JP2012187492A - Porous ceramic membrane, and method of producing the same - Google Patents

Porous ceramic membrane, and method of producing the same Download PDF

Info

Publication number
JP2012187492A
JP2012187492A JP2011052356A JP2011052356A JP2012187492A JP 2012187492 A JP2012187492 A JP 2012187492A JP 2011052356 A JP2011052356 A JP 2011052356A JP 2011052356 A JP2011052356 A JP 2011052356A JP 2012187492 A JP2012187492 A JP 2012187492A
Authority
JP
Japan
Prior art keywords
outer peripheral
peripheral edge
inner peripheral
fluid flow
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011052356A
Other languages
Japanese (ja)
Inventor
Naoki Kobayashi
小林  直樹
Kazuhiro Kuriyama
和大 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2011052356A priority Critical patent/JP2012187492A/en
Publication of JP2012187492A publication Critical patent/JP2012187492A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porous ceramic membrane excellent in durability, capable of preventing the exposure of its substrate caused by the elution of an alkali present in its glass seal layer disposed on the outer peripheral edge A and inner peripheral edge B thereof, and a method of producing the same.SOLUTION: The porous ceramic membrane including a plurality of through holes formed in a porous alumina substrate, a MF membrane layer formed on the inner surface of the plurality of through holes each functioning as a fluid passage, a glass seal layer formed on the end face disposed on the fluid passage direction of the substrate, a chamfered outer periphery formed by chamfering the outer peripheral edge of the porous alumina substrate whereon the outer peripheral face thereof and the end face on the fluid passage direction thereof are disposed to form an angle, and a chamfered inner periphery formed by chamfering the inner peripheral edge of the porous alumina substrate whereon the end face on the fluid passage direction thereof and the MF membrane layer are disposed to form an angle, is characterized in that the chamfered outer periphery and the chamfered inner periphery are covered with the glass seal layer.

Description

本発明はセラミック多孔質膜およびその製造方法に関するものである。   The present invention relates to a ceramic porous membrane and a method for producing the same.

セラミック多孔質膜は、簡便な操作により液体中の懸濁物質や微生物等を効果的に除去し得るため、食品加工分野で使用されることも多い。   Ceramic porous membranes are often used in the food processing field because they can effectively remove suspended substances, microorganisms, and the like in a liquid by a simple operation.

一般に食品加工分野で使用される機器類は、機器に付着するタンパク成分の除去を目的として、苛性ソーダで洗浄される。例えば、洗浄対象が有機膜の場合には、0.01〜0.05重量%もしくはpH12以下の苛性ソーダで洗浄を行うことが通常であるが、有機膜に比べて耐食性の強いセラミック多孔質膜の場合には、0.5〜2重量%程度の苛性ソーダを用いて洗浄を行うことも可能である。   In general, equipment used in the field of food processing is washed with caustic soda for the purpose of removing protein components adhering to the equipment. For example, when the object to be cleaned is an organic film, it is normal to perform cleaning with caustic soda of 0.01 to 0.05% by weight or pH 12 or less. However, the ceramic porous film has a higher corrosion resistance than the organic film. In some cases, it is possible to perform cleaning using caustic soda of about 0.5 to 2% by weight.

図6には、通常、食品加工分野で使用されるセラミック多孔質膜の断面説明図を示している。図6に示すように、該セラミック多孔質膜1は、弾性材料からなるO−リング等のシール材2によって、モノリス形状のセラミック多孔体(比較的平均細孔径が大きい)からなる基材9の外周面3と流体流路方向端面4とが、気密的に隔離されるようにハウジング5内に収納されて使用される。該セラミック多孔質膜1の構造に関し、流体流路方向端面4をガラスシール層6で被覆する技術が開示されている(特許文献1等)。   FIG. 6 is a cross-sectional explanatory diagram of a ceramic porous membrane that is usually used in the food processing field. As shown in FIG. 6, the ceramic porous membrane 1 is made of a base material 9 made of a monolithic ceramic porous body (with a relatively large average pore diameter) by a sealing material 2 such as an O-ring made of an elastic material. The outer peripheral surface 3 and the fluid flow path direction end surface 4 are housed and used in the housing 5 so as to be hermetically isolated. With respect to the structure of the ceramic porous membrane 1, a technique for covering the end surface 4 in the fluid flow path direction with a glass seal layer 6 is disclosed (Patent Document 1 and the like).

