JP2012202453A - Self-aligning roller bearing - Google Patents

Self-aligning roller bearing Download PDF

Info

Publication number
JP2012202453A
JP2012202453A JP2011066009A JP2011066009A JP2012202453A JP 2012202453 A JP2012202453 A JP 2012202453A JP 2011066009 A JP2011066009 A JP 2011066009A JP 2011066009 A JP2011066009 A JP 2011066009A JP 2012202453 A JP2012202453 A JP 2012202453A
Authority
JP
Japan
Prior art keywords
axis
raceway surface
rows
self
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011066009A
Other languages
Japanese (ja)
Inventor
Takeshi Miyaji
武志 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2011066009A priority Critical patent/JP2012202453A/en
Publication of JP2012202453A publication Critical patent/JP2012202453A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a self-aligning roller bearing capable of suppressing generation of two crest wear due to a differential slip.SOLUTION: A self-aligning roller bearing 1 consists of an outer ring 2 having on the inner periphery an outer raceway surface 21 formed of a recessed curved surface, and an inner ring 3 which can rotate around an axial center X1 of an inner peripheral surface 31 and includes a first and second inner raceway surfaces 32, 33 by two rows which are formed of recessed curved surfaces. A plurality of convex surface rollers 4 are freely rollably arranged by two rows between the outer raceway surface 21 and the first and second inner raceway surfaces 32, 33. The first and second inner raceway surfaces 32, 33 are formed around axial centers X2, X3 inclined with respect to the axial center X1 of the inner ring inner peripheral surface 31, respectively. The axial centers X2, X3 are linear-symmetrically arranged by sandwiching an axial center line Y of the inner ring 3.

Description

本発明は、自動調心ころ軸受に関する。   The present invention relates to a self-aligning roller bearing.

従来、自動調心ころ軸受として知られているものに、内周に凹曲面からなる外軌道面を有する外輪と、外周に凹曲面からなる内軌道面を二列有する内輪と、外軌道面と2列の内軌道面との間に設けられた二列の凸面ころとを備えたものがある(例えば、特許文献1参照)。
このような自動調心ころ軸受には、図3に示すように、外輪102及び内輪103と凸面ころ104との間で発生するエッジロードを低減するために、外軌道面102aの曲率半径及び内軌道面103aの曲率半径を凸面ころ104の曲率半径よりも大きく形成したものがある。
Conventionally known as spherical roller bearings include an outer ring having an outer raceway surface having a concave curved surface on the inner periphery, an inner ring having two rows of inner raceway surfaces having a concave curved surface on the outer periphery, and an outer raceway surface, There is one provided with two rows of convex rollers provided between two rows of inner raceway surfaces (see, for example, Patent Document 1).
In such a self-aligning roller bearing, as shown in FIG. 3, in order to reduce the edge load generated between the outer ring 102 and the inner ring 103 and the convex roller 104, the radius of curvature and inner diameter of the outer raceway surface 102a are reduced. There is one in which the radius of curvature of the raceway surface 103 a is formed larger than the radius of curvature of the convex roller 104.

特開昭53−134143号公報JP-A-53-134143

前記自動調心ころ軸受は、外軌道面102a及び内軌道面103aの曲率半径と凸面ころ104の曲率半径とが異なるため、凸面ころ104と各軌道面102a,103aとの周速差によって差動滑りが発生する。この差動滑りは、各軌道面102a,103aに十分な潤滑油膜が形成されていれば大きな問題が生じることはない。しかし、例えば連続鋳造機において高荷重かつ超低速回転で使用される自動調心ころ軸受の場合には、各軌道面102a,103aに十分な潤滑油膜が形成されにくいため、図4(a)の状態から図4(b)に示すように、固定側となる外軌道面102aにおいて差動滑りによる二山摩耗が生じやすくなる。   In the self-aligning roller bearing, the radius of curvature of the outer raceway surface 102a and the inner raceway surface 103a is different from the radius of curvature of the convex roller 104, so that the difference is caused by the peripheral speed difference between the convex roller 104 and each raceway surface 102a, 103a. Slip occurs. This differential slip does not cause a major problem if a sufficient lubricating oil film is formed on each of the raceway surfaces 102a and 103a. However, for example, in the case of a self-aligning roller bearing used in a continuous casting machine with a high load and an ultra-low speed rotation, it is difficult to form a sufficient lubricating oil film on each raceway surface 102a, 103a. As shown in FIG. 4B from the state, double wear due to differential slip is likely to occur on the outer raceway surface 102a on the fixed side.

