JP2012245944A - Seabed exploration apparatus - Google Patents

Seabed exploration apparatus Download PDF

Info

Publication number
JP2012245944A
JP2012245944A JP2011121208A JP2011121208A JP2012245944A JP 2012245944 A JP2012245944 A JP 2012245944A JP 2011121208 A JP2011121208 A JP 2011121208A JP 2011121208 A JP2011121208 A JP 2011121208A JP 2012245944 A JP2012245944 A JP 2012245944A
Authority
JP
Japan
Prior art keywords
sphere
exploration
seafloor
weight
seabed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011121208A
Other languages
Japanese (ja)
Other versions
JP5615229B2 (en
Inventor
Toshio Tsuchiya
利雄 土屋
Yukio Sugino
行雄 杉野
Keiichi Hamano
慶一 浜野
Daisuke Kojima
大介 小嶋
Toshinori Sakurai
敏則 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUGINO GOMU KAGAKU KOGYOSHO KK
Original Assignee
SUGINO GOMU KAGAKU KOGYOSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUGINO GOMU KAGAKU KOGYOSHO KK filed Critical SUGINO GOMU KAGAKU KOGYOSHO KK
Priority to JP2011121208A priority Critical patent/JP5615229B2/en
Publication of JP2012245944A publication Critical patent/JP2012245944A/en
Application granted granted Critical
Publication of JP5615229B2 publication Critical patent/JP5615229B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/48Means for searching for underwater objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2211/00Applications
    • B63B2211/02Oceanography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2241/00Design characteristics
    • B63B2241/02Design characterised by particular shapes
    • B63B2241/10Design characterised by particular shapes by particular three dimensional shapes
    • B63B2241/14Design characterised by particular shapes by particular three dimensional shapes spherical

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a seabed exploration apparatus capable of easily performing seabed exploration of a hadopelagic zone without requiring a large scale of the whole system.SOLUTION: This seabed exploration apparatus A includes: a spherical body 1 including a sealed space therein; a weight 2 for lowering the spherical body 1; and a separation device 3 for the weight 2. The spherical body 1 houses electronic equipment 7 to 10 for a research duty, a control device 4 for controlling the electronic equipment 7 to 10, and a secondary battery 5 which is a power supply for them and is capable of charging in a non-contact manner. The control device 4 includes transmission/reception means 4A performing transmission/reception of signals with the outside in a non-contact manner. The whole apparatus constitution including equipment on a ship is reduced in size and weight to easily perform seabed exploration of deep sea layers including the hadopelagic zone at low cost.

Description

本発明は、無人の海底探査装置に関し、とくに、深海層の海底探査に好適なフリーフォール型の海底探査装置に関するものである。   The present invention relates to an unmanned seafloor survey device, and more particularly to a free fall type seafloor survey device suitable for deep seafloor survey.

従来において、無人の海底探査装置としては、例えば特許文献1に記載されているものがあった。特許文献1に記載の海底探査装置は、海底に沈設した複数の自己浮上式海底観測装置を備えたオフライン方式と、海面に浮設した複数のケーブル式海底観測装置を備えたオンライン方式と、ケーブル式海底観測装置に連結した陸上電源装置を組み合わせたものである。   Conventionally, as an unmanned undersea exploration device, there existed what was described in patent document 1, for example. The seafloor exploration device described in Patent Document 1 includes an off-line method including a plurality of self-floating seafloor observation devices submerged on the seabed, an on-line method including a plurality of cable-type seafloor observation devices levitated on the sea surface, and a cable. This is a combination of a land power supply unit connected to an underwater observation system.

上記の海底探査装置は、自己浮上式海底観測装置の観測データをトランスジューサ等の音波通信手段により送信し、海面のケーブル式海底観測装置やアンカ・ブイ等を介して、その観測データを陸上や船上の設備で受信する。また、その他の海底探査装置としては、有人又は無人の潜水艇が周知である。   The above-mentioned seafloor exploration equipment transmits observation data from a self-floating seafloor observation device by means of acoustic communication means such as a transducer, and the observation data is transmitted to land or onboard via a cable-type seafloor observation device or anchor buoy on the sea surface. Receive at the equipment. In addition, manned or unmanned submersibles are well known as other submarine exploration devices.

特開2001−337173号公報JP 2001-337173 A

ところが、上記したような従来の海底探査装置にあっては、地震観測等の長期的な観測には好ましいものの、地上や船上の設備を含むシステム全体が大掛りなものになる。このため、従来の海底探査装置は、深度6000mを超える超深海層の海底探査を行いたい場合、その海底探査を手軽に行うのは極めて困難であった。   However, although the conventional seafloor exploration apparatus as described above is preferable for long-term observation such as earthquake observation, the entire system including facilities on the ground and on the ship becomes large. For this reason, it is extremely difficult for the conventional seafloor exploration device to easily carry out the seabed exploration when it is desired to perform a seafloor exploration of an ultra deep sea layer exceeding a depth of 6000 m.

また、超深海層の海底探査を行う場合、従来の海底探査装置のように探査装置と船上との間の通信をオフライン(無索)で行うには、その深度でも通信可能な大出力・高感度の通信装置が必要であり、装置の大型化や高コスト化をまねく虞がある。さらに、探査装置と船上との間の通信をオンライン(有索)で行うには、その深度に充分対応し得る長さのケーブルが必要であるから、ケーブル自体の重量も相当なものになり、観測船のような特殊設備を有する大型船舶が必要である。   In addition, when performing deep seabed exploration, in order to communicate offline between the exploration device and the ship, as with conventional seafloor exploration devices, high output and A sensitive communication device is required, which may increase the size and cost of the device. Furthermore, in order to communicate online between the exploration device and the ship (cable), a cable with a length that can sufficiently accommodate the depth is required, so the weight of the cable itself is considerable. Large vessels with special equipment such as observation vessels are required.

本発明は、上記従来の状況に鑑みて成されたものであって、船上の設備を含む装置構成全体を小型軽量にすることが可能であると共に、深海層の海底探査を低コストで容易に行うことができる海底探査装置を提供することを目的としている。   The present invention has been made in view of the above-described conventional situation, and it is possible to reduce the size and weight of the entire apparatus configuration including on-board equipment, and to facilitate deep-sea layer seafloor exploration at low cost. The object of the present invention is to provide an undersea exploration device that can be used.

本発明の海底探査装置は、内部に密閉空間を有する球体と、海中で球体を降下させるための錘と、錘の切離し装置を備えると共に、球体に、探査任務用の電子機器と、電子機器の制御を行う制御装置と、これらの電源であり且つ非接触充電が可能な二次電池を収容している。そして、海底探査装置は、制御装置が、外部との間で信号の送受信を非接触で行う送受信手段を有していることを特徴としている。   The seabed exploration device of the present invention includes a sphere having a sealed space inside, a weight for lowering the sphere in the sea, and a weight separation device. The sphere includes an electronic device for exploration missions, and an electronic device. A control device that performs control and a secondary battery that is a power source and capable of non-contact charging are housed. The submarine exploration device is characterized in that the control device has transmission / reception means for performing transmission / reception of signals to / from the outside without contact.