流体流路方向端面4にガラスシール層6を形成することにより、被処理流体は、図6に実線(F)で示すように、必ず、貫通孔7と、該貫通孔7の表面に形成された濾過膜層8を透過して基材の外周面3に流出することになる。当該構造によれば、図6に破線(F´)で示すように、流体流路方向端面4側から基材の内部に浸入した被処理流体が、濾過膜層8を透過することなく基材の外周面3から流出してしまう現象を回避し、目的とする濾過を確実に行うことができる。   By forming the glass seal layer 6 on the end surface 4 in the fluid flow path direction, the fluid to be treated is always formed on the through hole 7 and the surface of the through hole 7 as shown by the solid line (F) in FIG. The permeated membrane layer 8 passes through the outer peripheral surface 3 of the substrate. According to the structure, as shown by a broken line (F ′) in FIG. 6, the fluid to be processed that has entered the base material from the end surface 4 side in the fluid flow path direction does not pass through the filtration membrane layer 8. The phenomenon which flows out from the outer peripheral surface 3 of this can be avoided, and the target filtration can be performed reliably.

しかし、従来、基材9は、予め焼成されたモノリス形状のセラミック多孔体を定寸で切断し、該切断面である流体流路方向端面4と外周面3とが角をなす外周エッジ部10や、該流体流路方向端面4と貫通孔7とが角をなす内周エッジ部11を有するものを使用しており、これらの外周エッジ部10や内周エッジ部11にシリカ系釉薬を塗布および焼成してガラスシール層6を形成する場合、塗布された釉薬に対し、焼成過程で表面張力が働く結果、図6に示すように、ガラスシール層6の厚みが、外周エッジ部10や内周エッジ部11で薄くなる現象が不可避的に生じていた。このため、セラミック多孔質膜のアルカリ洗浄を繰り返して、ガラスシール層6が溶出し始めた場合、まず、これらの外周エッジ部10や内周エッジ部11から基材9が露出し、膜寿命が短くなる問題があった。   However, conventionally, the base material 9 cuts a monolith-shaped ceramic porous body fired in advance with a fixed size, and an outer peripheral edge portion 10 in which the fluid flow direction end surface 4 and the outer peripheral surface 3 are the cut surfaces. In addition, a material having an inner peripheral edge portion 11 in which the end face 4 in the fluid flow path direction and the through hole 7 form an angle is used, and silica-based glaze is applied to the outer peripheral edge portion 10 and the inner peripheral edge portion 11. When the glass seal layer 6 is formed by baking, as a result of surface tension acting on the applied glaze during the baking process, as shown in FIG. The phenomenon of thinning at the peripheral edge portion 11 inevitably occurred. For this reason, when the alkali cleaning of the ceramic porous membrane is repeated and the glass seal layer 6 starts to be eluted, first, the base material 9 is exposed from the outer peripheral edge portion 10 and the inner peripheral edge portion 11, and the membrane life is shortened. There was a problem of shortening.

特開2006−263498号公報JP 2006-263498 A

本発明の目的は前記の問題を解決し、外周エッジ部Aや内周エッジ部Bにおけるガラスシール層のアルカリ溶出に起因する基材露出を回避し、耐久性に優れたセラミック多孔質膜およびその製造方法を提供することである。   The object of the present invention is to solve the above problems, avoid exposure of the substrate due to alkali elution of the glass seal layer at the outer peripheral edge portion A and the inner peripheral edge portion B, and a ceramic porous membrane excellent in durability and its It is to provide a manufacturing method.

上記課題を解決するためになされた本発明のセラミック多孔質膜は、多孔質アルミナ基材に形成された複数の貫通孔と、流体の流路となる該貫通孔の内表面に形成されたMF膜層と、該流体流路方向の端部に形成されたガラスシール層を有するセラミック多孔質膜において、該多孔質アルミナ基材の外周面と該流体流路方向の端面とが角をなす外周エッジ部を面取り加工した外周面取り部と、該MF膜層と該流体流路方向の端面とが角をなす内周エッジ部を面取り加工した内周面取り部を有し、該外周面取り部および内周面取り部を、該ガラスシール層で被覆したことを特徴とするものである。   The ceramic porous membrane of the present invention made to solve the above-described problems is provided with a plurality of through holes formed in a porous alumina base material and an MF formed on the inner surface of the through hole serving as a fluid flow path. A ceramic porous membrane having a membrane layer and a glass seal layer formed at an end portion in the fluid flow channel direction, and an outer periphery in which an outer peripheral surface of the porous alumina substrate and an end surface in the fluid flow channel direction form an angle An outer peripheral chamfered portion obtained by chamfering the edge portion, and an inner peripheral chamfered portion obtained by chamfering an inner peripheral edge portion where the MF membrane layer and the end surface in the fluid flow path direction form an angle. The peripheral chamfered portion is covered with the glass seal layer.

