JP2012160293A - 光源装置およびプロジェクター - Google Patents

光源装置およびプロジェクター Download PDF

Info

Publication number
JP2012160293A
JP2012160293A JP2011018169A JP2011018169A JP2012160293A JP 2012160293 A JP2012160293 A JP 2012160293A JP 2011018169 A JP2011018169 A JP 2011018169A JP 2011018169 A JP2011018169 A JP 2011018169A JP 2012160293 A JP2012160293 A JP 2012160293A
Authority
JP
Japan
Prior art keywords
cooling
flow path
light source
cooling air
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011018169A
Other languages
English (en)
Inventor
Ken Sowa
健 宗和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2011018169A priority Critical patent/JP2012160293A/ja
Publication of JP2012160293A publication Critical patent/JP2012160293A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】冷却装置の騒音、消費電力の増大等の問題を解決し、発光部と封止部とを効率良く冷却することで輝度低下の少ない光源装置を提供する。
【解決手段】本発明の光源装置は、発光管と反射鏡とを有する光源ランプと、冷却風Fを送風して発光管を冷却する冷却装置と、を備え、冷却装置がファンと冷却風分配用装着具49とを備えている。冷却風分配用装着具49は、ファンからの冷却風のうち、一部の冷却風が導入される第1流路53と、残りの冷却風が導入される第2流路54と、第1流路53からの冷却風の出口であって発光部に向けて冷却風を送る第1送風口53oと、第2流路54からの冷却風の出口であって封止部に向けて冷却風を送る第2送風口54oと、を備えている。
【選択図】図9

