JP2012226016A - Optical fiber for sensor - Google Patents

Optical fiber for sensor Download PDF

Info

Publication number
JP2012226016A
JP2012226016A JP2011091423A JP2011091423A JP2012226016A JP 2012226016 A JP2012226016 A JP 2012226016A JP 2011091423 A JP2011091423 A JP 2011091423A JP 2011091423 A JP2011091423 A JP 2011091423A JP 2012226016 A JP2012226016 A JP 2012226016A
Authority
JP
Japan
Prior art keywords
reflection
fbg
optical fiber
core
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011091423A
Other languages
Japanese (ja)
Inventor
Kenji Shibata
顕次 柴田
Isao Imaoka
功 今岡
Yoshifumi Suzaki
嘉文 須崎
Hiroshi Iwata
弘 岩田
Kiyoshi Nakagawa
清 中川
Takashi Yokouchi
孝史 横内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Kagawa University NUC
Institute of National Colleges of Technologies Japan
Original Assignee
Toyota Industries Corp
Kagawa University NUC
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Kagawa University NUC, Institute of National Colleges of Technologies Japan filed Critical Toyota Industries Corp
Priority to JP2011091423A priority Critical patent/JP2012226016A/en
Priority to PCT/JP2012/054652 priority patent/WO2012140960A1/en
Publication of JP2012226016A publication Critical patent/JP2012226016A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering

Abstract

PROBLEM TO BE SOLVED: To provide an optical fiber for a sensor, which achieves extension of a range of a measurable physical quantity at a low cost.SOLUTION: An FBG 20 having a plurality of reflecting regions 21 to 2n is formed in a core 11 of an optical fiber 10 for a sensor, and each of the reflecting regions 21 to 2n includes a plurality of grating parts 30 formed in the core 11. Grating periods Λ1 to Λn being intervals of grating parts 30 are different from one another in each of the reflecting regions 21 to 2n, and reflection spectra of respective reflecting regions 21 to 2n have parabolic shapes different from one another. Among reflection spectra of respective reflecting regions 21 to 2n, reflection spectra adjacent to each other in a wavelength direction overlap with each other. Therefore, a reflection spectrum 20 of the entire FBG 20 has reflection intensity gradually increased from the short wavelength side toward the long wavelength side to have a substantially triangular shape.

Description

この発明は、物理量を測定するためのセンサに用いられるセンサ用光ファイバに係り、特に、入射光に対して特定の波長の光を反射するFBGを有するセンサ用光ファイバに関する。   The present invention relates to a sensor optical fiber used for a sensor for measuring a physical quantity, and more particularly to a sensor optical fiber having an FBG that reflects light of a specific wavelength with respect to incident light.

近年、例えば被測定部の温度やひずみ量等の物理量を測定するためのセンサに、FBG(ファイバブラッググレーティング)を有する光ファイバが利用される。FBGとは、光ファイバのコアの屈折率を所定の長さ周期(グレーティング周期)で変化させた回折格子であって、光ファイバへの入射光に対し、グレーティング周期に応じた特定の波長(ブラッグ波長)の光を反射し、残りの光を透過するという特性を有している。被測定部から印加される物理量に応じてFBGが伸縮すると、それに伴ってグレーティング周期も変化する。ブラッグ波長は、グレーティング周期の変化量に対して線形に変化するため、ブラッグ波長の変化量に基づいてFBGに印加された物理量を測定することが可能となる。   In recent years, for example, an optical fiber having an FBG (fiber Bragg grating) is used as a sensor for measuring a physical quantity such as a temperature or a strain amount of a measured part. The FBG is a diffraction grating in which the refractive index of the core of the optical fiber is changed at a predetermined length period (grating period). The FBG has a specific wavelength (Bragg) corresponding to the grating period with respect to the incident light to the optical fiber. (Wavelength) light is reflected and the remaining light is transmitted. When the FBG expands / contracts according to the physical quantity applied from the part to be measured, the grating period also changes accordingly. Since the Bragg wavelength changes linearly with respect to the change amount of the grating period, the physical quantity applied to the FBG can be measured based on the change amount of the Bragg wavelength.

ここで、図5を用いて、一般的なFBGを利用した物理量の測定方法について概略的に説明する。図5において符号100で示される放物線状の領域は、測定対象となる物理量が印加される前におけるFBGの反射スペクトルを示している。また、符号200で示される領域は、短波長光源から光ファイバに入射される入射光のスペクトルを示しており、FBGは、この入射光を強度S10にて反射する。以上の状態からFBGを伸張させる物理量が印加されると、FBGの反射スペクトルは一点鎖線の領域110で示されるように長波長側にシフトし、反射光の強度がS10からS20へと変化する。したがって、FBGに印加された物理量が反射強度S10、S20の差異に基づいて相対的に求められる。   Here, a method for measuring a physical quantity using a general FBG will be schematically described with reference to FIG. A parabolic region denoted by reference numeral 100 in FIG. 5 represents the reflection spectrum of the FBG before the physical quantity to be measured is applied. A region denoted by reference numeral 200 indicates a spectrum of incident light incident on the optical fiber from the short wavelength light source, and the FBG reflects this incident light with an intensity S10. When a physical quantity for extending the FBG is applied from the above state, the reflection spectrum of the FBG shifts to the long wavelength side as indicated by the dashed-dotted region 110, and the intensity of the reflected light changes from S10 to S20. Therefore, the physical quantity applied to the FBG is relatively obtained based on the difference between the reflection intensities S10 and S20.