上記構成において、球体は、圧力容器と浮力体を兼用するものであって、外部への貫通孔等が全く無い密閉空間を形成する。したがって、球体に収容した制御装置の送受信手段及び二次電池は、球体の壁部を介して、非接触で信号の送受信及び充電を行うことになる。非接触での信号の送受信には、光通信、音波通信及び電波通信などを用いることができる。また、非接触での充電には、コイルからコイルへ給電をする電磁誘導型、電波受信型及び共鳴型などを用いることができる。   In the above configuration, the sphere serves as both a pressure vessel and a buoyant body, and forms a sealed space having no through-holes to the outside. Therefore, the transmission / reception means and the secondary battery of the control device accommodated in the sphere perform signal transmission / reception and charging in a non-contact manner through the wall of the sphere. Optical communication, acoustic wave communication, radio wave communication, and the like can be used for non-contact signal transmission / reception. For non-contact charging, an electromagnetic induction type, a radio wave reception type, a resonance type, or the like that supplies power from coil to coil can be used.

なお、送受信手段は、その構成がとくに限定されるものではないが、通信可能距離が短くて、深海層の海底と海面との間で送受信できないものでも良い。つまり、送受信手段は、互いに連結した球体同士の間や、球体に近づけた外部の送受信装置との間で信号の送受信が可能なものであれば構わない。   The configuration of the transmission / reception means is not particularly limited. However, the transmission / reception means may have a short communicable distance and cannot transmit / receive between the deep sea layer and the sea surface. That is, the transmission / reception means may be any device that can transmit and receive signals between spheres connected to each other or an external transmission / reception device close to the sphere.

本発明の海底探査装置によれば、船上の設備を含む装置構成全体を小型軽量にし且つ安価に得ることが可能であると共に、超深海層を含む深海層の海底探査を低コストで容易に行うことができる。また、海底探査装置は、回収した後、球体の外側から電子機器のデータの取出し及び入力や、二次電池の充電を非接触で行うことができるので、速やかに海中に再投入することが可能であり、しかも、装置構成が簡単であるから、保守管理も非常に容易である。   According to the seabed exploration device of the present invention, it is possible to reduce the size and weight of the entire device configuration including on-board facilities and to obtain it at low cost, and to easily perform seabed exploration of deep sea layers including ultra deep sea layers at low cost. be able to. In addition, since the seafloor exploration device can retrieve and input data from electronic devices from the outside of the sphere and charge the secondary battery in a non-contact manner after collection, it can be re-injected into the sea quickly. Moreover, since the device configuration is simple, maintenance management is very easy.

本発明の海底探査装置の一実施形態を説明する側面図である。It is a side view explaining one embodiment of the seabed exploration device of the present invention. 球体の構成を説明する接合前の側面図(A)及び接合後の側面図(B)である。It is the side view (A) before joining explaining the structure of a spherical body, and the side view (B) after joining. 海底探査装置の投入から着底までの動作を示す説明図である。It is explanatory drawing which shows the operation | movement from injection | throwing-in of a seabed exploration apparatus to landing. 海底探査装置の離底から浮上までの動作を示す説明図である。It is explanatory drawing which shows operation | movement from the bottom of a submarine exploration apparatus to levitation.

以下、図面に基づいて、本発明の海底探査装置の一実施形態を説明する。
図1に示す海底探査装置Aは、概略を説明すると、内部に密閉空間を有する球体1と、海中で球体1を降下させるための錘2と、錘2の切離し装置3を備えている。また、球体1には、探査任務用の電子機器(7〜10)と、電子機器の制御を行う制御装置4と、これらの電源であり且つ非接触充電が可能な二次電池5が収容してある。
Hereinafter, an embodiment of the seafloor exploration device of the present invention will be described based on the drawings.
The seafloor exploration device A shown in FIG. 1 includes a sphere 1 having a sealed space inside, a weight 2 for lowering the sphere 1 in the sea, and a weight 3 separation device 3. The sphere 1 contains an electronic device (7 to 10) for exploration missions, a control device 4 that controls the electronic device, and a secondary battery 5 that is a power source and can be contactlessly charged. It is.

具体的には、海底探査装置Aは、複数(三個)の球体1を備えると共に、これらの球体1をジョイント6で互いに連結し、各々の球体1に、少なくとも電子機器(7〜10)及び制御装置4を選択的に収容している。図示例の三個の球体1は、いずれも透明なガラス製であって、上段一個で下段二個の配置である。   Specifically, the seafloor exploration apparatus A includes a plurality (three) of spheres 1 and connects these spheres 1 to each other with a joint 6, and each sphere 1 includes at least an electronic device (7 to 10) and The control device 4 is selectively accommodated. The three spheres 1 in the illustrated example are all made of transparent glass, and are arranged in one upper stage and two lower stages.

各球体1のうち、上段の球体1には、探査任務用の電子機器として、浮上した後に信号を送信する浮上通信装置7が収容してあり、この他に、制御装置4と仮想線で示す二次電池5が収容してある。下段一方側(図中で左側)の球体1には、同じく電子機器として、海中における位置を検出する海中位置検出装置8と、ビデオカメラ9が収容してあり、この他に、制御装置4及び二次電池5が収容してある。下段の他方側の球体1には、同じく電子機器として、撮影用の照明装置10が収容してあり、この他に、制御装置4及び二次電池5が収容してある。図示例では、ビデオカメラ9及び照明装置10を下向きに配置している。   Among the spheres 1, the upper sphere 1 accommodates a floating communication device 7 that transmits a signal after rising as an electronic device for exploration missions. A secondary battery 5 is accommodated. The sphere 1 on the lower one side (left side in the figure) contains an underwater position detecting device 8 for detecting a position in the sea and a video camera 9 as electronic devices. In addition to this, the control device 4 and A secondary battery 5 is accommodated. In the lower sphere 1 on the other side, a lighting device 10 for photographing is accommodated as an electronic device, and in addition, a control device 4 and a secondary battery 5 are accommodated. In the illustrated example, the video camera 9 and the illumination device 10 are disposed downward.

また、海底探査装置Aは、その構成に、船上設備50を含むことができる。図示例の船上設備50は、コンピュータ51と、ビデオカメラ9の画像データを非接触で受信するデータ収録装置52と、非接触子機の充電器53を備えると共に、コンピュータ51が、信号の送受信を非接触で行う送受信手段51Aを有している。   Further, the seafloor exploration device A can include an onboard facility 50 in its configuration. The on-board facility 50 in the illustrated example includes a computer 51, a data recording device 52 that receives image data of the video camera 9 in a non-contact manner, and a charger 53 for a non-contact slave device, and the computer 51 transmits and receives signals. It has a transmission / reception means 51A that performs non-contact.

