほど脈拍成分が検出しやすいため、その最適なひとつの受光素子をそれぞれのセンサから検出した脈波信号から選別して特定し、その脈波信号を処理して脈拍数を算出している。
On the other hand, when a general person records the pulse wave and pulse rate during exercise and uses it to improve the exercise method, for example, if it is attached to the tip of the fingertip during running, it will interfere with running, so the device will be like a wristwatch and wrist There are also products that detect from the arm. However, because biological parts such as wrists and arms have a lower capillary density than fingertips and a wide range of measurement parts, an accurate pulse wave shows how the measurement device can be attached to the vicinity of an artery or a part with a high capillary density. Become a detection requirement.
Accordingly, an invention has been made to solve the problem by arranging a plurality of light emitting elements and light receiving elements in a wide range. As an example, the inventions described in Patent Documents 1 and 2 use a detection device including a plurality of sensors each composed of a light emitting element and a light receiving element, and are attached to a living body to be measured. Located directly above or near. Since the pulse component is easier to detect as it is closer to the artery, the optimal single light receiving element is selected and identified from the pulse wave signals detected by each sensor, and the pulse rate is calculated by processing the pulse wave signal. Yes.

特開昭59−131327号公報JP 59-131327 A 特開平7−299043号公報Japanese Patent Laid-Open No. 7-299043

前記従来の脈拍検出装置において、生体計測場所がたとえば額、こめかみ、手首等広い場合、より正確な脈波情報を得るためには動脈付近にできるだけセンサが配置されるようにするため、センサの数がより多く必要になり、センサの数が増えることで処理時間も増加する。さらに消費電力もセンサ数に比例して増加するため、特にバッテリ内蔵装置の場合、稼働時間に悪影響を及ぼすという問題がある。
本発明の目的は前記した問題に鑑み、検出場所が広範囲であっても必要な部品数を低減した脈波検出装置、及び脈波検出システムを提供することにある。
In the conventional pulse detecting device, when the living body measurement place is wide, such as a forehead, a temple, a wrist, etc., in order to obtain more accurate pulse wave information, the number of sensors is arranged so as to be as close to the artery as possible. As the number of sensors increases, the processing time also increases. Furthermore, since the power consumption increases in proportion to the number of sensors, there is a problem that the operation time is adversely affected particularly in the case of a battery built-in device.
In view of the above problems, an object of the present invention is to provide a pulse wave detection device and a pulse wave detection system in which the number of necessary parts is reduced even in a wide detection location.

前記目的を達成するため本発明は、生体が発生する脈波を検出する脈波検出装置であって、前記生体を介した光を受光して検出する一つの受光素子と、該受光素子を中心とする同一円状において等間隔に配置され、かつ、前記生体を照射する光を発生する複数の発光素子と、該受光素子が検出した光を光電変換して脈波信号を検出する脈波信号検出部を有することを特徴としている。   In order to achieve the above object, the present invention provides a pulse wave detection device for detecting a pulse wave generated by a living body, comprising: a light receiving element that receives and detects light passing through the living body; A plurality of light emitting elements that are arranged at equal intervals in the same circle and that generate light that irradiates the living body, and a pulse wave signal that detects a pulse wave signal by photoelectrically converting the light detected by the light receiving element It has a detection part.

また本発明は、生体が発生する脈波を検出する脈波検出装置と情報を表示する表示部を有する脈波検出システムであって、
前記脈波検出装置は、前記生体を介した光を受光して検出する一つの受光素子と、該受光素子を中心とする同一円状において等間隔に配置され、かつ、前記生体を照射する光を発生する複数の発光素子と、該受光素子が検出した光を光電変換して脈波信号を検出する脈波信号検出部と、該脈波信号検出部が検出した脈波信号に基づき脈拍数を含む生体情報を演算して求める演算部と、該演算部で求めた生体情報を外部に設けられた装置に送信する通信部を備え、
前記表示部は、前記脈波検出装置の通信部から受信した生体情報を表示することを特徴としている。
Further, the present invention is a pulse wave detection system having a pulse wave detection device for detecting a pulse wave generated by a living body and a display unit for displaying information,
The pulse wave detection device includes a light receiving element that receives and detects light passing through the living body, and light that is arranged at equal intervals in the same circle centered on the light receiving element and that irradiates the living body A plurality of light emitting elements that generate light, a pulse wave signal detecting unit that photoelectrically converts light detected by the light receiving element to detect a pulse wave signal, and a pulse rate based on the pulse wave signal detected by the pulse wave signal detecting unit A calculation unit that calculates and calculates biometric information including the communication unit that transmits the biometric information obtained by the calculation unit to a device provided outside,
The display unit displays the biological information received from the communication unit of the pulse wave detection device.