Description

本発明は、光源装置およびプロジェクターに関する。
従来から、映像情報に応じて光学像を形成する光変調素子を光源装置からの光で照明し、その光学像を投射レンズによりスクリーン等の被投射面に拡大表示するプロジェクターが知られている。この種のプロジェクターに用いられる光源装置は、例えば超高圧水銀ランプ等の放電型の発光管と、発光管から発せられた光を反射する反射鏡と、を備えている。点灯時には発光管が発熱して高温となるため、例えば空冷方式の冷却機構を用いて発光管を冷却することが従来から行われている。
発光管は、点灯時に発光部の上部が最も高い温度となり、発光部の下部が最も低い温度となる。このとき、発光部の上部では発光管の失透が発生し、発光部の下部では発光管の黒化が発生する場合がある。このため、発光管の上部を効率良く冷却する必要がある。そこで、発光管の上部を冷却するための冷却機構を備えたプロジェクターが提案されている(下記の特許文献1参照)。このプロジェクターでは、ファンから吐出される冷却空気を分岐部に導入して分岐し、一部の冷却空気で発光管の封止部を冷却する一方、残りの冷却空気を、ダクトを介してプロジェクター筐体の上側に搬送した後、発光部に対して上方から排出し、発光部を冷却する構成となっている。
特開2010−107574号公報
特許文献1のプロジェクターによれば、ファンから吐出される冷却空気のうち、一部の冷却空気で発光管の発光部を冷却し、残りの空気で封止部を冷却することができる。しかしながら、発光部を冷却するための空気をダクトによって筐体の側面側から天面側まで引き回す構成である。また、ダクトは複数回折れ曲がっており、流路の途中にはいくつかの壁部が設けられている。したがって、発光部を冷却するための空気を発光部に導くまでの圧力損失が大きく、所定の風量を得るためにはファンの回転数を上げる必要があった。そのため、ファンによる騒音が大きくなる、消費電力が増大する、等の問題があった。また、発光部と封止部のそれぞれを冷却する冷却空気の流れ方向、風量などを適切に設定するのが難しく、両者を効率良く冷却できない、という問題があった。
近年、点光源化による光利用効率向上、高輝度化等の観点から、アーク長が短い発光管、いわゆる短アーク型の発光管への要求が高まっている。短アーク型の発光管は従来の発光管に比べて発熱量が多く、発光管を効率良く冷却することがより重要になるため、上記の問題がより顕著になる。
本発明は、上記の課題を解決するためになされたものであって、冷却装置の騒音、消費電力の増大等の問題を解決し、発光部と封止部とを効率良く冷却することで輝度低下の少ない光源装置を得ることを目的とする。また、このような光源装置を備えることで明るい投射画像が得られるプロジェクターを実現することを目的とする。
上記の目的を達成するために、本発明の光源装置は、光を射出する発光管と前記発光管から射出された光を反射する反射鏡とを有する光源ランプと、送風口から冷却気体を送風して前記発光管を冷却する冷却装置と、を備え、前記発光管が、光を射出する略球状の発光部と、前記発光部から外方に向けて延在する一対の封止部と、を備え、前記発光管の一対の封止部が延在する方向がランプ光軸と略一致しており、前記冷却装置の前記送風口の下端が、前記発光部の頂点を通る水平面よりも鉛直方向上方に位置し、前記冷却装置が、冷却装置本体と、前記冷却装置本体の送風口に装着されて前記冷却装置本体から流出される冷却気体を複数の冷却風に分配する冷却風分配用装着具と、を備え、前記冷却風分配用装着具が、前記冷却装置本体からの冷却気体のうち、一部の冷却気体が導入される第1流路と、残りの冷却気体が導入される第2流路と、前記第1流路からの冷却気体の出口であって前記発光部に向けて冷却気体を送風する第1送風口と、前記第2流路からの冷却気体の出口であって前記封止部に向けて冷却気体を送風する第2送風口と、を備えたことを特徴とする。
本発明の光源装置は冷却装置を備えているため、冷却装置の送風口から冷却気体が送風されることによって発光管が冷却される。このとき、冷却装置の送風口の下端が発光部の頂点を通る水平面よりも鉛直方向上方に位置しているため、冷却気体は、発光部の位置よりも鉛直方向上方から、点灯時に高温状態となる発光部の上部側に吹き付けられることになる。
ここで、本発明の光源装置は、従来の特許文献1のプロジェクターのように、長いダクトを用いて冷却空気を引き回す構成ではなく、冷却装置本体の送風口に装着する冷却風分配用装着具を用いて冷却装置本体からの冷却気体を複数の冷却風に分配する構成である。すなわち、冷却装置本体からの冷却気体は、冷却風分配用装着具の2種類の流路によって発光部を冷却する冷却風と封止部を冷却する冷却風とに分配される。冷却風分配用装着具の第1流路および第2流路を短く構成できるため、ダクトなどの長い流路を用いて冷却風を送風する場合と比べて冷却風の圧力損失が小さくなり、所定の風量を得るのに必要なファンの回転数を下げることができる。これにより、プロジェクター使用時のファンによる騒音や消費電力を改善することができる。
本発明の光源装置において、前記第1流路と前記第2流路とが、前記送風口の外形形状を前記冷却気体の流出方向に垂直な面に投影した図形の幾何重心と前記ランプ光軸とを含む面に垂直な方向において、異なる位置に設けられていることが望ましい。
この構成によれば、第1流路からの冷却風と第2流路からの冷却風とが干渉することがなく、発光部と封止部とを冷却する各々の冷却風の流出角度を最適な角度に設定することができる。
本発明の光源装置において、前記幾何重心と前記ランプ光軸とを含む面に垂直な方向において、前記第2流路が、前記第1流路を挟んで両側方に設けられていることが望ましい。
この構成によれば、第1流路がランプ光軸寄りに位置するため、発光部の上部中央を確実に冷却でき、第2流路がその両側方に位置するため、封止部を均一に冷却し易い。
本発明の光源装置において、前記第2送風口からの冷却気体を前記ランプ光軸寄りに誘導する整流板が設けられていることが望ましい。
この構成によれば、第2送風口から流出する冷却風が封止部に向けて集束するように流れるため、封止部を効率良く冷却することができる。