前記錘2は、海中において上記球体群を所定速度で降下させる重量であり、連結索11により下側のジョイント6に連結してある。この錘2の切離し装置3は、二次電池5を電源として、球体1の内部から外部へ非接触で電力供給を行う電力供給手段(3A.3B)と、球体1と錘2とを結合し且つ電極供給手段からの電流により電蝕作用で分離する結合分離手段3Cを備えている。電力供給手段は、球体1の内部に配置した給電器3Aと、球体1の外部に配置した受電器3Bで構成してある。   The weight 2 has a weight for lowering the sphere group at a predetermined speed in the sea, and is connected to the lower joint 6 by a connecting rope 11. This weight 2 detaching device 3 combines the sphere 1 and the weight 2 with power supply means (3A.3B) for supplying power from the inside of the sphere 1 to the outside in a non-contact manner using the secondary battery 5 as a power source. In addition, there is provided a coupling / separating means 3C for separating by an electric erosion action by an electric current from the electrode supply means. The power supply means includes a power feeder 3 </ b> A disposed inside the sphere 1 and a power receiver 3 </ b> B disposed outside the sphere 1.

制御装置4は、夫々の電子機器(7〜10)を制御する機能や、電子機器が取得した各種データを記憶する機能を有すると共に、外部との間で信号の送受信を非接触で行う送受信手段4Aを有している。送受信手段4Aは、光通信、音波通信及び電波通信等のいずれかによって信号の送受信を行うものであって、通信可能距離が比較的短い簡易なもので構わない。   The control device 4 has a function of controlling each electronic device (7 to 10), a function of storing various data acquired by the electronic device, and a transmission / reception unit that performs transmission / reception of signals to / from the outside without contact. 4A. The transmission / reception means 4A performs signal transmission / reception by any one of optical communication, acoustic wave communication, radio wave communication, and the like, and may be a simple one having a relatively short communicable distance.

すなわち、送受信手段4Aは、互いに連結した球体1同士の間や、球体1に近づけた外部の送受信機との間で信号の送受信が可能であれば良い。そこで、この実施形態では、上記の送受信手段4Aを有する各制御装置4が、球体1間で互いに信号の送受信を行う配置にしてある。また、外部の送受信機は、この実施形態の場合、先述の船上設備50を構成するコンピュータ51の送受信手段51Aである。   That is, the transmission / reception means 4 </ b> A only needs to be able to transmit and receive signals between the spheres 1 connected to each other and with an external transceiver close to the sphere 1. Therefore, in this embodiment, the control devices 4 having the transmission / reception means 4A are arranged to transmit and receive signals between the spheres 1. In the case of this embodiment, the external transceiver is the transmission / reception means 51A of the computer 51 that constitutes the aforementioned onboard equipment 50.

二次電池5は、先述の船上設備50を構成する充電器53により、非接触での充電が可能であって、この非接触充電にはコイルからコイルへ給電をする電磁誘導型の充電装置を用いることができる。   The secondary battery 5 can be charged in a non-contact manner by the charger 53 constituting the above-described onboard equipment 50. For this non-contact charge, an electromagnetic induction type charging device that feeds power from coil to coil is used. Can be used.

浮上通信装置7は、既知のGPS受信機7Aと、GPS受信機7Aの測定データを送信する衛星通信装置7Bと、GPS受信機7A及び衛生通信装置7Bの電源である太陽電池パネル7Cを備えている。また、浮上通信装置7は、同じ球体1に収容した二次電池5若しくは一次電池(図示せず)を電源にしても良い。衛星通信装置7Bは、いわゆるイリジウム衛星通信装置である。太陽電池パネル7Cは、浮上した際に太陽光を効率良く受けることができるように、球体1の密閉空間において上側に配置してある。   The levitation communication device 7 includes a known GPS receiver 7A, a satellite communication device 7B that transmits measurement data of the GPS receiver 7A, and a solar battery panel 7C that is a power source of the GPS receiver 7A and the sanitary communication device 7B. Yes. Further, the levitation communication device 7 may use a secondary battery 5 or a primary battery (not shown) housed in the same sphere 1 as a power source. The satellite communication device 7B is a so-called iridium satellite communication device. The solar cell panel 7C is arranged on the upper side in the sealed space of the sphere 1 so that it can receive sunlight efficiently when it rises.

海中位置検出装置8は、少なくとも水平面で直交する二軸方向の加速度を検出する加速度計8Aと、球体1の内面に貼り付けた歪ゲージ8Bと、加速度計8A及び歪ゲージ8Bの検出データに基づいて3次元位置を算出する演算手段8Cを備えている。   The undersea position detection device 8 is based on an accelerometer 8A that detects acceleration in at least two axes orthogonal to each other on a horizontal plane, a strain gauge 8B that is attached to the inner surface of the sphere 1, and detection data of the accelerometer 8A and the strain gauge 8B. And a calculation means 8C for calculating a three-dimensional position.

加速度計8Aは、より好ましい構成として、一定の方向を維持するように、ジンバル機構及びジャイロにより保持した安定プラットフォームに配置してあり、水平方向に生じた加速度を検出する。演算装置8Cは、加速度計により検出した加速度を積分して速度を算出し、これをさらに積分して距離を算出する。このような演算を二軸方向について行うことで、初期位置を基準にして、水平方向(X,Y方向)の自己位置(座標)を求めることができる。   As a more preferable configuration, the accelerometer 8A is arranged on a stable platform held by a gimbal mechanism and a gyro so as to maintain a constant direction, and detects acceleration generated in the horizontal direction. The arithmetic device 8C calculates the speed by integrating the acceleration detected by the accelerometer, and further calculates the distance by integrating this. By performing such calculation in the biaxial direction, the self position (coordinates) in the horizontal direction (X, Y direction) can be obtained with reference to the initial position.

歪ゲージ8Bは、海中での降下中において球体1に生じた歪量を検出する。つまり、球体1の降下に伴って、球体1に作用する水圧が増大し、これにより球体1の歪量も大きくなるので、歪量を深度に換算することができる。演算装置8Cは,予め設定した球体1の特性や歪ゲージ8Bで検出した歪量から、深度すなわち垂直方向(Z方向)の自己位置を求めることができる。   The strain gauge 8B detects the amount of strain generated in the sphere 1 during descent in the sea. In other words, as the sphere 1 descends, the water pressure acting on the sphere 1 increases, thereby increasing the strain amount of the sphere 1, so that the strain amount can be converted into depth. The arithmetic unit 8C can obtain the depth, that is, the self-position in the vertical direction (Z direction) from the characteristics of the sphere 1 set in advance and the strain amount detected by the strain gauge 8B.

このようにして、演算装置8Cは、直交する三軸方向(X,Y,Z方向)の自己の3次元位置を算出する。なお、海中位置検出手段8は、三軸方向の加速度を検出する加速度計を用いることも可能であり、この場合には、歪ゲージ8Bを用いなくても自己の3次元位置を求めることができる。   In this way, the arithmetic unit 8C calculates its own three-dimensional position in the three axial directions (X, Y, Z directions) orthogonal to each other. The underwater position detection means 8 can also use an accelerometer that detects acceleration in three axial directions. In this case, the own three-dimensional position can be obtained without using the strain gauge 8B. .

