JP2012198134A - Fault point locating device and program - Google Patents

Fault point locating device and program Download PDF

Info

Publication number
JP2012198134A
JP2012198134A JP2011063025A JP2011063025A JP2012198134A JP 2012198134 A JP2012198134 A JP 2012198134A JP 2011063025 A JP2011063025 A JP 2011063025A JP 2011063025 A JP2011063025 A JP 2011063025A JP 2012198134 A JP2012198134 A JP 2012198134A
Authority
JP
Japan
Prior art keywords
zero
ground fault
current
transmission line
bus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011063025A
Other languages
Japanese (ja)
Inventor
Yuichi Gonda
優一 権田
Masaaki Yasuhara
正明 安原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2011063025A priority Critical patent/JP2012198134A/en
Publication of JP2012198134A publication Critical patent/JP2012198134A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Locating Faults (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fault point locating device capable of accurately locating a fault point even when both of a zero-phase current flowing in a sound line and a zero-phase current flowing in a fault line cannot be measured in a parallel two-line power transmission line.SOLUTION: An electric power system provided with first and second bus lines, a parallel two-line transmission line including first and second transmission lines and disposed between the first and second bus lines, and a neutral point ground resistor disposed on the second bus line comprises: a current measuring part for measuring a first zero-phase current flowing from the first bus line to the first transmission line; a voltage measuring part for measuring a zero-phase voltage of the first bus line or the first transmission line; a calculation part for calculating a second zero-phase current flowing from the second bus line to the transmission line where a fault occurs among the first and second transmission lines, based on a first current and the first zero-phase current flowing through the neutral point ground resistor according to the zero-phase voltage, when a ground fault accident occurs in the first or second transmission line; and a locating part for locating a fault point where the ground fault accident occurs based on the first zero-phase current and the second zero-phase current.

Description

本発明は、事故点標定装置、プログラムに関する。   The present invention relates to an accident point location device and a program.

送電線で発生した地絡事故の事故点を標定する方法としては、例えば、分流比演算方式(I方式)やリアクタンス演算方式(R方式)が知られている(例えば、特許文献1参照)。 As a method for locating an accident point of a ground fault occurring in a transmission line, for example, a diversion ratio calculation method (I 0 method) and a reactance calculation method (R method) are known (for example, see Patent Document 1). .

特開2003−14810号公報Japanese Patent Laid-Open No. 2003-14810

一般に、中性点接地抵抗が設けられた平行2回線送電線における事故点(故障点)を標定する際には、リアクタンス演算方式より分流比演算方式の方が精度良く事故点を標定できる。しかしながら、分流比演算方式を用いる際には、平行2回線送電線の事故が発生した事故回線に流れる零相電流と、健全回線に流れる零相電流との両方の電流を測定する必要がある。このため、事故回線及び健全回線の両方の零相電流を測定できない場合には、精度良く事故点を標定できないという問題があった。   In general, when a fault point (failure point) in a parallel two-line transmission line provided with a neutral point grounding resistance is determined, the shunt ratio calculation method can more accurately determine the fault point than the reactance calculation method. However, when the shunt ratio calculation method is used, it is necessary to measure both the zero-phase current flowing in the fault line in which the fault of the parallel two-line transmission line has occurred and the zero-phase current flowing in the healthy line. For this reason, when the zero phase current of both the fault line and the healthy line cannot be measured, there is a problem that the fault point cannot be accurately determined.

本発明は上記課題を鑑みてなされたものであり、平行2回線送電線における健全回線に流れる零相電流及び事故回線に流れる零相電流の両方が測定できない場合であっても、精度良く事故点を標定することが可能な事故点標定装置を提供する。   The present invention has been made in view of the above problems, and even when both the zero-phase current flowing in the healthy line and the zero-phase current flowing in the accident line in the parallel two-line transmission line cannot be measured, the accident point can be accurately obtained. An accident point locating device capable of locating

上記目的を達成するため、本発明の一つの側面に係る、第1及び第2母線と、第1及び第2送電線を含み前記第1及び第2母線の間に設けられた平行2回線送電線と、前記第2母線に設けたれた中性点接地抵抗と、を備える電力系統における事故点標定装置であって、前記第1母線から前記第1送電線に流れる第1零相電流を測定する電流測定部と、前記第1母線または前記第1送電線の零相電圧を測定する電圧測定部と、前記第1または第2送電線に第1地絡事故が発生した際に前記電圧測定部で測定された前記零相電圧に応じた前記中性点接地抵抗に流れる第1電流と、前記第1地絡事故が発生した際に前記電流測定部で測定された前記第1零相電流とに基づいて、前記第1または第2送電線のうち、前記第2母線から前記第1地絡事故が発生した発生した送電線に流れる第2零相電流を算出する算出部と、前記第1地絡事故が発生した際に前記電流測定部で測定された前記第1零相電流と、前記第2零相電流とに基づいて、前記第1地絡事故が発生した事故点を標定する標定部と、を備える。   In order to achieve the above object, according to one aspect of the present invention, a parallel two-line transmission provided between the first and second buses including the first and second buses and the first and second transmission lines. An accident point locating device in an electric power system comprising an electric wire and a neutral point grounding resistance provided on the second bus, and measuring a first zero-phase current flowing from the first bus to the first transmission line A current measurement unit that performs measurement, a voltage measurement unit that measures a zero-phase voltage of the first bus or the first power transmission line, and the voltage measurement when a first ground fault occurs in the first or second power transmission line. A first current flowing through the neutral grounding resistance according to the zero-phase voltage measured at the first section, and the first zero-phase current measured at the current measuring section when the first ground fault occurs. Based on the above, out of the first or second transmission line, the first ground fault from the second bus A calculation unit that calculates a second zero-phase current flowing through the generated transmission line, the first zero-phase current measured by the current measurement unit when the first ground fault occurs, and the second And an orientation part that locates the fault point where the first ground fault has occurred based on the zero-phase current.