しかしながら、一般的なガラス製のFBGで測定可能な物理量の範囲はそれほど広くなく、例えば物理量を温度とした場合、反射スペクトルのシフト量0.4nmに対して測定可能な温度範囲は50℃程度となる。つまり、被測定部の温度の変化幅がさらに広い場合、図5の二点鎖線で示される領域120のように、FBGの反射スペクトルが入射光のスペクトル200から外れた位置までシフトしてしまうことがあり、この場合、FBGでの反射が起こらなくなって温度測定が不可能になるという問題が生じる。このような問題を回避する手段の1つとして、FBGの反射スペクトルのシフトに合わせて入射光の波長をシフトすることが挙げられ、例えば特許文献1には、航空機の外板の温度をFBGで測定する温度測定システムの光源として、波長可変レーザを用いることが記載されている。   However, the range of physical quantities that can be measured with a general FBG made of glass is not so wide. For example, when the physical quantity is temperature, the temperature range that can be measured for a reflection spectrum shift of 0.4 nm is about 50 ° C. Become. That is, when the change width of the temperature of the measured part is wider, the FBG reflection spectrum shifts to a position deviating from the incident light spectrum 200 as in the region 120 indicated by the two-dot chain line in FIG. In this case, there is a problem that the temperature cannot be measured because reflection on the FBG does not occur. One means for avoiding such a problem is to shift the wavelength of incident light in accordance with the shift of the reflection spectrum of the FBG. For example, Patent Document 1 discloses that the temperature of the outer panel of an aircraft is FBG. It is described that a wavelength tunable laser is used as a light source of a temperature measurement system to be measured.

また、上記問題を回避する別の手段として、FBGの反射帯域を広くすることが挙げられ、例えば特許文献2には、一般的なFBGより広い反射帯域を有するCFBG(チャープドファイバブラッググレーティング)が記載されている。CFBGとは、一般的なのFBGが一定のグレーティング周期で形成されるのに対し、グレーティング周期が徐々に長くなるように形成されたものであり、それにより、ブラッグ波長に所定の帯域幅を持たせている。ブラッグ波長が所定の帯域幅を有することにより、CFBGの反射スペクトルは波長方向に延びた略台形状となるため、その反射帯域は、反射スペクトルが放物線状である一般的なFBGより広くなる。   Another means for avoiding the above problem is to widen the reflection band of the FBG. For example, Patent Document 2 discloses a CFBG (chirped fiber Bragg grating) having a reflection band wider than that of a general FBG. Are listed. The CFBG is formed so that the grating period gradually increases while a general FBG is formed with a constant grating period, thereby giving the Bragg wavelength a predetermined bandwidth. ing. Since the reflection spectrum of the CFBG has a substantially trapezoidal shape extending in the wavelength direction because the Bragg wavelength has a predetermined bandwidth, the reflection band is wider than a general FBG whose reflection spectrum is parabolic.

特表2009−516855号公報Special table 2009-516855 gazette 特開2003−322736号公報JP 2003-322736 A

上述したように、特許文献1に記載の温度測定システムのように波長可変レーザを光源とした場合、物理量の変化幅が広くても、一般的なFBGを用いて測定を行うことが可能となる。しかしながら、波長可変レーザは、例えばLED等の短波長光源と比較すると高価な機器であるため、測定可能な物理量の範囲を広げるために要するコストが高くなるという問題点を有していた。   As described above, when a wavelength tunable laser is used as a light source as in the temperature measurement system described in Patent Document 1, it is possible to perform measurement using a general FBG even if the change amount of the physical quantity is wide. . However, since the wavelength tunable laser is an expensive device as compared with a short wavelength light source such as an LED, for example, there is a problem that the cost required for expanding the range of the physical quantity that can be measured increases.

また、特許文献2に記載のCFBGは、一般的なFBGより広い反射帯域を有するものであるが、その反射スペクトルは、反射強度のピーク値が一定である略台形状となっている。すなわち、特許文献2に記載のCFBGは、反射スペクトルのシフトに伴って反射強度が変化することがないため、物理量の印加前後における反射強度の差異から相対的に物理量を測定するというセンサ用途には利用できないという問題点を有していた。   The CFBG described in Patent Document 2 has a wider reflection band than a general FBG, but its reflection spectrum has a substantially trapezoidal shape with a constant peak value of reflection intensity. In other words, the CFBG described in Patent Document 2 does not change the reflection intensity with the shift of the reflection spectrum. Therefore, for the sensor application in which the physical quantity is relatively measured from the difference in the reflection intensity before and after the application of the physical quantity. It had a problem that it could not be used.