本発明によれば、検出場所が広範囲であっても必要な部品数を低減した脈波検出装置、及び脈波検出システムを提供できる。さらには実施形態により該装置の消費電力を低減できるという効果がある。   According to the present invention, it is possible to provide a pulse wave detection device and a pulse wave detection system that reduce the number of necessary components even if the detection location is wide. Furthermore, there is an effect that the power consumption of the apparatus can be reduced according to the embodiment.

実施形態における脈波検出装置の正面図である。It is a front view of the pulse wave detection device in an embodiment. 実施形態における脈波検出装置の断面図である。It is sectional drawing of the pulse-wave detection apparatus in embodiment. 実施形態における脈波検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the pulse-wave detection apparatus in embodiment. 実施形態における脈波検出方法を説明する第1の図である。It is a 1st figure explaining the pulse wave detection method in an embodiment. 実施形態における脈波検出方法を説明する第2の図である。It is a 2nd figure explaining the pulse wave detection method in an embodiment. 実施形態における生体計測システムの第1の見取図である。It is a 1st sketch of the biological measurement system in an embodiment. 実施形態における生体計測システムの第2の見取図である。It is a 2nd sketch of the biological measurement system in embodiment.

以下、本発明の実施形態を図面に基づいて説明する。
図1Aと図1Bは、実施形態における脈波検出装置を示す図であり、図1Aは正面図(受光面から見た図)、図1Bは横断面図である。ここでは発光素子が102A〜102Dの四個の場合で説明しているが、四個に限定しているものではない。以下、複数の発光素子に共通する記述をする際は、発光素子102と記する。発光素子102は受光素子101から発光素子102の波長、光強度に応じて最適な距離103をおいて配置される。光の波長、光強度が変化すれば人体組織の生体透過率も変化するため、選択した発光素子102の波長に応じて最適な距離103が設定される。つまり、複数個の発光素子102を配置する際、受光素子101を中心とした半径が103となる同一円上に配置することになる。発光素子102同士の間隔に関して、隣り合う受光素子101から発光素子102を結ぶ線のなす角をαとすると、その角度αは以下の式により導き出せる。
α=360/n (n:脈波検出用の発光素子総数)
複数の発光素子102の波長に関しては、統一して使用することがよい。前記の通り、生体透過率が波長によって違うためである。違う波長を組み合わせて使用した場合、生体透過率の違いから、生体組織内への透過光の達する深さがそれぞれ違うことになる。つまり、受光素子101で検出している光は生体内の深さが異なる部分であり、それぞれ違った生体部位の情報を得るという不具合を起こすためである。よって、一方の波長の脈波信号にとって、もう一方の波長の脈波信号は違う深さにおける生体情報であり、ノイズとなるため、同一波長を選択する必要がある。一般的には血液中の酸化ヘモグロビン、脱酸化ヘモグロビンの吸光係数が高い400から600nm付近、または生体透過率の高い800から1000nm付近の波長を有する光が適している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1A and 1B are diagrams showing a pulse wave detection device according to an embodiment, FIG. 1A is a front view (a view seen from a light receiving surface), and FIG. 1B is a cross-sectional view. Here, the case where the number of light emitting elements is 102A to 102D is described, but the number is not limited to four. Hereinafter, a description common to a plurality of light-emitting elements is referred to as a light-emitting element 102. The light emitting element 102 is arranged at an optimum distance 103 from the light receiving element 101 to the wavelength and light intensity of the light emitting element 102. When the light wavelength and light intensity change, the biological transmittance of the human tissue also changes. Therefore, the optimum distance 103 is set according to the wavelength of the selected light emitting element 102. That is, when a plurality of light emitting elements 102 are arranged, they are arranged on the same circle having a radius of 103 around the light receiving element 101. With respect to the distance between the light emitting elements 102, if the angle formed by the line connecting the light receiving elements 102 to the adjacent light receiving elements 101 is α, the angle α can be derived from the following equation.
α = 360 / n (n: total number of light emitting elements for pulse wave detection)
The wavelengths of the plurality of light emitting elements 102 are preferably used in a unified manner. This is because the biological transmittance varies depending on the wavelength as described above. When different wavelengths are used in combination, the depth at which the transmitted light reaches the living tissue varies depending on the difference in biological transmittance. In other words, the light detected by the light receiving element 101 is a portion having a different depth in the living body, which causes a problem of obtaining information on different living body parts. Therefore, for the pulse wave signal of one wavelength, the pulse wave signal of the other wavelength is biological information at a different depth and becomes noise, so it is necessary to select the same wavelength. In general, light having a wavelength in the vicinity of 400 to 600 nm where the extinction coefficient of oxyhemoglobin and deoxyhemoglobin in the blood is high, or in the vicinity of 800 to 1000 nm where the biological transmittance is high is suitable.

