JP2012235658A - Abnormality detection device and power generation system equipped with the same - Google Patents

Abnormality detection device and power generation system equipped with the same Download PDF

Info

Publication number
JP2012235658A
JP2012235658A JP2011104142A JP2011104142A JP2012235658A JP 2012235658 A JP2012235658 A JP 2012235658A JP 2011104142 A JP2011104142 A JP 2011104142A JP 2011104142 A JP2011104142 A JP 2011104142A JP 2012235658 A JP2012235658 A JP 2012235658A
Authority
JP
Japan
Prior art keywords
abnormality
power
input voltage
voltage
abnormality detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011104142A
Other languages
Japanese (ja)
Other versions
JP5763407B2 (en
Inventor
Yoshihisa Okamoto
吉久 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2011104142A priority Critical patent/JP5763407B2/en
Publication of JP2012235658A publication Critical patent/JP2012235658A/en
Application granted granted Critical
Publication of JP5763407B2 publication Critical patent/JP5763407B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an abnormality detection device which dispenses with signal lines used for connecting to places where abnormality occurrence needs to be monitored.SOLUTION: A control device 34 of each power conditioner is made to function as an abnormality detection device. The control device 34 includes a detection value comparison unit 341 and an input voltage comparison unit 342. The detection value comparison unit 341 compares solar radiation intensity IRR detected by an actinometer 5 with prescribed solar radiation intensity IRR. When the result of comparison by the detection value comparison unit 341 is (IRR>IRR), the input voltage comparison unit 342 determines whether voltage values V(i=1, 2, and so on) fed into from each voltage sensor 33 are smaller than a prescribed voltage value V. When Vis determined to be smaller than Vby the input voltage comparison unit 342, the control device 34 determines that opening abnormality has occurred in a DC switch corresponding to the voltage value V. Therefore, signal lines used for connecting to respective DC switches are unnecessary.

Description

本発明は、発電システムの異常を検出する異常検出装置、およびこの異常検出装置を備えた発電システムに関する。   The present invention relates to an abnormality detection device that detects an abnormality of a power generation system, and a power generation system including the abnormality detection device.

従来、太陽電池が出力する直流電力を交流電力に変換して電力系統に供給する太陽光発電システムが開発されている。大規模な太陽光発電システムにおいては、複数の太陽電池(複数の太陽電池セルを直列接続した太陽電池モジュールまたは太陽電池モジュールを複数並列接続した太陽電池アレイを示す。以下でも同様)から入力される直流電力を変換するためのパワーコンディショナを複数設け、これらのパワーコンディショナを集中管理する監視制御装置を設けている。   2. Description of the Related Art Conventionally, a solar power generation system that converts DC power output from a solar cell into AC power and supplies it to an electric power system has been developed. In a large-scale photovoltaic power generation system, input is made from a plurality of solar cells (a solar cell module in which a plurality of solar cells are connected in series or a solar cell array in which a plurality of solar cell modules are connected in parallel. The same applies hereinafter). A plurality of power conditioners for converting DC power are provided, and a monitoring control device for centrally managing these power conditioners is provided.

各太陽電池とパワーコンディショナの間には、接続を開閉するための直流開閉器が設けられている。直流開閉器は、太陽電池からパワーコンディショナに入力される直流電力を遮断するものであり、パワーコンディショナの入力部での感電を防止するためのものである。通常時において直流開閉器は閉じられており、太陽電池が出力した直流電力は、パワーコンディショナに入力される。しかし、直流開閉器が故障していたり、作業者が閉じるのを忘れたりして、直流開閉器が開放されたままの状態(以下では、「開放異常」とする。)だと、太陽電池の出力電力がパワーコンディショナに入力されず、生成した電力を有効利用できない。これを回避するために、太陽光発電システムは、直流開閉器の開放異常を検出するための構成を備えている。   A DC switch for opening and closing the connection is provided between each solar cell and the power conditioner. The DC switch is for cutting off DC power input from the solar battery to the power conditioner, and for preventing electric shock at the input part of the power conditioner. The DC switch is normally closed, and the DC power output from the solar cell is input to the power conditioner. However, if the DC switch breaks down or the operator forgets to close it and the DC switch remains open (hereinafter referred to as “opening abnormality”), The output power is not input to the power conditioner, and the generated power cannot be used effectively. In order to avoid this, the photovoltaic power generation system has a configuration for detecting an open abnormality of the DC switch.

図10は、従来の太陽光発電システムを示すブロック図である。   FIG. 10 is a block diagram showing a conventional photovoltaic power generation system.

太陽光発電システムA100は、複数の太陽電池100が接続されたパワーコンディショナ300を複数備えている。複数のパワーコンディショナ300は、監視制御装置400によって、集中管理されている。各太陽電池100とパワーコンディショナ300との間には、直流開閉器200がそれぞれ設けられている。   The photovoltaic power generation system A100 includes a plurality of power conditioners 300 to which a plurality of solar cells 100 are connected. The plurality of power conditioners 300 are centrally managed by the monitoring control device 400. A DC switch 200 is provided between each solar cell 100 and the power conditioner 300.

各直流開閉器200には、主接点と連動して動作する補助接点(いずれも図示しない)が設けられている。監視制御装置400は、当該補助接点から入力される信号を監視することで各直流開閉器の開放異常を検出している。   Each DC switch 200 is provided with an auxiliary contact (not shown) that operates in conjunction with the main contact. The monitoring control device 400 detects an open abnormality of each DC switch by monitoring a signal input from the auxiliary contact.

特開2006−216660号公報JP 2006-216660 A

しかしながら、太陽光発電システムA100の規模が大きい場合、直流開閉器200の数が多く、配置場所が広範囲に点在しているので、問題が生じる場合がある。すなわち、直流開閉器200と監視制御装置400との距離が離れていることにより、直流開閉器200の補助接点が出力する信号を送信するための信号線が長くなる。信号線は補助接点のオンオフ信号を送信するためのものなので、例えばキャブタイヤケーブルなどの簡易なケーブルが用いられている。したがって、信号線が長くなると、送信された信号が減衰やノイズの重畳によって劣化して、信号を正確に伝達することができなくなり、監視制御装置400が開放異常を誤検出する場合がある。また、多くの直流開閉器200からの信号を監視する必要があるので、監視制御装置400には、大量の信号線との接続などのハード面での負担や、入力信号の処理などのソフト面での負担がかかる。さらに、長い信号線を多数敷設する必要があるので、部材のコストや敷設作業のためのコストが大きくなり、メンテナンスなどの管理コストも大きくなる。   However, when the scale of the photovoltaic power generation system A100 is large, the number of the DC switches 200 is large and the arrangement locations are scattered over a wide range, so that a problem may occur. That is, since the distance between the DC switch 200 and the monitoring control device 400 is long, the signal line for transmitting the signal output from the auxiliary contact of the DC switch 200 becomes long. Since the signal line is for transmitting an on / off signal of the auxiliary contact, for example, a simple cable such as a cabtyre cable is used. Therefore, when the signal line becomes long, the transmitted signal is deteriorated due to attenuation or noise superimposition, and the signal cannot be accurately transmitted, and the monitoring and control apparatus 400 may erroneously detect an open abnormality. In addition, since it is necessary to monitor signals from many DC switches 200, the monitoring and control device 400 has a hardware burden such as connection to a large number of signal lines, and a software aspect such as input signal processing. It takes a burden. Furthermore, since it is necessary to lay many long signal lines, the cost of members and the cost for laying work increase, and the management cost for maintenance and the like also increases.

例えば、50MW級の太陽光発電システムの場合、監視制御装置400は、80kWの太陽電池100が3台接続されたパワーコンディショナ300を200台監視している。この場合、監視制御装置400は、600(=3×200)個の直流開閉器200を監視しなければならない。また、各太陽電池100は広い敷地内(例えば、2km2)に重ならないように並べて配置されており、各パワーコンディショナ300も当該敷地内に分散して配置されている。通常、直流開閉器2は、太陽電池1の近くでいくつかまとめて集電箱(接続箱)に格納されて配置される。したがって、直流開閉器200と監視制御装置400との距離は、2km程度になる場合がある。 For example, in the case of a 50 MW class solar power generation system, the monitoring control device 400 monitors 200 power conditioners 300 to which three 80 kW solar cells 100 are connected. In this case, the monitoring control apparatus 400 must monitor 600 (= 3 × 200) DC switches 200. Further, the solar cells 100 are arranged side by side so as not to overlap a large site (for example, 2 km 2 ), and the power conditioners 300 are also distributed and arranged in the site. Usually, several DC switches 2 are stored in a current collection box (junction box) near the solar cell 1. Therefore, the distance between the DC switch 200 and the monitoring control device 400 may be about 2 km.

なお、上記問題は、太陽光発電システムA100の規模が大きい場合に顕著となるが、規模が小さい場合にも生じうる。また、他の発電システムにおいても、上記問題は生じる場合がある。例えば、風力発電システムにおいて、風車で生成された交流電力の周波数や電圧をパワーコンディショナで変換する場合、風車とパワーコンディショナの間に設けられる交流開閉器の開放異常を検出する場合にも、同様の問題が生じる。   Note that the above problem becomes prominent when the scale of the photovoltaic power generation system A100 is large, but may also occur when the scale is small. In addition, the above problem may occur in other power generation systems. For example, in a wind power generation system, when converting the frequency and voltage of AC power generated by a windmill with a power conditioner, even when detecting an open abnormality of an AC switch provided between the windmill and the power conditioner, Similar problems arise.

本発明は上記した事情のもとで考え出されたものであって、異常発生を監視する必要がある箇所と接続するための信号線を必要としない異常検出装置を提供することをその目的としている。   The present invention has been conceived under the circumstances described above, and it is an object of the present invention to provide an abnormality detection device that does not require a signal line for connection to a location where the occurrence of abnormality needs to be monitored. Yes.

上記課題を解決するため、本発明では、次の技術的手段を講じている。   In order to solve the above problems, the present invention takes the following technical means.

本発明の第1の側面によって提供される異常検出装置は、発電システムにおいて異常が発生したことを検出する異常検出装置であって、所定のセンサによって検出された検出値と所定値とを比較する検出値比較手段と、前記検出値比較手段の比較結果に応じて、電源からの入力電圧が所定電圧より小さいか否かを判別する入力電圧判別手段とを備え、前記入力電圧判別手段によって前記入力電圧が前記所定電圧より小さいと判別された場合に、異常が発生したことを検出することを特徴とする。   An abnormality detection device provided by a first aspect of the present invention is an abnormality detection device that detects that an abnormality has occurred in a power generation system, and compares a detection value detected by a predetermined sensor with a predetermined value. A detection value comparison unit; and an input voltage determination unit that determines whether or not an input voltage from a power source is smaller than a predetermined voltage according to a comparison result of the detection value comparison unit. When it is determined that the voltage is smaller than the predetermined voltage, it is detected that an abnormality has occurred.

本発明の好ましい実施の形態においては、前記発電システムは前記電源の接続を開閉する開閉器を備えており、前記入力電圧判別手段によって前記入力電圧が前記所定電圧より小さいと判別された場合に、前記開閉器が開放状態であることを検出する。   In a preferred embodiment of the present invention, the power generation system includes a switch that opens and closes the connection of the power source, and when the input voltage is determined to be smaller than the predetermined voltage by the input voltage determination unit, Detecting that the switch is open.

本発明の好ましい実施の形態においては、前記発電システムには、複数の前記電源と前記開閉器とが備えられており、前記入力電圧判別手段は、前記各電源からの入力電圧が前記所定電圧より小さいか否かをそれぞれ判別し、前記入力電圧判別手段によって前記入力電圧が前記所定電圧より小さいと判別された電源の接続を開閉する開閉器に開放異常が発生したことを検出する。   In a preferred embodiment of the present invention, the power generation system includes a plurality of the power supplies and the switches, and the input voltage determination means is configured such that the input voltage from each power supply is greater than the predetermined voltage. It is determined whether the input voltage is smaller, and it is detected that an open abnormality has occurred in the switch that opens and closes the connection of the power source determined by the input voltage determination means that the input voltage is smaller than the predetermined voltage.

本発明の好ましい実施の形態においては、前記入力電圧判別手段は、前記電源からの入力電圧が第2の所定電圧より小さいか否かをさらに判別し、前記入力電圧判別手段によって前記入力電圧が前記第2の所定電圧より小さいと判別された場合に、前記電源の異常が発生したことを検出する。   In a preferred embodiment of the present invention, the input voltage determination unit further determines whether or not an input voltage from the power source is smaller than a second predetermined voltage, and the input voltage is determined by the input voltage determination unit. When it is determined that the voltage is smaller than the second predetermined voltage, it is detected that the power supply abnormality has occurred.

本発明の好ましい実施の形態においては、前記発電システムには前記電源から入力される電力を変換する変換装置が備えられており、前記異常検出装置は当該変換装置の内部に備えられている。   In a preferred embodiment of the present invention, the power generation system includes a conversion device that converts electric power input from the power source, and the abnormality detection device is provided inside the conversion device.