前記二山摩耗は、外軌道面102aにおける差動滑り領域において、摩耗しやすい滑り領域と、摩耗しにくい転がり領域とが発生し、この両領域の摩耗差によって、外軌道面102aに2つの山部分102bが形成されるものである。このように二山摩耗が生じた場合、外軌道面102aの山部分に応力が集中することによって、図4(c)に示すように、当該山部分で剥離等が発生し、軸受の耐久性が低下するという問題がある。
本発明は、このような実情に鑑みてなされたものであり、差動滑りによる二山摩耗の発生を抑制することができる自動調心ころ軸受を提供することを目的とする。
In the double wear, a slip region that is easily worn and a rolling region that is hard to wear are generated in the differential slip region on the outer raceway surface 102a, and two peaks are formed on the outer raceway surface 102a due to the wear difference between the two regions. A portion 102b is formed. When double wear occurs in this manner, stress concentrates on the peak portion of the outer raceway surface 102a, and as shown in FIG. There is a problem that decreases.
The present invention has been made in view of such a situation, and an object of the present invention is to provide a self-aligning roller bearing capable of suppressing the occurrence of double wear due to differential sliding.

前記目的を達成するための本発明の自動調心ころ軸受は、内周に凹曲面からなる外軌道面を有している外輪と、外周に凹曲面からなる二列の内軌道面を有し、内周面の軸心回りに回転可能な内輪と、前記外軌道面と前記二列の内軌道面との間に転動自在に二列配置され、且つ各列毎に周方向に複数設けられた凸面ころと、を備え、前記二列の内軌道面のそれぞれが、前記内輪内周面の軸心に対して傾斜した軸心回りに形成され、一方の前記内軌道面の軸心と、他方の前記内軌道面の軸心とが、前記内輪の軸方向の中心線を挟んで線対称に配置されていることを特徴とする。   The self-aligning roller bearing of the present invention for achieving the above object has an outer ring having an outer raceway surface having a concave curved surface on the inner periphery and two rows of inner raceway surfaces having a concave curved surface on the outer periphery. The inner ring is rotatable about the axis of the inner peripheral surface, and two rows are arranged between the outer raceway surface and the two inner raceway surfaces so as to be freely rollable, and a plurality of circumferentially provided for each row. Each of the two rows of inner raceway surfaces is formed around an axis that is inclined with respect to the axis of the inner ring inner circumferential surface, and the axis of one inner raceway surface includes: The axis of the other inner raceway surface is arranged symmetrically with respect to the axial center line of the inner ring.