請求項2記載の発明は、請求項1記載のセラミック多孔質膜において、多孔質アルミナ基材がモノリス形状のセラミック多孔体であることを特徴とするものである。   According to a second aspect of the present invention, in the ceramic porous membrane according to the first aspect, the porous alumina substrate is a monolithic ceramic porous body.

請求項3記載の発明は、請求項1記載のセラミック多孔質膜において、MF膜層の膜厚が120〜200μmであることを特徴とするものである。   According to a third aspect of the present invention, in the ceramic porous membrane according to the first aspect, the MF film layer has a thickness of 120 to 200 μm.

請求項4記載の発明は、請求項1記載のセラミック多孔質膜の製造方法であって、外周エッジ部を回転砥石で面取り加工する外周面取り部形成工程と、内周エッジ部を研磨ブラシで面取り加工する内周面取り部形成工程を有することを特徴とするものである。   Invention of Claim 4 is a manufacturing method of the ceramic porous membrane of Claim 1, Comprising: The outer periphery chamfering part formation process which chamfers an outer peripheral edge part with a rotating grindstone, and chamfers an inner peripheral edge part with a polishing brush It has an inner peripheral chamfered portion forming step to be processed.

請求項5記載の発明は、請求項4記載のセラミック多孔質膜の製造方法において、研磨ブラシが、粒度#170〜#240、直径0.6〜1.0mm、長さ15〜25mmのダイヤモンド糸からなり、該研磨ブラシを回転数800〜1200rpm、偏心回転数24〜40rpmで回転することを特徴とするものである。   The invention according to claim 5 is the method for producing a ceramic porous membrane according to claim 4, wherein the polishing brush is a diamond yarn having a particle size of # 170 to # 240, a diameter of 0.6 to 1.0 mm, and a length of 15 to 25 mm. The polishing brush is rotated at a rotational speed of 800 to 1200 rpm and an eccentric rotational speed of 24 to 40 rpm.

本発明に係るセラミック多孔質膜は、多孔質アルミナ基材に形成された複数の貫通孔と、流体の流路となる該貫通孔の内表面に形成されたMF膜層と、該流体流路方向の端部に形成されたガラスシール層を有するセラミック多孔質膜において、該多孔質アルミナ基材の外周面と該流体流路方向の端面とが角をなす外周エッジ部を面取り加工した外周面取り部と、該MF膜層と該流体流路方向の端面とが角をなす内周エッジ部を面取り加工した内周面取り部を有し、該外周面取り部および内周面取り部を、該ガラスシール層で被覆した構成とすることにより、外周エッジ部や内周エッジ部に塗布された釉薬に対し、焼成過程で表面張力が働いても、なお、該外周エッジ部や内周エッジ部におけるガラスシール層の厚みを、面取り加工分確保することが可能となった。これにより、従来セラミック多孔質膜のアルカリ洗浄を繰り返して、ガラスシール層が溶出し始めた場合、まず、これらの外周エッジ部や内周エッジ部から基材が露出して膜寿命が短くなっていた問題が解消され、従来に比べて耐久性の向上を図ることができる。   The ceramic porous membrane according to the present invention includes a plurality of through holes formed in a porous alumina base material, an MF film layer formed on an inner surface of the through hole serving as a fluid flow path, and the fluid flow path. In a ceramic porous membrane having a glass seal layer formed at an end portion in the direction, an outer peripheral chamfering process by chamfering an outer peripheral edge portion where the outer peripheral surface of the porous alumina substrate and the end surface in the fluid flow channel direction form an angle A chamfered inner peripheral chamfered portion, and an outer peripheral chamfered portion and an inner peripheral chamfered portion of the glass seal. Even if surface tension is applied to the glaze applied to the outer peripheral edge and inner peripheral edge by firing, the glass seal at the outer peripheral edge and inner peripheral edge Ensure the thickness of the layer for chamfering Theft has become possible. As a result, when the alkali cleaning of the conventional ceramic porous membrane is repeated and the glass seal layer begins to elute, first, the base material is exposed from these outer peripheral edge portions and inner peripheral edge portions, and the membrane life is shortened. The problem is solved, and durability can be improved as compared with the conventional case.