本発明の好ましい実施の形態においては、前記発電システムには前記電源から入力される電力を変換する変換装置と、前記変換装置との間で通信を行う監視制御装置とが備えられており、前記異常検出装置は当該監視制御装置に備えられている。   In a preferred embodiment of the present invention, the power generation system includes a conversion device that converts electric power input from the power source, and a monitoring control device that communicates with the conversion device. The abnormality detection device is provided in the monitoring control device.

本発明の好ましい実施の形態においては、前記電源は太陽電池であり、前記検出値比較手段は、日射計によって検出された日射強度を所定の日射強度と比較し、前記入力電圧判別手段は、前記日射強度が前記所定の日射強度より大きい場合に判別を行う。   In a preferred embodiment of the present invention, the power source is a solar cell, the detection value comparison means compares the solar radiation intensity detected by a solar radiation meter with a predetermined solar radiation intensity, and the input voltage determination means A determination is made when the solar radiation intensity is greater than the predetermined solar radiation intensity.

本発明の第2の側面によって提供される発電システムは、前記電源と、本発明の第1の側面によって提供される異常検出装置とを備えていることを特徴とする。   The power generation system provided by the second aspect of the present invention includes the power supply and the abnormality detection device provided by the first aspect of the present invention.

本発明によれば、センサの検出値の比較と電源からの入力電圧の比較により異常の発生を検出する。したがって、例えば直流開閉器などの異常発生を監視する必要がある箇所との間を信号線で接続する必要がない。これにより、信号線を流れる信号が劣化することによる誤検出が発生しない。また、信号線の敷設およびメンテナンスのためのコストが必要ない。したがって、異常の誤検出を可及的に抑制し、異常検出のための負担やコストを可及的に削減することができる。   According to the present invention, the occurrence of abnormality is detected by comparing the detection value of the sensor and the input voltage from the power source. Therefore, there is no need to connect the signal line between the places where it is necessary to monitor the occurrence of abnormality such as a DC switch. Thereby, erroneous detection due to deterioration of the signal flowing through the signal line does not occur. Moreover, the cost for laying and maintaining the signal line is not necessary. Therefore, erroneous detection of abnormality can be suppressed as much as possible, and the burden and cost for detecting abnormality can be reduced as much as possible.

本発明のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。   Other features and advantages of the present invention will become more apparent from the detailed description given below with reference to the accompanying drawings.

第1実施形態に係る太陽光発電システムを示すブロック図である。It is a block diagram which shows the solar energy power generation system which concerns on 1st Embodiment. 第1実施形態に係るパワーコンディショナの内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the power conditioner which concerns on 1st Embodiment. 第1実施形態に係る制御装置の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the control apparatus which concerns on 1st Embodiment. 第1実施形態に係る制御装置が行う異常検出処理を説明するためのフローチャートである。It is a flowchart for demonstrating the abnormality detection process which the control apparatus which concerns on 1st Embodiment performs. 第3実施形態に係る制御装置が行う異常検出処理を説明するためのフローチャートである。It is a flowchart for demonstrating the abnormality detection process which the control apparatus which concerns on 3rd Embodiment performs. 第4実施形態に係る太陽光発電システムを示すブロック図である。It is a block diagram which shows the solar energy power generation system which concerns on 4th Embodiment. 第4実施形態に係る監視制御装置の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the monitoring control apparatus which concerns on 4th Embodiment. 第4実施形態に係る制御部の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the control part which concerns on 4th Embodiment. 第4実施形態に係る制御部が行う異常検出処理を説明するためのフローチャートである。It is a flowchart for demonstrating the abnormality detection process which the control part which concerns on 4th Embodiment performs. 従来の太陽光発電システムを示すブロック図である。It is a block diagram which shows the conventional photovoltaic power generation system.

以下、本発明の実施の形態を、本発明に係る異常検出装置を太陽光発電システムに用いた場合を例として、添付図面を参照して具体的に説明する。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings, taking as an example a case where the abnormality detection device according to the present invention is used in a solar power generation system.

図1は、第1実施形態に係る太陽光発電システムを示すブロック図である。   FIG. 1 is a block diagram showing a photovoltaic power generation system according to the first embodiment.

太陽光発電システムAは、太陽電池1が出力する直流電力をパワーコンディショナ3で交流電力に変換して電力系統Bに出力するものである。同図に示すように、太陽光発電システムAは、太陽電池1、直流開閉器2、パワーコンディショナ3、監視制御装置4、および、日射計5を備えている。本実施形態において、太陽光発電システムAは複数のパワーコンディショナ3を備えており、各パワーコンディショナ3には複数の太陽電池1が接続されている。   The solar power generation system A converts DC power output from the solar cell 1 into AC power by the power conditioner 3 and outputs the AC power to the power system B. As shown in the figure, the photovoltaic power generation system A includes a solar cell 1, a DC switch 2, a power conditioner 3, a monitoring control device 4, and a pyranometer 5. In the present embodiment, the solar power generation system A includes a plurality of power conditioners 3, and a plurality of solar cells 1 are connected to each power conditioner 3.

太陽電池1は、複数の太陽電池セルを直列接続した太陽電池モジュールを有しており、太陽電池セルが太陽光エネルギーを電気エネルギーに変換して生成した直流電力を出力する。各太陽電池セルは、受ける日射強度に応じた電力を生成する。したがって、太陽電池1から出力される電力は、日射強度が大きい昼間に大きくなり、日射強度が小さい朝や夕方に小さくなる。また、昼間でも、雲などによって太陽が遮られた場合、一時的に日射強度が小さくなって、出力される電力が一時的に小さくなる。   The solar cell 1 has a solar cell module in which a plurality of solar cells are connected in series, and outputs DC power generated by the solar cells converting solar energy into electric energy. Each photovoltaic cell generates electric power according to the received solar radiation intensity. Therefore, the electric power output from the solar cell 1 increases in the daytime when the solar radiation intensity is high, and decreases in the morning and evening when the solar radiation intensity is low. Even in the daytime, when the sun is blocked by clouds or the like, the solar radiation intensity temporarily decreases, and the output power temporarily decreases.

直流開閉器2は、各太陽電池1とパワーコンディショナ3との接続線路上に配置され、各太陽電池1とパワーコンディショナ3との接続を開閉するものである。直流開閉器2は、異常が発生した場合や、パワーコンディショナ3のメンテナンス時などに開放され、太陽電池1からパワーコンディショナ3に入力される電力を遮断する。また、通常時においては閉じられており、太陽電池1が出力した電力は、パワーコンディショナ3に入力される。通常時に直流開閉器2が開放されたままの状態(開放異常)だと、太陽電池1の出力電力がパワーコンディショナ3に入力されず、生成した電力を有効利用できない。これを回避するために、直流開閉器2の開放異常を検出する機能が、後述するパワーコンディショナ3の制御装置34に備えられている。   The DC switch 2 is arranged on a connection line between each solar cell 1 and the power conditioner 3, and opens and closes the connection between each solar cell 1 and the power conditioner 3. The DC switch 2 is opened when an abnormality occurs or during maintenance of the power conditioner 3 and cuts off the electric power input from the solar cell 1 to the power conditioner 3. In addition, it is closed during normal times, and the power output from the solar cell 1 is input to the power conditioner 3. If the DC switch 2 is kept open at the normal time (opening abnormality), the output power of the solar cell 1 is not input to the power conditioner 3 and the generated power cannot be used effectively. In order to avoid this, the controller 34 of the power conditioner 3 to be described later is provided with a function of detecting an open abnormality of the DC switch 2.

日射計5は、日射強度を測定するものであり、測定した日射強度をパワーコンディショナ3に出力する。   The solar radiation meter 5 measures the solar radiation intensity, and outputs the measured solar radiation intensity to the power conditioner 3.

パワーコンディショナ3は、直流開閉器2を介して入力される太陽電池1の出力電力(直流電力)を、電力系統Bに供給できる電力に変換するものである。パワーコンディショナ3は、入力された直流電力の電圧を昇圧し、交流電圧に変換して、電力系統Bに供給する。また、パワーコンディショナ3は、各太陽電池1の出力電力や出力電圧、パワーコンディショナ3の出力電力や力率、出力電圧の周波数などのデータを監視制御装置4に定期的に送信している。また、パワーコンディショナ3は、異常を検出する機能を有し、異常を検出したことを示す信号(以下では、「異常検出信号」とする。)を監視制御装置4に送信する。   The power conditioner 3 converts the output power (DC power) of the solar cell 1 input via the DC switch 2 into power that can be supplied to the power system B. The power conditioner 3 boosts the voltage of the input DC power, converts it to an AC voltage, and supplies it to the power system B. Further, the power conditioner 3 periodically transmits data such as the output power and output voltage of each solar cell 1, the output power and power factor of the power conditioner 3, and the frequency of the output voltage to the monitoring control device 4. . Further, the power conditioner 3 has a function of detecting an abnormality, and transmits a signal indicating that an abnormality has been detected (hereinafter referred to as an “abnormality detection signal”) to the monitoring control device 4.

図2は、パワーコンディショナ3の内部構成を示すブロック図である。   FIG. 2 is a block diagram showing an internal configuration of the power conditioner 3.

パワーコンディショナ3は、昇圧コンバータ31、インバータ32、電圧センサ33、および、制御装置34を備えている。各太陽電池1とパワーコンディショナ3との接続線路は、パワーコンディショナ3内部のインバータ32の入力端a(以下では、「接続点a」とする場合がある)ですべて接続されており、各接続線路の接続点aの前段に昇圧コンバータ31がそれぞれ配置されている。なお、パワーコンディショナ3は、電圧センサ33以外のセンサや開放異常以外の異常を検出するための構成も備えているが、図示および説明を省略している。   The power conditioner 3 includes a boost converter 31, an inverter 32, a voltage sensor 33, and a control device 34. The connection lines between the solar cells 1 and the power conditioner 3 are all connected at the input terminal a of the inverter 32 inside the power conditioner 3 (hereinafter, sometimes referred to as “connection point a”). Step-up converters 31 are respectively arranged upstream of connection point a of the connection line. The power conditioner 3 includes a sensor other than the voltage sensor 33 and a configuration for detecting an abnormality other than an open abnormality, but illustration and description thereof are omitted.

昇圧コンバータ31は、太陽電池1から入力される直流電圧を昇圧するものである。昇圧コンバータ31は、制御装置34から入力される制御信号によって制御される。昇圧コンバータ31にはダイオードが含まれており、当該ダイオードは接続線路の下流側から上流側に電流が流れることを阻止する。昇圧コンバータ31の詳細な説明は省略する。   The boost converter 31 boosts the DC voltage input from the solar cell 1. Boost converter 31 is controlled by a control signal input from control device 34. Boost converter 31 includes a diode, which prevents current from flowing from the downstream side to the upstream side of the connection line. A detailed description of the boost converter 31 is omitted.

インバータ32は、昇圧コンバータ31から入力される直流電力を電力系統Bに供給できる交流電力に変換するものである。具体的には、インバータ32は、直流電力を交流電力に変換するインバータ回路(図示しない)、および、スイッチングノイズを除去するローパスフィルタなどを備えている。インバータ回路は、制御装置34から入力される制御信号によって制御される。インバータ32の詳細な説明は省略する。なお、インバータ32は1つの場合に限られない。例えば、各昇圧コンバータ31と接続点aとの間にそれぞれインバータ32を配置するようにしてもよい。   The inverter 32 converts the DC power input from the boost converter 31 into AC power that can be supplied to the power system B. Specifically, the inverter 32 includes an inverter circuit (not shown) that converts DC power into AC power, a low-pass filter that removes switching noise, and the like. The inverter circuit is controlled by a control signal input from the control device 34. Detailed description of the inverter 32 is omitted. The number of inverters 32 is not limited to one. For example, the inverter 32 may be arranged between each boost converter 31 and the connection point a.

電圧センサ33は、直流開閉器2と昇圧コンバータ31との間で接続線路に接続されており、直流開閉器2を介して太陽電池1から入力される入力電圧(すなわち、太陽電池1の出力電圧)を検出するものである。電圧センサ33は、検出した入力電圧の電圧値を制御装置34に出力する。   The voltage sensor 33 is connected to the connection line between the DC switch 2 and the boost converter 31, and the input voltage input from the solar cell 1 via the DC switch 2 (that is, the output voltage of the solar cell 1). ) Is detected. The voltage sensor 33 outputs the detected input voltage value to the control device 34.

制御装置34は、パワーコンディショナ3を制御するものであり、昇圧コンバータ31およびインバータ32を制御するための信号を生成してそれぞれに出力する。また、制御装置34は、過電圧などの異常を検出した場合、昇圧コンバータ31およびインバータ32に停止させるための信号を出力する。制御装置34と監視制御装置4とは通信線で接続されており、相互に通信を行っている。制御装置34は、図示しないセンサにより検出したデータや検出したデータから算出されたデータ(各太陽電池1の出力電力や出力電圧、パワーコンディショナ3の出力電力や力率、出力電圧の周波数など)を定期的に監視制御装置4に送信し、異常を検出した場合に異常検出信号を送信する。また、制御装置34は、監視制御装置4から受信した制御命令に応じて制御を行う。なお、制御装置34と監視制御装置4との通信は、有線通信に限定されず、無線通信であってもよい。   The control device 34 controls the power conditioner 3, generates signals for controlling the boost converter 31 and the inverter 32, and outputs them to each. Further, when detecting an abnormality such as an overvoltage, control device 34 outputs a signal for stopping boost converter 31 and inverter 32. The control device 34 and the monitoring control device 4 are connected by a communication line and communicate with each other. The control device 34 detects data detected by a sensor (not shown) and data calculated from the detected data (output power and output voltage of each solar cell 1, output power and power factor of the power conditioner 3, frequency of output voltage, etc.) Is periodically transmitted to the monitoring control device 4, and when an abnormality is detected, an abnormality detection signal is transmitted. In addition, the control device 34 performs control according to the control command received from the monitoring control device 4. Communication between the control device 34 and the monitoring control device 4 is not limited to wired communication, and may be wireless communication.