ビデオカメラ9は、例えば、小型で軽量なCCDカメラを用いることができる。図示例のビデオカメラ9は、先述の船上設備50を構成するデータ収録装置52に対して、画像データを非接触で送信する送信機9Aを有している。なお、ビデオカメラ9の画像データは、制御装置4の送受信手段4Aから外部に送信することも可能である。   As the video camera 9, for example, a small and light CCD camera can be used. The video camera 9 in the illustrated example has a transmitter 9A that transmits image data in a non-contact manner to the data recording device 52 that constitutes the onboard facility 50 described above. The image data of the video camera 9 can also be transmitted to the outside from the transmission / reception means 4A of the control device 4.

照明装置10は、例えば、電力消費が少ないLED照明を用いることができる。また、図示は省略したが小型のライトを備えたものとし、深海生物の接近を感知して照明装置10を作動させるようにしても良い。   For example, LED lighting with low power consumption can be used as the lighting device 10. Although not shown, the lighting device 10 may be operated by sensing the approach of a deep-sea creature with a small light.

ここで、前記球体1は、貫通孔等が一切無く、内部に密閉空間を有し、圧力容器と浮力体とを兼用するものであって、図2(A)に示すように、一対の半球体1A.1Aで構成することができる。球体1は、上述の各機器を収容し、また、図示しないフレーム類を収容して各機器を保持することも可能であり、その後、半球体1A同士を接合する。この際、球体1は、予め半球体1Aの接合面を平滑に仕上げておき、図2(B)に示すように、接合面の外側に、生ゴム等から成るバンド55を取付けて半球体1A同士のずれを阻止する。これにより、球体1は、接着剤等を用いなくても、半球体1A同士の接合状態を維持することができ、海中に投下した後には、水圧により半球体1A同士が密着することで防水性を維持する。   Here, the sphere 1 does not have any through-holes, has a sealed space inside, and serves as both a pressure vessel and a buoyant body. As shown in FIG. Body 1A. 1A can be configured. The sphere 1 can accommodate each of the above-described devices, and can accommodate a frame (not shown) to hold each device, and then the hemispheres 1A are joined together. At this time, the sphere 1 is prepared by smoothing the joining surface of the hemisphere 1A in advance and attaching a band 55 made of raw rubber or the like to the outside of the joining surface as shown in FIG. 2B. Prevent the deviation. Thereby, the sphere 1 can maintain the joined state between the hemispheres 1A without using an adhesive or the like, and after being dropped into the sea, the hemispheres 1A are in close contact with each other by water pressure, thereby being waterproof. To maintain.

なお、球体1は、ガラス製であると共に、一例として、直径300mmで、厚さ13mmであって、これにより深度9000mの高水圧に耐えることが可能である。また、球体1は、半球体1A,1A同士を接合する際に、内部に乾燥した気体を封入することが有効である。これにより、低温である深海層に投入した際に、内部での結露発生を抑制して、電子機器を保護することができる。   Note that the sphere 1 is made of glass and, as an example, has a diameter of 300 mm and a thickness of 13 mm, and can withstand high water pressure at a depth of 9000 m. Moreover, when the sphere 1 joins the hemispheres 1A and 1A, it is effective to enclose the dried gas inside. Thereby, when throwing into the deep sea layer which is a low temperature, generation | occurrence | production of dew condensation inside can be suppressed and an electronic device can be protected.

さらに、海底探査装置Aは、海底の泥を採取するための採泥装置21と、深海生物を集めるための餌、若しくは深海生物の捕獲装置を備えている。図示例では、内部に餌22Aをセットした捕獲装置22を備えている。採泥装置21及び捕獲装置22は、下側のジョイント6に、夫々の連結索12,13を介して繋いである。なお、これらの装置21,22は、海中での降下中に錘2やその連結索11に絡むのを防止するため、降下中に錘2から装置を離すように作用する抵抗板などを設けることも有効である。   Further, the seafloor exploration device A includes a mud collecting device 21 for collecting seabed mud and a bait for collecting deep sea organisms or a deep sea organism capturing device. In the example of illustration, the capture device 22 which set food 22A inside is provided. The mud collecting device 21 and the capturing device 22 are connected to the lower joint 6 via respective connecting lines 12 and 13. In order to prevent the devices 21 and 22 from getting entangled with the weight 2 and its connecting rope 11 during the descent in the sea, a resistance plate or the like that acts to separate the device from the weight 2 during the descent is provided. Is also effective.

次に、上記構成を備えた海底探査装置Aの動作を説明する。
海底探査装置Aは、各制御装置4に、各電子機器(7〜10)のプログラムが予め入力してあり、図3に示すように、船舶101により搬送されて目的の海域で投下される。
Next, the operation of the seafloor exploration apparatus A having the above configuration will be described.
In the seafloor exploration device A, the programs of the electronic devices (7 to 10) are input in advance to the respective control devices 4, and as shown in FIG.

この海底探査装置Aは、三個の球体1、錘2、採泥装置21及び捕獲装置22で主な外観を構成しているので、従来の海底探査装置や潜水艇に比べれば、明らかに小型で且つ軽量である。また、船上設備50は、コンピュータ51、データ収録装置52及び充電器53で構成しているので、小型で且つ軽量であって、人手により運搬可能である。このため、海底探査装置Aは、特殊設備を有する観測船等の大型船舶を使用しなくても良く、漁船程度の小型船舶を用いて、少人数で運用することが充分に可能である。   This submarine exploration device A is composed of three spheres 1, a weight 2, a mud collecting device 21, and a catching device 22, so that it is clearly smaller than conventional submarine exploration devices and submersibles. And lightweight. Moreover, since the onboard equipment 50 is comprised with the computer 51, the data recording device 52, and the charger 53, it is small and lightweight, and can be conveyed manually. For this reason, the seafloor exploration apparatus A does not need to use a large ship such as an observation ship having special equipment, and can be sufficiently operated by a small number of people using a small ship such as a fishing boat.

このように、海底探査装置Aは、船上設備50を含む装置構成全体が小型軽量化されたものとなっている。そして、海底探査装置Aは、単体で海中を自由降下するフリーフォール型であり、浮上するまでの間は船舶101との通信を行わないので、深度に左右されることが無く、深度6000mを超える超深海層の海底探査も可能である。なお、一般的に言われる深海層(深度200m以下の層)の海底探査にも当然適用可能である。   In this way, the seabed surveying apparatus A is an apparatus in which the entire apparatus configuration including the onboard equipment 50 is reduced in size and weight. And the seafloor exploration device A is a free fall type that freely descends in the sea as a single unit, and does not communicate with the ship 101 until it ascends, so it does not depend on the depth and exceeds the depth of 6000 m. Submarine exploration of ultra deep sea layers is also possible. In addition, it is naturally applicable to the seabed exploration of the deep sea layer (layer of 200 m or less) generally called.