これら発光素子102と計測対象となる生体106の位置関係は、生体106の計測部位に対して法線方向で光学的に対向して接するよう配置される。発光素子102と生体106が距離をおいて光学的に離れていると、生体表面で光が表面反射され、生体内部を通過してきた脈波成分を含んだ透過光と共に受光素子101で受光され、ノイズとなるためである。発光素子102は具体的にはLED(Light Emitting Diode)などが用いられる。
受光素子101はできるだけ発光素子102の波長に対する受光感度が高いものを選定する。受光面は計測対象に対し対向するように配置される。受光素子101は具体的にはフォトトランジスタ、フォトダイオードなどが用いられる。
The positional relationship between the light emitting element 102 and the living body 106 to be measured is arranged so as to optically oppose and contact the measurement site of the living body 106 in the normal direction. When the light emitting element 102 and the living body 106 are optically separated from each other, the light is reflected from the surface of the living body and received by the light receiving element 101 together with the transmitted light including the pulse wave component that has passed through the inside of the living body. This is because of noise. Specifically, an LED (Light Emitting Diode) or the like is used as the light emitting element 102.
As the light receiving element 101, an element having as high a light receiving sensitivity as possible with respect to the wavelength of the light emitting element 102 is selected. The light receiving surface is arranged to face the measurement target. Specifically, a phototransistor, a photodiode, or the like is used as the light receiving element 101.

受光素子101、発光素子102が取り付けられた電子基板等の母材105または構造部材105があり、それらが組み込まれた装置本体104がある。装置本体104には受光素子101、発光素子102用に開口部が設けられており、光を透過する材料でできたカバー107が取り付けられる。このカバー107には光学フィルタを用いて光学的に波長を選択制御しても良い。
発光素子102と受光素子101の間には発光素子からの直接光が入光するのを防ぐため、仕切り108が設置される。具体的には図1の仕切り108のように構造部品で囲っても良いし、遮光効果のあるテープなどで仕切っても良い。
There is a base material 105 or a structural member 105 such as an electronic substrate to which the light receiving element 101 and the light emitting element 102 are attached, and there is an apparatus main body 104 in which these are incorporated. The apparatus main body 104 is provided with openings for the light receiving element 101 and the light emitting element 102, and a cover 107 made of a material that transmits light is attached thereto. The cover 107 may be optically selected and controlled using an optical filter.
A partition 108 is installed between the light emitting element 102 and the light receiving element 101 in order to prevent direct light from the light emitting element from entering. Specifically, it may be surrounded by a structural part like the partition 108 in FIG. 1, or may be partitioned by a tape having a light shielding effect.

装置本体104は粘着体を用いて生体106に直接貼り付けるとよい。具体的には片面粘着テープ、両面粘着テープ等が用いられる。片面粘着テープは装置本体104の受光部面以外の部分に貼り付けて固定され、同時に計測対象の生体106にも貼り付けて固定される。テープ自身に伸縮性がある基材、粘着剤を用いると、体動が起きた場合でも動きを吸収するため体動ノイズの影響を抑制できる。テープの大きさは受光部101に外乱光が入らないように装置本体104を覆うような大きさ、幅で、遮光効果のある素材、色を用いると効果的である。   The apparatus main body 104 may be directly attached to the living body 106 using an adhesive. Specifically, a single-sided adhesive tape, a double-sided adhesive tape, etc. are used. The single-sided adhesive tape is affixed and fixed to a portion other than the light receiving surface of the apparatus main body 104, and is also affixed and fixed to the living body 106 to be measured. If the tape itself uses a stretchable base material or pressure-sensitive adhesive, even when body movement occurs, the movement is absorbed, so that the influence of body movement noise can be suppressed. The size of the tape is such that it covers the apparatus main body 104 so that ambient light does not enter the light receiving unit 101, and it is effective to use a material and color that have a light shielding effect.