また、本実施形態においては、制御装置34は、日射計5から入力される日射強度および各電圧センサ33から入力される電圧値に基づいて開放異常を検出し、異常検出信号を監視制御装置4に送信する。すなわち、本実施形態においては、制御装置34が本発明の「異常検出装置」に相当する。   In the present embodiment, the control device 34 detects an open abnormality based on the solar radiation intensity input from the pyranometer 5 and the voltage value input from each voltage sensor 33, and monitors the abnormality detection signal. Send to. That is, in the present embodiment, the control device 34 corresponds to the “abnormality detection device” of the present invention.

図3は、制御装置34の内部構成を示すブロック図である。   FIG. 3 is a block diagram showing an internal configuration of the control device 34.

制御装置34は、日射強度比較部341および入力電圧比較部342を備えている。なお、同図においては、開放異常を検出するための構成のみを記載しており、その他の構成(昇圧コンバータ31およびインバータ32に出力する制御信号の生成のための構成や、開放異常以外の異常を検出するための構成など)については、記載を省略している。   The control device 34 includes a solar radiation intensity comparison unit 341 and an input voltage comparison unit 342. In the figure, only a configuration for detecting an open abnormality is described, and other configurations (a configuration for generating a control signal to be output to the boost converter 31 and the inverter 32, and an abnormality other than an open abnormality) are shown. The description of the configuration for detecting) is omitted.

日射強度比較部341は、日射計5から入力される日射強度IRRを所定の日射強度IRR0と比較するものである。日射強度比較部341は、日射強度IRRが所定の日射強度IRR0より大きい場合、入力電圧比較部342に電圧の比較を行なわせる命令信号を出力する。 The solar radiation intensity comparison unit 341 compares the solar radiation intensity IRR input from the solar radiation meter 5 with a predetermined solar radiation intensity IRR 0 . When the solar radiation intensity IRR is greater than the predetermined solar radiation intensity IRR 0 , the solar radiation intensity comparison unit 341 outputs a command signal that causes the input voltage comparison unit 342 to perform voltage comparison.

入力電圧比較部342は、各電圧センサ33から入力される電圧値Vi(i=1,2,…,n なお、パワーコンディショナ3に接続されている太陽電池1の数をnとする)を所定の電圧値V0と比較するものである。入力電圧比較部342は、日射強度比較部341から命令信号が入力されると、電圧値Viを順に所定の電圧値V0と比較する。電圧値Viが所定の電圧値V0より小さい場合、入力電圧比較部342は、当該電圧値Viに対応する直流開閉器2(すなわち、当該電圧値Viが検出された電圧センサ33が接続されている接続線路に配置されている直流開閉器2)が開放異常であると判断し、異常検出信号を監視制御装置4に送信する。異常検出信号は、例えば、開放異常であることを示す情報と開放異常であると判断された直流開閉器2を示す情報(各直流開閉器2を識別する番号など)を含んでいる。 The input voltage comparison unit 342 is a voltage value V i input from each voltage sensor 33 (i = 1, 2,..., N, where n is the number of solar cells 1 connected to the power conditioner 3). Is compared with a predetermined voltage value V 0 . When a command signal is input from the solar radiation intensity comparison unit 341, the input voltage comparison unit 342 sequentially compares the voltage value V i with a predetermined voltage value V 0 . When the voltage value V i is smaller than the predetermined voltage value V 0 , the input voltage comparison unit 342 indicates that the DC switch 2 corresponding to the voltage value V i (that is, the voltage sensor 33 from which the voltage value V i is detected) It is determined that the DC switch 2) arranged on the connected connection line has an open abnormality, and an abnormality detection signal is transmitted to the monitoring control device 4. The abnormality detection signal includes, for example, information indicating an open abnormality and information indicating the DC switch 2 determined to be an open abnormality (such as a number for identifying each DC switch 2).

日射強度が一定の日射強度を超えた場合、太陽電池1は電力を生成しているので、太陽電池1には電圧が発生する。しかし、直流開閉器2が開放異常の場合、太陽電池1とパワーコンディショナ3との接続が遮断されているので、直流開閉器2と昇圧コンバータ31との間の接続線路の電圧は「0」になる。これを利用して、制御装置34は開放異常の判断を行なう。すなわち、日射計5により検出された日射強度IRRが所定の日射強度IRR0を超えたにもかかわらず、直流開閉器2と昇圧コンバータ31との間に接続された電圧センサ33の検出値が所定の電圧値V0より小さい場合に、当該直流開閉器2が開放状態であると判断する。 When the solar radiation intensity exceeds a certain solar radiation intensity, the solar cell 1 generates electric power, and thus a voltage is generated in the solar cell 1. However, when the DC switch 2 is abnormally open, the connection between the solar cell 1 and the power conditioner 3 is cut off, so the voltage on the connection line between the DC switch 2 and the boost converter 31 is “0”. become. Using this, the control device 34 determines whether the opening is abnormal. That is, the detected value of the voltage sensor 33 connected between the DC switch 2 and the boost converter 31 is predetermined even though the solar radiation intensity IRR detected by the pyranometer 5 exceeds the predetermined solar radiation intensity IRR 0. When the voltage value V 0 is smaller than the current value, it is determined that the DC switch 2 is in an open state.

所定の日射強度IRR0および所定の電圧値V0は、あらかじめ設定される。IRR0として小さい値を設定した場合、太陽電池1から入力される電圧が小さい場合もあるので、所定の電圧値V0も小さい値を設定する必要がある。しかし、電圧センサ33が検出する電圧値には誤差があるので、V0を小さくしすぎると、開放異常を検出できない場合が生じる。一方、IRR0として大きい値を設定した場合、太陽電池1から入力される電圧はある程度大きいので、V0も大きい値を設定することができる。しかし、V0を大きくしすぎると開放異常を誤検出する可能性が高くなる。したがって、IRR0をある程度大きな値として設定し、V0を電圧センサ33の検出誤差の最大値とするのがよい。 The predetermined solar radiation intensity IRR 0 and the predetermined voltage value V 0 are set in advance. When a small value is set as IRR 0 , the voltage input from the solar cell 1 may be small, so the predetermined voltage value V 0 needs to be set to a small value. However, since there is an error in the voltage value detected by the voltage sensor 33, if V 0 is made too small, an open abnormality may not be detected. On the other hand, when a large value is set as IRR 0 , the voltage input from solar cell 1 is large to some extent, so that V 0 can also be set to a large value. However, if V 0 is increased too much, there is a high possibility of erroneous detection of an open abnormality. Therefore, it is preferable to set IRR 0 as a somewhat large value and set V 0 as the maximum detection error of the voltage sensor 33.

図4は、制御装置34が行う異常検出処理を説明するためのフローチャートである。当該処理は、所定のタイミングで実施される。   FIG. 4 is a flowchart for explaining an abnormality detection process performed by the control device 34. This process is performed at a predetermined timing.

まず、日射計5により測定された日射強度IRRが取得され(S1)、日射強度IRRが所定の日射強度IRR0より大きいか否かが判別される(S2)。IRRがIRR0以下の場合(S2:NO)、太陽電池1が生成する電力が小さく、太陽電池1に発生する電圧が開放異常を検出できるレベルに達していないので、異常検出処理は終了される。 First, the solar radiation intensity IRR measured by the solar radiation meter 5 is acquired (S1), and it is determined whether the solar radiation intensity IRR is greater than a predetermined solar radiation intensity IRR 0 (S2). When the IRR is equal to or less than IRR 0 (S2: NO), the power generated by the solar cell 1 is small, and the voltage generated in the solar cell 1 has not reached a level at which an open abnormality can be detected, so the abnormality detection process is terminated. .

一方、IRRがIRR0より大きい場合(S2:YES)、変数iが「1」に初期化される(S3)。変数iは、直流開閉器2を特定するための変数であり、本実施形態では太陽電池1および直流開閉器2の数を「n」としているので、「1」から「n」までの整数値となる。i番目の直流開閉器2に対応する電圧センサ33が検出する電圧値をViとする。次に、電圧値Viが取得され(S4)、電圧値Viが所定の電圧値V0より小さいか否かが判別される(S5)。 On the other hand, if the IRR is greater than IRR 0 (S2: YES), the variable i is initialized to “1” (S3). The variable i is a variable for specifying the DC switch 2, and in the present embodiment, the number of the solar cells 1 and the DC switches 2 is “n”, and therefore an integer value from “1” to “n”. It becomes. A voltage value detected by the voltage sensor 33 corresponding to the i-th DC switch 2 is V i . Next, the voltage value V i is acquired (S4), and it is determined whether or not the voltage value V i is smaller than a predetermined voltage value V 0 (S5).

iがV0より小さい場合(S5:YES)、対応するi番目の直流開閉器2が開放異常であると判断され、異常検出信号が監視制御装置4に送信される(S6)。一方、ViがV0以上の場合(S5:NO)、異常検出信号は送信されない。次に、変数iが「1」増加されて(S7)、変数iが「n」より大きいか否かが判別される(S8)。変数iが「n」以下の場合(S8:NO)、ステップS4に戻り、変数iが「n」より大きい場合(S8:YES)、異常検出処理は終了される。すなわち、n台の直流開閉器2について順に、対応する電圧値Viを所定の電圧値V0と比較する。 If V i is smaller than V 0 (S5: YES), it is determined that the corresponding i-th DC switch 2 has an open abnormality, and an abnormality detection signal is transmitted to the monitoring control device 4 (S6). On the other hand, when V i is V 0 or more (S5: NO), the abnormality detection signal is not transmitted. Next, the variable i is incremented by “1” (S7), and it is determined whether or not the variable i is larger than “n” (S8). When the variable i is “n” or less (S8: NO), the process returns to step S4. When the variable i is larger than “n” (S8: YES), the abnormality detection process is terminated. That is, the corresponding voltage value V i is sequentially compared with the predetermined voltage value V 0 for the n DC switches 2.

なお、制御装置34は、アナログ回路として実現してもよいし、デジタル回路として実現してもよい。また、各部が行う処理をプログラムで設計し、当該プログラムを実行させることでコンピュータを制御装置34として機能させてもよい。また、当該プログラムを記録媒体に記録しておき、コンピュータに読み取らせるようにしてもよい。   Note that the control device 34 may be realized as an analog circuit or a digital circuit. Further, the processing performed by each unit may be designed by a program, and the computer may function as the control device 34 by executing the program. The program may be recorded on a recording medium and read by a computer.

なお、パワーコンディショナ3の構成は上記に限られない。電圧センサ33が、接続点aの電圧に関係なく、太陽電池1から入力される電圧を検出することができる構成であればよい。例えば、各接続線路上に設けられている内部開閉器(図示しない)の上流側に電圧センサ33を設け、当該内部開閉器が開放しているときに電圧を検出するようにしてもよい。   The configuration of the power conditioner 3 is not limited to the above. The voltage sensor 33 may be configured to be able to detect the voltage input from the solar cell 1 regardless of the voltage at the connection point a. For example, a voltage sensor 33 may be provided on the upstream side of an internal switch (not shown) provided on each connection line, and the voltage may be detected when the internal switch is open.

図1に戻って、監視制御装置4は、各パワーコンディショナ3を集中管理するものである。監視制御装置4は、各パワーコンディショナ3の制御装置34と通信線で接続されており、相互に通信を行っている。監視制御装置4は、各制御装置34から受信した各種データを図示しない表示装置に表示したり、図示しない記憶装置に蓄積したり、図示しない演算装置によって分析を行う。また、監視制御装置4は、制御装置34から異常検出信号を受信した場合、表示装置に異常の内容と異常個所を表示する。この場合、状況に応じて、該当する制御装置34やすべての制御装置34に停止命令を送信して、運転を停止させる場合がある。また、監視制御装置4は、発電状況や電力の需要に応じて、各制御装置34に制御命令を送信して制御を行う。   Returning to FIG. 1, the supervisory control device 4 centrally manages the power conditioners 3. The monitoring control device 4 is connected to the control device 34 of each power conditioner 3 via a communication line, and communicates with each other. The monitoring control device 4 displays various data received from each control device 34 on a display device (not shown), accumulates it in a storage device (not shown), and performs analysis by a calculation device (not shown). Further, when the monitoring control device 4 receives an abnormality detection signal from the control device 34, the monitoring control device 4 displays the content of the abnormality and the location of the abnormality on the display device. In this case, depending on the situation, a stop command may be transmitted to the corresponding control device 34 or all the control devices 34 to stop the operation. Further, the monitoring control device 4 performs control by transmitting a control command to each control device 34 in accordance with the power generation status and the demand for power.