本発明によれば、各内軌道面が内輪内周面の軸心に対して傾斜した軸心回りに形成されているので、内輪が内輪内周面の軸線回りに1回転する間に、内軌道面が凸面ころとの接触点を中心として振れる角振れが発生する。この角振れにより、外軌道面に対する凸面ころの接触角が変動するため、外軌道面における差動滑り領域が軸方向にずれる。これにより、差動すべり領域において摩耗差が異なる滑り領域及び転がり領域を、軸方向に分散させることができるため、外軌道面において差動滑りによる二山摩耗が発生するのを効果的に抑制することができる。その結果、外軌道面に剥離等が発生するのを抑えることができるため、軸受の耐久性が低下するのを抑制することができる。
また、二列の内軌道面のうち一方の内軌道面の軸心と、他方の内軌道面の軸心とが、内輪の軸方向の中心線を挟んで線対称に配置されているため、二列の内軌道面のそれぞれの軸方向への移動に伴って発生する軸方向の力が互いに打ち消すように作用することにより、軸方向に不要な負荷が作用するのを抑制することができる。
According to the present invention, each inner raceway surface is formed around an axis that is inclined with respect to the axis of the inner ring inner peripheral surface, so that the inner ring rotates while rotating once around the axis of the inner ring inner peripheral surface. Angular runout occurs in which the raceway surface swings around the contact point with the convex roller. Due to this angular deflection, the contact angle of the convex roller with respect to the outer raceway surface varies, so that the differential slip region on the outer raceway surface is shifted in the axial direction. As a result, it is possible to disperse the sliding region and the rolling region having different wear differences in the differential sliding region in the axial direction, thereby effectively suppressing the occurrence of double wear due to differential sliding on the outer raceway surface. be able to. As a result, it is possible to suppress the occurrence of peeling or the like on the outer raceway surface, and thus it is possible to suppress a decrease in the durability of the bearing.
In addition, since the axis of one inner raceway surface and the axis of the other inner raceway surface of the two rows of inner raceway surfaces are arranged symmetrically with respect to the center line in the axial direction of the inner ring, By acting so that the axial forces generated with the movement of the two rows of inner raceway surfaces in the axial direction cancel each other, it is possible to suppress the unnecessary load from acting in the axial direction.

本発明の自動調心ころ軸受によれば、外軌道面において差動滑りによる二山摩耗が発生するのを効果的に抑制することができるため、外軌道面に剥離等が発生するのを抑えることができ、軸受の耐久性が低下するのを抑制することができる。   According to the self-aligning roller bearing of the present invention, it is possible to effectively suppress the occurrence of double wear due to differential slip on the outer raceway surface, thereby suppressing the occurrence of peeling or the like on the outer raceway surface. It is possible to suppress a decrease in the durability of the bearing.

本発明の一実施形態に係る自動調心ころ軸受を示す断面図である。It is sectional drawing which shows the self-aligning roller bearing which concerns on one Embodiment of this invention. 凸面ころの接触角の変位を示す断面図である。It is sectional drawing which shows the displacement of the contact angle of a convex roller. 従来の自動調心ころ軸受を示す断面図である。It is sectional drawing which shows the conventional self-aligning roller bearing. 従来の自動調心ころ軸受に発生する二山摩耗を示す断面図である。It is sectional drawing which shows the double wear which generate | occur | produces in the conventional self-aligning roller bearing.

以下、図面を参照しつつ、本発明の自動調心ころ軸受の実施形態を詳細に説明する。
図1は本発明の一実施形態に係る自動調心ころ軸受を示す断面図である。この自動調心ころ軸受1は、例えば連続鋳造機に用いられるものであり、互いに同心に組み合わされた外輪2と内輪3と、これら外輪2と内輪3との間に二列配設された凸面ころ4とを備えている。
Hereinafter, embodiments of the self-aligning roller bearing of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a sectional view showing a self-aligning roller bearing according to an embodiment of the present invention. The self-aligning roller bearing 1 is used in, for example, a continuous casting machine, and includes an outer ring 2 and an inner ring 3 that are concentrically combined with each other, and a convex surface that is disposed in two rows between the outer ring 2 and the inner ring 3. Roller 4.

外輪2は、その軸方向の中心線Yを挟んで線対称に形成されており、その内周には、単一の外軌道面21が形成されている。この外軌道面21は、凹曲面からなり、外輪2の軸方向の中心点から所定の曲率半径を有する球面(球面の一部)に沿った形状である。外軌道面21の曲率半径は、凸面ころ4の外周面41の曲率半径よりも大きく形成されている。   The outer ring 2 is formed symmetrically with respect to the center line Y in the axial direction, and a single outer raceway surface 21 is formed on the inner periphery thereof. The outer raceway surface 21 is a concave curved surface and has a shape along a spherical surface (a part of the spherical surface) having a predetermined radius of curvature from the axial center point of the outer ring 2. The radius of curvature of the outer raceway surface 21 is formed larger than the radius of curvature of the outer peripheral surface 41 of the convex roller 4.