この発明は、これらの問題点を解決するためになされたもので、測定可能な物理量の範囲を低コストで広げることを実現したセンサ用光ファイバを提供することを目的とする。   The present invention has been made to solve these problems, and an object of the present invention is to provide an optical fiber for a sensor that can extend the range of measurable physical quantities at low cost.

この発明に係るセンサ用光ファイバは、入射光が伝播するコアと、入射光が伝播する方向に沿ってコアの屈折率を周期的に変化させたFBGとを備えたセンサ用光ファイバにおいて、FBGは、入射光が伝播する方向に沿って隣接する複数の反射領域を有しており、複数の反射領域は、コアの屈折率を互いに異なる周期で変化させており、複数の反射領域の反射スペクトルのうち、波長方向において互いに隣り合う反射スペクトル同士は、少なくとも一部で重なり合うことを特徴とするものである。   An optical fiber for sensor according to the present invention is an optical fiber for sensor comprising a core through which incident light propagates and an FBG in which the refractive index of the core is periodically changed along the direction in which incident light propagates. Has a plurality of adjacent reflection regions along the direction in which incident light propagates, and the plurality of reflection regions change the refractive index of the core at different periods, and the reflection spectrum of the plurality of reflection regions. Of these, reflection spectra that are adjacent to each other in the wavelength direction overlap at least partially.

FBGを複数の反射領域に分割し、これらの反射領域が互いに異なる周期でコアの屈折率を変化させるように構成したので、各反射領域の反射スペクトルが互いに異なるものとなり、これらを集合させたものがFBG全体の反射スペクトルとなる。尚、各反射領域の反射スペクトルは、コアの屈折率変化の周期に対応した波長を中心波長とし、中心波長における反射強度をピーク値とする略放物線状である。ここで、コアの屈折率変化の周期を短くした場合、反射スペクトルの帯域幅が広がるとともに反射強度のピーク値が低くなることが一般的となっている。逆に、屈折率変化の周期を長くした場合、反射スペクトルの帯域幅が狭くなるとともに反射強度のピーク値が高くなる。また、反射スペクトルの中心波長は、屈折率変化の周期が長くなるに従って長くなる。   The FBG is divided into a plurality of reflection areas, and these reflection areas are configured to change the refractive index of the core at different periods, so that the reflection spectra of the reflection areas are different from each other, and these are assembled. Becomes the reflection spectrum of the entire FBG. The reflection spectrum of each reflection region is substantially parabolic with the wavelength corresponding to the period of the refractive index change of the core as the center wavelength and the reflection intensity at the center wavelength as the peak value. Here, when the period of the refractive index change of the core is shortened, it is common that the bandwidth of the reflection spectrum is widened and the peak value of the reflection intensity is low. On the contrary, when the period of refractive index change is lengthened, the bandwidth of the reflection spectrum is narrowed and the peak value of the reflection intensity is increased. Further, the center wavelength of the reflection spectrum becomes longer as the refractive index change period becomes longer.

各反射領域の反射スペクトルのうち、波長方向において互いに隣り合う反射スペクトル同士は少なくとも一部で重なり合うため、FBG全体の反射スペクトルは、反射強度が短波長側から長波長側に向かって漸次高くなる略三角形状のものとなる。つまり、入射光に対する反射強度が物理量の印加前後で変化するようになるため、反射強度の差異に基づいて物理量を測定することができる。また、各反射領域の反射スペクトルの中心波長が互いに異なっていることにより、FBG全体の反射スペクトルの反射帯域が広がった状態、すなわち測定可能な物理量の変化幅が広がった状態となるため、安価な短波長光源を用いて温度測定を行うことができる。したがって、センサ用光ファイバにおいて、測定可能な物理量の範囲を低コストで広げることが可能となる。   Among the reflection spectra of each reflection region, reflection spectra that are adjacent to each other in the wavelength direction overlap at least partially, so that the reflection spectrum of the entire FBG is substantially increased in reflection intensity from the short wavelength side toward the long wavelength side. It will be triangular. That is, since the reflection intensity with respect to incident light changes before and after application of the physical quantity, the physical quantity can be measured based on the difference in reflection intensity. In addition, since the central wavelengths of the reflection spectrum of each reflection region are different from each other, the reflection band of the reflection spectrum of the entire FBG is expanded, that is, the change range of the measurable physical quantity is expanded. Temperature measurement can be performed using a short wavelength light source. Therefore, in the sensor optical fiber, the measurable physical quantity range can be expanded at low cost.

この発明によれば、センサ用光ファイバにおいて、測定可能な物理量の範囲を低コストで広げることが可能となる。   According to this invention, in the optical fiber for sensors, it is possible to expand the range of measurable physical quantities at low cost.