両面粘着テープは装置本体104の受光面に受光素子101、発光素子102の光学性能に影響を与えないように片側を貼り付けて設置され、もう一方の貼り付け面を計測対象の生体106に貼り付けられる。両面粘着テープは受光面と生体106との間を接合すれば良いだけなので、片面粘着テープを使用する場合よりも生体106へ取り付ける際の制約が緩和される。また、テープ自体が直接見えないため、意匠の観点からも優れている。両面粘着テープの素材として光透過性の高い素材を選択し、受光面全面に貼り付ければ受光素子101、発光素子102の位置を気にすることなく貼ることができ、作業性が良くなる。また、粘着テープ自体が導光板となり、生体106と受光素子101の間を光学的に接続するため、何もない場合よりも脈波を含む光を損失なく受光できる。   The double-sided adhesive tape is placed on one side of the light receiving surface of the apparatus main body 104 so that the optical performance of the light receiving element 101 and the light emitting element 102 is not affected, and the other surface is attached to the living body 106 to be measured. Attached. Since the double-sided pressure-sensitive adhesive tape only has to be bonded between the light receiving surface and the living body 106, restrictions on attaching to the living body 106 are eased compared to the case where a single-sided adhesive tape is used. Moreover, since the tape itself cannot be directly seen, it is excellent from the viewpoint of design. If a material having high light transmittance is selected as the material of the double-sided adhesive tape and is applied to the entire surface of the light receiving surface, it can be applied without worrying about the positions of the light receiving element 101 and the light emitting element 102, and workability is improved. Further, since the adhesive tape itself becomes a light guide plate and optically connects between the living body 106 and the light receiving element 101, light including a pulse wave can be received without loss as compared with the case where there is nothing.

装置本体104を生体106へ固定する方法として、帯状の拘束具を取り付けて固定する方法もある。具体的にはベルト、面ファスナ、等である。ベルトで生体106に取り付ける場合、装置本体104にベルトを装着するためのガイドを設けてそこに固定され、計測対象の生体106に取り付けられる。ベルトは腕時計のように生体に巻きつけて、任意の箇所で留め具により固定できるため、扱いが簡単で、外見も優れている。面ファスナもベルト同様、装置本体104に面ファスナを通すガイドを設け、計測対象の生体106に巻きつけて、面ファスナ同士の結合により任意の長さで固定される。面ファスナはベルトのような留め具が必要ないため、構造が簡単であり、コストがかからない。
また、ベルト、面ファスナとも素材に弾性体を用いれば、生体の動きに追従するため、体動が起きても脈波を計測できる。
As a method of fixing the apparatus main body 104 to the living body 106, there is also a method of fixing by attaching a belt-like restraining tool. Specifically, belts, hook-and-loop fasteners, and the like. When attaching to the living body 106 with a belt, the apparatus main body 104 is provided with a guide for mounting the belt, fixed to the guide, and attached to the living body 106 to be measured. Since the belt can be wrapped around a living body like a wristwatch and fixed with a fastener at an arbitrary position, it is easy to handle and has an excellent appearance. Similarly to the belt, the surface fastener is provided with a guide for passing the surface fastener around the apparatus main body 104, wound around the living body 106 to be measured, and fixed to an arbitrary length by coupling the surface fasteners. Since the hook-and-loop fastener does not require a belt-like fastener, the structure is simple and inexpensive.
In addition, if an elastic body is used for both the belt and the hook and loop fastener, it follows the movement of the living body, so that the pulse wave can be measured even if body movement occurs.

図2は、装置本体104の構成を表しており、インターフェイス部201、フィルタ部202、ゲイン調整部203、制御部204、バッテリ205、演算部206、記憶部207、通信部208、脈波信号検出部209を有する。
発光素子102から発光された光は、生体内を経由し受光素子101にて光電変換される。光電変換された電気信号からフィルタ部202でノイズ、直流成分を除去され、ゲイン調整部203で増幅される。脈波信号検出部209で電気信号を時系列で処理し、脈波信号とし、記憶部207に保存、または通信部208を経由して有線または無線で外部情報処理装置または表示装置(ともに図示せず)に送信する。演算部206に周波数解析機能を持たせ、脈波信号から脈拍数等の生体情報までを装置本体104で生成することも可能である。
FIG. 2 shows the configuration of the apparatus main body 104, and includes an interface unit 201, a filter unit 202, a gain adjustment unit 203, a control unit 204, a battery 205, a calculation unit 206, a storage unit 207, a communication unit 208, and a pulse wave signal detection. Part 209.
The light emitted from the light emitting element 102 is photoelectrically converted by the light receiving element 101 through the living body. Noise and direct current components are removed from the photoelectrically converted electrical signal by the filter unit 202 and amplified by the gain adjustment unit 203. The pulse wave signal detection unit 209 processes the electrical signal in time series to obtain a pulse wave signal, which is stored in the storage unit 207, or wired or wirelessly via the communication unit 208 (both not shown). Send). It is also possible to give the calculation unit 206 a frequency analysis function and generate from the pulse wave signal to biological information such as the pulse rate in the apparatus main body 104.