内輪3は、その軸方向の中心線Yに対して線対称に形成されており、その内周面31の軸心X1回りに回転可能に配置されている。内輪3の外周には凹曲面からなる第1の内軌道面32及び第2の内軌道面33が二列形成されている。この第1及び第2の内軌道面32,33の詳細構造については後述する。また、内輪3の外周には、第1及び第2の内軌道面32,33の間に前記軸心X1に平行な円筒面34が形成されている。   The inner ring 3 is formed symmetrically with respect to the axial center line Y, and is disposed so as to be rotatable around the axis X1 of the inner peripheral surface 31 thereof. A first inner raceway surface 32 and a second inner raceway surface 33 each having a concave curved surface are formed in two rows on the outer periphery of the inner ring 3. The detailed structure of the first and second inner raceway surfaces 32 and 33 will be described later. A cylindrical surface 34 parallel to the axis X1 is formed between the first and second inner raceway surfaces 32 and 33 on the outer periphery of the inner ring 3.

凸面ころ4は、樽形であり、凸面からなる外周面41を有しており、外輪2の外軌道面21と内輪3の第1及び第2の内軌道面32,33との間に転動自在に配設されている。凸面ころ4は、外軌道面21と第1及び第2の内軌道面32,33との間に二列で配置されており、各列毎で周方向に複数設けられている。各列の凸面ころ4は、環状の保持器5によって、それぞれ周方向に沿って所定間隔で保持されている。   The convex roller 4 has a barrel shape and has an outer peripheral surface 41 made of a convex surface, and is rolled between the outer raceway surface 21 of the outer ring 2 and the first and second inner raceway surfaces 32 and 33 of the inner ring 3. It is arranged freely. The convex rollers 4 are arranged in two rows between the outer raceway surface 21 and the first and second inner raceway surfaces 32, 33, and a plurality of convex rollers 4 are provided in the circumferential direction for each row. The convex rollers 4 in each row are held at predetermined intervals along the circumferential direction by an annular cage 5.

保持器5は、軸方向に離間して配置された第1の円環部51及び第2の円環部52と、この両円環部51,52の周方向に沿って等間隔おきに配置されて両円環部51,52を連結する複数の柱部53とを備えている。両円環部51,52と隣接する柱部53との間に形成された空間に各凸面ころ4を配置し、凸面ころ4を円周方向に沿って所定間隔に保持している。   The cage 5 is disposed at equal intervals along the circumferential direction of the first and second annular portions 51 and 52 that are spaced apart from each other in the axial direction. And a plurality of column portions 53 that connect the two annular portions 51 and 52 to each other. Each convex roller 4 is arranged in a space formed between both annular portions 51, 52 and the adjacent column portion 53, and the convex rollers 4 are held at predetermined intervals along the circumferential direction.

内輪3の第1及び第2の内軌道面32,33の曲率半径は、外輪2の外軌道面21の曲率半径とそれぞれ同一に形成されており、凸面ころ4の外周面41の曲率半径よりも大きく形成されている。第1及び第2の内軌道面32,33は、それぞれ内輪3の内周面31の軸心X1に対して傾斜した軸心回りに形成されている。   The radii of curvature of the first and second inner raceway surfaces 32 and 33 of the inner ring 3 are formed to be the same as the radii of curvature of the outer raceway surface 21 of the outer ring 2. Is also formed large. The first and second inner raceway surfaces 32 and 33 are each formed around an axis that is inclined with respect to the axis X1 of the inner circumferential surface 31 of the inner ring 3.