この発明の実施の形態1に係るセンサ用光ファイバの構成を示す概略図である。It is the schematic which shows the structure of the optical fiber for sensors which concerns on Embodiment 1 of this invention. 実施の形態1に係るセンサ用光ファイバにおけるFBGの構成を概略的に示す部分拡大図である。3 is a partially enlarged view schematically showing the configuration of the FBG in the sensor optical fiber according to Embodiment 1. FIG. 実施の形態1に係るセンサ用光ファイバにおけるFBGの反射スペクトルを例示するグラフである。4 is a graph illustrating an FBG reflection spectrum in the sensor optical fiber according to the first embodiment; 実施の形態1に係るセンサ用光ファイバを用いた物理量の測定方法を説明するためのグラフである。4 is a graph for explaining a physical quantity measurement method using the sensor optical fiber according to the first embodiment. 従来のFBGを用いた物理量の測定方法を説明するためのグラフである。It is a graph for demonstrating the measuring method of the physical quantity using the conventional FBG.

以下に、この発明の実施の形態について添付図に基づいて説明する。
実施の形態1.
まず、この実施の形態1に係るセンサ用光ファイバの構成について、被測定部の温度測定用センサに適用した場合を例として説明する。
図1に概略的に示すように、センサ用光ファイバ10は、その一端側に接続された図示しない光源が発する入射光L1が伝播するコア11と、コア11の外周部を覆うクラッド12とを備えている。また、センサ用光ファイバ10は、入射光L1が伝播する方向に沿ってコア11の屈折率を周期的に変化させた回折格子であるFBG20を備えている。FBG20は、図示しない被測定部に設けられる部位であって、被測定部から印加される温度に対応した波長の光を入射光L1に対する反射光L2として反射し、残りの光を透過光L3として透過するという特性を有している。また、FBG20は、入射光L1が伝播する方向に沿って隣接するように形成されたn箇所の反射領域21,22,23,・・・,2nを有している。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
Embodiment 1 FIG.
First, the configuration of the optical fiber for sensor according to the first embodiment will be described by taking as an example a case where it is applied to a temperature measurement sensor of a measured part.
As schematically shown in FIG. 1, the sensor optical fiber 10 includes a core 11 through which incident light L <b> 1 emitted from a light source (not shown) connected to one end thereof is propagated, and a cladding 12 that covers the outer periphery of the core 11. I have. The sensor optical fiber 10 includes an FBG 20 that is a diffraction grating in which the refractive index of the core 11 is periodically changed along the direction in which the incident light L1 propagates. The FBG 20 is a part provided in a measurement target (not shown), and reflects light having a wavelength corresponding to the temperature applied from the measurement target as reflected light L2 with respect to the incident light L1, and the remaining light as transmitted light L3. It has the property of transmitting. The FBG 20 has n reflection regions 21, 22, 23,..., 2n formed so as to be adjacent to each other along the direction in which the incident light L1 propagates.

図2に示すように、FBG20は、コア11の屈折率とは異なる屈折率を有する複数の格子部30を、コア11の軸方向に沿った所定の長さ周期で形成した部位である。つまり、FBG20におけるコア11の屈折率の周期的な変化は、複数の格子部30を形成することによって生じている。ここで、各反射領域21〜2nに含まれる複数の格子部30の数は同数となっているが、これらの領域において互いに隣り合う格子部30同士の間隔、すなわちコア11における屈折率変化の周期(グレーティング周期)は、反射領域21〜2nごとに互いに異なっている。   As shown in FIG. 2, the FBG 20 is a part in which a plurality of lattice portions 30 having a refractive index different from the refractive index of the core 11 are formed with a predetermined length cycle along the axial direction of the core 11. That is, the periodic change in the refractive index of the core 11 in the FBG 20 is caused by forming the plurality of grating portions 30. Here, although the number of the plurality of grating portions 30 included in each of the reflection regions 21 to 2n is the same, the interval between the lattice portions 30 adjacent to each other in these regions, that is, the period of the refractive index change in the core 11. (Grating period) is different for each of the reflection regions 21 to 2n.

より具体的に説明すると、入射光L1が伝播する方向において最も上流側に位置する反射領域21では、グレーティング周期が最も短いΛ1となるように格子部30が形成されている。また、反射領域21の下流側に隣接する反射領域22では、反射領域21のグレーティング周期Λ1より長いグレーティング周期Λ2となるように格子部30が形成されている。同様に、反射領域23(図1参照)以降のグレーティング周期も、上流側から下流側に向かって順次長くなっており、最も下流側に位置する反射領域2nにおけるグレーティング周期Λnが最も長くなっている。   More specifically, the grating portion 30 is formed in the reflective region 21 located on the most upstream side in the direction in which the incident light L1 propagates so that the grating period is Λ1. Further, in the reflection region 22 adjacent to the downstream side of the reflection region 21, the grating portion 30 is formed so as to have a grating period Λ2 longer than the grating period Λ1 of the reflection region 21. Similarly, the grating period after the reflection area 23 (see FIG. 1) is also gradually increased from the upstream side toward the downstream side, and the grating period Λn in the reflection area 2n located on the most downstream side is the longest. .