平行2回線送電線における健全回線に流れる零相電流及び事故回線に流れる零相電流の両方が測定できない場合であっても、精度良く事故点を標定することが可能な事故点標定装置を提供することができる。   Provided is an accident point locating apparatus capable of accurately locating an accident point even when both a zero phase current flowing in a healthy line and a zero phase current flowing in an accident line in a parallel two-line transmission line cannot be measured. be able to.

本発明の一実施形態である事故点標定装置45が設けられた電力系統10を示した図である。It is the figure which showed the electric power grid | system 10 provided with the accident point location apparatus 45 which is one Embodiment of this invention. 事故点標定装置45に実現される機能ブロックを示す図である。It is a figure which shows the functional block implement | achieved by the accident point location apparatus 45. FIG. 事故点標定装置45が実行する処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process which the accident point location apparatus 45 performs. 送電線31に地絡事故が発生した際の零相電流を説明するための図である。It is a figure for demonstrating the zero phase electric current at the time of a ground fault occurring in the power transmission line 31. FIG.

本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。
図1は、本発明の一実施形態である事故点標定装置45が設けられた電力系統10の構成例を示す図である。
At least the following matters will become apparent from the description of this specification and the accompanying drawings.
FIG. 1 is a diagram illustrating a configuration example of an electric power system 10 provided with an accident point locating device 45 according to an embodiment of the present invention.

電力系統10は、いわゆる平行2回線の送電系統であり、電力系統10には、電気所A,B、及び送電線30,31が設けられている。   The power system 10 is a so-called parallel two-line power transmission system, and the power system 10 is provided with electric stations A and B and power transmission lines 30 and 31.

電気所Aの母線20(第1母線)と、電気所Bの母線21(第2母線)との間は、送電線30,31で接続されており、母線21には、中性点接地抵抗35が接続されている。なお、母線20,21、送電線30,31の夫々は例えば3本の電線を含むが、便宜上、図1においては1本の線で記載している。   The bus 20 (first bus) at the electric station A and the bus 21 (second bus) at the electric station B are connected by power transmission lines 30 and 31, and the bus 21 has a neutral point ground resistance. 35 is connected. Note that each of the buses 20 and 21 and the power transmission lines 30 and 31 includes, for example, three electric wires, but for the sake of convenience, they are illustrated as one line in FIG.

電気所Aには、変流器40、零相電圧検出装置41、及び事故点標定装置45が設けられている。   In the electric station A, a current transformer 40, a zero-phase voltage detection device 41, and an accident point locating device 45 are provided.

変流器40は、いわゆる零相変流器であり、送電線30,31に地絡事故が発生した際に、母線20から送電線31(第1送電線)に流れる零相電流Ioxを検出する。零相電圧検出装置41は、母線20の零相電圧Voを検出する。   The current transformer 40 is a so-called zero-phase current transformer, and detects a zero-phase current Iox flowing from the bus 20 to the transmission line 31 (first transmission line) when a ground fault occurs in the transmission lines 30 and 31. To do. Zero phase voltage detection device 41 detects zero phase voltage Vo of bus 20.

事故点標定装置45は、例えば、フォルトロケータやオシロシステムであり、零相電流Iox及び零相電圧Voに基づいて、送電線30,31に発生した地絡事故の事故点を標定する。事故点標定装置45は、地絡過電圧継電器50、地絡方向継電器51、記憶装置52、マイコン53、及び表示部54を含んで構成される。なお、記憶装置52、マイコン53、表示部54のそれぞれは、バスを介して通信可能に接続される。   The accident point locating device 45 is, for example, a fault locator or an oscilloscope system, and locates an accident point of a ground fault occurring in the transmission lines 30 and 31 based on the zero phase current Iox and the zero phase voltage Vo. The accident point locating device 45 includes a ground fault overvoltage relay 50, a ground fault direction relay 51, a storage device 52, a microcomputer 53, and a display unit 54. Each of the storage device 52, the microcomputer 53, and the display unit 54 is communicably connected via a bus.

地絡過電圧継電器50は、零相電圧Voに基づいて、送電線30,31に地絡事故が発生したか否かを検出する。   The ground fault overvoltage relay 50 detects whether or not a ground fault has occurred in the transmission lines 30 and 31 based on the zero-phase voltage Vo.

地絡方向継電器51は、零相電流Iox及び零相電圧Voに基づいて、送電線30,31のうち、地絡事故が発生した送電線を判定する。なお、地絡過電圧継電器50の検出結果や、地絡方向継電器51の判定結果は、マイコン53に入力される。   The ground fault direction relay 51 determines a power transmission line in which a ground fault has occurred among the power transmission lines 30 and 31 based on the zero phase current Iox and the zero phase voltage Vo. The detection result of the ground fault overvoltage relay 50 and the determination result of the ground fault direction relay 51 are input to the microcomputer 53.