ハウジング内に収納された使用状態におけるセラミック多孔質膜の断面説明図である。It is a cross-sectional explanatory drawing of the ceramic porous membrane in the use condition accommodated in the housing. 図1の要部拡大図である。It is a principal part enlarged view of FIG. 貫通孔と、貫通孔の内表面に形成されたMF膜層を有する多孔質アルミナ基材の全体説明図である。It is whole explanatory drawing of the porous alumina base material which has a through-hole and the MF film | membrane layer formed in the inner surface of a through-hole. 外周エッジ部を回転砥石で面取り加工する外周面取り部形成工程の説明図である。It is explanatory drawing of the outer peripheral chamfer part formation process which chamfers an outer peripheral edge part with a rotating grindstone. 内周エッジ部を研磨ブラシで面取り加工する内周面取り部形成工程の説明図である。It is explanatory drawing of the internal peripheral chamfer part formation process which chamfers an internal peripheral edge part with a polishing brush. 従来から食品加工分野で使用されるセラミック多孔質膜の断面説明図(ハウジングに収納された状態図)である。It is sectional explanatory drawing (state figure accommodated in the housing) of the ceramic porous membrane conventionally used in the food processing field | area.

以下に本発明の好ましい実施形態を示す。   Preferred embodiments of the present invention are shown below.

図1には、ハウジング内に収納された使用状態におけるセラミック多孔質膜の断面説明図を示し、図2には図1の要部拡大図を示している。   FIG. 1 is a cross-sectional explanatory view of a ceramic porous membrane in a use state accommodated in a housing, and FIG. 2 is an enlarged view of a main part of FIG.

図1のセラミック多孔質膜1は、図3に示される多孔質アルミナ基材9(例えば、直径30〜180mmφ、長さ150〜2000mmの円柱状基材)を用いて、該基材9の外周面3と流体流路方向の端面4とが角をなす外周エッジ部10を面取り加工する外周面取り部形成工程と、MF膜層12と該流体流路方向の端面4とが角をなす内周エッジ部11を面取り加工する内周面取り部形成工程と、該外周面取り部13および内周面取り部14を被覆するように、該流体流路方向の端部Aにガラスシール層6を形成するガラスシール層形成工程を経て、製造される。図3に示す多孔質アルミナ基材9は、複数の貫通孔7と、流体の流路となる該貫通孔7の内表面に形成されたMF膜層12を有している。   The porous ceramic membrane 1 shown in FIG. 1 uses the porous alumina substrate 9 shown in FIG. 3 (for example, a cylindrical substrate having a diameter of 30 to 180 mmφ and a length of 150 to 2000 mm). An outer peripheral chamfered portion forming step of chamfering an outer peripheral edge portion 10 in which the surface 3 and the end surface 4 in the fluid flow channel direction form an angle, and an inner periphery in which the MF membrane layer 12 and the end surface 4 in the fluid flow channel direction form an angle An inner peripheral chamfered portion forming step for chamfering the edge portion 11 and glass for forming the glass seal layer 6 on the end A in the fluid flow path direction so as to cover the outer peripheral chamfered portion 13 and the inner peripheral chamfered portion 14 It is manufactured through a sealing layer forming step. The porous alumina base material 9 shown in FIG. 3 has a plurality of through holes 7 and an MF membrane layer 12 formed on the inner surface of the through holes 7 that serve as fluid flow paths.

(外周面取り部形成工程)
図4には、外周エッジ部10を回転砥石15で面取り加工する外周面取り部形成工程の説明図を示している。回転砥石15はテーパ―状の内周面を備えたものであり、従来公知のもの(例えば、中心に孔部を有する円盤状(ドーナツ状)の台金の外周面に、メタルボンドで保持されたダイヤモンド砥粒層を取り付けた構造を有するホイール等)を使用することができる。
(Outer peripheral chamfer forming step)
FIG. 4 is an explanatory diagram of an outer peripheral chamfered portion forming step in which the outer peripheral edge portion 10 is chamfered with the rotating grindstone 15. The rotating grindstone 15 has a taper-shaped inner peripheral surface, and is held by a metal bond on the outer peripheral surface of a conventionally known one (for example, a disk-shaped (donut-shaped) base metal having a hole in the center. In addition, a wheel having a structure to which a diamond abrasive layer is attached can be used.