監視制御装置4は、制御装置34から開放異常の異常検出信号を受信した場合、表示装置に開放異常である旨と対応する直流開閉器2の識別番号や設置位置を表示する。これにより、開放異常がある直流開閉器2を容易に確定することができる。   When the monitoring control device 4 receives the abnormality detection signal of the opening abnormality from the control device 34, the monitoring control device 4 displays the identification number and the installation position of the DC switch 2 corresponding to the opening abnormality on the display device. Thereby, the DC switch 2 having an open abnormality can be easily determined.

本実施形態においては、日射計5によって測定された日射強度IRRが所定の日射強度IRR0より大きい場合に、各電圧センサ33によって検出された電圧値Viと所定の電圧値V0とが順に比較される。そして、電圧値Viが所定の電圧値V0より小さい場合に、対応するi番目の直流開閉器2が開放異常であると判断され、異常検出信号が監視制御装置4に送信される。したがって、監視制御装置4は、開放異常を適切に検出することができる。開放異常の判断は、日射強度IRRと各電圧値Viとに基づいて行われる。したがって、各直流開閉器2を監視制御装置4に信号線で接続する必要がない。したがって、信号線を流れる信号が劣化することによる誤検出は発生せず、信号線の敷設およびメンテナンスのためのコストも必要ない。これにより、異常の誤検出を可及的に抑制し、異常検出のための負担やコストを可及的に削減することができる。 In the present embodiment, when the solar radiation intensity IRR measured by the pyranometer 5 is greater than the predetermined solar radiation intensity IRR 0, the voltage value V i detected by each voltage sensor 33 and the predetermined voltage value V 0 are in turn. To be compared. When the voltage value V i is smaller than the predetermined voltage value V 0, it is determined that the corresponding i-th DC switch 2 has an open abnormality, and an abnormality detection signal is transmitted to the monitoring control device 4. Therefore, the monitoring control device 4 can appropriately detect the opening abnormality. The determination of the opening abnormality is made based on the solar radiation intensity IRR and each voltage value V i . Therefore, it is not necessary to connect each DC switch 2 to the monitoring control device 4 with a signal line. Therefore, erroneous detection due to deterioration of the signal flowing through the signal line does not occur, and the cost for laying and maintaining the signal line is not necessary. Thereby, erroneous detection of abnormality can be suppressed as much as possible, and the burden and cost for abnormality detection can be reduced as much as possible.

上記第1実施形態では、所定の電圧値V0を固定値とした場合について説明したが、これに限られない。例えば、各太陽電池1が有する太陽電池モジュールにおける太陽電池セルの直列数が互いに異なる場合などには、同じ日射強度であっても太陽電池1によって出力電圧が異なってくる。この場合、所定の電圧値V0を、太陽電池1によって異なるようにしてもよい。この場合、太陽電池1ごとに設定された所定の電圧値V0をメモリに記録しておき、電圧センサ33が検出した電圧値Viを取得するとき(図4ステップS4参照)に、対応する所定の電圧値V0をメモリから読み出すようにすればよい。 In the first embodiment, the case where the predetermined voltage value V 0 is a fixed value has been described. However, the present invention is not limited to this. For example, when the number of solar cells in the solar cell module included in each solar cell 1 is different from each other, the output voltage varies depending on the solar cell 1 even with the same solar radiation intensity. In this case, the predetermined voltage value V 0 may be different depending on the solar cell 1. In this case, when the predetermined voltage value V 0 set for each solar cell 1 is recorded in the memory and the voltage value V i detected by the voltage sensor 33 is acquired (see step S4 in FIG. 4), this corresponds. The predetermined voltage value V 0 may be read from the memory.

上記第1実施形態では、開放異常を検出する場合について説明したが、これに限られない。例えば、太陽電池1の異常を検出するようにしてもよい。以下では、太陽電池1の異常を検出する場合を第2実施形態として説明する。   In the first embodiment, the case of detecting an open abnormality has been described, but the present invention is not limited to this. For example, the abnormality of the solar cell 1 may be detected. Below, the case where the abnormality of the solar cell 1 is detected is demonstrated as 2nd Embodiment.

太陽電池1に異常がある場合、太陽電池1が出力する電圧が本来出力すべき電圧より低くなる場合がある。したがって、開放異常検出のための所定の電圧値V0より大きい所定の電圧値V0’を設定しておき、電圧センサ33が検出する電圧値Viを所定の電圧値V0’と比較することで、太陽電池1の異常(以下では、「電源異常」とする)を検出するようにしてもよい。例えば、日射強度IRRが所定の日射強度IRR0より大きい場合に出力電圧が100Vになる太陽電池1であれば、所定の電圧値V0’を50Vに設定し、電圧値Viがこれより小さい場合に太陽電池1に異常が発生していると推測される。この場合に電源異常の異常検出信号を監視制御装置4に送信するようにしてもよい。 When the solar cell 1 is abnormal, the voltage output from the solar cell 1 may be lower than the voltage that should be output. Therefore, 'may be set to a voltage value V i of the voltage sensor 33 for detecting a predetermined voltage value V 0' predetermined voltage value V 0 is larger than the predetermined voltage value V 0 which for opening abnormality detection compared to Thus, an abnormality of the solar cell 1 (hereinafter referred to as “power supply abnormality”) may be detected. For example, if the solar cell 1 has an output voltage of 100 V when the solar radiation intensity IRR is greater than the predetermined solar radiation intensity IRR 0 , the predetermined voltage value V 0 ′ is set to 50 V and the voltage value V i is smaller than this. In this case, it is estimated that an abnormality has occurred in the solar cell 1. In this case, an abnormality detection signal for power supply abnormality may be transmitted to the monitoring control device 4.

第2実施形態に係る太陽光発電システム、パワーコンディショナ、および制御装置の構成は、第1実施形態に係る太陽光発電システムA、パワーコンディショナ3、および制御装置34と共通する(図1〜3参照)。制御装置34の入力電圧比較部342で電圧値Viと比較される電圧値が所定の電圧値V0’である点のみが、第1実施形態の場合と異なる。また、制御装置34で行われる異常検出処理も、第1実施形態に係る異常検出処理(図4のフローチャート参照)において、ステップS5が電圧値V0’と比較する点が異なるだけである。したがって、詳細な説明を省略する。 The configurations of the photovoltaic power generation system, the power conditioner, and the control device according to the second embodiment are common to the photovoltaic power generation system A, the power conditioner 3, and the control device 34 according to the first embodiment (FIGS. 1 to 1). 3). Only the point that the voltage value compared with the voltage value V i by the input voltage comparison unit 342 of the control device 34 is a predetermined voltage value V 0 ′ is different from the case of the first embodiment. The abnormality detection process performed by the control device 34 is also different from the abnormality detection process according to the first embodiment (see the flowchart of FIG. 4) in that step S5 compares with the voltage value V 0 ′. Therefore, detailed description is omitted.

第2実施形態において、制御装置34は、日射強度IRRと各電圧値Viとに基づいて、電源異常の判断を行なう。したがって、監視制御装置4は、パワーコンディショナ3の運転中に、電源異常を適切に検出することができる。 In the second embodiment, the control device 34 determines a power supply abnormality based on the solar radiation intensity IRR and each voltage value V i . Therefore, the monitoring control device 4 can appropriately detect the power supply abnormality while the power conditioner 3 is in operation.

また、電圧値Viを所定の電圧値V0と比較することで開放異常を検出し、開放異常が検出されない場合に電圧値Viを所定の電圧値V0’と比較することで、電源異常を検出するようにしてもよい。この場合を第3実施形態として、以下に説明する。 Further, an open abnormality is detected by comparing the voltage value V i with a predetermined voltage value V 0, and when no open abnormality is detected, the voltage value V i is compared with a predetermined voltage value V 0 ′ to An abnormality may be detected. This case will be described below as a third embodiment.

第3実施形態に係る太陽光発電システム、パワーコンディショナ、および制御装置の構成は、第1実施形態に係る太陽光発電システムA、パワーコンディショナ3、および制御装置34と共通する(図1〜3参照)。制御装置34の入力電圧比較部342が、電圧値Viを所定の電圧値V0と比較して開放異常であると判断しなかった場合に、電圧値Viを所定の電圧値V0’と比較して電源異常であるかを判断する点のみが、第1実施形態の場合と異なる。 The configurations of the photovoltaic power generation system, the power conditioner, and the control device according to the third embodiment are common to the photovoltaic power generation system A, the power conditioner 3, and the control device 34 according to the first embodiment (FIGS. 1 to 1). 3). Input voltage comparator 342 of the control device 34, when not determined that the voltage value V i is an open abnormality is compared with a predetermined voltage value V 0, the voltage value V i the predetermined voltage value V 0 ' The only difference from the first embodiment is that it is determined whether the power supply is abnormal or not.

図5は、第3実施形態に係る制御装置34が行う異常検出処理を説明するためのフローチャートである。   FIG. 5 is a flowchart for explaining an abnormality detection process performed by the control device 34 according to the third embodiment.

同図に示すフローチャートは、図4に示す第1実施形態に係る異常検出処理のフローチャートにおいて、ステップS17およびS18を追加したものである。図5のステップS11〜S16,S19およびS20は、それぞれ図4のステップS1〜S6,S7およびS8と同一なので、これらの説明は省略する。なお、ステップS16は、電源異常検出信号と区別するために、開放異常検出信号としている。   The flowchart shown in the figure is obtained by adding steps S17 and S18 to the flowchart of the abnormality detection process according to the first embodiment shown in FIG. Steps S11 to S16, S19 and S20 in FIG. 5 are the same as steps S1 to S6, S7 and S8 in FIG. Note that step S16 is an open abnormality detection signal in order to distinguish it from the power supply abnormality detection signal.

ステップS15において、ViがV0以上の場合(S15:NO)、電圧値Viが所定の電圧値V0’より小さいか否かが判別される(S17)。ViがV0’より小さい場合(S17:YES)、対応するi番目の太陽電池1が電源異常であると判断され、電源異常検出信号が監視制御装置4に送信される。一方、ViがV0’以上の場合(S17:NO)、異常検出信号は送信されない。 In step S15, if V i is equal to or higher than V 0 (S15: NO), it is determined whether or not the voltage value V i is smaller than a predetermined voltage value V 0 ′ (S17). When V i is smaller than V 0 ′ (S17: YES), it is determined that the corresponding i-th solar cell 1 has a power supply abnormality, and a power supply abnormality detection signal is transmitted to the monitoring control device 4. On the other hand, when V i is equal to or higher than V 0 ′ (S17: NO), the abnormality detection signal is not transmitted.

第3実施形態において、監視制御装置4は、開放異常および電源異常をそれぞれ適切に検出することができる。開放異常および電源異常の判断は、日射強度IRRと各電圧値Viとに基づいて行われる。したがって、各直流開閉器2と監視制御装置4との間に信号線を設ける必要がないので、第1実施形態と同様の効果を奏することができる。また、第2実施形態と同様の効果も奏することができる。 In the third embodiment, the monitoring control device 4 can appropriately detect an opening abnormality and a power supply abnormality. The determination of the opening abnormality and the power supply abnormality is made based on the solar radiation intensity IRR and each voltage value V i . Therefore, since it is not necessary to provide a signal line between each DC switch 2 and the monitoring control device 4, the same effects as those of the first embodiment can be obtained. Moreover, the same effect as 2nd Embodiment can also be show | played.

上記第1ないし第3実施形態では、パワーコンディショナ3の制御装置34が異常検出装置として機能する場合について説明したが、これに限られない。パワーコンディショナ3内に制御装置34とは別に異常検出装置を設けるようにしてもよいし、パワーコンディショナ3の外部に異常検出装置を設けるようにしてもよい。また、監視制御装置4やその内部にある制御部を異常検出装置として機能させるようにしてもよい。以下では、監視制御装置4の制御部を異常検出装置として機能させる場合を第4実施形態として説明する。   In the first to third embodiments, the case where the control device 34 of the power conditioner 3 functions as an abnormality detection device has been described. However, the present invention is not limited to this. An abnormality detection device may be provided in the power conditioner 3 separately from the control device 34, or an abnormality detection device may be provided outside the power conditioner 3. Moreover, you may make it function the monitoring control apparatus 4 and the control part in the inside as an abnormality detection apparatus. Below, the case where the control part of the monitoring control apparatus 4 is functioned as an abnormality detection apparatus is demonstrated as 4th Embodiment.

図6は、第4実施形態に係る太陽光発電システムを示すブロック図である。なお、同図において、上記第1実施形態に係る太陽光発電システムA(図1参照)と同一または類似の要素には、同一の符号を付している。   FIG. 6 is a block diagram showing a photovoltaic power generation system according to the fourth embodiment. In addition, in the same figure, the same code | symbol is attached | subjected to the same or similar element as the photovoltaic power generation system A (refer FIG. 1) which concerns on the said 1st Embodiment.