より具体的には、第1の内軌道面32は、内輪3の内周面31の軸心X1に対して傾斜した軸心X2回りに形成されている。前記軸心X1に対する前記軸心X2の傾斜角度θ1は、例えば1〜5度の範囲内で設定されている。   More specifically, the first inner raceway surface 32 is formed around an axis X2 inclined with respect to the axis X1 of the inner peripheral surface 31 of the inner ring 3. The inclination angle θ1 of the axis X2 with respect to the axis X1 is set within a range of 1 to 5 degrees, for example.

第2の内軌道面33は、内輪3の内周面31の軸心X1に対して、前記軸心X2と反対方向に傾斜した軸心X3回りに形成されている。前記軸心X1に対する前記軸心X3の傾斜角度θ2は、前記傾斜角度θ1と同一角度に設定されている。また、第1の内軌道面32の軸心X2と、第2の内軌道面33の軸心X3とは、内輪3の軸方向の中心線Yを挟んで線対称に配置されている。すなわち、第1の内軌道面32及び第2の内軌道面33は、前記中心線Yを挟んで線対称に形成されている。   The second inner raceway surface 33 is formed around an axis X3 inclined in a direction opposite to the axis X2 with respect to the axis X1 of the inner peripheral surface 31 of the inner ring 3. The inclination angle θ2 of the axis X3 with respect to the axis X1 is set to the same angle as the inclination angle θ1. Further, the axis X2 of the first inner raceway surface 32 and the axis X3 of the second inner raceway surface 33 are arranged symmetrically with respect to the center line Y in the axial direction of the inner ring 3. That is, the first inner raceway surface 32 and the second inner raceway surface 33 are formed symmetrically with respect to the center line Y.

以上の構成により、内輪3が軸線X1回りに回転すると、第1及び第2の内軌道面32,33は、その軸線X2,X3が軸線X1に対して傾斜しているため、第1及び第2の内軌道面32,33が、凸面ころ4との接触点を中心として図2に示す実線と二点鎖線との間で揺動する角振れが発生する。この角振れにより、凸面ころ4の軸線X1に対する接触角αが、所定角度βの範囲内で変動するため、外軌道面21と凸面ころ4との接触部が軸方向にずれる。したがって、内輪3が軸線X1回りに1回転する間に、外軌道面21における凸面ころ4との接触部が軸方向にずれるようになっている。   With the above configuration, when the inner ring 3 rotates around the axis X1, the first and second inner raceway surfaces 32, 33 are inclined with respect to the axis X1 because the axes X2, X3 are inclined. The angular runout in which the two inner raceways 32 and 33 swing between the solid line and the two-dot chain line shown in FIG. 2 around the contact point with the convex roller 4 is generated. Due to this angular deflection, the contact angle α of the convex roller 4 with respect to the axis X1 varies within the range of the predetermined angle β, so that the contact portion between the outer raceway surface 21 and the convex roller 4 is shifted in the axial direction. Therefore, the contact portion of the outer raceway surface 21 with the convex roller 4 is shifted in the axial direction while the inner ring 3 makes one rotation around the axis X1.

これにより、差動すべり領域において摩耗差が異なる滑り領域及び転がり領域を軸方向に分散させることができるため、外軌道面21において差動滑りによる二山摩耗の発生を効果的に抑制することができる。
しかも、第1の内軌道面32の軸心X2と、第2の内軌道面33の軸心X3とが、内輪3の軸方向の中心線Yを挟んで線対称に配置されているため、第1及び第2の内軌道面32,33のそれぞれの軸方向への移動に伴って発生する軸方向の力が互いに打ち消すように作用することにより、軸方向に不要な負荷が作用するのを抑制することができる。
As a result, the slip region and the rolling region having different wear differences in the differential slip region can be dispersed in the axial direction, so that it is possible to effectively suppress the occurrence of double wear due to differential slip on the outer raceway surface 21. it can.
Moreover, since the axial center X2 of the first inner raceway surface 32 and the axial center X3 of the second inner raceway surface 33 are arranged symmetrically with respect to the center line Y in the axial direction of the inner ring 3, By causing the axial forces generated by the movement of the first and second inner raceway surfaces 32 and 33 in the axial direction to cancel each other, unnecessary loads are applied in the axial direction. Can be suppressed.