外周面取り部形成工程では、流体の流路となる複数の貫通孔7の内表面にMF膜層12が形成されたアルミナ質の基材9(例えば、直径30〜180mmφ、長さ150〜2000mmの円柱状基材)を用い、回転砥石15のテーパ―面を、該基材9の流体流路方向の端面4に圧接しながら回転させることによって、外周エッジ部10に面取り加工を行い、外周面取り部13を形成している。面取り角度は30〜60°が好ましく、図4には45°の例を示している。   In the outer peripheral chamfered portion forming step, an alumina base material 9 (for example, having a diameter of 30 to 180 mmφ and a length of 150 to 2000 mm) in which the MF film layer 12 is formed on the inner surfaces of the plurality of through holes 7 serving as fluid flow paths. A cylindrical base material) is used, and the taper surface of the rotating grindstone 15 is rotated while being pressed against the end face 4 of the base material 9 in the fluid flow path direction, whereby the outer peripheral edge portion 10 is chamfered, and the outer peripheral chamfering is performed. Part 13 is formed. The chamfer angle is preferably 30 to 60 °, and FIG. 4 shows an example of 45 °.

(内周面取り部形成工程)
図5には、内周エッジ部11を研磨ブラシ16で面取り加工する内周面取り部形成工程の説明図を示している。
(Inner chamfer forming process)
FIG. 5 shows an explanatory diagram of an inner peripheral chamfered portion forming step in which the inner peripheral edge portion 11 is chamfered with the polishing brush 16.

内周エッジ部11の面取り加工は、リューター等の研削機を用いて貫通孔を1か所ずつ、順次研磨していく事も可能であるが、複数(例えば、19、37、61ヶ所)の貫通孔を有するアルミナ質基材の場合には、当該手法は手間と時間がかかり実用性に欠ける。そこで、本実施形態では、粒度#170〜240、直径0.6〜1.0mm、長さ15〜25mmのダイヤモンド糸からなる研磨ブラシ16を使用し、該研磨ブラシ16を回転数800〜1200rpm、偏心回転数24〜40rpmで回転して面取り加工を行い、内周面取り部14を形成している。   The chamfering of the inner peripheral edge 11 can be performed by sequentially polishing the through holes one by one using a grinder such as a leuter, but a plurality of (for example, 19, 37, 61) In the case of an alumina base material having through holes, this method is laborious and time consuming and lacks practicality. Therefore, in this embodiment, a polishing brush 16 made of diamond yarn having a particle size of # 170 to 240, a diameter of 0.6 to 1.0 mm, and a length of 15 to 25 mm is used, and the polishing brush 16 is rotated at a rotational speed of 800 to 1200 rpm. The inner peripheral chamfered portion 14 is formed by performing chamfering by rotating at an eccentric rotational speed of 24 to 40 rpm.

内周面取り部形成工程では、約120μmの厚みを有するMF膜層12と基材の流体流路方向端面4とが角をなす内周エッジ部11を面取り加工することが必要となるが、研磨ブラシ16のダイヤモンド糸が、長さ300mm以上になると、ダイヤモンド糸の撓み量が過剰になり、内周エッジ部11の研磨を効果的に行うことができず好ましくない。一方、研磨ブラシ16のダイヤモンド糸が、長さ100mm以下の場合、ダイヤモンド糸の撓み量が不足し、基材の流体流路方向端面4も研磨されてしまい、内周エッジ部11の研磨を効果的に行うことができず好ましくない。これに対し、研磨ブラシのダイヤモンド糸を、長さ15〜25mmとすることにより、研磨ブラシ16の毛先が、内周エッジ部11の研磨を効果的に行う角度となるように、ダイヤモンド糸の撓み量を最適に調整することができる。   In the inner peripheral chamfered portion forming step, it is necessary to chamfer the inner peripheral edge portion 11 in which the MF film layer 12 having a thickness of about 120 μm and the end surface 4 of the base material in the fluid flow path form an angle. If the diamond yarn of the brush 16 has a length of 300 mm or more, the amount of bending of the diamond yarn becomes excessive, and the inner peripheral edge portion 11 cannot be effectively polished, which is not preferable. On the other hand, when the diamond yarn of the polishing brush 16 has a length of 100 mm or less, the amount of bending of the diamond yarn is insufficient, and the end surface 4 of the base material in the fluid flow path direction is also polished, thereby effectively polishing the inner peripheral edge portion 11. It is not preferable because it cannot be carried out automatically. On the other hand, by setting the diamond yarn of the polishing brush to a length of 15 to 25 mm, the tip of the diamond yarn is adjusted so that the tip of the polishing brush 16 has an angle for effectively polishing the inner peripheral edge portion 11. The amount of deflection can be adjusted optimally.