同図に示す太陽光発電システムA’は、パワーコンディショナ3’および監視制御装置4’の内部構成が異なる点と、日射計5が監視制御装置4’に接続されている点とで、図1に示す太陽光発電システムAとは異なる。第4実施形態においては、パワーコンディショナ3’の制御装置34に開放異常を検出する構成が含まれておらず、代わりに、監視制御装置4’に開放異常を検出する構成が含まれている。その他の構成および機能は、第1実施形態に係るパワーコンディショナ3および監視制御装置4とそれぞれ共通するので、説明を省略する。   The photovoltaic power generation system A ′ shown in the figure is different in that the internal configurations of the power conditioner 3 ′ and the monitoring control device 4 ′ are different from each other in that the pyranometer 5 is connected to the monitoring control device 4 ′. 1 is different from the photovoltaic power generation system A shown in FIG. In the fourth embodiment, the control device 34 of the power conditioner 3 ′ does not include a configuration for detecting an open abnormality, and instead, the monitoring control device 4 ′ includes a configuration for detecting an open abnormality. . Since other configurations and functions are the same as those of the power conditioner 3 and the monitoring control device 4 according to the first embodiment, the description thereof is omitted.

パワーコンディショナ3’の制御装置34は、各電圧センサ33から入力される各電圧値Viを、通信線を介して監視制御装置4’に送信している。なお、パワーコンディショナ3’の内部構成を示す図は省略する。 The control device 34 of the power conditioner 3 ′ transmits each voltage value V i input from each voltage sensor 33 to the monitoring control device 4 ′ via a communication line. In addition, the figure which shows the internal structure of power conditioner 3 'is abbreviate | omitted.

図7は、監視制御装置4’の内部構成を示すブロック図である。   FIG. 7 is a block diagram showing an internal configuration of the monitoring control device 4 ′.

監視制御装置4’は、制御部41および報知部42を備えている。なお、同図において、監視制御装置4’のその他の構成については記載を省略している。   The monitoring control device 4 ′ includes a control unit 41 and a notification unit 42. In addition, in the same figure, description is abbreviate | omitted about the other structure of the monitoring control apparatus 4 '.

制御部41は、監視制御装置4’の制御を行うものである。また、本実施形態においては、制御部41は、日射計5から入力される日射強度および各パワーコンディショナ3’から入力される各電圧値に基づいて開放異常を検出する。すなわち、本実施形態においては、制御部41が本発明の「異常検出装置」に相当する。   The control unit 41 controls the monitoring control device 4 '. Further, in the present embodiment, the control unit 41 detects an open abnormality based on the solar radiation intensity input from the pyranometer 5 and each voltage value input from each power conditioner 3 ′. That is, in the present embodiment, the control unit 41 corresponds to the “abnormality detection device” of the present invention.

図8は、制御部41の内部構成を示すブロック図である。   FIG. 8 is a block diagram showing an internal configuration of the control unit 41.

制御部41は、日射強度比較部411および入力電圧比較部412を備えている。なお、同図においては、開放異常を検出するための構成のみを記載しており、その他の構成(受信した各種データの管理や各パワーコンディショナ3’に対する制御のための構成など)については、記載を省略している。   The control unit 41 includes a solar radiation intensity comparison unit 411 and an input voltage comparison unit 412. In the figure, only the configuration for detecting the open abnormality is described, and other configurations (configuration for managing various received data and control for each power conditioner 3 ′, etc.) Description is omitted.

日射強度比較部411は、日射計5から入力される日射強度IRRを所定の日射強度IRR0と比較するものである。日射強度比較部441は、日射強度IRRが所定の日射強度IRR0より大きい場合、入力電圧比較部412に電圧の比較を行なわせる命令信号を出力する。 The solar radiation intensity comparison unit 411 compares the solar radiation intensity IRR input from the solar radiation meter 5 with a predetermined solar radiation intensity IRR 0 . When the solar radiation intensity IRR is greater than the predetermined solar radiation intensity IRR 0 , the solar radiation intensity comparison unit 441 outputs a command signal that causes the input voltage comparison unit 412 to perform voltage comparison.

入力電圧比較部412は、各パワーコンディショナ3’から入力される各電圧値を所定の電圧値V0と比較するものである。太陽光発電システムA’が備えているパワーコンディショナ3’の数をmとし、各パワーコンディショナ3’に接続されている太陽電池1の数をnとすると、入力電圧比較部412には、(m×n)個の電圧値Vji(j=1,2,…,m、i=1,2,…,n)が入力される。電圧値Vjiは、j番目のパワーコンディショナ3’から送信される、i番目の電圧センサ33が検出した電圧値である。入力電圧比較部412は、日射強度比較部411から命令信号が入力されると、電圧値Vjiを順に所定の電圧値V0と比較する。電圧値Vjiが所定の電圧値V0より小さい場合、入力電圧比較部412は、当該電圧値Vjiに対応する直流開閉器2(すなわち、当該電圧値Vjiが検出された電圧センサ33が接続されている接続線路に配置されている直流開閉器2)が開放異常であると判断し、異常検出信号を報知部42に送信する。異常検出信号は、例えば、開放異常であることを示す情報と開放異常であると判断された直流開閉器2を示す情報(各直流開閉器2を識別する番号など)を含んでいる。 Input voltage comparator 412 is configured to compare each voltage value input from the power conditioner 3 'with a predetermined voltage value V 0. When the number of power conditioners 3 ′ included in the photovoltaic power generation system A ′ is m and the number of solar cells 1 connected to each power conditioner 3 ′ is n, the input voltage comparison unit 412 has (M × n) voltage values V ji (j = 1, 2,..., M, i = 1, 2,..., N) are input. The voltage value V ji is a voltage value detected by the i-th voltage sensor 33 and transmitted from the j-th power conditioner 3 ′. When the command signal is input from the solar radiation intensity comparison unit 411, the input voltage comparison unit 412 sequentially compares the voltage value V ji with the predetermined voltage value V 0 . When the voltage value V ji is smaller than the predetermined voltage value V 0 , the input voltage comparison unit 412 determines that the DC switch 2 corresponding to the voltage value V ji (that is, the voltage sensor 33 that detected the voltage value V ji It is determined that the DC switch 2) arranged on the connected connection line has an open abnormality, and an abnormality detection signal is transmitted to the notification unit 42. The abnormality detection signal includes, for example, information indicating an open abnormality and information indicating the DC switch 2 determined to be an open abnormality (such as a number for identifying each DC switch 2).

図9は、制御部41が行う異常検出処理を説明するためのフローチャートである。当該処理は、所定のタイミングで実施される。   FIG. 9 is a flowchart for explaining the abnormality detection process performed by the control unit 41. This process is performed at a predetermined timing.

まず、日射計5により測定された日射強度IRRが取得され(S21)、日射強度IRRが所定の日射強度IRR0より大きいか否かが判別される(S22)。IRRがIRR0以下の場合(S22:NO)、太陽電池1が生成する電力が小さく、太陽電池1に発生する電圧が開放異常を検出できるレベルに達していないので、異常検出処理は終了される。 First, the acquired irradiance IRR measured by solar radiation meter 5 (S21), irradiance IRR whether larger than a predetermined irradiance IRR 0 is determined (S22). If the IRR is equal to or less than IRR 0 (S22: NO), the electric power generated by the solar cell 1 is small, and the voltage generated in the solar cell 1 has not reached a level at which an open abnormality can be detected. .

一方、IRRがIRR0より大きい場合(S23:YES)、変数iおよび変数jが「1」に初期化される(S23)。変数iおよび変数jは、直流開閉器2を特定するための変数である。本実施形態では、太陽光発電システムA’が備えているパワーコンディショナ3’の数を「m」としているので、変数jは「1」から「m」までの整数値となる。また、各パワーコンディショナ3’が備えている太陽電池1および直流開閉器2の数を「n」としているので、変数iは「1」から「n」までの整数値となる。次に、電圧値Vjiが取得され(S24)、電圧値Vjiが所定の電圧値V0より小さいか否かが判別される(S25)。 On the other hand, if IRR is greater than IRR 0 (S23: YES), variable i and variable j are initialized to “1” (S23). The variable i and the variable j are variables for specifying the DC switch 2. In the present embodiment, since the number of power conditioners 3 ′ included in the solar power generation system A ′ is “m”, the variable j is an integer value from “1” to “m”. Further, since the number of solar cells 1 and DC switches 2 included in each power conditioner 3 ′ is “n”, the variable i is an integer value from “1” to “n”. Next, the voltage value V ji is acquired (S24), and it is determined whether or not the voltage value V ji is smaller than the predetermined voltage value V 0 (S25).

jiがV0より小さい場合(S25:YES)、j番目のパワーコンディショナ3’のi番目の直流開閉器2が開放異常であると判断され、異常検出信号が報知部42に出力される(S26)。一方、VjiがV0以上の場合(S25:NO)、異常検出信号は送信されない。次に、変数iが「1」増加されて(S27)、変数iが「n」より大きいか否かが判別される(S28)。変数iが「n」以下の場合(S28:NO)、ステップS24に戻り、変数iが「n」より大きい場合(S28:YES)、変数jが「1」増加されて(S29)、変数jが「m」より大きいか否かが判別される(S30)。変数jが「m」以下の場合(S30:NO)、ステップS24に戻り、変数jが「m」より大きい場合(S30:YES)、異常検出処理は終了される。すなわち、(m×n)台の直流開閉器2について順に、対応する電圧値Vjiを所定の電圧値V0と比較する。 When V ji is smaller than V 0 (S25: YES), it is determined that the i-th DC switch 2 of the j-th power conditioner 3 ′ has an open abnormality, and an abnormality detection signal is output to the notification unit 42. (S26). On the other hand, when V ji is equal to or higher than V 0 (S25: NO), the abnormality detection signal is not transmitted. Next, the variable i is incremented by “1” (S27), and it is determined whether or not the variable i is larger than “n” (S28). When the variable i is “n” or less (S28: NO), the process returns to step S24. When the variable i is larger than “n” (S28: YES), the variable j is incremented by “1” (S29), and the variable j Is greater than “m” (S30). When the variable j is “m” or less (S30: NO), the process returns to step S24. When the variable j is larger than “m” (S30: YES), the abnormality detection process is terminated. That is, the corresponding voltage value V ji is compared with the predetermined voltage value V 0 in order for the (m × n) DC switches 2.

報知部42は、異常が検出されたことを報知するものである。報知部42は、入力電圧比較部412から異常検出信号を入力された場合、図示しない表示装置に開放異常である旨と対応する直流開閉器2の識別番号や設置位置を表示する。これにより、開放異常がある直流開閉器2を容易に確定することができる。   The notification unit 42 notifies that an abnormality has been detected. When the abnormality detection signal is input from the input voltage comparison unit 412, the notification unit 42 displays the identification number and the installation position of the DC switch 2 corresponding to an open abnormality on a display device (not shown). Thereby, the DC switch 2 having an open abnormality can be easily determined.

第4実施形態においても、監視制御装置4’は、開放異常を適切に検出することができる。開放異常の判断は、日射強度IRRと各電圧値Vjiとに基づいて行われる。したがって、各直流開閉器2と監視制御装置4’との間に信号線を設ける必要がない。したがって、第1実施形態と同様の効果を奏することができる。 Also in the fourth embodiment, the monitoring control device 4 ′ can appropriately detect the opening abnormality. The determination of the opening abnormality is made based on the solar radiation intensity IRR and each voltage value V ji . Therefore, it is not necessary to provide a signal line between each DC switch 2 and the monitoring control device 4 ′. Therefore, the same effect as that of the first embodiment can be obtained.

なお、第4実施形態において、第2および第3実施形態と同様に、電源異常を検出するようにしてもよい。   In the fourth embodiment, a power supply abnormality may be detected as in the second and third embodiments.

上記第1ないし第4実施形態においては、複数の太陽電池1が接続されたパワーコンディショナ3を複数備えている場合について説明したが、これに限られない。例えば、パワーコンディショナ3に接続されている太陽電池1が1台だけであってもよいし、各パワーコンディショナ3に接続されている太陽電池1の数が、パワーコンディショナ3によって異なっていてもよい。また、パワーコンディショナ3が1台だけであってもよい。本発明は、太陽光発電システムの規模が大きい場合、より有効であるが、規模が小さい場合でも有効である。   In the said 1st thru | or 4th embodiment, although the case where the plurality of power conditioners 3 to which the plurality of solar cells 1 were connected was described, the present invention is not limited to this. For example, there may be only one solar cell 1 connected to the power conditioner 3, and the number of solar cells 1 connected to each power conditioner 3 differs depending on the power conditioner 3. Also good. Further, only one power conditioner 3 may be provided. The present invention is more effective when the scale of the photovoltaic power generation system is large, but is also effective when the scale is small.