FBG20が入射光L1に対して反射する反射光L2の波長(ブラッグ波長)は、グレーティング周期に応じて変化するようになっている。ここで、グレーティング周期が一定であるFBGの反射スペクトルは、ブラッグ波長を中心波長とし、ブラッグ波長における反射強度をピーク値とする略放物線状となる。一般的に、FBGのグレーティング周期を短くすると、反射スペクトルの帯域幅が広がるとともに反射強度のピーク値が低くなる。逆に、グレーティング周期を長くすると、反射スペクトルの帯域幅が狭くなるとともに反射強度のピーク値が高くなる。また、反射スペクトルの中心波長となるブラッグ波長は、グレーティング周期が長くなるに従って長い波長となる。   The wavelength (Bragg wavelength) of the reflected light L2 that the FBG 20 reflects with respect to the incident light L1 changes according to the grating period. Here, the reflection spectrum of the FBG having a constant grating period is substantially parabolic with the Bragg wavelength as the center wavelength and the reflection intensity at the Bragg wavelength as the peak value. Generally, when the grating period of the FBG is shortened, the bandwidth of the reflection spectrum is widened and the peak value of the reflection intensity is lowered. Conversely, when the grating period is lengthened, the bandwidth of the reflection spectrum is narrowed and the peak value of the reflection intensity is increased. The Bragg wavelength, which is the center wavelength of the reflection spectrum, becomes longer as the grating period becomes longer.

すなわち、FBG20の各反射領域21〜2nは、それらのグレーティング周期Λ1〜Λnがそれぞれ一定であることにより、放物線状の反射スペクトルを有するものとなる。また、各反射領域21〜2nの反射スペクトルは、それらのグレーティング周期Λ1〜Λnが互いに異なっていることにより、中心波長、帯域幅及び反射強度のピーク値が互いに異なるものとなる。図3を用いて説明すると、最も短いグレーティング周期Λ1で形成された反射領域21の反射スペクトル41は、その中心波長λ1が最も短波長側にあり、且つ最も広い帯域幅と最も低いピーク値とを有するものとなる。   That is, the reflection regions 21 to 2n of the FBG 20 have a parabolic reflection spectrum because their grating periods Λ1 to Λn are constant. Further, the reflection spectra of the reflection regions 21 to 2n have different peak values of the center wavelength, the bandwidth, and the reflection intensity because their grating periods Λ1 to Λn are different from each other. Referring to FIG. 3, the reflection spectrum 41 of the reflection region 21 formed with the shortest grating period Λ1 has the center wavelength λ1 on the shortest wavelength side, and has the widest bandwidth and the lowest peak value. It will have.

また、反射領域21の下流側に隣接する反射領域22は、反射領域21のグレーティング周期Λ1より長いグレーティング周期Λ2で形成されているため、その反射スペクトル42の中心波長λ2は反射スペクトル41の中心波長λ1より長波長側となる。さらに、反射スペクトル42は、反射スペクトル41より狭い帯域幅と高いピーク値とを有するものとなる。以後の反射領域23〜2nについても同様であり、グレーティング周期が長くなるのに従って反射スペクトルの中心波長、帯域幅及び反射強度のピーク値が順次変化する。最も長いグレーティング周期Λnで形成された反射領域2nの反射スペクトル4nは、その中心波長λnが最も長波長側にあり、且つ最も狭い帯域幅と最も高いピーク値とを有する。   Further, since the reflection region 22 adjacent to the downstream side of the reflection region 21 is formed with a grating period Λ2 longer than the grating period Λ1 of the reflection region 21, the center wavelength λ2 of the reflection spectrum 42 is the center wavelength of the reflection spectrum 41. Longer wavelength side than λ1. Further, the reflection spectrum 42 has a narrower bandwidth and a higher peak value than the reflection spectrum 41. The same applies to the subsequent reflection regions 23 to 2n, and the peak value of the center wavelength, bandwidth, and reflection intensity of the reflection spectrum sequentially changes as the grating period becomes longer. The reflection spectrum 4n of the reflection region 2n formed with the longest grating period Λn has the center wavelength λn on the longest wavelength side, and has the narrowest bandwidth and the highest peak value.

ここで、各反射領域21〜2nのグレーティング周期Λ1〜Λnは、図3に示されるように、波長方向において互いに隣り合う反射スペクトル同士が少なくとも一部で重なり合うように設定されている。したがって、反射スペクトル41〜4nを集合させたものであるFBG20全体の反射スペクトル40は、反射強度が短波長側から長波長側に向かって漸次高くなる略三角形状のものとなる。また、各反射スペクトル41〜4nの中心波長λ1〜λnが互いに異なっていることにより、FBG20全体の反射スペクトル40は波長方向に広がった状態、つまり反射帯域が広がった状態となっている。   Here, as shown in FIG. 3, the grating periods Λ1 to Λn of the reflection regions 21 to 2n are set so that reflection spectra adjacent to each other in the wavelength direction overlap at least partially. Therefore, the reflection spectrum 40 of the entire FBG 20 that is a collection of the reflection spectra 41 to 4n has a substantially triangular shape in which the reflection intensity gradually increases from the short wavelength side toward the long wavelength side. Further, since the center wavelengths λ1 to λn of the respective reflection spectra 41 to 4n are different from each other, the reflection spectrum 40 of the entire FBG 20 is in a state of spreading in the wavelength direction, that is, a state in which the reflection band is widened.