記憶装置52は、例えばハードディスク装置であり、マイコン53が実行するプログラムや、送電線30,31に完全地絡事故(所定の第2地絡事故)が発生した際の零相電圧Voの電圧値Vmや、中性点接地抵抗35の電流値Im(第2電流)を記憶する。   The storage device 52 is, for example, a hard disk device, and the voltage value of the zero-phase voltage Vo when a complete ground fault (predetermined second ground fault) occurs in the program executed by the microcomputer 53 or in the transmission lines 30 and 31. Vm and the current value Im (second current) of the neutral point grounding resistor 35 are stored.

マイコン53は、記憶装置52に記憶されたプログラムを実行することにより、送電線30,31に発生した事故点を標定する。   The microcomputer 53 determines the accident point that has occurred in the power transmission lines 30 and 31 by executing the program stored in the storage device 52.

表示装置54は、液晶ディスプレイ等であり、例えば、算出された事故点等を表示する。   The display device 54 is a liquid crystal display or the like, and displays, for example, a calculated accident point.

==事故点標定装置45に実現される機能ブロックについて==
図2は、マイコン53がプログラムを実行することにより、事故点標定装置45に実現される機能ブロックを示す図である。事故点標定装置45には、地絡検出部80、電流測定部81、電圧測定部82、算出部83、及び標定部84が実現される。
== Function Blocks Realized in the Accident Pointing Device 45 ==
FIG. 2 is a diagram showing functional blocks implemented in the accident point locating device 45 when the microcomputer 53 executes the program. In the accident point locating device 45, a ground fault detecting unit 80, a current measuring unit 81, a voltage measuring unit 82, a calculating unit 83, and a locating unit 84 are realized.

地絡検出部80は、地絡過電圧継電器50の出力に基づいて、送電線30,31に地絡事故が発生したか否かを検出する。   The ground fault detection unit 80 detects whether or not a ground fault has occurred in the transmission lines 30 and 31 based on the output of the ground fault overvoltage relay 50.

電流測定部81は、地絡検出部80で地絡事故の発生が検出されると、変流器40で検出された零相電流Iox(第1零相電流)を測定し、記憶装置52に格納する。なお、地絡検出部80で検出される地絡事故は、実際に送電線30,31に発生する地絡事故であり、第1地絡事故に相当する。   When the occurrence of a ground fault is detected by the ground fault detection unit 80, the current measurement unit 81 measures the zero phase current Iox (first zero phase current) detected by the current transformer 40 and stores it in the storage device 52. Store. In addition, the ground fault accident detected by the ground fault detection unit 80 is a ground fault accident that actually occurs in the transmission lines 30 and 31, and corresponds to the first ground fault.

電圧測定部82は、地絡検出部80で地絡事故の発生が検出されると、零相電圧検出装置41で検出された零相電圧Voを測定し、測定結果を記憶装置52に格納する。   When the ground fault detection unit 80 detects the occurrence of a ground fault, the voltage measurement unit 82 measures the zero phase voltage Vo detected by the zero phase voltage detection device 41 and stores the measurement result in the storage device 52. .

算出部83は、地絡事故が検出された後に、記憶装置52に記憶された零相電圧Vo及び零相電流Ioxや、電圧値Vm、電流値Imに基づいて、中性点接地抵抗35に流れる電流Io(第1電流)と、母線21から事故が発生した送電線に流れる零相電流Ioy(第2零相電流)とを算出する。   After the ground fault is detected, the calculation unit 83 sets the neutral point grounding resistor 35 based on the zero-phase voltage Vo and zero-phase current Iox, the voltage value Vm, and the current value Im stored in the storage device 52. A flowing current Io (first current) and a zero-phase current Ioy (second zero-phase current) flowing from the bus 21 to the power transmission line where the accident has occurred are calculated.

標定部84は、変流器40で測定された零相電流Ioxと、算出部83が算出した零相電流Ioyとに基づいて、事故点の標定を行う。具体的には、標定部84は、零相電流Iox,Ioyを用いた分流比演算方式を実行して事故点の標定を行う。   The orientation unit 84 locates the fault point based on the zero-phase current Iox measured by the current transformer 40 and the zero-phase current Ioy calculated by the calculation unit 83. Specifically, the orientation unit 84 performs an accident point location by executing a shunt ratio calculation method using the zero-phase currents Iox and Ioy.

==事故点標定装置45が実行する処理の一例==
図3は、送電線30,31に地絡事故が発生した際に、事故点標定装置45が実行する処理の一例である。なお、図3のフローチャートの主体は、図2で示した各機能ブロックである。また、図4は、送電線31に地絡事故が発生した際の発生する零相電流を模式的に示す図であり、適宜参照する。
== An example of processing executed by the accident point locator 45 ==
FIG. 3 is an example of a process executed by the accident point locating device 45 when a ground fault occurs on the transmission lines 30 and 31. The main body of the flowchart of FIG. 3 is each functional block shown in FIG. FIG. 4 is a diagram schematically showing a zero-phase current generated when a ground fault occurs in the power transmission line 31, and is referred to as appropriate.