海底探査装置Aは、海中への投入後、図3中に矢印で示すように、錘2により海中を自由降下して着底に至る。この間には、海中位置検出装置8により自己の3次元位置を検出し、制御装置4において、時間経過に伴って連続的に変化する位置を記憶する。この海中位置検出装置8の検出データにより、投下位置から着底位置までの航跡や、海流速度などを求めることができる。   After entering the sea, the seafloor exploration device A freely descends through the sea by the weight 2 and reaches the bottom as shown by the arrow in FIG. During this time, the underwater position detection device 8 detects its own three-dimensional position, and the control device 4 stores the position that continuously changes with time. From the detection data of the underwater position detection device 8, the wake from the drop position to the landing position, the ocean current velocity, and the like can be obtained.

また、海底探査装置Aは、連結索11を介して錘2を設けているので、錘2が着底した時点で降下が終了し、海底から連結索11の長さ分の位置に各球体1を浮揚保持する。この状態において、海底探査装置Aは、採泥装置21による海底泥の採取や、捕獲装置22による深海生物の捕獲を行うほか、ビデオカメラ9及び照明装置10により海底や深海生物の撮影を行う。   In addition, since the seafloor exploration device A is provided with the weight 2 via the connecting rope 11, the descent ends when the weight 2 reaches the bottom, and each sphere 1 is positioned at the position corresponding to the length of the connecting rope 11 from the seabed. Keep levitating. In this state, the seabed exploration device A collects the seabed mud with the mud collection device 21 and captures the deep sea organisms with the capture device 22, and also photographs the seabed and the deep sea life with the video camera 9 and the illumination device 10.

このとき、海底探査装置Aは、各制御装置4の送受信手段4Aにより、球体1同士の間で信号の送受信を行うことで、ビデオカメラ9及び照明装置10の起動や停止を同期させることができる。また、海底探査装置Aは、超深海層には太陽光線が届かないので、太陽電池パネル7Cを電源とする浮上通信装置7の動作を休止させることができる。   At this time, the seafloor exploration device A can synchronize the start and stop of the video camera 9 and the illumination device 10 by transmitting and receiving signals between the spheres 1 by the transmission / reception means 4A of each control device 4. . In addition, since the ocean bottom exploration device A does not reach the ultra deep sea layer, the operation of the floating communication device 7 using the solar cell panel 7C as a power source can be stopped.

次に、海底探査装置Aは、所定時間が経過した後、タイマや外部信号(例えば隣接する球体1に収容した制御装置4からの信号)により、切離し装置3により錘2を切離すと、図4に示すように、自己の浮力により離底して上昇する。そして、海底探査装置Aは、図4中に示す如く海面に浮上するのに伴って、上段の球体1に収容した浮上通信装置7が自動的に起動する。   Next, after a predetermined time has elapsed, the seafloor exploration device A separates the weight 2 by the separation device 3 using a timer or an external signal (for example, a signal from the control device 4 accommodated in the adjacent sphere 1). As shown in FIG. 4, it rises with its own buoyancy. Then, as the seafloor exploration device A ascends to the sea surface as shown in FIG. 4, the ascending communication device 7 accommodated in the upper sphere 1 is automatically activated.

すなわち、浮上通信装置7は、太陽電池パネル7Cによる発電を開始して、GPS受信機7A及び衛生通信装置7Bに給電し、GPS受信機7Aにより自己の位置を測定すると共に、その測定データを衛星通信装置7Bにより送信する。測定データは、人工衛生102を介して船舶101側で受信される。これにより、当該海底探査装置Aの浮上位置を確認して、同装置を回収する。   That is, the levitating communication device 7 starts power generation by the solar cell panel 7C, supplies power to the GPS receiver 7A and the sanitary communication device 7B, measures its own position by the GPS receiver 7A, and transmits the measurement data to the satellite. Transmitted by the communication device 7B. The measurement data is received on the ship 101 side through the artificial hygiene 102. Thereby, the floating position of the seafloor exploration device A is confirmed, and the device is recovered.

また、海底探査装置Aは、船舶101に回収した後には、船上設備50のコンピュータ51と各制御装置4との間で、非接触で信号の送受信を行って、海中位置検出装置8の取得データをコンピュータ51に入力したり、コンピュータ51から新たなプログラムを制御装置に出力したりする。さらに、ビデオカメラ9の画像データを非接触通信によりデータ収録装置52で収録すると共に、充電器53により、各二時電池5に対して非接触充電を行う。これらの作業は、いずれも球体1を開かずに行うことができる。そして、海底探査装置Aは、切離し装置3の機能部3A,連結索11及び錘2を新たに取付ければ、次の海底探査に用いることができる。   Further, after the seafloor exploration device A collects the data in the ship 101, it transmits and receives signals in a non-contact manner between the computer 51 of the onboard equipment 50 and each control device 4, and the data acquired by the underwater position detection device 8. Is input to the computer 51, or a new program is output from the computer 51 to the control device. Further, the image data of the video camera 9 is recorded by the data recording device 52 by non-contact communication, and the rechargeable battery 5 is contactlessly charged by the charger 53. Any of these operations can be performed without opening the sphere 1. And if the functional part 3A, the connection cable 11, and the weight 2 of the separation apparatus 3 are newly attached, the seafloor exploration apparatus A can be used for the next seabed exploration.

以上のように、上記実施形態の海底探査装置Aは、船上の設備を含む装置構成全体を小型軽量にし且つ安価に得ることが可能であって、超深海層を含む深海層に対しても、その海底探査を低コストで容易に行うことができる。また、海底探査装置Aは、回収した後、球体1の外側から電子機器のデータの取出し及び入力や、二次電池5の充電を非接触で行うことができるので、球体1を分解する必要も無く、新たな錘2を装着すれば、速やかに海中に再投入することが可能であると共に、装置構成が簡単であるから、保守管理も容易である。   As described above, the seafloor exploration device A according to the above embodiment can obtain the entire device configuration including on-board equipment in a small size and light weight and at low cost, and even for deep sea layers including ultra deep sea layers, The seafloor exploration can be easily performed at low cost. In addition, since the seafloor exploration device A can collect and input data of electronic devices and charge the secondary battery 5 from the outside of the sphere 1 after collection, the sphere 1 needs to be disassembled. If a new weight 2 is attached, it can be re-introduced into the sea quickly, and the device configuration is simple, and maintenance management is also easy.

上記の海底探査装置Aは、何度も再投入することができるので、例えば、深海層の海底微生物の採取にも有効である。つまり、海底微生物は、広い範囲に分布せずに、それぞれが特定の狭い範囲に存在していることが知られている。したがって、当該海底探査装置Aは、低コストで新しい海底微生物を獲得するのに非常に有効な機能を有している。   Since the above-mentioned seafloor exploration device A can be re-introduced many times, it is effective, for example, in collecting deep-sea submarine microorganisms. That is, it is known that submarine microorganisms are not distributed over a wide range but are present in a specific narrow range. Therefore, the seafloor exploration apparatus A has a very effective function for acquiring new seabed microbes at a low cost.