尚、センサ用光ファイバ10は、例えば石英ガラス等の材料から形成されており、その熱膨張率は正の値となっている。また、一例として、各格子部30は、センサ用光ファイバ10のコア11に紫外線等を照射することによって形成される。   The sensor optical fiber 10 is made of a material such as quartz glass, and has a positive coefficient of thermal expansion. Further, as an example, each lattice unit 30 is formed by irradiating the core 11 of the sensor optical fiber 10 with ultraviolet rays or the like.

次に、この発明の実施の形態1に係るセンサ用光ファイバ10を用いて被測定部の温度を測定する方法について説明する。
まず、図1に示されるFBG20が温度測定の対象となる被測定部に設けられる。次いで、センサ用光ファイバ10の一端側には、センサ用光ファイバ10に入射光L1を入射するための図示しない短波長光源と、FBG20からの反射光L2を監視するための図示しない測定器とが接続される。尚、入射光L1を発する短波長光源としては、例えばLED等が用いられる。
Next, a method of measuring the temperature of the part to be measured using the sensor optical fiber 10 according to Embodiment 1 of the present invention will be described.
First, the FBG 20 shown in FIG. 1 is provided in a part to be measured which is a target of temperature measurement. Next, on one end side of the sensor optical fiber 10, a short wavelength light source (not shown) for making the incident light L1 incident on the sensor optical fiber 10, and a measuring instrument (not shown) for monitoring the reflected light L2 from the FBG 20 are provided. Is connected. For example, an LED or the like is used as the short wavelength light source that emits the incident light L1.

被測定部に温度変化が生じる前である定常時においてセンサ用光ファイバ10に入射光L1が入射されると、FBG20は、定常時の温度に対応した反射光L2を入射光L1に対して反射し、反射光L2が図示しない測定器によって監視される。ここで、入射光L1の光源にはLED等の短波長光源が用いられているため、図4に示されるように、入射光L1のスペクトル50の帯域幅がFBG20全体の反射スペクトル40の帯域幅より狭くなっている。つまり、定常時におけるFBG20は、短波長の入射光L1を反射強度S1にて反射している。   When the incident light L1 is incident on the sensor optical fiber 10 at a normal time before the temperature change occurs in the measured part, the FBG 20 reflects the reflected light L2 corresponding to the temperature at the normal time with respect to the incident light L1. The reflected light L2 is monitored by a measuring instrument (not shown). Here, since a short wavelength light source such as an LED is used as the light source of the incident light L1, as shown in FIG. 4, the bandwidth of the spectrum 50 of the incident light L1 is the bandwidth of the reflection spectrum 40 of the entire FBG 20. Narrower. That is, the FBG 20 in the steady state reflects the incident light L1 having a short wavelength with the reflection intensity S1.

定常時の状態から被測定部の温度が上昇すると、熱膨張係数が正の値であるFBG20は被測定部の温度上昇量に応じて伸張するため、FBG20の各反射領域21〜2nにおけるグレーティング周期Λ1〜Λn(図2参照)もそれぞれ長くなる。また、グレーティング周期Λ1〜Λnが長くなることに伴って、各反射領域21〜2nのブラッグ波長λ1〜λnはそれぞれ長波長側にシフトする。すなわち、FBG20全体の反射スペクトル40は、図4において符号40’で示されるように長波長側にシフトする。   When the temperature of the part to be measured rises from the steady state, the FBG 20 having a positive coefficient of thermal expansion expands in accordance with the amount of temperature rise of the part to be measured. Therefore, the grating period in each of the reflection regions 21 to 2n of the FBG 20 Λ1 to Λn (see FIG. 2) also become longer. As the grating periods Λ1 to Λn become longer, the Bragg wavelengths λ1 to λn of the reflection regions 21 to 2n shift to the longer wavelength side, respectively. That is, the reflection spectrum 40 of the entire FBG 20 is shifted to the long wavelength side as indicated by reference numeral 40 ′ in FIG. 4.