なお、本発明は、上記の実施形態に限定されることなく適宜変更して実施可能である。例えば、本発明の自動調心ころ軸受1は、連続鋳造機に用いられる場合について説明したが、高荷重かつ超低速回転下で用いられるものであれば、他の機器用の軸受として適用することもできる。   The present invention is not limited to the above-described embodiment, and can be implemented with appropriate modifications. For example, the self-aligning roller bearing 1 of the present invention has been described for a case where it is used in a continuous casting machine, but if it is used under a high load and under ultra-low speed rotation, it can be applied as a bearing for other equipment. You can also.

また、本発明の内輪3の外周の軸方向両端部には、第1及び第2の内軌道面32,33が延びて形成されているが、径方向外側に突出する鍔部を設け、凸面ころ4の軸方向外側への移動を規制するようにしてもよい。
さらに、内輪3の外周の円筒面34の径方向外側には、二列の凸面ころ4の間に当該凸面ころ4の軸方向内側への移動を規制する環状の案内輪が設けられていてもよい。
Further, the first and second inner raceway surfaces 32 and 33 are formed to extend at both ends in the axial direction of the outer periphery of the inner ring 3 of the present invention. You may make it regulate the movement to the axial direction outer side of the roller 4. FIG.
Furthermore, an annular guide wheel that restricts the movement of the convex rollers 4 in the axial direction is provided between the two rows of convex rollers 4 on the radially outer side of the cylindrical surface 34 on the outer periphery of the inner ring 3. Good.

1:自動調心ころ軸受、2:外輪、3:内輪、4:凸面ころ、21:外軌道面、31:内周面、32:第1の内軌道面、33:第2の内軌道面 1: spherical roller bearing, 2: outer ring, 3: inner ring, 4: convex roller, 21: outer raceway surface, 31: inner circumferential surface, 32: first inner raceway surface, 33: second inner raceway surface

Claims (1)

内周に凹曲面からなる外軌道面を有している外輪と、
外周に凹曲面からなる二列の内軌道面を有し、内周面の軸心回りに回転可能な内輪と、
前記外軌道面と前記二列の内軌道面との間に転動自在に二列配置され、且つ各列毎に周方向に複数設けられた凸面ころと、を備え、
前記二列の内軌道面のそれぞれが、前記内輪内周面の軸心に対して傾斜した軸心回りに形成され、
一方の前記内軌道面の軸心と、他方の前記内軌道面の軸心とが、前記内輪の軸方向の中心線を挟んで線対称に配置されていることを特徴とする自動調心ころ軸受。
An outer ring having an outer raceway surface formed of a concave curved surface on the inner periphery;
An inner ring having two rows of inner raceway surfaces each having a concave curved surface on the outer periphery, and capable of rotating about the axis of the inner peripheral surface;
Convex rollers arranged in two rows so as to roll freely between the outer raceway surface and the two rows of inner raceway surfaces, and provided in a plurality in the circumferential direction for each row,
Each of the two rows of inner raceway surfaces is formed around an axis that is inclined with respect to the axis of the inner ring inner circumferential surface,
A self-aligning roller characterized in that an axis of one inner raceway surface and an axis of the other inner raceway surface are arranged symmetrically with respect to an axial center line of the inner ring. bearing.
JP2011066009A 2011-03-24 2011-03-24 Self-aligning roller bearing Pending JP2012202453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011066009A JP2012202453A (en) 2011-03-24 2011-03-24 Self-aligning roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011066009A JP2012202453A (en) 2011-03-24 2011-03-24 Self-aligning roller bearing

Publications (1)

Publication Number Publication Date
JP2012202453A true JP2012202453A (en) 2012-10-22