図3Aと図3Bは、本発明の検出方法の詳細を説明する図である。図3Aは説明用に簡素化させた構成図、図3Bは計測対象と検出装置を模式的に表した図である。図3Aにおいて発光素子102A〜102Dの波長、光強度が同一であれば各発光素子102A〜102Dと受光素子101の距離103は等しく、論理的な検出範囲301が定まり、検出範囲内であれば脈拍の検出が可能になる。発光素子102A〜102Dの位置関係は前記式から、4個であればα=360/4=90度となる。このようにすれば、受光素子101が一つであっても、いずれの発光素子が発生した光でも同等な条件で検出することができ、検出精度が低下する問題を解消することができる。   3A and 3B are diagrams for explaining the details of the detection method of the present invention. FIG. 3A is a simplified configuration diagram for explanation, and FIG. 3B is a diagram schematically showing a measurement target and a detection device. In FIG. 3A, if the wavelengths and light intensities of the light emitting elements 102A to 102D are the same, the distance 103 between the light emitting elements 102A to 102D and the light receiving element 101 is equal, and the logical detection range 301 is determined. Can be detected. From the above formula, the positional relationship of the light emitting elements 102A to 102D is α = 360/4 = 90 degrees if there are four. In this way, even if there is only one light receiving element 101, light generated by any light emitting element can be detected under the same conditions, and the problem that the detection accuracy decreases can be solved.

図3Bに示すように計測対象の血管306があり、計測に適した部位307、308があるとする。本発明では計測に適した部位307が発光素子102Aと受光素子101を結ぶ直線上に分布する場合は従来技術と同様、問題なく検出できる。計測に適した部位308のように発光素子と受光素子を結ぶ直線上から外れていても、発光素子102Cと102Dの透過散乱光により光強度を補い合うことが可能なため、受光素子を中心とした半径103とする円内(検出範囲301)は検出が可能となる。受光素子101はひとつで実現可能なため、従来技術のように複数個受光素子を配置して、全ての受光素子信号から最適な信号を選択して処理する手間が省け、処理手段が簡素化できる。従来技術でこの検出範囲301を補うには受光素子101が少なくとも発光素子と同数は必要になる。発光素子102は複数であっても、パルス制御等効率的な手法により低消費電力化が容易に実現可能だが、受光素子101は常に電力が必要なため、1個の受光素子を用いる本発明では、従来技術と比較して低消費電力化が可能となる。   As shown in FIG. 3B, it is assumed that there is a blood vessel 306 to be measured and there are portions 307 and 308 suitable for measurement. In the present invention, when the portions 307 suitable for measurement are distributed on a straight line connecting the light emitting element 102A and the light receiving element 101, they can be detected without any problem as in the prior art. Even if it is off the straight line connecting the light emitting element and the light receiving element as in the portion 308 suitable for measurement, the light intensity can be compensated for by the transmitted scattered light of the light emitting elements 102C and 102D. Detection is possible within a circle having a radius 103 (detection range 301). Since the light receiving element 101 can be realized by one, a plurality of light receiving elements can be arranged as in the prior art, and the process of selecting and processing the optimum signal from all the light receiving element signals can be saved, and the processing means can be simplified. . In order to make up for the detection range 301 in the prior art, at least as many light receiving elements 101 as light emitting elements are required. Even if there are a plurality of light emitting elements 102, low power consumption can be easily realized by an efficient method such as pulse control. However, since the light receiving element 101 always requires power, in the present invention using one light receiving element. Therefore, power consumption can be reduced as compared with the prior art.

図4Aと図4Bは、実施形態における生体計測システムの見取図であり、本発明の装置本体104に対して固定方法にベルトを使用した際の計測システムの一例を示す。図4Aは装置本体104の受光面から見た図であり、図4Bは図4Aの背面図を含む計測システム全体図である。装置本体104を含む計測機器本体401はベルトを取り付けるためのガイド402を備え、そこにベルト403を取り付ける。ベルト403には留め具404を具備し、ベルトを計測対象の生体106に巻きつけて固定することができる。計測機器本体401には表示部405を備えており、演算部206で得られた情報を表示し、また記憶部207に保存してある情報を呼び出して表示することができる。計測機器本体401には操作部406が備えられており、計測開始、計測停止、情報入力、表示の切替え、データの送受信などを実施することができる。   4A and 4B are sketches of the biological measurement system according to the embodiment, and show an example of a measurement system when a belt is used as a fixing method for the apparatus main body 104 of the present invention. 4A is a view seen from the light receiving surface of the apparatus main body 104, and FIG. 4B is an overall view of the measurement system including the rear view of FIG. 4A. The measuring instrument main body 401 including the apparatus main body 104 includes a guide 402 for attaching a belt, and the belt 403 is attached thereto. The belt 403 is provided with a fastener 404, and the belt can be wound around and fixed to the living body 106 to be measured. The measurement device main body 401 includes a display unit 405, which can display information obtained by the calculation unit 206 and call and display information stored in the storage unit 207. The measurement device main body 401 is provided with an operation unit 406, and can perform measurement start, measurement stop, information input, display switching, data transmission / reception, and the like.