ここで、FBG20全体の反射スペクトル40は、各反射領域21〜2nの反射スペクトル41〜4n(図3参照)を集合させたものであり、反射強度が短波長側から長波長側に向かって漸次高くなる略三角形状となっている。したがって、被測定部の温度上昇に伴って長波長側の反射スペクトル40’にシフトすると、反射光L2の強度がS1からS2へと変化するようになっている。センサ用光ファイバ10に接続された測定器は、FBG20からの反射光の強度を測定可能となっており、反射強度S1、S2の差異に基づいて、被測定部の温度が算出される。   Here, the reflection spectrum 40 of the entire FBG 20 is a collection of the reflection spectra 41 to 4n (see FIG. 3) of the respective reflection regions 21 to 2n, and the reflection intensity gradually increases from the short wavelength side toward the long wavelength side. It is a generally triangular shape that rises. Therefore, the intensity of the reflected light L2 changes from S1 to S2 when shifted to the reflection spectrum 40 'on the long wavelength side as the temperature of the measured part increases. The measuring instrument connected to the sensor optical fiber 10 can measure the intensity of the reflected light from the FBG 20, and the temperature of the part to be measured is calculated based on the difference between the reflection intensities S1 and S2.

以上に述べたように、FBG20を複数の反射領域21〜2nに分割し、これらの反射領域21〜2nが互いに異なるグレーティング周期Λ1〜Λnでコア11の屈折率を変化させるように構成したので、各反射領域21〜2nの反射スペクトル41〜4nが互いに異なるものとなり、これらを集合させたものがFBG20全体の反射スペクトル40となる。各反射領域21〜2nの反射スペクトル41〜4nのうち、波長方向において互いに隣り合う反射スペクトル同士は少なくとも一部で重なり合うため、FBG20全体の反射スペクトル40は、反射強度が短波長側から長波長側に向かって漸次高くなる略三角形状のものとなる。   As described above, the FBG 20 is divided into a plurality of reflection regions 21 to 2n, and these reflection regions 21 to 2n are configured to change the refractive index of the core 11 with different grating periods Λ1 to Λn. The reflection spectrums 41 to 4n of the reflection regions 21 to 2n are different from each other, and a collection of these becomes the reflection spectrum 40 of the entire FBG 20. Of the reflection spectra 41 to 4n of the reflection regions 21 to 2n, the reflection spectra adjacent to each other in the wavelength direction overlap at least partially, so that the reflection spectrum 40 of the entire FBG 20 has a reflection intensity from the short wavelength side to the long wavelength side. It becomes the thing of the substantially triangular shape which becomes high gradually toward.

つまり、入射光L1に対する反射強度が温度の印加前後で変化するようになるため、反射強度の差異に基づいて温度を測定することができる。また、各反射領域21〜2nの反射スペクトル41〜4nの中心波長λ1〜λnが互いに異なっていることにより、FBG20全体の反射スペクトル40の反射帯域が広がった状態、すなわち測定可能な温度の変化幅が広がった状態となるため、LED等の安価な短波長光源を用いて温度測定を行うことができる。したがって、センサ用光ファイバ10において、測定可能な物理量の範囲を低コストで広げることが可能となる。   That is, since the reflection intensity with respect to the incident light L1 changes before and after application of temperature, the temperature can be measured based on the difference in reflection intensity. In addition, since the center wavelengths λ1 to λn of the reflection spectra 41 to 4n of the reflection regions 21 to 2n are different from each other, the reflection band of the reflection spectrum 40 of the entire FBG 20 is widened, that is, the change width of the measurable temperature. Therefore, temperature measurement can be performed using an inexpensive short wavelength light source such as an LED. Therefore, in the sensor optical fiber 10, the measurable physical quantity range can be expanded at low cost.

10 センサ用光ファイバ、11 コア、20 FBG、 21〜2n 反射領域、30 格子部、41〜4n 反射領域の反射スペクトル、L1 入射光、Λ1〜Λn グレーティング周期(コアの屈折率変化の周期)。   10 sensor optical fiber, 11 core, 20 FBG, 21 to 2n reflection region, 30 grating part, 41 to 4n reflection region reflection spectrum, L1 incident light, Λ1 to Λn grating period (period of refractive index change of core).

Claims (4)