(ガラスシール層形成工程)
ガラスシール層形成工程では、前記工程で形成した外周面取り部13と内周面取り部14を被覆するガラスシール層6を形成する。本発明のガラスシール層6とは、基材の流体流路方向端面4を被覆するように配置された液不透過性のシール材であって、ガラス釉薬で構成されたものを意味する。このガラスシール層6は、被処理流体が流体流路方向端面4から基材内部に浸入することを防止する。このガラスは耐食性に優れ、しかも低融点である。
(Glass seal layer forming process)
In the glass seal layer forming step, the glass seal layer 6 that covers the outer peripheral chamfered portion 13 and the inner peripheral chamfered portion 14 formed in the above step is formed. The glass seal layer 6 of the present invention means a liquid-impermeable seal material arranged so as to cover the end face 4 of the base material in the fluid flow path, and is composed of glass glaze. The glass seal layer 6 prevents the fluid to be processed from entering the substrate from the end surface 4 in the fluid flow path direction. This glass is excellent in corrosion resistance and has a low melting point.

ガラスシール層6は、従来手法に従って形成すればよく、例えば、以下のような方法により形成することができる。まず、ガラス原料を、アルカリ成分含有率が10〜15%のシリカ―ジルコニア系の組成となるように混合し、溶融して均一化し、これを冷却した後に平均粒径10〜20μm程度となるように粉砕したフリットを用意する。次いで、そのフリットに対し、水、及び有機バインダを加えて混合することによりガラスシール形成用スラリーを調製する。そのガラスシール形成用スラリーをセラミックフィルタの両端面に塗布して外周面取り部と内周面取り部を被覆し、乾燥した後、焼成する。なお、該ガラスシール層を、アルカリ成分含有率が10〜15%のシリカ―ジルコニア系のガラス釉薬から構成とすることにより、高濃度のアルカリを用いた膜洗浄の繰り返しによっても、アルカリによる該ガラスシール層の溶出を効果的に抑制することができる。   The glass seal layer 6 may be formed according to a conventional method, and for example, can be formed by the following method. First, glass raw materials are mixed so as to have a silica-zirconia-based composition with an alkali component content of 10 to 15%, melted and homogenized, and cooled to have an average particle size of about 10 to 20 μm. Prepare a crushed frit. Next, water and an organic binder are added to the frit and mixed to prepare a slurry for forming a glass seal. The slurry for forming a glass seal is applied to both end faces of the ceramic filter to cover the outer peripheral chamfered portion and the inner peripheral chamfered portion, dried, and fired. The glass sealing layer is composed of a silica-zirconia glass glaze having an alkali component content of 10 to 15%, so that the glass with alkali can be obtained even by repeated film cleaning using a high concentration of alkali. Elution of the seal layer can be effectively suppressed.

前記の各工程によれば、該外周エッジ部10や内周エッジ部11における面取り加工分、ガラスシール層6の厚みを確保することが可能となる。外周エッジ部10や内周エッジ部11におけるガラスシール層6の厚みを確保することにより、セラミック多孔質膜1のアルカリ洗浄を繰り返してガラスシール層6が溶出し始めた場合であっても、これらのエッジ部における基材9の露出を、従来に比べて効果的に抑制することができる。   According to each said process, it becomes possible to ensure the part for the chamfering process in this outer periphery edge part 10 or the inner periphery edge part 11, and the thickness of the glass seal layer 6. FIG. Even when the glass sealing layer 6 starts to elute after repeated alkali cleaning of the ceramic porous membrane 1 by securing the thickness of the glass sealing layer 6 at the outer peripheral edge portion 10 and the inner peripheral edge portion 11, The exposure of the base material 9 at the edge portion can be effectively suppressed as compared with the conventional case.