計測機器本体401とは別に、外部情報処理装置407を用意する。装置本体104の演算部206で得た情報、記憶部207に保存されている情報を無線で送信し、外部情報処理装置407にて受信する。外部情報処理装置407では装置本体104からの情報をもとに、詳細に生体情報を解析する機能を持たせ、例えば疲労の推定、過去データとの比較、運動強度算出、等を行い、前記装置本体104からの生体情報と併せて外部情報処理装置407の表示部408に表示する。外部情報処理装置407には操作部409が備えられており、装置本体104からの受信開始、受信停止、記録開始、記録停止、生体情報の詳細解析、情報入力、表示の切替え、データの送受信などを実施することができる。   An external information processing device 407 is prepared separately from the measurement device main body 401. Information obtained by the arithmetic unit 206 of the apparatus main body 104 and information stored in the storage unit 207 are wirelessly transmitted and received by the external information processing apparatus 407. The external information processing apparatus 407 has a function of analyzing biological information in detail based on information from the apparatus main body 104, and performs, for example, estimation of fatigue, comparison with past data, calculation of exercise intensity, etc. Along with the biological information from the main body 104, the information is displayed on the display unit 408 of the external information processing apparatus 407. The external information processing apparatus 407 is provided with an operation unit 409, and starts receiving from the apparatus main body 104, stops receiving, starts recording, stops recording, detailed analysis of biological information, information input, display switching, data transmission / reception, etc. Can be implemented.

外部情報処理装置407は、計測機器本体401を使用する本人が確認できない生体部位、例えば腕、頭部に固定した場合、リアルタイムで生体情報を本人が確認する手段として有効である。または、本格的な運動トレーニングを行う場合、指導者が外部情報処理装置407を常にモニタリングし、トレーニング実施者に適切なアドバイスを行う場合などにも有効である。
なお、図4Aと図4Bは本発明の装置本体104を用いた計測システムの一例であり、本発明を応用する計測システムはこれに限定されるものではない。このほかの実施形態においても、開示した例に対して構成要素の追加、変更を加えた例を考えることができるが、いずれも本発明の範疇にある。
The external information processing apparatus 407 is effective as a means for the person himself / herself to confirm the biological information in real time when the measurement apparatus main body 401 is fixed to a biological part that cannot be confirmed by the person himself / herself, such as an arm or a head. Or, when performing full-scale exercise training, it is also effective when the instructor constantly monitors the external information processing device 407 and gives appropriate advice to the training operator.
4A and 4B are examples of a measurement system using the apparatus main body 104 of the present invention, and the measurement system to which the present invention is applied is not limited to this. In other embodiments, examples in which additions and changes of constituent elements are added to the disclosed examples can be considered, but all fall within the scope of the present invention.

101:受光素子、102:発光素子、104:装置本体、105:母材、106:生体、107:カバー、201:インターフェイス部、202:フィルタ部、203:ゲイン調整部、204:制御部、205:バッテリ、206:演算部、207:記憶部、208:通信部、209:脈波信号検出部、301:検出範囲、306:計測対象の血管、307〜308:計測部位、401:装置本体を含む計測機器、402:ガイド、403:ベルト、404:留め具、405:表示部、406:操作部、407:外部情報処理装置、408:表示部、409:操作部。   101: light receiving element, 102: light emitting element, 104: apparatus main body, 105: base material, 106: living body, 107: cover, 201: interface unit, 202: filter unit, 203: gain adjusting unit, 204: control unit, 205 : Battery, 206: calculation unit, 207: storage unit, 208: communication unit, 209: pulse wave signal detection unit, 301: detection range, 306: blood vessel to be measured, 307 to 308: measurement site, 401: device main body Including measuring instrument, 402: guide, 403: belt, 404: fastener, 405: display unit, 406: operation unit, 407: external information processing device, 408: display unit, 409: operation unit.