まず、地絡検出部80は、送電線30,31の地絡事故が発生したか否かを検出する(S100)。そして、地絡事故の発生が検出されると(S100:YES)、電流測定部81は零相電流Ioxを測定して記憶装置52に格納し、電圧測定部82は零相電圧Voを測定して記憶装置52に格納する(S101)。   First, the ground fault detection unit 80 detects whether or not a ground fault has occurred in the power transmission lines 30 and 31 (S100). When the occurrence of the ground fault is detected (S100: YES), the current measuring unit 81 measures the zero phase current Iox and stores it in the storage device 52, and the voltage measuring unit 82 measures the zero phase voltage Vo. And stored in the storage device 52 (S101).

算出部83は、地絡事故が発生した際に記憶装置52に記憶された零相電圧Voの値と、電圧値Vmとの比αを算出する(S102)。具体的には、式(1)に示す演算を実行する。
α=Vo/Vm・・・(1)
なお、送電線30,31に地絡事故が発生していな場合には、零相電圧Voの値はゼロとなり、送電線30,31に完全地絡事故が発生している場合には、零相電圧Voの値は電圧値Vmとなる。したがって、比αは、いわゆる地絡度合いを示す値となり0〜1の範囲で変化する。また、比αの値が大きいほど地絡事故が完全地絡事故に近づくことになる。
The calculation unit 83 calculates a ratio α between the value of the zero-phase voltage Vo stored in the storage device 52 and the voltage value Vm when a ground fault occurs (S102). Specifically, the calculation shown in Expression (1) is executed.
α = Vo / Vm (1)
In addition, when the ground fault has not occurred in the transmission lines 30 and 31, the value of the zero phase voltage Vo becomes zero, and when the complete ground fault has occurred in the transmission lines 30 and 31, it is zero. The value of the phase voltage Vo is the voltage value Vm. Therefore, the ratio α is a value indicating the so-called ground fault level and changes in the range of 0-1. Further, the larger the value of the ratio α, the closer the ground fault accident becomes to the complete ground fault accident.

そして、算出部83は、算出した地絡度合いを示す比αと、完全地絡時における中性点接地抵抗35に流れる電流Imとの積を計算することにより、地絡事故が発生した際に中性点接地抵抗35に流れる電流Ioを算出する(S103)。具体的には、式(2)に示す演算を実行する。
Io=α×Im・・・(2)
中性点接地抵抗35に流れる電流Ioは、地絡度合い(すなわち、零相電圧Vo)に比例して大きくなる。したがって、本実施形態では、式(2)の演算を実行することにより、実際に電流Ioを測定することなく電流Ioを算出できる。
Then, the calculation unit 83 calculates the product of the ratio α indicating the calculated degree of ground fault and the current Im flowing through the neutral point grounding resistor 35 at the time of complete ground fault, so that when a ground fault occurs. A current Io flowing through the neutral point grounding resistor 35 is calculated (S103). Specifically, the calculation shown in Expression (2) is executed.
Io = α × Im (2)
The current Io flowing through the neutral point grounding resistor 35 increases in proportion to the degree of ground fault (that is, the zero-phase voltage Vo). Therefore, in this embodiment, the current Io can be calculated without actually measuring the current Io by executing the calculation of the equation (2).

また、地絡事故が発生した際に中性点接地抵抗35に流れる電流Ioは、図4に例示するように、母線20から送電線31に流れる零相電流Ioxと、母線21から送電線31に流れる零相電流Ioyとの和になる。このため、算出部83は、算出された電流Ioから、地絡事故発生の際の零相電流Ioxを減算し、零相電流Ioyを算出する(S104)。具体的には、式(3)に示す演算を実行する。
Ioy=Io−Iox・・・(3)
このように、本実施形態では、零相電流Ioyの値を算出できる。そして、標定部84は、地絡方向継電器51の判定結果から事故回線を特定し、記憶装置52に記憶された零相電流Ioxと、算出された零相電流Ioyとに基づいて、事故回線の事故点を標定する(S105)。
Further, as illustrated in FIG. 4, the current Io flowing through the neutral point grounding resistor 35 when the ground fault occurs occurs, and the zero-phase current Iox flowing from the bus 20 to the power transmission line 31 and the power transmission line 31 from the bus 21. And the zero-phase current Ioy flowing through Therefore, the calculation unit 83 calculates the zero phase current Ioy by subtracting the zero phase current Iox at the time of occurrence of the ground fault from the calculated current Io (S104). Specifically, the calculation shown in Expression (3) is executed.
Ioy = Io−Iox (3)
Thus, in this embodiment, the value of the zero phase current Ioy can be calculated. Then, the orientation unit 84 identifies the fault line from the determination result of the ground fault direction relay 51, and based on the zero phase current Iox stored in the storage device 52 and the calculated zero phase current Ioy, Accident points are located (S105).