また、ガラスシール層は、MF膜に対する接着性が弱い傾向が見られるが、内周面取り部を形成することにより、ガラスシール層とMF膜との接着面積を大きく確保でき、シール性の向上を図ることもできる。ここで、シール性とは、セラミック膜の多孔体に水を染み込ませ(水中に浸漬させ、脱気を行う)1次側、若しくは2次側からエアーで加圧し、反対側より気泡が発生するかで確認されるガラスシール層のシール機能を意味するものであり、シール性の向上とは膜寿命の延長を意味するものである。   In addition, the glass seal layer tends to have weak adhesion to the MF film, but by forming the inner peripheral chamfered portion, a large adhesion area between the glass seal layer and the MF film can be secured, and the sealing performance is improved. You can also plan. Here, the sealing property means that the porous body of the ceramic membrane is soaked with water (immersed in water and degassed), and air is pressurized from the primary side or the secondary side, and bubbles are generated from the opposite side. Means the sealing function of the glass sealing layer, and the improvement in sealing performance means the extension of the film life.

1 セラミック多孔質膜
2 シール材
3 外周面
4 流体流路方向端面
5 ハウジング
6 ガラスシール層
7 貫通孔
8 濾過膜層
9 基材
10 外周エッジ部
11 内周エッジ部
12 MF膜層
13 外周面取り部
14 内周面取り部
15 回転砥石
16 研磨ブラシ
DESCRIPTION OF SYMBOLS 1 Ceramic porous membrane 2 Seal material 3 Outer peripheral surface 4 End surface 5 in fluid flow path 5 Housing 6 Glass seal layer 7 Through-hole 8 Filtration membrane layer 9 Base material 10 Outer peripheral edge portion 11 Inner peripheral edge portion 12 MF membrane layer 13 Outer peripheral chamfered portion 14 Inner peripheral chamfer 15 Rotating whetstone 16 Polishing brush

Claims (5)

多孔質アルミナ基材に形成された複数の貫通孔と、流体の流路となる該貫通孔の内表面に形成されたMF膜層と、該流体流路方向端部に形成されたガラスシール層を有するセラミック多孔質膜において、
該多孔質アルミナ基材の外周面と該流体流路方向の端面とが角をなす外周エッジ部を面取り加工した外周面取り部と、該MF膜層と該流体流路方向の端面とが角をなす内周エッジ部を面取り加工した内周面取り部を有し、
該外周面取り部および内周面取り部を、該ガラスシール層で被覆したことを特徴とするセラミック多孔質膜。
A plurality of through holes formed in the porous alumina base material, an MF film layer formed on the inner surface of the through hole serving as a fluid flow path, and a glass seal layer formed at an end in the fluid flow path direction In a ceramic porous membrane having
An outer peripheral chamfered portion obtained by chamfering an outer peripheral edge portion where an outer peripheral surface of the porous alumina base material and an end surface in the fluid flow channel direction form an angle, and an end surface in the fluid flow channel direction at the MF membrane layer and the end surface in the fluid flow channel direction. It has an inner peripheral chamfered part that chamfers the inner peripheral edge part that is made,
A porous ceramic membrane characterized in that the outer peripheral chamfered portion and the inner peripheral chamfered portion are covered with the glass seal layer.
多孔質アルミナ基材がモノリス形状のセラミック多孔体であることを特徴とする請求項1記載のセラミック多孔質膜。   2. The porous ceramic membrane according to claim 1, wherein the porous alumina substrate is a monolithic ceramic porous body. MF膜層の膜厚が120〜200μmであることを特徴とする請求項1記載のセラミック多孔質膜。   The ceramic porous membrane according to claim 1, wherein the thickness of the MF membrane layer is 120 to 200 µm. 請求項1記載のセラミック多孔質膜の製造方法であって、外周エッジ部を回転砥石で面取り加工する外周面取り部形成工程と、内周エッジ部を研磨ブラシで面取り加工する内周面取り部形成工程を有することを特徴とするセラミック多孔質膜の製造方法。   It is a manufacturing method of the ceramic porous membrane of Claim 1, Comprising: The outer periphery chamfer part formation process which chamfers an outer periphery edge part with a rotating grindstone, and the inner peripheral chamfer part formation process which chamfers an inner peripheral edge part with a polishing brush A method for producing a ceramic porous membrane, comprising: 研磨ブラシが、粒度#170〜240、直径0.6〜1.0mm、長さ15〜25mmのダイヤモンド糸からなり、該研磨ブラシを回転数800〜1200rpm、偏心回転数24〜40rpmで回転することを特徴とする請求項4記載のセラミック多孔質膜の製造方法。
The polishing brush is made of diamond thread having a particle size of # 170 to 240, a diameter of 0.6 to 1.0 mm, and a length of 15 to 25 mm, and the polishing brush is rotated at a rotational speed of 800 to 1200 rpm and an eccentric rotational speed of 24 to 40 rpm. The method for producing a ceramic porous membrane according to claim 4.
JP2011052356A 2011-03-10 2011-03-10 Porous ceramic membrane, and method of producing the same Pending JP2012187492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011052356A JP2012187492A (en) 2011-03-10 2011-03-10 Porous ceramic membrane, and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011052356A JP2012187492A (en) 2011-03-10 2011-03-10 Porous ceramic membrane, and method of producing the same