Claims (9)

生体が発生する脈波を検出する脈波検出装置であって、
前記生体を介した光を受光して検出する一つの受光素子と、
該受光素子を中心とする同一円状において等間隔に配置され、かつ、前記生体を照射する光を発生する複数の発光素子と、
該受光素子が検出した光を光電変換して脈波信号を検出する脈波信号検出部
を有することを特徴とする脈波検出装置。
A pulse wave detection device for detecting a pulse wave generated by a living body,
One light receiving element that receives and detects light through the living body;
A plurality of light-emitting elements that are arranged at equal intervals in the same circle centered on the light-receiving element and that generate light for irradiating the living body;
A pulse wave detection apparatus comprising: a pulse wave signal detection unit that photoelectrically converts light detected by the light receiving element to detect a pulse wave signal.
請求項1に記載の脈波検出装置において、前記脈波信号検出部が検出した脈波信号に基づき脈拍数を含む生体情報を演算して求める演算部を備えることを特徴とする脈波検出装置。   2. The pulse wave detection device according to claim 1, further comprising a calculation unit that calculates and obtains biological information including a pulse rate based on the pulse wave signal detected by the pulse wave signal detection unit. . 請求項2に記載の脈波検出装置において、前記演算部で求めた生体情報を記憶する記憶部を備えることを特徴とする脈波検出装置。   The pulse wave detection apparatus according to claim 2, further comprising a storage unit that stores biological information obtained by the calculation unit. 請求項2に記載の脈波検出装置において、前記演算部で求めた生体情報を表示する表示部を備えることを特徴とする脈波検出装置。   The pulse wave detection device according to claim 2, further comprising a display unit that displays biological information obtained by the calculation unit. 請求項2に記載の脈波検出装置において、前記演算部で求めた生体情報を外部に設けられた情報処理装置に送信する通信部を備えることを特徴とする脈波検出装置。   The pulse wave detection device according to claim 2, further comprising a communication unit that transmits biological information obtained by the calculation unit to an information processing device provided outside. 生体が発生する脈波を検出する脈波検出装置と情報を表示する表示部を有する脈波検出システムであって、
前記脈波検出装置は、
前記生体を介した光を受光して検出する一つの受光素子と、
該受光素子を中心とする同一円状において等間隔に配置され、かつ、前記生体を照射する光を発生する複数の発光素子と、
該受光素子が検出した光を光電変換して脈波信号を検出する脈波信号検出部と、
該脈波信号検出部が検出した脈波信号に基づき脈拍数を含む生体情報を演算して求める演算部と、
該演算部で求めた生体情報を外部に設けられた装置に送信する通信部を備え、
前記表示部は、
前記脈波検出装置の通信部から受信した生体情報を表示する
ことを特徴とする脈波検出システム。
A pulse wave detection system having a pulse wave detection device for detecting a pulse wave generated by a living body and a display unit for displaying information,
The pulse wave detector is
One light receiving element that receives and detects light through the living body;
A plurality of light-emitting elements that are arranged at equal intervals in the same circle centered on the light-receiving element and that generate light for irradiating the living body;
A pulse wave signal detector that photoelectrically converts light detected by the light receiving element to detect a pulse wave signal;
A calculation unit for calculating biological information including a pulse rate based on the pulse wave signal detected by the pulse wave signal detection unit;
A communication unit that transmits biometric information obtained by the calculation unit to a device provided outside;
The display unit
The biological information received from the communication part of the said pulse wave detection apparatus is displayed. The pulse wave detection system characterized by the above-mentioned.
請求項6に記載の脈波検出システムにおいて、前記脈波検出装置の通信部は前記表示部に対して無線通信を行うことを特徴とする脈波検出システム。   7. The pulse wave detection system according to claim 6, wherein the communication unit of the pulse wave detection device performs wireless communication with the display unit. 請求項1に記載の脈波検出装置において、該脈波検出装置は帯状の拘束具を備え、前記生体に対し固定されることを特徴とする脈波検出装置。   2. The pulse wave detection device according to claim 1, wherein the pulse wave detection device includes a band-shaped restraining tool and is fixed to the living body. 請求項1に記載の脈波検出装置において、該脈波検出装置は粘着体を備え、前記生体に対し固定されることを特徴とする脈波検出装置。   The pulse wave detection device according to claim 1, wherein the pulse wave detection device includes an adhesive and is fixed to the living body.
JP2011138163A 2011-06-22 2011-06-22 Pulse wave detector, and pulse wave detection system Withdrawn JP2013000540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011138163A JP2013000540A (en) 2011-06-22 2011-06-22 Pulse wave detector, and pulse wave detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011138163A JP2013000540A (en) 2011-06-22 2011-06-22 Pulse wave detector, and pulse wave detection system