入射光が伝播するコアと、
前記入射光が伝播する方向に沿って前記コアの屈折率を周期的に変化させたFBGと
を備えたセンサ用光ファイバにおいて、
前記FBGは、前記入射光が伝播する方向に沿って隣接する複数の反射領域を有しており、
前記複数の反射領域は、前記コアの屈折率を互いに異なる周期で変化させており、
前記複数の反射領域の反射スペクトルのうち、波長方向において互いに隣り合う反射スペクトル同士は、少なくとも一部で重なり合うことを特徴とするセンサ用光ファイバ。
A core through which incident light propagates;
In an optical fiber for a sensor comprising an FBG in which the refractive index of the core is periodically changed along the direction in which the incident light propagates,
The FBG has a plurality of reflection regions adjacent along the direction in which the incident light propagates,
The plurality of reflective regions change the refractive index of the core at different periods,
Of the plurality of reflection regions, the reflection spectra adjacent to each other in the wavelength direction overlap at least partially.
前記コアの屈折率は、前記コアの屈折率とは異なる屈折率を有する複数の格子部を前記コアに形成することによって変化する請求項1に記載のセンサ用光ファイバ。   2. The optical fiber for a sensor according to claim 1, wherein the refractive index of the core is changed by forming a plurality of grating portions having a refractive index different from the refractive index of the core in the core. 前記複数の反射領域は、互いに同数となる複数の前記格子部をそれぞれ含む請求項2に記載のセンサ用光ファイバ。   The optical fiber for a sensor according to claim 2, wherein the plurality of reflection regions respectively include the plurality of lattice portions that are the same number. 前記複数の反射領域における屈折率の周期は、前記入射光が伝播する方向における上流側から下流側に向かって順次長くなる請求項1〜3に記載のセンサ用光ファイバ。   4. The optical fiber for a sensor according to claim 1, wherein a period of a refractive index in each of the plurality of reflection regions is sequentially increased from an upstream side to a downstream side in a direction in which the incident light propagates.
JP2011091423A 2011-04-15 2011-04-15 Optical fiber for sensor Pending JP2012226016A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011091423A JP2012226016A (en) 2011-04-15 2011-04-15 Optical fiber for sensor
PCT/JP2012/054652 WO2012140960A1 (en) 2011-04-15 2012-02-24 Fiber for sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011091423A JP2012226016A (en) 2011-04-15 2011-04-15 Optical fiber for sensor

Publications (1)

Publication Number Publication Date
JP2012226016A true JP2012226016A (en) 2012-11-15

Family

ID=47009142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011091423A Pending JP2012226016A (en) 2011-04-15 2011-04-15 Optical fiber for sensor

Country Status (2)

Country Link
JP (1) JP2012226016A (en)
WO (1) WO2012140960A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7807816B2 (en) 2004-06-28 2010-10-05 University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346722A (en) * 1999-06-07 2000-12-15 Furukawa Electric Co Ltd:The Mechanical sensor
JP2009510506A (en) * 2005-09-29 2009-03-12 ブッカム テクノロジー ピーエルシー Bragg grating structure
WO2009072274A1 (en) * 2007-12-06 2009-06-11 Mitsubishi Electric Corporation Optical fiber sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002116059A (en) * 2000-10-10 2002-04-19 Fuji Electric Co Ltd Wavelength measuring device
US8050523B2 (en) * 2007-04-20 2011-11-01 Koninklijke Philips Electronics N.V. Optical fiber shape sensing systems
US7720322B2 (en) * 2008-06-30 2010-05-18 Intuitive Surgical, Inc. Fiber optic shape sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346722A (en) * 1999-06-07 2000-12-15 Furukawa Electric Co Ltd:The Mechanical sensor
JP2009510506A (en) * 2005-09-29 2009-03-12 ブッカム テクノロジー ピーエルシー Bragg grating structure
WO2009072274A1 (en) * 2007-12-06 2009-06-11 Mitsubishi Electric Corporation Optical fiber sensor

Also Published As

Publication number Publication date
WO2012140960A1 (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP5945120B2 (en) Optical fiber sensor and method for simultaneous measurement of strain and temperature using the same
JP2008538607A (en) Fiber optic acceleration transducer
Park et al. Temperature robust refractive index sensor based on a photonic crystal fiber interferometer
JP5894993B2 (en) Slow light fiber Bragg grating sensor
JP5684086B2 (en) Physical quantity measurement system
KR102396218B1 (en) temperature Senser
JP2008185384A (en) High accuracy sensing system using fbg fabry-perot type super-narrow bandwidth optical filter
KR101203700B1 (en) Fiber bragg grating sensor and system of measuring temperature and strain using the same
US20120162635A1 (en) Fiber optic measuring device and method
WO2012140960A1 (en) Fiber for sensor
CA2972641A1 (en) Birefringent multi-peak optical reference element and birefringent sensor system
WO2013051614A1 (en) Method for manufacturing optical fiber for sensor, and optical fiber for sensor
CN116698406A (en) Single-mode fiber and detection device for bearing wear measurement
Bal et al. Temperature independent bend measurement using a pi-phase shifted FBG at twice the Bragg wavelength
WO2012140959A1 (en) Temperature measurement system and temperature measurement method
WO2013054733A1 (en) Fbg strain sensor and strain quantity measurement system
Anania et al. analytical study of FBG spectrum for temperature sensing applications
KR20140101078A (en) Fiber bragg gratting sensor
JP2008232893A (en) Methods of achieving ultra narrowband of sensor and increasing number of sensors connectable to system in distribution type measurement system using light wavelength detection method
Favero et al. Micro-structured fiber interferometer as sensitive temperature sensor
JP2007205783A (en) Reflection spectrum measurement system
JP2005114512A (en) Distortion measuring device and wavelength correction method
Sakata et al. Optical fiber temperature sensor using a pair of nonidentical long-period fiber gratings for intensity-based sensing
JP2006029995A (en) Optical method and instrument for measuring physical quantity
US7646951B2 (en) Apparatus for manufacturing optical fiber Bragg grating, optical fiber, and mid-infrared optical fiber laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130628

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20130628

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130628

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141111