さらに、海底探査装置Aは、複数の球体を互いに連結すると共に、各制御装置が球体間で互いに信号の送受信を行う構成とすることで、より多くの機器類を搭載して、これらの機器類の自動制御が可能になる。例えば、電子機器としてビデオカメラ9及び照明装置10を採用した場合には、これらの配置や角度を最適に設定することができ、良好な画像データを取得することが可能である。   Further, the seafloor exploration device A is configured to connect a plurality of spheres to each other and to transmit and receive signals between the spheres so that more devices can be mounted. Can be automatically controlled. For example, when the video camera 9 and the illumination device 10 are employed as electronic devices, the arrangement and angle thereof can be set optimally, and good image data can be acquired.

さらに、海底探査装置Aは、透明なガラス製の球体1を採用すると共に、その球体1を一対の半球体1Aで構成しているので、極めて簡単な構造でありながら、超深海層の高水圧を受けても応力集中が生じることがなく、その高水圧に充分に耐えることができ、各種機器の収容や取り外しにも容易に対処し得る。   Furthermore, since the seafloor exploration device A employs a transparent glass sphere 1 and the sphere 1 is composed of a pair of hemispheres 1A, the high water pressure of the ultra deep sea layer is extremely simple. Stress concentration does not occur even if it is applied, it can sufficiently withstand the high water pressure, and can easily accommodate and remove various devices.

さらに、海底探査装置Aは、浮上通信装置7を備えているので、浮上後の回収を容易に行うことができる。とくに、GPS受信機7Aと衛星通信装置7Bと太陽電池パネル7Cで構成される浮上通信装置を採用したことにより、海中では電力が不要であって、装置構成のさらなる小型軽量化に貢献し得ると共に、海流等の都合で浮上位置が広範囲に予測される場合でも、当該装置を速やかに発見して回収することができる。   Further, since the seafloor exploration device A includes the levitation communication device 7, it is possible to easily perform recovery after levitation. In particular, by adopting a floating communication device comprised of a GPS receiver 7A, a satellite communication device 7B, and a solar cell panel 7C, no power is required in the sea, which can contribute to further miniaturization and weight reduction of the device configuration. Even when the ascent position is predicted over a wide range due to reasons such as ocean currents, the device can be quickly discovered and recovered.

さらに、海底探査装置Aは、海中位置検出装置8を備えているので、回収後において、降下中の航跡、正確な海底探査位置及び海流速度などを判定することができる。とくに、加速度計8Aと歪ゲージ8Bと演算手段8Cで構成される海中位置検出装置8を採用したことにより、3次元における正確な航跡や海底探査位置を判定することができる。   Further, since the seafloor exploration device A includes the undersea position detection device 8, it is possible to determine the wake during descent, the accurate seafloor exploration position, the ocean current velocity, and the like after collection. In particular, by adopting the underwater position detection device 8 constituted by the accelerometer 8A, the strain gauge 8B, and the calculation means 8C, it is possible to determine the accurate three-dimensional track and the seabed exploration position.

さらに、海底探査装置Aは、採泥装置21や深海生物の捕獲装置22を備えたことにより、海底泥や深海生物を収集して、海底泥に含まれる鉱物及び微生物や、深海生物の研究に貢献することができる。   Further, the seafloor exploration device A is equipped with the mud collecting device 21 and the deep-sea organism capture device 22 to collect seabed mud and deep-sea organisms, and to study minerals and microorganisms contained in the seabed mud, and deep-sea organisms. Can contribute.

本発明に係る海底探査装置は、その構成が上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で構成の細部を適宜変更することが可能である。海底探査装置は、例えば、球体を3個以外の個数にしたり、探査任務用の電子機器として、地震計や放射線計などの各種観測機器を収容したりすることができる。球体は、ガラス製のほか、セラミックス製などを採用することもできる。また、錘の切離し装置には、機械的に結合分離を行う機構を採用することもできる。   The configuration of the seafloor exploration device according to the present invention is not limited to the above embodiment, and the details of the configuration can be appropriately changed without departing from the gist of the present invention. For example, the seafloor exploration device can have a number of spheres other than three, or can accommodate various observation devices such as seismometers and radiometers as electronic devices for exploration missions. The sphere may be made of glass or ceramics. Further, the weight separating device may employ a mechanism for mechanically separating and coupling.

また、海底探査装置は、探査姿勢やバランスなどを考慮して、球体の個数や配置、球体内部及び外部の各種機器の配置、並びに錘の重量、個数及び配置を様々に設定することが可能であり、このほか、浮上時の目印になる旗等の表示具、複数の球体を保持するためのフレーム、海中での昇降時の抵抗を軽減するためのカバー、あるいは安定翼などを設けることも有効である。   In addition, the seafloor exploration device can set the number and arrangement of spheres, the arrangement of various devices inside and outside the sphere, and the weight, number and arrangement of weights in consideration of the exploration attitude and balance. In addition to this, it is also effective to provide a display device such as a flag that serves as a mark when ascending, a frame for holding multiple spheres, a cover for reducing resistance during ascent and descent in the sea, or a stabilizing wing. It is.

さらに、球体は、収容する機器によっては、透明でなくても構わない。この球体は、部分的に透明材料を用いた構成も有り得るが、超深海層の高水圧を考慮すると、なるべく単一の材料で形成するのが望ましく、ガラスあるいはセラミックス等の単一の材料である方が構造的にもコスト的にも有利である。   Furthermore, the sphere may not be transparent depending on the equipment to be accommodated. This sphere may have a configuration partially using a transparent material, but considering the high water pressure of the ultra deep sea layer, it is desirable to form it with a single material as much as possible, and it is a single material such as glass or ceramics. This is advantageous both in terms of structure and cost.

A 海底探査装置
1 球体
2 錘
3 切離し装置
4 制御装置
4A 送受信手段
5 二次電池
7 浮上通信装置
7A GPS受信機
7B 衛生通信装置
7C 太陽電池パネル
8 水中位置検出装置
8A 加速度計
8B 歪ゲージ
8B 演算装置
9 ビデオカメラ
10 照明装置
21 採泥装置
22 捕獲装置
22A 餌
50 船上設備
101 船舶
102 人工衛星
A Submarine exploration device 1 Sphere 2 Weight 3 Disconnect device 4 Control device 4A Transmission / reception means 5 Secondary battery 7 Levitation communication device 7A GPS receiver 7B Sanitary communication device 7C Solar panel 8 Underwater position detection device 8A Accelerometer 8B Strain gauge 8B Calculation Device 9 Video camera 10 Illumination device 21 Mud collection device 22 Capture device 22A Feed 50 Shipboard equipment 101 Ship 102 Artificial satellite

Claims (11)