Publications (1)

Publication Number Publication Date
JP2013000540A true JP2013000540A (en) 2013-01-07

Family

ID=47669722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011138163A Withdrawn JP2013000540A (en) 2011-06-22 2011-06-22 Pulse wave detector, and pulse wave detection system

Country Status (1)

Country Link
JP (1) JP2013000540A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029965A1 (en) * 2013-08-29 2015-03-05 株式会社村田製作所 Medical-information measurement device
WO2015045109A1 (en) * 2013-09-27 2015-04-02 パイオニア株式会社 Measuring instrument
CN107485372A (en) * 2017-09-25 2017-12-19 北京我爱购科技发展有限公司 A kind of photoelectric detection system and physiological information detection device
JP2018513716A (en) * 2015-03-19 2018-05-31 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Wearable devices used in two stages
JP2019048128A (en) * 2013-01-24 2019-03-28 エンパティカ エスアールエル Device, system, and method for heartbeat signal detection and processing
KR20200093247A (en) * 2019-01-28 2020-08-05 (주)파트론 Ppg sensor package
US11534088B2 (en) 2017-08-31 2022-12-27 Fujifilm Business Innovation Corp. Optical measuring apparatus and non-transitory computer readable medium

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019048128A (en) * 2013-01-24 2019-03-28 エンパティカ エスアールエル Device, system, and method for heartbeat signal detection and processing
WO2015029965A1 (en) * 2013-08-29 2015-03-05 株式会社村田製作所 Medical-information measurement device
JPWO2015029965A1 (en) * 2013-08-29 2017-03-02 株式会社村田製作所 Biological information measuring device
US10098555B2 (en) 2013-08-29 2018-10-16 Murata Manufacturing Co., Ltd. Biological information measurement apparatus
WO2015045109A1 (en) * 2013-09-27 2015-04-02 パイオニア株式会社 Measuring instrument
JPWO2015045109A1 (en) * 2013-09-27 2017-03-02 パイオニア株式会社 Measuring instrument
JP2018513716A (en) * 2015-03-19 2018-05-31 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Wearable devices used in two stages
US11534088B2 (en) 2017-08-31 2022-12-27 Fujifilm Business Innovation Corp. Optical measuring apparatus and non-transitory computer readable medium
CN107485372A (en) * 2017-09-25 2017-12-19 北京我爱购科技发展有限公司 A kind of photoelectric detection system and physiological information detection device
KR20200093247A (en) * 2019-01-28 2020-08-05 (주)파트론 Ppg sensor package
KR102232467B1 (en) * 2019-01-28 2021-03-26 (주)파트론 Ppg sensor package

Similar Documents

Publication Publication Date Title
US20220395231A1 (en) Personal health data collection
EP2291111B1 (en) Contactless respiration monitoring of a patient and optical sensor for a photoplethysmography measurement
US9560995B2 (en) Methods and systems for determining a probe-off condition in a medical device
JP2013000540A (en) Pulse wave detector, and pulse wave detection system
US20150366469A1 (en) System for measurement of cardiovascular health
US20130267854A1 (en) Optical Monitoring and Computing Devices and Methods of Use
JP2015503933A (en) Pulse meter / oximeter that can be worn on the body
US20170172433A1 (en) Transcutaneous Photoplethysmography
US10357165B2 (en) Method and apparatus for acquiring bioinformation and apparatus for testing bioinformation
WO2007011423A1 (en) Patch sensor for measuring blood pressure without a cuff
JP2014012072A (en) Measurement apparatus, measurement method, program, storage medium, and measurement system
JP2002360530A (en) Pulse wave sensor and pulse rate detector
US20180235489A1 (en) Photoplethysmographic wearable blood pressure monitoring system and methods
WO2016017579A1 (en) Biological information reading device
WO2016002759A1 (en) Biological information detection device, seat with backrest, and cardiopulmonary function monitoring device
JP6830173B2 (en) A device that measures physiological parameters using a wearable sensor
EP2214551B1 (en) Measurement of oxygen saturation of blood haemoglobin
US20110245697A1 (en) Heart Pulse Detection
JP2008099890A (en) Living body information measuring device
EP2822463B1 (en) Optical detection of motion effects
JP2018143747A (en) Measuring device, measuring method, and program
KR20190105421A (en) apparatus and method for measuring blood presure based on PPG
JP5866776B2 (en) Pulse wave measuring device and pulse wave measuring method
TW201713272A (en) Measurement device
US20200037960A1 (en) Biological information measurement device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902