Family

ID=47183678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011066009A Pending JP2012202453A (en) 2011-03-24 2011-03-24 Self-aligning roller bearing

Country Status (1)

Country Link
JP (1) JP2012202453A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105782235A (en) * 2014-12-24 2016-07-20 舍弗勒技术有限两合公司 Vibration bearing
US9561845B2 (en) 2007-12-06 2017-02-07 Roller Bearing Company Of America, Inc. Bearing installed on an aircraft structure
US9890814B2 (en) 2014-06-03 2018-02-13 Roller Bearing Company Of America, Inc. Cage for hourglass roller bearings
US10012265B2 (en) 2007-12-06 2018-07-03 Roller Bearing Company Of America, Inc. Corrosion resistant bearing material
US10077808B2 (en) 2013-12-18 2018-09-18 Roller Bearing Company Of America, Inc. Roller profile for hourglass roller bearings in aircraft

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957238A (en) * 1972-07-07 1974-06-04
JP2003343554A (en) * 2002-05-27 2003-12-03 Ntn Corp Automatic aligning roller bearing
JP2008069823A (en) * 2006-09-13 2008-03-27 Ntn Corp Self-alignment roller bearing and roller support structure for continuous casting facilities
JP2011002025A (en) * 2009-06-18 2011-01-06 Jtekt Corp Turn energizing device and pulley device equipped with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957238A (en) * 1972-07-07 1974-06-04
JP2003343554A (en) * 2002-05-27 2003-12-03 Ntn Corp Automatic aligning roller bearing
JP2008069823A (en) * 2006-09-13 2008-03-27 Ntn Corp Self-alignment roller bearing and roller support structure for continuous casting facilities
JP2011002025A (en) * 2009-06-18 2011-01-06 Jtekt Corp Turn energizing device and pulley device equipped with the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9561845B2 (en) 2007-12-06 2017-02-07 Roller Bearing Company Of America, Inc. Bearing installed on an aircraft structure
US10012265B2 (en) 2007-12-06 2018-07-03 Roller Bearing Company Of America, Inc. Corrosion resistant bearing material
US10077808B2 (en) 2013-12-18 2018-09-18 Roller Bearing Company Of America, Inc. Roller profile for hourglass roller bearings in aircraft
US9890814B2 (en) 2014-06-03 2018-02-13 Roller Bearing Company Of America, Inc. Cage for hourglass roller bearings
CN105782235A (en) * 2014-12-24 2016-07-20 舍弗勒技术有限两合公司 Vibration bearing

Similar Documents

Publication Publication Date Title
US10054164B2 (en) Rolling bearing
WO2013051696A1 (en) Rolling bearing
JP2012202453A (en) Self-aligning roller bearing
RU2570891C1 (en) Ball cageless roll bearing
US10514063B2 (en) Rolling bearing
JP5928241B2 (en) Rolling bearing
JP2009074600A (en) Roller bearing
JP6544000B2 (en) Self-aligning roller bearing
JP2015102144A (en) Self-aligning roller bearing
JP2009074679A (en) Self-aligning roller bearing
JP5929481B2 (en) Spherical roller bearings and rotating equipment
JP2014105809A (en) Retainer for rolling bearing
TW201728839A (en) Roller bearing comprising inner and outer races that receive a roller to roll therebetween and a cage between the inner and outer races to control positional variation of the roller
JP2010025191A (en) Self-aligning roller bearing
JP2017078480A (en) Self-aligning roller bearing
JP2013053716A (en) Self-aligning roller bearing and turning wheel support structure
JP2020159498A (en) Cross roller bearing
JP2009210078A (en) Self-aligning roller bearing
JP6337482B2 (en) Spherical roller bearing
RU2582630C2 (en) Roller bearing (versions)
JP2012172784A (en) Ball bearing
JP2013061040A (en) Self-aligning rolling bearing
WO2024053142A1 (en) Roller bearing
JP2017150560A (en) Constant velocity joint
JP2022150800A (en) Self-aligning roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150224