内部に密閉空間を有する球体と、海中で球体を降下させるための錘と、錘の切離し装置を備えると共に、
球体に、探査任務用の電子機器と、電子機器の制御を行う制御装置と、これらの電源であり且つ非接触充電が可能な二次電池を収容し、
制御装置が、外部との間で信号の送受信を非接触で行う送受信手段を有している ことを特徴とする海底探査装置。
A sphere having a sealed space inside, a weight for lowering the sphere in the sea, and a weight separation device,
In the sphere, an electronic device for exploration mission, a control device that controls the electronic device, and a secondary battery that is a power source and can be contactlessly charged,
The seafloor exploration device, wherein the control device has transmission / reception means for performing transmission / reception of signals to / from the outside without contact.
前記球体を複数備えると共に、各球体を互いに連結し、
各球体に、少なくとも電子機器及び制御装置を収容すると共に、各制御装置が、球体間で互いに信号の送受信を行う配置にしてあることを特徴とする請求項1に記載の海底探査装置。
A plurality of the spheres, and connecting the spheres to each other;
The seafloor exploration device according to claim 1, wherein each sphere includes at least an electronic device and a control device, and the control devices are arranged to transmit and receive signals to and from each other.
前記球体のうちの少なくとも1つが、透明なガラス製であり、
その透明な球体に、電子機器として、ビデオカメラ及び照明装置を収容したことを特徴とする請求項2に記載の海底探査装置。
At least one of the spheres is made of transparent glass;
The seafloor exploration device according to claim 2, wherein a video camera and a lighting device are housed in the transparent sphere as electronic devices.
前記透明な球体が、一対の半球体で構成してあることを特徴とする請求項3に記載の海底探査装置。   The seafloor exploration device according to claim 3, wherein the transparent sphere is composed of a pair of hemispheres. 前記切離し装置が、球体の内部から外部へ非接触で電力供給を行う電力供給手段と、球体と錘とを結合し且つ電極供給手段からの電流により電蝕作用で分離する結合分離手段を備えていることを特徴とする請求項1〜4のいずれか1項に記載の海底探査装置。   The separation device includes a power supply unit that supplies power from the inside of the sphere to the outside in a non-contact manner, and a coupling / separation unit that couples the sphere and the weight and separates the sphere and the weight by an electric erosion action using a current from the electrode supply unit The seabed exploration device according to any one of claims 1 to 4, wherein: 前記球体に、電子機器として、浮上した後に信号を送信する浮上通信装置を収容したことを特徴とする請求項1〜5のいずれか1項に記載の海底探査装置。   The seafloor exploration device according to any one of claims 1 to 5, wherein a floating communication device that transmits a signal after rising is accommodated in the sphere as an electronic device. 前記球体が透明なガラス製であり、
前記浮上通信装置が、GPS受信機と、GPS受信機の測定データを送信する衛星通信装置と、これらの電源である太陽電池パネルを備えていることを特徴とする請求項6に記載の海底探査装置。
The sphere is made of transparent glass;
The seafloor exploration according to claim 6, wherein the levitation communication device includes a GPS receiver, a satellite communication device that transmits measurement data of the GPS receiver, and a solar cell panel that is a power source thereof. apparatus.
前記球体に、電子機器として、海中における位置を検出する海中位置検出装置を収容したことを特徴とする請求項1〜7のいずれか1項に記載の海底探査装置。   The undersea exploration device according to claim 1, wherein an underwater position detection device that detects a position in the sea is housed in the sphere as an electronic device. 前記海中位置検出装置が、少なくとも水平面で直交する二軸方向の加速度を検出する加速度計と、球体の内面に貼り付けた歪ゲージと、加速度計及び歪ゲージの検出データに基づいて3次元位置を算出する演算手段を備えていることを特徴とする請求項8に記載の海底探査装置。   The underwater position detection device detects a three-dimensional position based on at least an accelerometer that detects acceleration in two axial directions orthogonal to a horizontal plane, a strain gauge that is attached to the inner surface of the sphere, and detection data of the accelerometer and the strain gauge. The seafloor exploration device according to claim 8, further comprising a calculation unit that calculates. 海底の泥を採取するための採泥装置を備えたことを特徴とする請求項1〜9のいずれか1項に記載の海底探査装置。   The seabed exploration apparatus according to any one of claims 1 to 9, further comprising a mud collection apparatus for collecting seabed mud. 深海生物を集めるための餌若しくは深海生物の捕獲装置を備えたことを特徴とする請求項1〜10のいずれか1項に記載の海底探査装置。   The seabed exploration device according to any one of claims 1 to 10, further comprising a bait for collecting deep-sea organisms or a device for capturing deep-sea organisms.
JP2011121208A 2011-05-31 2011-05-31 Undersea exploration equipment Active JP5615229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011121208A JP5615229B2 (en) 2011-05-31 2011-05-31 Undersea exploration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011121208A JP5615229B2 (en) 2011-05-31 2011-05-31 Undersea exploration equipment

Publications (2)

Publication Number Publication Date
JP2012245944A true JP2012245944A (en) 2012-12-13
JP5615229B2 JP5615229B2 (en) 2014-10-29

Family

ID=47466824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011121208A Active JP5615229B2 (en) 2011-05-31 2011-05-31 Undersea exploration equipment

Country Status (1)

Country Link
JP (1) JP5615229B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080651A1 (en) * 2012-11-21 2014-05-30 独立行政法人海洋研究開発機構 Underwater observation instrument
CN104015885A (en) * 2014-06-19 2014-09-03 中国水产科学研究院淡水渔业研究中心 Ocean buoy
WO2014171513A1 (en) 2013-04-18 2014-10-23 岡本硝子株式会社 Housing for underwater video camera
CN107063200A (en) * 2017-03-21 2017-08-18 宁波深蓝海洋信息技术有限公司 Bathyscaphe
CN107288585A (en) * 2017-07-26 2017-10-24 北京探矿工程研究所 Base system for deep water exploration and use method thereof
CN108075064A (en) * 2016-11-14 2018-05-25 中国科学院沈阳自动化研究所 A kind of deep-sea lightweight high energy battery device and its assemble method
WO2019131076A1 (en) * 2017-12-25 2019-07-04 Japan Agency For Marine-Earth Science And Technology Connectedly-formed underwater exploration device
JP2019177833A (en) * 2018-03-30 2019-10-17 国立研究開発法人 海上・港湾・航空技術研究所 Underwater equipment recovery method, and underwater equipment recovery system
CN113650757A (en) * 2021-08-27 2021-11-16 哈尔滨工程大学 Self-elevating life saving device
US11423947B2 (en) 2017-12-22 2022-08-23 Japan Agency For Marine-Earth Science And Technology Image recording method, image recording program, data processing apparatus, and image recording apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111810780B (en) * 2020-06-24 2022-04-12 广州盘古文化传播有限公司 Auxiliary device for reducing shaking and facilitating underwater stable shooting