具体的には、例えば図4において、送電線30,31の長さを便宜上“1”とし、母線20から事故点Aまでの距離を“X”とすると、零相電流Iox、Ioyの間には、式(4)のような関係式が成立する。
Ioy:Iox=1/(1−X):1/(1+X)・・・(4)
なお、上記式(4)の関係は、一般的な分流比演算方式に基づいて得られる関係である。また、母線20から事故点Aまでの距離を“X”は、式(5)で表される。
X=(Ioy−Iox)/(Iox+Ioy)・・・(5)
このため、標定部84は、処理S105において、式(5)の演算を実行することにより、事故点Aの標定が可能となる。
そして、事故点Aが標定されると、標定部84は、事故点Aの位置を表示部54に表示する(S106)。
Specifically, for example, in FIG. 4, when the length of the transmission lines 30 and 31 is “1” for convenience and the distance from the bus 20 to the accident point A is “X”, between the zero-phase currents Iox and Ioy Is a relational expression as shown in Expression (4).
Ioy: Iox = 1 / (1-X): 1 / (1 + X) (4)
In addition, the relationship of said Formula (4) is a relationship obtained based on a general diversion ratio calculation system. Further, the distance “X” from the bus 20 to the accident point A is expressed by the equation (5).
X = (Ioy−Iox) / (Iox + Ioy) (5)
For this reason, the orientation unit 84 can determine the accident point A by executing the calculation of Expression (5) in the process S105.
When the accident point A is located, the orientation unit 84 displays the position of the accident point A on the display unit 54 (S106).

以上、本発明の一実施形態である事故点標定装置45について説明した。事故点標定装置45は、平行2回線送電線における健全回線に流れる零相電流(図4の例では、零相電流Iox)、事故回線に流れる零相電流(図4の例では、零相電流Ioy)のうち、零相電流Ioyを算出している。したがって、事故点標定装置45では、零相電流Iox,Ioyの両方を測定できない場合であっても、精度の良い分流比演算方式に基づいて事故点を標定することができる。この結果、利用者は、例えば中性点接地抵抗35が設けられておらず、零相電流Iox,Ioyの両方を測定できない電気所Aであっても、事故点標定装置45を設置することができる。   In the above, the accident point location apparatus 45 which is one embodiment of this invention was demonstrated. The accident point locating device 45 includes a zero-phase current (zero-phase current Iox in the example of FIG. 4) flowing through a healthy line in a parallel two-line transmission line, and a zero-phase current (zero-phase current in the example of FIG. 4). Ioy), the zero-phase current Ioy is calculated. Therefore, even if the accident point locating device 45 cannot measure both of the zero-phase currents Iox and Ioy, the accident point can be determined based on an accurate diversion ratio calculation method. As a result, for example, the user can install the accident point locating device 45 even in the electric station A where the neutral point grounding resistor 35 is not provided and both the zero-phase currents Iox and Ioy cannot be measured. it can.

また、事故点標定装置45は、地絡事故が発生した際の零相電圧Voと、電圧値Vmとから地絡度合い(比α)を求めた後、地絡事故が発生した際の中性点接地抵抗35に流れる電流Ioを求めている。中性点接地抵抗35に流れる電流Ioは、地絡度合いに比例して大きくなる。このため、本実施形態では、電流Ioを測定することなく、電流Ioを精度よく算出することができる。   In addition, the accident point locating device 45 obtains the degree of ground fault (ratio α) from the zero-phase voltage Vo when the ground fault occurs and the voltage value Vm, and then neutralizes when the ground fault occurs. The current Io flowing through the point grounding resistor 35 is obtained. The current Io flowing through the neutral point grounding resistor 35 increases in proportion to the ground fault degree. For this reason, in the present embodiment, the current Io can be accurately calculated without measuring the current Io.

また、一般に、完全地絡が発生した際の電圧値Vmは、電気学会の電気規格調査会における標準規格で、例えば110Vと定まっている。また、完全地絡が発生した際の電流Imは、中性点接地抵抗35の抵抗値によって定まる。このため、利用者は、事前に特別な計算等を行うことなく、記憶装置52に記憶させる電圧値Vm、Imを定めることができる。   In general, the voltage value Vm when a complete ground fault occurs is a standard in the electrical standards study group of the Institute of Electrical Engineers, and is determined to be 110 V, for example. In addition, the current Im when a complete ground fault occurs is determined by the resistance value of the neutral point grounding resistor 35. For this reason, the user can determine the voltage values Vm and Im to be stored in the storage device 52 without performing special calculations or the like in advance.

なお、上記実施例は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物も含まれる。   In addition, the said Example is for making an understanding of this invention easy, and is not for limiting and interpreting this invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof.

本実施形態では、完全地絡事故(いわゆる、100%の地絡事故)が発生した際の、零相電圧Voと電流Ioの値のそれぞれを電圧値Vm、電流値Imとしたが、これに限られない。前述のように、中性点接地抵抗35に流れる電流Ioは、地絡度合いに比例して大きくなる。このため、例えば、50%の地絡事故が発生した際の、零相電圧Voと電流Ioの値のそれぞれを電圧値Vm、電流値Imとしても良い。この場合、比αが0から2まで変化することになるが、本実施形態と同様に事故点を精度良く標定できる。   In this embodiment, when a complete ground fault (so-called 100% ground fault) occurs, the values of the zero-phase voltage Vo and the current Io are the voltage value Vm and the current value Im, respectively. Not limited. As described above, the current Io flowing through the neutral point grounding resistor 35 increases in proportion to the degree of ground fault. For this reason, for example, the values of the zero-phase voltage Vo and the current Io when a 50% ground fault occurs may be set as the voltage value Vm and the current value Im, respectively. In this case, the ratio α changes from 0 to 2, but the accident point can be accurately determined as in the present embodiment.