上記第1ないし第4実施形態においては、本発明を太陽光発電システムに用いる場合について説明したが、これに限られない。本発明は、風力発電システムなどの他の発電システムにおいても、用いることができる。例えば、風力発電システムに用いる場合、日射計5に代えて風速計を用いて、風速が所定の風速を超えたか否かを判断すればよい。この場合、パワーコンディショナ3,3’は入力された交流電力を安定した交流電力に制御するものとなり、直流開閉器2は交流開閉器となる。また、交流電力を直流電力に変換して、パワーコンディショナ3,3’に入力するようにしてもよい。また、水車などの水力発電システムの場合、日射計5に代えて流量計を用いて、水流の流量が所定の流量を超えたか否かを判断すればよい。同様に、太陽熱発電システムや、地熱発電システム、波力発電システム、潮力発電システムなどにも、本発明を用いることができる。また、自然エネルギーによる発電システムに限定されず、燃料電池による発電システムやディーゼル発電システムにおいても、本発明を適用することができる。例えば、各電源が起動していることをセンサの検出値によって判断し、起動しているにもかかわらず入力電圧が所定の電圧値より小さければその電源または開閉器に異常があると判断できる。   In the said 1st thru | or 4th embodiment, although the case where this invention was used for a solar power generation system was demonstrated, it is not restricted to this. The present invention can also be used in other power generation systems such as a wind power generation system. For example, when used in a wind power generation system, an anemometer may be used in place of the pyranometer 5 to determine whether or not the wind speed exceeds a predetermined wind speed. In this case, the power conditioners 3 and 3 'control the input AC power to stable AC power, and the DC switch 2 is an AC switch. Alternatively, AC power may be converted into DC power and input to the power conditioners 3 and 3 '. In the case of a hydroelectric power generation system such as a water wheel, a flow meter may be used in place of the pyranometer 5 to determine whether or not the flow rate of the water flow has exceeded a predetermined flow rate. Similarly, the present invention can be used for solar thermal power generation systems, geothermal power generation systems, wave power generation systems, tidal power generation systems, and the like. Further, the present invention is not limited to a power generation system using natural energy, and the present invention can also be applied to a power generation system using a fuel cell or a diesel power generation system. For example, it can be determined from the detection value of the sensor that each power supply is activated, and it can be determined that there is an abnormality in the power supply or the switch if the input voltage is smaller than a predetermined voltage value despite the activation.

本発明に係る異常検出装置および発電システムは、上述した実施形態に限定されるものではない。本発明に係る異常検出装置および発電システムの各部の具体的な構成は、種々に設計変更自在である。   The abnormality detection device and the power generation system according to the present invention are not limited to the above-described embodiments. The specific configuration of each part of the abnormality detection device and the power generation system according to the present invention can be modified in various ways.

A,A’ 太陽光発電システム
1 太陽電池
2 直流開閉器
3、3’ パワーコンディショナ(変換装置)
31 昇圧コンバータ
32 インバータ
33 電圧センサ
34 制御装置(異常検出装置)
341 日射強度比較部(検出値比較手段)
342 入力電圧比較部(入力電圧判別手段)
4、4’ 監視制御装置
41 制御部(異常検出装置)
411 日射強度比較部(検出値比較手段)
412 入力電圧比較部(入力電圧判別手段)
42 報知部
5 日射計
B 電力系統
A, A 'Solar power generation system 1 Solar cell 2 DC switch 3, 3' Power conditioner (conversion device)
31 Boost Converter 32 Inverter 33 Voltage Sensor 34 Control Device (Abnormality Detection Device)
341 Solar radiation intensity comparison unit (detection value comparison means)
342 Input voltage comparison unit (input voltage discrimination means)
4, 4 'monitoring and control device 41 control unit (abnormality detection device)
411 Solar radiation intensity comparison unit (detection value comparison means)
412 Input voltage comparison unit (input voltage discrimination means)
42 Notification Unit 5 Solar Radiator B Power System

Claims (8)

発電システムにおいて異常が発生したことを検出する異常検出装置であって、
所定のセンサによって検出された検出値と所定値とを比較する検出値比較手段と、
前記検出値比較手段の比較結果に応じて、電源からの入力電圧が所定電圧より小さいか否かを判別する入力電圧判別手段と、
を備え、
前記入力電圧判別手段によって前記入力電圧が前記所定電圧より小さいと判別された場合に、異常が発生したことを検出する、
ことを特徴とする異常検出装置。
An abnormality detection device that detects that an abnormality has occurred in a power generation system,
Detection value comparison means for comparing a detection value detected by a predetermined sensor with a predetermined value;
Input voltage determining means for determining whether or not the input voltage from the power source is smaller than a predetermined voltage according to the comparison result of the detected value comparing means;
With
Detecting that an abnormality has occurred when the input voltage determining means determines that the input voltage is smaller than the predetermined voltage;
An abnormality detection device characterized by the above.
前記発電システムは前記電源の接続を開閉する開閉器を備えており、
前記入力電圧判別手段によって前記入力電圧が前記所定電圧より小さいと判別された場合に、前記開閉器が開放状態であることを検出する、
請求項1に記載の異常検出装置。
The power generation system includes a switch for opening and closing the connection of the power source,
When the input voltage determining means determines that the input voltage is smaller than the predetermined voltage, it detects that the switch is open.
The abnormality detection device according to claim 1.
前記発電システムには、複数の前記電源と前記開閉器とが備えられており、
前記入力電圧判別手段は、前記各電源からの入力電圧が前記所定電圧より小さいか否かをそれぞれ判別し、
前記入力電圧判別手段によって前記入力電圧が前記所定電圧より小さいと判別された電源の接続を開閉する開閉器に開放異常が発生したことを検出する、
請求項2に記載の異常検出装置。
The power generation system includes a plurality of the power supplies and the switches,
The input voltage determining means determines whether or not the input voltage from each power source is smaller than the predetermined voltage,
Detecting that an opening abnormality has occurred in a switch that opens and closes a connection of a power source determined by the input voltage determination means to be less than the predetermined voltage;
The abnormality detection device according to claim 2.
前記入力電圧判別手段は、前記電源からの入力電圧が第2の所定電圧より小さいか否かをさらに判別し、
前記入力電圧判別手段によって前記入力電圧が前記第2の所定電圧より小さいと判別された場合に、前記電源の異常が発生したことを検出する、
請求項2または3に記載の異常検出装置。
The input voltage determining means further determines whether or not an input voltage from the power source is smaller than a second predetermined voltage;
When the input voltage determining means determines that the input voltage is lower than the second predetermined voltage, it detects that an abnormality of the power source has occurred;
The abnormality detection device according to claim 2 or 3.
前記発電システムには前記電源から入力される電力を変換する変換装置が備えられており、
当該変換装置の内部に備えられている、
請求項1ないし4のいずれかに記載の異常検出装置。
The power generation system includes a conversion device that converts electric power input from the power source,
Provided inside the converter,
The abnormality detection device according to claim 1.
前記発電システムには前記電源から入力される電力を変換する変換装置と、前記変換装置との間で通信を行う監視制御装置とが備えられており、
当該監視制御装置に備えられている、
請求項1ないし4のいずれかに記載の異常検出装置。
The power generation system includes a conversion device that converts power input from the power source, and a monitoring control device that communicates with the conversion device.
Provided in the supervisory control device,
The abnormality detection device according to claim 1.
前記電源は太陽電池であり、
前記検出値比較手段は、日射計によって検出された日射強度を所定の日射強度と比較し、
前記入力電圧判別手段は、前記日射強度が前記所定の日射強度より大きい場合に判別を行う、
請求項1ないし6のいずれかに記載の異常検出装置。
The power source is a solar cell;
The detected value comparison means compares the solar radiation intensity detected by the solar radiation meter with a predetermined solar radiation intensity,
The input voltage determination means performs determination when the solar radiation intensity is greater than the predetermined solar radiation intensity.
The abnormality detection device according to claim 1.
前記電源と、請求項1ないし7のいずれかに記載の異常検出装置とを備えていることを特徴とする、発電システム。   A power generation system comprising the power supply and the abnormality detection device according to any one of claims 1 to 7.
JP2011104142A 2011-05-09 2011-05-09 Abnormality detection device and power generation system provided with the abnormality detection device Active JP5763407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011104142A JP5763407B2 (en) 2011-05-09 2011-05-09 Abnormality detection device and power generation system provided with the abnormality detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011104142A JP5763407B2 (en) 2011-05-09 2011-05-09 Abnormality detection device and power generation system provided with the abnormality detection device

Publications (2)

Publication Number Publication Date
JP2012235658A true JP2012235658A (en) 2012-11-29
JP5763407B2 JP5763407B2 (en) 2015-08-12

Family

ID=47435426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011104142A Active JP5763407B2 (en) 2011-05-09 2011-05-09 Abnormality detection device and power generation system provided with the abnormality detection device

Country Status (1)

Country Link
JP (1) JP5763407B2 (en)

Cited By (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015056588A (en) * 2013-09-13 2015-03-23 シャープ株式会社 Photovoltaic power generation system
US9066747B2 (en) 2007-11-30 2015-06-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
DE102015102886A1 (en) 2014-03-03 2015-09-03 Daihen Corporation Measuring device and data processing method
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9220527B2 (en) 2007-07-27 2015-12-29 Ethicon Endo-Surgery, Llc Surgical instruments
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9232979B2 (en) 2012-02-10 2016-01-12 Ethicon Endo-Surgery, Inc. Robotically controlled surgical instrument
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9414853B2 (en) 2007-07-27 2016-08-16 Ethicon Endo-Surgery, Llc Ultrasonic end effectors with increased active length
US9427249B2 (en) 2010-02-11 2016-08-30 Ethicon Endo-Surgery, Llc Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9445832B2 (en) 2007-07-31 2016-09-20 Ethicon Endo-Surgery, Llc Surgical instruments
US9486236B2 (en) 2007-10-05 2016-11-08 Ethicon Endo-Surgery, Llc Ergonomic surgical instruments
US9504855B2 (en) 2008-08-06 2016-11-29 Ethicon Surgery, LLC Devices and techniques for cutting and coagulating tissue
US9504483B2 (en) 2007-03-22 2016-11-29 Ethicon Endo-Surgery, Llc Surgical instruments
US9510850B2 (en) 2010-02-11 2016-12-06 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
JP2017028917A (en) * 2015-07-25 2017-02-02 ミヨシ電子株式会社 Power conditioner monitoring system and solar power generation plant
US9623237B2 (en) 2009-10-09 2017-04-18 Ethicon Endo-Surgery, Llc Surgical generator for ultrasonic and electrosurgical devices
US9636135B2 (en) 2007-07-27 2017-05-02 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US9649126B2 (en) 2010-02-11 2017-05-16 Ethicon Endo-Surgery, Llc Seal arrangements for ultrasonically powered surgical instruments
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US9707027B2 (en) 2010-05-21 2017-07-18 Ethicon Endo-Surgery, Llc Medical device
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9764164B2 (en) 2009-07-15 2017-09-19 Ethicon Llc Ultrasonic surgical instruments
US9801648B2 (en) 2007-03-22 2017-10-31 Ethicon Llc Surgical instruments
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
JP2017212771A (en) * 2016-05-23 2017-11-30 住友電気工業株式会社 Power conversion apparatus and photovoltaic power generation system
US9848901B2 (en) 2010-02-11 2017-12-26 Ethicon Llc Dual purpose surgical instrument for cutting and coagulating tissue
US9883884B2 (en) 2007-03-22 2018-02-06 Ethicon Llc Ultrasonic surgical instruments
US9962182B2 (en) 2010-02-11 2018-05-08 Ethicon Llc Ultrasonic surgical instruments with moving cutting implement
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
CN109140674A (en) * 2018-08-17 2019-01-04 宁波奥克斯电气股份有限公司 A kind of display board control method, device and air conditioner
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10194973B2 (en) 2015-09-30 2019-02-05 Ethicon Llc Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
US10201365B2 (en) 2012-10-22 2019-02-12 Ethicon Llc Surgeon feedback sensing and display methods
US10201382B2 (en) 2009-10-09 2019-02-12 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10251664B2 (en) 2016-01-15 2019-04-09 Ethicon Llc Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10278721B2 (en) 2010-07-22 2019-05-07 Ethicon Llc Electrosurgical instrument with separate closure and cutting members
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10349999B2 (en) 2014-03-31 2019-07-16 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10420580B2 (en) 2016-08-25 2019-09-24 Ethicon Llc Ultrasonic transducer for surgical instrument
US10426507B2 (en) 2007-07-31 2019-10-01 Ethicon Llc Ultrasonic surgical instruments
US10433900B2 (en) 2011-07-22 2019-10-08 Ethicon Llc Surgical instruments for tensioning tissue
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10524854B2 (en) 2010-07-23 2020-01-07 Ethicon Llc Surgical instrument
US10537352B2 (en) 2004-10-08 2020-01-21 Ethicon Llc Tissue pads for use with surgical instruments
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
USRE47996E1 (en) 2009-10-09 2020-05-19 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US10765470B2 (en) 2015-06-30 2020-09-08 Ethicon Llc Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US10779848B2 (en) 2006-01-20 2020-09-22 Ethicon Llc Ultrasound medical instrument having a medical ultrasonic blade
US10779879B2 (en) 2014-03-18 2020-09-22 Ethicon Llc Detecting short circuits in electrosurgical medical devices
US10779845B2 (en) 2012-06-29 2020-09-22 Ethicon Llc Ultrasonic surgical instruments with distally positioned transducers
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10856896B2 (en) 2005-10-14 2020-12-08 Ethicon Llc Ultrasonic device for cutting and coagulating
US10856929B2 (en) 2014-01-07 2020-12-08 Ethicon Llc Harvesting energy from a surgical generator
US10874418B2 (en) 2004-02-27 2020-12-29 Ethicon Llc Ultrasonic surgical shears and method for sealing a blood vessel using same
US10881449B2 (en) 2012-09-28 2021-01-05 Ethicon Llc Multi-function bi-polar forceps
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US10912603B2 (en) 2013-11-08 2021-02-09 Ethicon Llc Electrosurgical devices
US10912580B2 (en) 2013-12-16 2021-02-09 Ethicon Llc Medical device
US10925659B2 (en) 2013-09-13 2021-02-23 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10987123B2 (en) 2012-06-28 2021-04-27 Ethicon Llc Surgical instruments with articulating shafts
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US11033292B2 (en) 2013-12-16 2021-06-15 Cilag Gmbh International Medical device
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US11058447B2 (en) 2007-07-31 2021-07-13 Cilag Gmbh International Temperature controlled ultrasonic surgical instruments
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
JP2021189083A (en) * 2020-06-02 2021-12-13 住友電気工業株式会社 Determination device and determination method
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US11311326B2 (en) 2015-02-06 2022-04-26 Cilag Gmbh International Electrosurgical instrument with rotation and articulation mechanisms
US11324527B2 (en) 2012-11-15 2022-05-10 Cilag Gmbh International Ultrasonic and electrosurgical devices
US11337747B2 (en) 2014-04-15 2022-05-24 Cilag Gmbh International Software algorithms for electrosurgical instruments
US11399855B2 (en) 2014-03-27 2022-08-02 Cilag Gmbh International Electrosurgical devices
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11723716B2 (en) 2019-12-30 2023-08-15 Cilag Gmbh International Electrosurgical instrument with variable control mechanisms
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11986201B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Method for operating a surgical instrument