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920937A (en) * 1982-07-24 1984-02-02 株式会社島津製作所 Starter for electronic device
JPS6136095A (en) * 1984-07-30 1986-02-20 Mitsui Eng & Shipbuild Co Ltd Trim adjusting apparatus for underwater robot
JPS6252485A (en) * 1985-08-31 1987-03-07 Nec Corp System for observing sea bottom
JPH0341339A (en) * 1989-07-07 1991-02-21 Kaiyo Kagaku Gijutsu Center Submerged mud collector
JPH03118894U (en) * 1990-03-15 1991-12-09
JPH04262990A (en) * 1991-02-19 1992-09-18 Mitsubishi Heavy Ind Ltd Secondary battery charging equipment in sea bottom apparatus
JPH05118799A (en) * 1991-10-25 1993-05-14 Ishikawajima Harima Heavy Ind Co Ltd Correcting method for positional deviation of underwater runner
JPH07315283A (en) * 1994-05-20 1995-12-05 Furuno Electric Co Ltd Underwater observation buoy separating device
JP2004166459A (en) * 2002-11-15 2004-06-10 Mitsui Eng & Shipbuild Co Ltd Non-contact feeding device
JP2007308078A (en) * 2006-05-22 2007-11-29 Nec Corp Marine observation system, self-floating up type marine observation device and discharge device
JP2008055544A (en) * 2006-08-31 2008-03-13 Kyokko Denki Kk Articulated structure, mounting tool using it, system and human machine interface
JP2009196503A (en) * 2008-02-21 2009-09-03 Kenwood Corp Image data transmission buoy

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920937A (en) * 1982-07-24 1984-02-02 株式会社島津製作所 Starter for electronic device
JPS6136095A (en) * 1984-07-30 1986-02-20 Mitsui Eng & Shipbuild Co Ltd Trim adjusting apparatus for underwater robot
JPS6252485A (en) * 1985-08-31 1987-03-07 Nec Corp System for observing sea bottom
JPH0341339A (en) * 1989-07-07 1991-02-21 Kaiyo Kagaku Gijutsu Center Submerged mud collector
JPH03118894U (en) * 1990-03-15 1991-12-09
JPH04262990A (en) * 1991-02-19 1992-09-18 Mitsubishi Heavy Ind Ltd Secondary battery charging equipment in sea bottom apparatus
JPH05118799A (en) * 1991-10-25 1993-05-14 Ishikawajima Harima Heavy Ind Co Ltd Correcting method for positional deviation of underwater runner
JPH07315283A (en) * 1994-05-20 1995-12-05 Furuno Electric Co Ltd Underwater observation buoy separating device
JP2004166459A (en) * 2002-11-15 2004-06-10 Mitsui Eng & Shipbuild Co Ltd Non-contact feeding device
JP2007308078A (en) * 2006-05-22 2007-11-29 Nec Corp Marine observation system, self-floating up type marine observation device and discharge device
JP2008055544A (en) * 2006-08-31 2008-03-13 Kyokko Denki Kk Articulated structure, mounting tool using it, system and human machine interface
JP2009196503A (en) * 2008-02-21 2009-09-03 Kenwood Corp Image data transmission buoy

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014080651A1 (en) * 2012-11-21 2017-01-05 国立研究開発法人海洋研究開発機構 Underwater observation equipment
US9817139B2 (en) 2012-11-21 2017-11-14 Japan Agency For Marine-Earth Science And Technology Underwater observation apparatus
WO2014080651A1 (en) * 2012-11-21 2014-05-30 独立行政法人海洋研究開発機構 Underwater observation instrument
WO2014171513A1 (en) 2013-04-18 2014-10-23 岡本硝子株式会社 Housing for underwater video camera
US9829771B2 (en) 2013-04-18 2017-11-28 Okamoto Glass Co., Ltd. Housing for an underwater video camera
CN104015885A (en) * 2014-06-19 2014-09-03 中国水产科学研究院淡水渔业研究中心 Ocean buoy
CN108075064A (en) * 2016-11-14 2018-05-25 中国科学院沈阳自动化研究所 A kind of deep-sea lightweight high energy battery device and its assemble method
CN108075064B (en) * 2016-11-14 2023-05-30 中国科学院沈阳自动化研究所 Deep sea light high-energy battery device and assembly method thereof
CN107063200A (en) * 2017-03-21 2017-08-18 宁波深蓝海洋信息技术有限公司 Bathyscaphe
CN107288585A (en) * 2017-07-26 2017-10-24 北京探矿工程研究所 Base system for deep water exploration and use method thereof
CN107288585B (en) * 2017-07-26 2023-09-05 北京探矿工程研究所 Base system for deep water investigation and use method thereof
US11423947B2 (en) 2017-12-22 2022-08-23 Japan Agency For Marine-Earth Science And Technology Image recording method, image recording program, data processing apparatus, and image recording apparatus
JP2019111941A (en) * 2017-12-25 2019-07-11 国立研究開発法人海洋研究開発機構 Coupled underwater explorer
US10994820B2 (en) 2017-12-25 2021-05-04 Japan Agency For Marine-Earth Science And Technology Connectedly-formed underwater exploration device
EP3676171A4 (en) * 2017-12-25 2021-06-09 Japan Agency for Marine-Earth Science and Technology Connectedly-formed underwater exploration device
CN111356630B (en) * 2017-12-25 2022-03-25 国立研究开发法人海洋研究开发机构 Connected underwater exploration machine
CN111356630A (en) * 2017-12-25 2020-06-30 国立研究开发法人海洋研究开发机构 Connected underwater exploration machine
WO2019131076A1 (en) * 2017-12-25 2019-07-04 Japan Agency For Marine-Earth Science And Technology Connectedly-formed underwater exploration device
JP7133196B2 (en) 2018-03-30 2022-09-08 国立研究開発法人 海上・港湾・航空技術研究所 Underwater equipment recovery method and underwater equipment recovery system
JP2019177833A (en) * 2018-03-30 2019-10-17 国立研究開発法人 海上・港湾・航空技術研究所 Underwater equipment recovery method, and underwater equipment recovery system
CN113650757A (en) * 2021-08-27 2021-11-16 哈尔滨工程大学 Self-elevating life saving device

Also Published As

Publication number Publication date
JP5615229B2 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
JP5615229B2 (en) Undersea exploration equipment
CN109061720B (en) Submarine earthquake monitoring device and system based on submarine Internet of things
US11059552B2 (en) Deployment and retrieval of seismic autonomous underwater vehicles
EP3213121B1 (en) Touch down monitoring of an ocean bottom seismic node
US10067507B2 (en) Controllable buoys and networked buoy systems
US10691993B2 (en) System and method for autonomous tracking and imaging of a target
US9718523B2 (en) Gliding robotic fish navigation and propulsion
US9651374B1 (en) Method and system for measuring physical phenomena in an open water environment
EP3676171B1 (en) Connectedly-formed underwater exploration device
US20160090160A1 (en) Underwater mobile body
CN110539864A (en) seabed flight node aircraft capable of resisting soil adsorption and working method
WO2007040411A1 (en) Target seeking unit for release at deep water, particularly in the form of a node
JP2021049985A (en) Underwater survey system and underwater survey method using unmanned flying body
US7054230B1 (en) Locator device for submerged structures
JP2736724B2 (en) Underwater long-term observation system
KR20200047182A (en) Underwater robot using optical communication
JPH11124089A (en) Sea floor observation device
Ferreira et al. TURTLE—Systems and technologies for deep ocean long term presence
Arima et al. Development of underwater observatory systems for monitoring ocean ecosystem
KR20210022276A (en) Charging system of submarine mooring device
RU101847U1 (en) FLOATING SEISMIC MODULE
Robe MiniROV

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140909

R150 Certificate of patent or registration of utility model

Ref document number: 5615229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250