また、事故点標定装置45は、処理S102,S103で電流Ioを演算して算出したがこれに限られるものでは無い。例えば、電流Ioと零相電圧Voとの間には、Io=α×Im=(Vo/Vm)×Imとの関係がある。つまり、実際の地絡事故が発生した際の電流Ioは、零相電圧Voに応じて変化する。このため、事前に記憶装置52に電流Ioと零相電圧Voとの相関を示すデータを記憶させ、マイコン53に、前述したデータ及び測定された零相電圧Voを用いて、零相電圧Voに応じた電流Ioを適宜選択させることとしても良い。   Moreover, although the accident point locating apparatus 45 calculated by calculating the electric current Io by process S102, S103, it is not restricted to this. For example, there is a relationship of Io = α × Im = (Vo / Vm) × Im between the current Io and the zero-phase voltage Vo. In other words, the current Io when an actual ground fault has occurred changes according to the zero-phase voltage Vo. For this reason, data indicating the correlation between the current Io and the zero-phase voltage Vo is stored in the storage device 52 in advance, and the microcomputer 53 uses the above-described data and the measured zero-phase voltage Vo to obtain the zero-phase voltage Vo. The corresponding current Io may be appropriately selected.

また、零相電圧検出装置41は、母線20の零相電圧Voを検出したが、例えば、母線20側の送電線31(母線20の近傍の送電線31)の零相電圧であっても良い。この場合であっても、事故点標定装置45は、本実施形態と同様に事故点を標定することができる。   Further, the zero-phase voltage detection device 41 detects the zero-phase voltage Vo of the bus 20, but may be, for example, the zero-phase voltage of the power transmission line 31 on the bus 20 side (the power transmission line 31 near the bus 20). . Even in this case, the accident point locating device 45 can determine the accident point as in the present embodiment.

10 電力系統
20,21 母線
30,31 送電線
40 変流器
41 零相電圧検出装置
45 事故点標定装置
50 地絡過電圧継電器
51 地絡方向継電器
52 記憶装置
53 マイコン
54 表示部
80 地絡検出部
81 電流測定部
82 電圧測定部
83 算出部
84 標定部
DESCRIPTION OF SYMBOLS 10 Electric power system 20,21 Bus line 30,31 Transmission line 40 Current transformer 41 Zero phase voltage detection apparatus 45 Fault location device 50 Ground fault overvoltage relay 51 Ground fault direction relay 52 Memory | storage device 53 Microcomputer 54 Display part 80 Ground fault detection part 81 Current Measurement Unit 82 Voltage Measurement Unit 83 Calculation Unit 84 Orientation Unit

Claims (4)