Publications (1)

Publication Number Publication Date
JP2012187492A true JP2012187492A (en) 2012-10-04

Family

ID=47081261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011052356A Pending JP2012187492A (en) 2011-03-10 2011-03-10 Porous ceramic membrane, and method of producing the same

Country Status (1)

Country Link
JP (1) JP2012187492A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016043295A (en) * 2014-08-21 2016-04-04 日本碍子株式会社 Ceramic filter manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002210314A (en) * 2001-01-16 2002-07-30 Ngk Insulators Ltd Ceramic filter
JP2006218851A (en) * 2005-01-14 2006-08-24 Denso Corp Method for manufacturing ceramic honeycomb structure and ceramic honeycomb structure
JP2007237109A (en) * 2006-03-10 2007-09-20 Ngk Insulators Ltd Method for sealing ceramic filter
JP2008173601A (en) * 2007-01-22 2008-07-31 Ngk Insulators Ltd Ceramic filter and end face sealing method thereof
JP2010525965A (en) * 2007-04-30 2010-07-29 コーニング インコーポレイテッド Method and apparatus for manufacturing honeycomb structure with chamfered outer skin and honeycomb structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002210314A (en) * 2001-01-16 2002-07-30 Ngk Insulators Ltd Ceramic filter
JP2006218851A (en) * 2005-01-14 2006-08-24 Denso Corp Method for manufacturing ceramic honeycomb structure and ceramic honeycomb structure
JP2007237109A (en) * 2006-03-10 2007-09-20 Ngk Insulators Ltd Method for sealing ceramic filter
JP2008173601A (en) * 2007-01-22 2008-07-31 Ngk Insulators Ltd Ceramic filter and end face sealing method thereof
JP2010525965A (en) * 2007-04-30 2010-07-29 コーニング インコーポレイテッド Method and apparatus for manufacturing honeycomb structure with chamfered outer skin and honeycomb structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016043295A (en) * 2014-08-21 2016-04-04 日本碍子株式会社 Ceramic filter manufacturing method

Similar Documents

Publication Publication Date Title
JP4885165B2 (en) Vacuum adsorption device
JP4607634B2 (en) Ceramic filter
KR20000024453A (en) Conditioner for polishing pad and method of manufacturing the same
JP2012187492A (en) Porous ceramic membrane, and method of producing the same
JP2016043294A (en) Ceramic filter, and manufacturing method therefor
JP2008229830A (en) Manufacturing method of disc-shaped substrate
JP2002210314A (en) Ceramic filter
JP2009136926A (en) Conditioner and conditioning method
JP6085723B1 (en) Abrasive material and method for producing abrasive material
JP2006006998A (en) Ceramic filter
JP2014217935A (en) Dressing tool
KR102076389B1 (en) Polycrystalline porous al2o3-bodies on the basis of molten aluminum oxide comrpising an increased toughness and use thereof
TWI667102B (en) Grinding tools
CN108349813A (en) Inorganic membrane filtration product and its method
TWI719210B (en) Abrasive material
JP2016093794A (en) Ceramic filter
JP6231334B2 (en) Thin plate substrate grinding method and grinding apparatus used therefor
JP2006205330A (en) Grinding wheel
JP2015129056A (en) Method of cutting glass substrate and method of manufacturing glass substrate for magnetic recording medium
JP2013103293A (en) Method for recovering polishing abrasive grain from filter, and method for regenerating polishing solution, and method for manufacturing glass substrate for magnetic recording medium
JP3929087B2 (en) Grinding wheel
KR101009593B1 (en) Diamond conditioner
JP2009242206A (en) Cleaning tool for glass substrate
JP5736609B2 (en) Ceramic porous membrane
JPH10193266A (en) Vitrified bond tool and manufacture therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140530