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05122760A (en) * 1991-10-29 1993-05-18 Nec Corp Power source monitoring system
JPH10319088A (en) * 1997-05-20 1998-12-04 Nec Eng Ltd Solar battery failure detecting device
JPH10326902A (en) * 1997-05-26 1998-12-08 Canon Inc Device and method for measuring solar cell output characteristic
JP2001352693A (en) * 2000-06-09 2001-12-21 Sharp Corp Solar generator and its control system
JP2005184910A (en) * 2003-12-17 2005-07-07 Suzuki Motor Corp Fault determining device of electrical circuit for vehicle
JP2006025480A (en) * 2004-07-06 2006-01-26 Matsushita Electric Ind Co Ltd Independent power supply
JP2006216660A (en) * 2005-02-02 2006-08-17 Sharp Corp Solar power generation apparatus and connection controller

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05122760A (en) * 1991-10-29 1993-05-18 Nec Corp Power source monitoring system
JPH10319088A (en) * 1997-05-20 1998-12-04 Nec Eng Ltd Solar battery failure detecting device
JPH10326902A (en) * 1997-05-26 1998-12-08 Canon Inc Device and method for measuring solar cell output characteristic
JP2001352693A (en) * 2000-06-09 2001-12-21 Sharp Corp Solar generator and its control system
JP2005184910A (en) * 2003-12-17 2005-07-07 Suzuki Motor Corp Fault determining device of electrical circuit for vehicle
JP2006025480A (en) * 2004-07-06 2006-01-26 Matsushita Electric Ind Co Ltd Independent power supply
JP2006216660A (en) * 2005-02-02 2006-08-17 Sharp Corp Solar power generation apparatus and connection controller