第1及び第2母線と、第1及び第2送電線を含み前記第1及び第2母線の間に設けられた平行2回線送電線と、前記第2母線に設けたれた中性点接地抵抗と、を備える電力系統における事故点標定装置であって、
前記第1母線から前記第1送電線に流れる第1零相電流を測定する電流測定部と、
前記第1母線または前記第1送電線の零相電圧を測定する電圧測定部と、
前記第1または第2送電線に第1地絡事故が発生した際に前記電圧測定部で測定された前記零相電圧に応じた前記中性点接地抵抗に流れる第1電流と、前記第1地絡事故が発生した際に前記電流測定部で測定された前記第1零相電流とに基づいて、前記第1または第2送電線のうち、前記第2母線から前記第1地絡事故が発生した発生した送電線に流れる第2零相電流を算出する算出部と、
前記第1地絡事故が発生した際に前記電流測定部で測定された前記第1零相電流と、前記第2零相電流とに基づいて、前記第1地絡事故が発生した事故点を標定する標定部と、
を備えることを特徴とする事故点標定装置。
A parallel two-line power transmission line including the first and second bus lines, including the first and second power transmission lines and provided between the first and second bus lines, and a neutral grounding resistance provided on the second bus line An accident point locating device in a power system comprising:
A current measuring unit for measuring a first zero-phase current flowing from the first bus to the first power transmission line;
A voltage measuring unit for measuring a zero-phase voltage of the first bus or the first power transmission line;
A first current flowing through the neutral grounding resistance according to the zero-phase voltage measured by the voltage measuring unit when a first ground fault occurs in the first or second transmission line; Based on the first zero-phase current measured by the current measuring unit when a ground fault occurs, the first ground fault from the second bus of the first or second power transmission line A calculation unit that calculates a second zero-phase current flowing in the generated transmission line;
Based on the first zero-phase current and the second zero-phase current measured by the current measuring unit when the first ground fault occurred, the fault point where the first ground fault occurred was determined. An orientation part for orientation;
An accident location system characterized by comprising:
請求項1に記載の事故点標定装置であって、
前記算出部は、
所定の第2地絡事故が発生した際の前記零相電圧及び前記第2地絡事故が発生した際の前記中性点接地抵抗に流れる第2電流と、前記第1地絡事故が発生した際に前記電圧測定部で測定された前記零相電圧と、に基づいて前記第1電流を算出した後、算出された前記第1電流から前記第1地絡事故が発生した際に前記電流測定部で測定された前記第1零相電流を減算して前記第2零相電流を算出すること、
を特徴とする事故点標定装置。
The accident point locating device according to claim 1,
The calculation unit includes:
The zero-phase voltage when a predetermined second ground fault occurs, the second current flowing through the neutral point ground resistance when the second ground fault occurs, and the first ground fault occur And calculating the first current based on the zero-phase voltage measured by the voltage measuring unit, and then measuring the current when the first ground fault occurs from the calculated first current. Subtracting the first zero-phase current measured in the unit to calculate the second zero-phase current;
Accident point locator characterized by
請求項2に記載の事故点標定装置であって、
前記第2地絡事故は、完全地絡事故であること、
を特徴とする事故点標定装置。
The accident point locating device according to claim 2,
The second ground fault is a complete ground fault;
Accident point locator characterized by
第1及び第2母線と、第1及び第2送電線を含み前記第1及び第2母線の間に設けられた平行2回線送電線と、前記第2母線に設けたれた中性点接地抵抗と、を備える電力系統において、
コンピュータに、
前記第1母線から前記第1送電線に流れる第1零相電流を測定する機能と、
前記第1母線または前記第1送電線の零相電圧を測定する機能と、
前記第1または第2送電線に地絡事故が発生した際に前記電圧測定部で測定された前記零相電圧に応じた前記中性点接地抵抗に流れる電流と、前記地絡事故が発生した際に前記電流測定部で測定された前記第1零相電流とに基づいて、前記第1または第2送電線のうち、前記第2母線から前記地絡事故が発生した発生した送電線に流れる第2零相電流を算出する機能と、
前記地絡事故が発生した際に測定された前記第1零相電流と、前記第2零相電流とに基づいて、前記地絡事故が発生した事故点を標定する機能と、
を実現させるためのプログラム。
A parallel two-line power transmission line including the first and second bus lines, including the first and second power transmission lines and provided between the first and second bus lines, and a neutral grounding resistance provided on the second bus line In a power system comprising:
On the computer,
A function of measuring a first zero-phase current flowing from the first bus to the first power transmission line;
A function of measuring a zero-phase voltage of the first bus or the first power transmission line;
When a ground fault occurs in the first or second power transmission line, a current that flows through the neutral point ground resistance according to the zero-phase voltage measured by the voltage measuring unit, and the ground fault occurs. On the basis of the first zero-phase current measured by the current measuring unit, the first or second power transmission line flows from the second bus to the power transmission line in which the ground fault occurred. A function of calculating a second zero-phase current;
A function of locating the fault point where the ground fault occurred, based on the first zero phase current and the second zero phase current measured when the ground fault occurred;
A program to realize
JP2011063025A 2011-03-22 2011-03-22 Fault point locating device and program Withdrawn JP2012198134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011063025A JP2012198134A (en) 2011-03-22 2011-03-22 Fault point locating device and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011063025A JP2012198134A (en) 2011-03-22 2011-03-22 Fault point locating device and program

Publications (1)

Publication Number Publication Date
JP2012198134A true JP2012198134A (en) 2012-10-18

Family

ID=47180505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011063025A Withdrawn JP2012198134A (en) 2011-03-22 2011-03-22 Fault point locating device and program

Country Status (1)

Country Link
JP (1) JP2012198134A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103792468A (en) * 2014-03-05 2014-05-14 莱芜钢铁集团有限公司 Electric power line fault position location conforming method and device
CN104101813A (en) * 2013-04-12 2014-10-15 南京南瑞继保电气有限公司 Centralized fault area discrimination method
CN104198891A (en) * 2014-09-15 2014-12-10 昆明理工大学 Instantaneous-fault identification method for beat frequency detection adopting recovery-voltage delay one-half cycle superposition
CN105929302A (en) * 2016-04-13 2016-09-07 上海交通大学 Sequence component relation based range finding method for single-end fault of power transmission line
US9827143B2 (en) 1999-04-26 2017-11-28 Glaukos Corporation Shunt device and method for treating ocular disorders
US9962290B2 (en) 2006-11-10 2018-05-08 Glaukos Corporation Uveoscleral shunt and methods for implanting same
USD846738S1 (en) 2017-10-27 2019-04-23 Glaukos Corporation Implant delivery apparatus
US10285856B2 (en) 2001-08-28 2019-05-14 Glaukos Corporation Implant delivery system and methods thereof for treating ocular disorders
US10406029B2 (en) 2001-04-07 2019-09-10 Glaukos Corporation Ocular system with anchoring implant and therapeutic agent
US10517759B2 (en) 2013-03-15 2019-12-31 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US10959941B2 (en) 2014-05-29 2021-03-30 Glaukos Corporation Implants with controlled drug delivery features and methods of using same
US11116625B2 (en) 2017-09-28 2021-09-14 Glaukos Corporation Apparatus and method for controlling placement of intraocular implants
US11253394B2 (en) 2013-03-15 2022-02-22 Dose Medical Corporation Controlled drug delivery ocular implants and methods of using same
US11318043B2 (en) 2016-04-20 2022-05-03 Dose Medical Corporation Bioresorbable ocular drug delivery device
US11564833B2 (en) 2015-09-25 2023-01-31 Glaukos Corporation Punctal implants with controlled drug delivery features and methods of using same
US11826104B2 (en) 2015-03-20 2023-11-28 Glaukos Corporation Gonioscopic devices
US11925578B2 (en) 2015-09-02 2024-03-12 Glaukos Corporation Drug delivery implants with bi-directional delivery capacity

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10568762B2 (en) 1999-04-26 2020-02-25 Glaukos Corporation Stent for treating ocular disorders
US9827143B2 (en) 1999-04-26 2017-11-28 Glaukos Corporation Shunt device and method for treating ocular disorders
US10492950B2 (en) 1999-04-26 2019-12-03 Glaukos Corporation Shunt device and method for treating ocular disorders
US10406029B2 (en) 2001-04-07 2019-09-10 Glaukos Corporation Ocular system with anchoring implant and therapeutic agent
US10285856B2 (en) 2001-08-28 2019-05-14 Glaukos Corporation Implant delivery system and methods thereof for treating ocular disorders
US10828195B2 (en) 2006-11-10 2020-11-10 Glaukos Corporation Uveoscleral shunt and methods for implanting same
US9962290B2 (en) 2006-11-10 2018-05-08 Glaukos Corporation Uveoscleral shunt and methods for implanting same
US11426306B2 (en) 2009-05-18 2022-08-30 Dose Medical Corporation Implants with controlled drug delivery features and methods of using same
US10517759B2 (en) 2013-03-15 2019-12-31 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US11559430B2 (en) 2013-03-15 2023-01-24 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US11253394B2 (en) 2013-03-15 2022-02-22 Dose Medical Corporation Controlled drug delivery ocular implants and methods of using same
CN104101813A (en) * 2013-04-12 2014-10-15 南京南瑞继保电气有限公司 Centralized fault area discrimination method
CN103792468A (en) * 2014-03-05 2014-05-14 莱芜钢铁集团有限公司 Electric power line fault position location conforming method and device
US11992551B2 (en) 2014-05-29 2024-05-28 Glaukos Corporation Implants with controlled drug delivery features and methods of using same
US10959941B2 (en) 2014-05-29 2021-03-30 Glaukos Corporation Implants with controlled drug delivery features and methods of using same
CN104198891A (en) * 2014-09-15 2014-12-10 昆明理工大学 Instantaneous-fault identification method for beat frequency detection adopting recovery-voltage delay one-half cycle superposition
US11826104B2 (en) 2015-03-20 2023-11-28 Glaukos Corporation Gonioscopic devices
US11925578B2 (en) 2015-09-02 2024-03-12 Glaukos Corporation Drug delivery implants with bi-directional delivery capacity
US11564833B2 (en) 2015-09-25 2023-01-31 Glaukos Corporation Punctal implants with controlled drug delivery features and methods of using same
CN105929302A (en) * 2016-04-13 2016-09-07 上海交通大学 Sequence component relation based range finding method for single-end fault of power transmission line
US11318043B2 (en) 2016-04-20 2022-05-03 Dose Medical Corporation Bioresorbable ocular drug delivery device
US11116625B2 (en) 2017-09-28 2021-09-14 Glaukos Corporation Apparatus and method for controlling placement of intraocular implants
USD846738S1 (en) 2017-10-27 2019-04-23 Glaukos Corporation Implant delivery apparatus
USD938585S1 (en) 2017-10-27 2021-12-14 Glaukos Corporation Implant delivery apparatus
USD901683S1 (en) 2017-10-27 2020-11-10 Glaukos Corporation Implant delivery apparatus

Similar Documents

Publication Publication Date Title
JP2012198134A (en) Fault point locating device and program
US8044666B2 (en) Method for determining location of phase-to earth fault
US20120150460A1 (en) Method of fault phase selection and fault type determination
US10585134B2 (en) Method and system for locating ground faults in a network of drives
KR20090010536A (en) System and method for determining areas of vulnerability for voltage sags assessment, and a medium having computer readable program for executing the method
EP2786163A1 (en) Fault location in power distribution systems
CN111141995B (en) Line double-end steady-state distance measuring method and system based on amplitude comparison principle
EP2682768B1 (en) Method and apparatus for determining the distance to phase-to-earth fault
JP2015520849A (en) Fault detection and location apparatus and method
RU2558266C1 (en) Method of finding of distance to places of earth faults on two power lines in networks with low earth fault currents
CN105738785A (en) AC extra-high voltage GIS state evaluation method and device based on multi-source data
JP2017101931A (en) Fault point location device, method, and program thereof
KR100782354B1 (en) System and method for determining areas of vulnerability for voltage sags assessment, and a medium having computer readable program for executing the method
CN109633357B (en) Method and device for monitoring grounding insulation of multiple buses in three buses
JP2014039375A (en) Monitoring device, monitoring system, and program
JP6240918B1 (en) Leakage current measuring method and leakage current measuring device
JP5642737B2 (en) Insulation diagnostic device, insulation diagnostic system, program
JP5834308B2 (en) Line constant measuring method and protection control measuring device for two parallel transmission lines
JP5972097B2 (en) High voltage insulation monitoring device and high voltage insulation monitoring method
RU2486532C1 (en) Device to control deformation of power transformer windings
JP2013031332A (en) Accident identification device for power transmission system
JP2015116009A (en) Power transmission line protection relay
JP2013176177A (en) Method of detecting presence or absence of ground faults by utilizing ied
CN110535106B (en) Fault protection method and device, detection method and device for transformer substation and power transmission line
JP6625866B2 (en) Ground fault current measuring device and ground fault current measuring method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603