Cited By (250)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11229472B2 (en) 2001-06-12 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with multiple magnetic position sensors
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US10874418B2 (en) 2004-02-27 2020-12-29 Ethicon Llc Ultrasonic surgical shears and method for sealing a blood vessel using same
US11730507B2 (en) 2004-02-27 2023-08-22 Cilag Gmbh International Ultrasonic surgical shears and method for sealing a blood vessel using same
US11006971B2 (en) 2004-10-08 2021-05-18 Ethicon Llc Actuation mechanism for use with an ultrasonic surgical instrument
US10537352B2 (en) 2004-10-08 2020-01-21 Ethicon Llc Tissue pads for use with surgical instruments
US10856896B2 (en) 2005-10-14 2020-12-08 Ethicon Llc Ultrasonic device for cutting and coagulating
US10779848B2 (en) 2006-01-20 2020-09-22 Ethicon Llc Ultrasound medical instrument having a medical ultrasonic blade
US9801648B2 (en) 2007-03-22 2017-10-31 Ethicon Llc Surgical instruments
US9883884B2 (en) 2007-03-22 2018-02-06 Ethicon Llc Ultrasonic surgical instruments
US9987033B2 (en) 2007-03-22 2018-06-05 Ethicon Llc Ultrasonic surgical instruments
US10722261B2 (en) 2007-03-22 2020-07-28 Ethicon Llc Surgical instruments
US9504483B2 (en) 2007-03-22 2016-11-29 Ethicon Endo-Surgery, Llc Surgical instruments
US10828057B2 (en) 2007-03-22 2020-11-10 Ethicon Llc Ultrasonic surgical instruments
US11690641B2 (en) 2007-07-27 2023-07-04 Cilag Gmbh International Ultrasonic end effectors with increased active length
US11607268B2 (en) 2007-07-27 2023-03-21 Cilag Gmbh International Surgical instruments
US9707004B2 (en) 2007-07-27 2017-07-18 Ethicon Llc Surgical instruments
US9220527B2 (en) 2007-07-27 2015-12-29 Ethicon Endo-Surgery, Llc Surgical instruments
US9414853B2 (en) 2007-07-27 2016-08-16 Ethicon Endo-Surgery, Llc Ultrasonic end effectors with increased active length
US10531910B2 (en) 2007-07-27 2020-01-14 Ethicon Llc Surgical instruments
US10398466B2 (en) 2007-07-27 2019-09-03 Ethicon Llc Ultrasonic end effectors with increased active length
US9642644B2 (en) 2007-07-27 2017-05-09 Ethicon Endo-Surgery, Llc Surgical instruments
US9636135B2 (en) 2007-07-27 2017-05-02 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US9913656B2 (en) 2007-07-27 2018-03-13 Ethicon Llc Ultrasonic surgical instruments
US10420579B2 (en) 2007-07-31 2019-09-24 Ethicon Llc Surgical instruments
US11877734B2 (en) 2007-07-31 2024-01-23 Cilag Gmbh International Ultrasonic surgical instruments
US11666784B2 (en) 2007-07-31 2023-06-06 Cilag Gmbh International Surgical instruments
US9445832B2 (en) 2007-07-31 2016-09-20 Ethicon Endo-Surgery, Llc Surgical instruments
US10426507B2 (en) 2007-07-31 2019-10-01 Ethicon Llc Ultrasonic surgical instruments
US11058447B2 (en) 2007-07-31 2021-07-13 Cilag Gmbh International Temperature controlled ultrasonic surgical instruments
US10828059B2 (en) 2007-10-05 2020-11-10 Ethicon Llc Ergonomic surgical instruments
US9486236B2 (en) 2007-10-05 2016-11-08 Ethicon Endo-Surgery, Llc Ergonomic surgical instruments
US9848902B2 (en) 2007-10-05 2017-12-26 Ethicon Llc Ergonomic surgical instruments
US11439426B2 (en) 2007-11-30 2022-09-13 Cilag Gmbh International Ultrasonic surgical blades
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US11253288B2 (en) 2007-11-30 2022-02-22 Cilag Gmbh International Ultrasonic surgical instrument blades
US11266433B2 (en) 2007-11-30 2022-03-08 Cilag Gmbh International Ultrasonic surgical instrument blades
US9066747B2 (en) 2007-11-30 2015-06-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US10888347B2 (en) 2007-11-30 2021-01-12 Ethicon Llc Ultrasonic surgical blades
US10245065B2 (en) 2007-11-30 2019-04-02 Ethicon Llc Ultrasonic surgical blades
US10265094B2 (en) 2007-11-30 2019-04-23 Ethicon Llc Ultrasonic surgical blades
US10045794B2 (en) 2007-11-30 2018-08-14 Ethicon Llc Ultrasonic surgical blades
US11766276B2 (en) 2007-11-30 2023-09-26 Cilag Gmbh International Ultrasonic surgical blades
US11690643B2 (en) 2007-11-30 2023-07-04 Cilag Gmbh International Ultrasonic surgical blades
US9339289B2 (en) 2007-11-30 2016-05-17 Ehticon Endo-Surgery, LLC Ultrasonic surgical instrument blades
US10433866B2 (en) 2007-11-30 2019-10-08 Ethicon Llc Ultrasonic surgical blades
US10463887B2 (en) 2007-11-30 2019-11-05 Ethicon Llc Ultrasonic surgical blades
US10441308B2 (en) 2007-11-30 2019-10-15 Ethicon Llc Ultrasonic surgical instrument blades
US10433865B2 (en) 2007-11-30 2019-10-08 Ethicon Llc Ultrasonic surgical blades
US9504855B2 (en) 2008-08-06 2016-11-29 Ethicon Surgery, LLC Devices and techniques for cutting and coagulating tissue
US11890491B2 (en) 2008-08-06 2024-02-06 Cilag Gmbh International Devices and techniques for cutting and coagulating tissue
US10022568B2 (en) 2008-08-06 2018-07-17 Ethicon Llc Devices and techniques for cutting and coagulating tissue
US10022567B2 (en) 2008-08-06 2018-07-17 Ethicon Llc Devices and techniques for cutting and coagulating tissue
US10335614B2 (en) 2008-08-06 2019-07-02 Ethicon Llc Devices and techniques for cutting and coagulating tissue
US9795808B2 (en) 2008-08-06 2017-10-24 Ethicon Llc Devices and techniques for cutting and coagulating tissue
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US10709906B2 (en) 2009-05-20 2020-07-14 Ethicon Llc Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US11717706B2 (en) 2009-07-15 2023-08-08 Cilag Gmbh International Ultrasonic surgical instruments
US10688321B2 (en) 2009-07-15 2020-06-23 Ethicon Llc Ultrasonic surgical instruments
US9764164B2 (en) 2009-07-15 2017-09-19 Ethicon Llc Ultrasonic surgical instruments
US10263171B2 (en) 2009-10-09 2019-04-16 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US11871982B2 (en) 2009-10-09 2024-01-16 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US9623237B2 (en) 2009-10-09 2017-04-18 Ethicon Endo-Surgery, Llc Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10201382B2 (en) 2009-10-09 2019-02-12 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
USRE47996E1 (en) 2009-10-09 2020-05-19 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10265117B2 (en) 2009-10-09 2019-04-23 Ethicon Llc Surgical generator method for controlling and ultrasonic transducer waveform for ultrasonic and electrosurgical devices
US9510850B2 (en) 2010-02-11 2016-12-06 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US11369402B2 (en) 2010-02-11 2022-06-28 Cilag Gmbh International Control systems for ultrasonically powered surgical instruments
US9427249B2 (en) 2010-02-11 2016-08-30 Ethicon Endo-Surgery, Llc Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US10117667B2 (en) 2010-02-11 2018-11-06 Ethicon Llc Control systems for ultrasonically powered surgical instruments
US9962182B2 (en) 2010-02-11 2018-05-08 Ethicon Llc Ultrasonic surgical instruments with moving cutting implement
US10835768B2 (en) 2010-02-11 2020-11-17 Ethicon Llc Dual purpose surgical instrument for cutting and coagulating tissue
US9848901B2 (en) 2010-02-11 2017-12-26 Ethicon Llc Dual purpose surgical instrument for cutting and coagulating tissue
US10299810B2 (en) 2010-02-11 2019-05-28 Ethicon Llc Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US11382642B2 (en) 2010-02-11 2022-07-12 Cilag Gmbh International Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US9649126B2 (en) 2010-02-11 2017-05-16 Ethicon Endo-Surgery, Llc Seal arrangements for ultrasonically powered surgical instruments
US9707027B2 (en) 2010-05-21 2017-07-18 Ethicon Endo-Surgery, Llc Medical device
US10278721B2 (en) 2010-07-22 2019-05-07 Ethicon Llc Electrosurgical instrument with separate closure and cutting members
US10524854B2 (en) 2010-07-23 2020-01-07 Ethicon Llc Surgical instrument
US10433900B2 (en) 2011-07-22 2019-10-08 Ethicon Llc Surgical instruments for tensioning tissue
US9232979B2 (en) 2012-02-10 2016-01-12 Ethicon Endo-Surgery, Inc. Robotically controlled surgical instrument
US9925003B2 (en) 2012-02-10 2018-03-27 Ethicon Endo-Surgery, Llc Robotically controlled surgical instrument
US10729494B2 (en) 2012-02-10 2020-08-04 Ethicon Llc Robotically controlled surgical instrument
US9700343B2 (en) 2012-04-09 2017-07-11 Ethicon Endo-Surgery, Llc Devices and techniques for cutting and coagulating tissue
US10517627B2 (en) 2012-04-09 2019-12-31 Ethicon Llc Switch arrangements for ultrasonic surgical instruments
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US11419626B2 (en) 2012-04-09 2022-08-23 Cilag Gmbh International Switch arrangements for ultrasonic surgical instruments
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US10987123B2 (en) 2012-06-28 2021-04-27 Ethicon Llc Surgical instruments with articulating shafts
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US11583306B2 (en) 2012-06-29 2023-02-21 Cilag Gmbh International Surgical instruments with articulating shafts
US11871955B2 (en) 2012-06-29 2024-01-16 Cilag Gmbh International Surgical instruments with articulating shafts
US10441310B2 (en) 2012-06-29 2019-10-15 Ethicon Llc Surgical instruments with curved section
US11717311B2 (en) 2012-06-29 2023-08-08 Cilag Gmbh International Surgical instruments with articulating shafts
US10842580B2 (en) 2012-06-29 2020-11-24 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9713507B2 (en) 2012-06-29 2017-07-25 Ethicon Endo-Surgery, Llc Closed feedback control for electrosurgical device
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US10398497B2 (en) 2012-06-29 2019-09-03 Ethicon Llc Lockout mechanism for use with robotic electrosurgical device
US11096752B2 (en) 2012-06-29 2021-08-24 Cilag Gmbh International Closed feedback control for electrosurgical device
US10524872B2 (en) 2012-06-29 2020-01-07 Ethicon Llc Closed feedback control for electrosurgical device
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US10543008B2 (en) 2012-06-29 2020-01-28 Ethicon Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US10335183B2 (en) 2012-06-29 2019-07-02 Ethicon Llc Feedback devices for surgical control systems
US9737326B2 (en) 2012-06-29 2017-08-22 Ethicon Endo-Surgery, Llc Haptic feedback devices for surgical robot
US11426191B2 (en) 2012-06-29 2022-08-30 Cilag Gmbh International Ultrasonic surgical instruments with distally positioned jaw assemblies
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US10779845B2 (en) 2012-06-29 2020-09-22 Ethicon Llc Ultrasonic surgical instruments with distally positioned transducers
US10993763B2 (en) 2012-06-29 2021-05-04 Ethicon Llc Lockout mechanism for use with robotic electrosurgical device
US10966747B2 (en) 2012-06-29 2021-04-06 Ethicon Llc Haptic feedback devices for surgical robot
US11602371B2 (en) 2012-06-29 2023-03-14 Cilag Gmbh International Ultrasonic surgical instruments with control mechanisms
US10335182B2 (en) 2012-06-29 2019-07-02 Ethicon Llc Surgical instruments with articulating shafts
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US10881449B2 (en) 2012-09-28 2021-01-05 Ethicon Llc Multi-function bi-polar forceps
US9795405B2 (en) 2012-10-22 2017-10-24 Ethicon Llc Surgical instrument
US10201365B2 (en) 2012-10-22 2019-02-12 Ethicon Llc Surgeon feedback sensing and display methods
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US11179173B2 (en) 2012-10-22 2021-11-23 Cilag Gmbh International Surgical instrument
US11324527B2 (en) 2012-11-15 2022-05-10 Cilag Gmbh International Ultrasonic and electrosurgical devices
US11272952B2 (en) 2013-03-14 2022-03-15 Cilag Gmbh International Mechanical fasteners for use with surgical energy devices
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US9743947B2 (en) 2013-03-15 2017-08-29 Ethicon Endo-Surgery, Llc End effector with a clamp arm assembly and blade
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
US10925659B2 (en) 2013-09-13 2021-02-23 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
JP2015056588A (en) * 2013-09-13 2015-03-23 シャープ株式会社 Photovoltaic power generation system
US10912603B2 (en) 2013-11-08 2021-02-09 Ethicon Llc Electrosurgical devices
US10912580B2 (en) 2013-12-16 2021-02-09 Ethicon Llc Medical device
US11033292B2 (en) 2013-12-16 2021-06-15 Cilag Gmbh International Medical device
US10856929B2 (en) 2014-01-07 2020-12-08 Ethicon Llc Harvesting energy from a surgical generator
US10664554B2 (en) 2014-03-03 2020-05-26 Daihen Corporation Measurement apparatus and data processing method
US10162801B2 (en) 2014-03-03 2018-12-25 Daihen Corporation Measurement apparatus and data processing method
DE102015102886A1 (en) 2014-03-03 2015-09-03 Daihen Corporation Measuring device and data processing method
US10932847B2 (en) 2014-03-18 2021-03-02 Ethicon Llc Detecting short circuits in electrosurgical medical devices
US10779879B2 (en) 2014-03-18 2020-09-22 Ethicon Llc Detecting short circuits in electrosurgical medical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US11399855B2 (en) 2014-03-27 2022-08-02 Cilag Gmbh International Electrosurgical devices
US10349999B2 (en) 2014-03-31 2019-07-16 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US11471209B2 (en) 2014-03-31 2022-10-18 Cilag Gmbh International Controlling impedance rise in electrosurgical medical devices
US11337747B2 (en) 2014-04-15 2022-05-24 Cilag Gmbh International Software algorithms for electrosurgical instruments
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US11413060B2 (en) 2014-07-31 2022-08-16 Cilag Gmbh International Actuation mechanisms and load adjustment assemblies for surgical instruments
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US11311326B2 (en) 2015-02-06 2022-04-26 Cilag Gmbh International Electrosurgical instrument with rotation and articulation mechanisms
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US10952788B2 (en) 2015-06-30 2021-03-23 Ethicon Llc Surgical instrument with user adaptable algorithms
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US11553954B2 (en) 2015-06-30 2023-01-17 Cilag Gmbh International Translatable outer tube for sealing using shielded lap chole dissector
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US11903634B2 (en) 2015-06-30 2024-02-20 Cilag Gmbh International Surgical instrument with user adaptable techniques
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US10765470B2 (en) 2015-06-30 2020-09-08 Ethicon Llc Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
JP2017028917A (en) * 2015-07-25 2017-02-02 ミヨシ電子株式会社 Power conditioner monitoring system and solar power generation plant
US10610286B2 (en) 2015-09-30 2020-04-07 Ethicon Llc Techniques for circuit topologies for combined generator
US11058475B2 (en) 2015-09-30 2021-07-13 Cilag Gmbh International Method and apparatus for selecting operations of a surgical instrument based on user intention
US11033322B2 (en) 2015-09-30 2021-06-15 Ethicon Llc Circuit topologies for combined generator
US10624691B2 (en) 2015-09-30 2020-04-21 Ethicon Llc Techniques for operating generator for digitally generating electrical signal waveforms and surgical instruments
US11766287B2 (en) 2015-09-30 2023-09-26 Cilag Gmbh International Methods for operating generator for digitally generating electrical signal waveforms and surgical instruments
US10194973B2 (en) 2015-09-30 2019-02-05 Ethicon Llc Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
US11559347B2 (en) 2015-09-30 2023-01-24 Cilag Gmbh International Techniques for circuit topologies for combined generator
US10736685B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments
US10751108B2 (en) 2015-09-30 2020-08-25 Ethicon Llc Protection techniques for generator for digitally generating electrosurgical and ultrasonic electrical signal waveforms
US10687884B2 (en) 2015-09-30 2020-06-23 Ethicon Llc Circuits for supplying isolated direct current (DC) voltage to surgical instruments
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US11666375B2 (en) 2015-10-16 2023-06-06 Cilag Gmbh International Electrode wiping surgical device
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US10779849B2 (en) 2016-01-15 2020-09-22 Ethicon Llc Modular battery powered handheld surgical instrument with voltage sag resistant battery pack
US11229450B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with motor drive
US10842523B2 (en) 2016-01-15 2020-11-24 Ethicon Llc Modular battery powered handheld surgical instrument and methods therefor
US11134978B2 (en) 2016-01-15 2021-10-05 Cilag Gmbh International Modular battery powered handheld surgical instrument with self-diagnosing control switches for reusable handle assembly
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11058448B2 (en) 2016-01-15 2021-07-13 Cilag Gmbh International Modular battery powered handheld surgical instrument with multistage generator circuits
US11896280B2 (en) 2016-01-15 2024-02-13 Cilag Gmbh International Clamp arm comprising a circuit
US11051840B2 (en) 2016-01-15 2021-07-06 Ethicon Llc Modular battery powered handheld surgical instrument with reusable asymmetric handle housing
US10537351B2 (en) 2016-01-15 2020-01-21 Ethicon Llc Modular battery powered handheld surgical instrument with variable motor control limits
US10709469B2 (en) 2016-01-15 2020-07-14 Ethicon Llc Modular battery powered handheld surgical instrument with energy conservation techniques
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US10251664B2 (en) 2016-01-15 2019-04-09 Ethicon Llc Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly
US11684402B2 (en) 2016-01-15 2023-06-27 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11751929B2 (en) 2016-01-15 2023-09-12 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11974772B2 (en) 2016-01-15 2024-05-07 Cilag GmbH Intemational Modular battery powered handheld surgical instrument with variable motor control limits
US10828058B2 (en) 2016-01-15 2020-11-10 Ethicon Llc Modular battery powered handheld surgical instrument with motor control limits based on tissue characterization
US10299821B2 (en) 2016-01-15 2019-05-28 Ethicon Llc Modular battery powered handheld surgical instrument with motor control limit profile
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US11202670B2 (en) 2016-02-22 2021-12-21 Cilag Gmbh International Method of manufacturing a flexible circuit electrode for electrosurgical instrument
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US11864820B2 (en) 2016-05-03 2024-01-09 Cilag Gmbh International Medical device with a bilateral jaw configuration for nerve stimulation
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
JP2017212771A (en) * 2016-05-23 2017-11-30 住友電気工業株式会社 Power conversion apparatus and photovoltaic power generation system
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US11883055B2 (en) 2016-07-12 2024-01-30 Cilag Gmbh International Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10966744B2 (en) 2016-07-12 2021-04-06 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US11344362B2 (en) 2016-08-05 2022-05-31 Cilag Gmbh International Methods and systems for advanced harmonic energy
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
USD924400S1 (en) 2016-08-16 2021-07-06 Cilag Gmbh International Surgical instrument
US11350959B2 (en) 2016-08-25 2022-06-07 Cilag Gmbh International Ultrasonic transducer techniques for ultrasonic surgical instrument
US10420580B2 (en) 2016-08-25 2019-09-24 Ethicon Llc Ultrasonic transducer for surgical instrument
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10779847B2 (en) 2016-08-25 2020-09-22 Ethicon Llc Ultrasonic transducer to waveguide joining
US11925378B2 (en) 2016-08-25 2024-03-12 Cilag Gmbh International Ultrasonic transducer for surgical instrument
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
CN109140674A (en) * 2018-08-17 2019-01-04 宁波奥克斯电气股份有限公司 A kind of display board control method, device and air conditioner
US11744636B2 (en) 2019-12-30 2023-09-05 Cilag Gmbh International Electrosurgical systems with integrated and external power sources
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11786294B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Control program for modular combination energy device
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11986234B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Surgical system communication pathways
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11723716B2 (en) 2019-12-30 2023-08-15 Cilag Gmbh International Electrosurgical instrument with variable control mechanisms
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11707318B2 (en) 2019-12-30 2023-07-25 Cilag Gmbh International Surgical instrument with jaw alignment features
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11974801B2 (en) 2019-12-30 2024-05-07 Cilag Gmbh International Electrosurgical instrument with flexible wiring assemblies
US11986201B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Method for operating a surgical instrument
JP2021189083A (en) * 2020-06-02 2021-12-13 住友電気工業株式会社 Determination device and determination method
JP7400631B2 (en) 2020-06-02 2023-12-19 住友電気工業株式会社 Judgment device and method

Also Published As

Publication number Publication date
JP5763407B2 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP5763407B2 (en) Abnormality detection device and power generation system provided with the abnormality detection device
KR101026353B1 (en) Monitor and control system of solar cell module using dc power line communication
US9553215B2 (en) Method and device for recognizing faults in a photovoltaic system
CN102812610B (en) Control apparatus and control method
JP5335151B2 (en) Solar power system
KR101238620B1 (en) Trouble Recognition Apparatus for Photovoltaic System and Methord thereof
US9368968B2 (en) Responding to local grid events and distributed grid events
KR101090263B1 (en) Ground fault detection device and method with direct current wire for system of photovoltaic power generation
CN102948030A (en) Managing renewable power generation
RU2747622C2 (en) Method to control electrical distribution micro network, information carrier, computer device and control device
CN104025409A (en) Multi-inverter photovoltaic power generation system
JP5956517B2 (en) Energy management system
JP2018098952A (en) Power storage system and photovoltaic power generation system
JP2017121171A (en) Storage battery charge-discharge system, and interconnection system
JP2017055598A (en) Power control device
US20170054411A1 (en) Solar device diagnosis method
KR101717956B1 (en) Iot based solar power system for controling electric power of back transmission integrally and detecting water leak
KR101279554B1 (en) Solar cell array capable of bypassing bad module and photovoltaic system using it
CN117474250A (en) New energy multifunctional integrated intelligent application system
KR20210085032A (en) Photovoltaic power generation monitoring system
KR101544713B1 (en) Method and apparatus for deciding output power lowering of solar cell generator
KR102074134B1 (en) Power surveillance system for protecting PCS of distributed generation and method thereof
JP2019216547A (en) Power control apparatus, photovoltaic power generation system, and failure diagnosing method of photovoltaic power generation facility
KR102194384B1 (en) Photovoltaic power generation having ground voltage and leakage current function and method performing the same
EP3046202B1 (en) Photovoltaic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150611

R150 Certificate of patent or registration of utility model

Ref document number: 5763407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250