本発明の光源装置において、前記第1流路の入口の外形形状を前記冷却気体の流出方向に垂直な面に投影した図形の投影面積は、前記第1送風口の外形形状を前記冷却気体の流出方向に垂直な面に投影した図形の投影面積よりも小さいことが望ましい。
この構成によれば、第1送風口からの冷却風の流速が速くなり過ぎることがなく、冷却風が発光部の上部に滞留する時間が長くなり、冷却風が低温のままの状態で発光部の下部に流れ込みにくくなる。その結果、発光管の失透と黒化を確実に防止することができる。
本発明の光源装置において、前記第2流路に、前記冷却装置本体からの冷却風の流れ方向を鉛直方向下方に曲げるようにガイドするための湾曲したガイド面が設けられていることが望ましい。
この構成によれば、第2流路を流れる冷却風の流れが乱れたり、圧力損失が増大したりすることがなく、封止部を効率良く冷却することができる。
本発明の光源装置において、前記第1送風口が前記ランプ光軸の鉛直方向上方に位置していることが望ましい。
第1送風口がランプ光軸の鉛直方向上方に位置していれば、冷却気体が発光部の中心に当たり、ランプ光軸を中心として両側方に対称的に流れるため、発光管をより均一に冷却することができる。
本発明のプロジェクターは、前記本発明の光源装置と、前記光源装置から射出された光を変調して画像光を形成する画像形成光学装置と、前記画像形成光学装置によって形成された画像光を投射する投射光学装置と、を備えたことを特徴とする。
この構成によれば、輝度低下の少ない本発明の光源装置を備えているため、明るい投射画像が得られるプロジェクターを実現することができる。
本発明の一実施形態のプロジェクターを示す概略構成図である。 本実施形態の光源装置の要部を示す側面図である。 本実施形態の光源装置の要部を示す斜視図である。 本実施形態の光源装置におけるランプを示す断面図である。 本実施形態の光源装置におけるランプを示す斜視図である。 (A)、(B)は本実施形態の光源装置において、ファンの第1の送風口から冷却気体が流出する様子を示す図である。 (A)、(B)は本実施形態の光源装置において、ファンの第2の送風口から冷却気体が流出する様子を示す図である。 (A)〜(E)はファンの送風口に取り付けられる冷却風分配用装着具を示す図である。 (A)、(B)は冷却風分配用装着具における冷却風の流れの様子を示す図である。
以下、本発明の一実施形態について、図1〜図9を用いて説明する。
本実施形態のプロジェクターは、光変調装置として透過型の液晶ライトバルブを3組用いた、いわゆる3板式の液晶プロジェクターの例である。
最初に、図1を用いて、本実施形態のプロジェクターの全体構成を説明する。
なお、以下の全ての図面においては各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。また、各図において、鉛直方向をy軸方向、光源装置から射出される光の射出方向をz軸方向、y軸方向およびz軸方向に垂直な方向をx軸方向と定義する。
本実施形態のプロジェクター1は、図1に示すように、平面視で略矩形状の外装筐体2と、外装筐体2内に収納される装置本体3と、を備えている。外装筐体2は、プロジェクター1の天面(図示略、図1における手前側)、正面2B、背面2C、左側面2D、右側面2E、および底面(図示略、図1における奥側)を構成し、底面には複数の脚部(図示略)が設けられている。
装置本体3は、光学ユニット4と本体冷却装置5とを備えている。装置本体3は、プロジェクター1の各構成部材に電力を供給する電源装置(図示略)、プロジェクター1の各構成部材の動作を制御する制御装置(図示略)、等を備えている。本体冷却装置5は、複数のファン6,7,8により構成され、光学ユニット4、電源装置および制御装置に対し、外装筐体2の外部から導入した空気を送風し、これらの各装置を冷却する。
これらファン6,7,8のうち、後述する投射光学装置9を挟むように配置された一対のファン6,7は、例えばシロッコファンで構成され、外装筐体2に形成された吸気口(図示略)から外部の冷却空気を導入し、冷却空気を後述する画像形成光学装置10に送風する。また、ファン8は、例えば軸流ファンで構成され、後述する光源装置11を冷却した空気を吸引し、プロジェクター1の正面2Bに向かって排出する。さらに、ファン8は、この空気を正面2Bに形成された排気口2B1を通して外装筐体2の外部に排出する。なお、排気口2B1は、外装筐体2のいずれの面に形成されていても良い。
後述する光源ランプ13の近傍に配置され、冷却装置14を構成するファン15は、例えばシロッコファンで構成され、外装筐体2の内部の空気を吸引し、光源ランプ13に送風する。後述するように、本実施形態において、この冷却装置14は光源装置11の構成要素となっている。
〔光学ユニットの構成〕
光学ユニット4は、前述の制御装置による制御の下、画像情報に応じた画像光を形成する。光学ユニット4は、光源装置11と、照明光学装置16と、色分離光学装置17と、リレー光学装置18と、画像形成光学装置10と、投射光学装置9と、光学部品用筐体19と、光源収納部材20と、を備えている。
[光源装置の構成]
光源装置11は、図1に示すように、発光管22と反射鏡23とを有する光源ランプ13と、発光管22を冷却する冷却装置14と、光源ランプ13からの光を平行化する平行化凹レンズ24と、が光源収納部材20内に収納された構成となっている。
図4は、光源ランプ13を示す断面図である。図5は、光源ランプ13を示す斜視図である。
光源ランプ13は、図4、図5に示すように、アーク放電型の発光管22と、反射鏡23と、を備えている。反射鏡23は、発光管22から射出された光Lを照明対象に向けて反射させる機能を担っている。
発光管22は、図4に示すように、発光部25と、一対の封止部26a,26bと、一対の電極27a,27bと、一対のリード線29a,29bと、を備えている。発光部25は、内部に中空の空間を有する略球状の管体であり、発光部25を構成する球体の直径の両端には、棒状の封止部26a,26bが発光部25と一体に形成されている。発光部25および封止部26a,26bは、例えば石英ガラス、サファイア等の耐熱性が高い透光性の無機材料で構成されている。
発光部25の内部空間には、一対の棒状の電極27a,27bが互いに対向するように配置されている。電極27a,27bは、例えばタングステン、モリブデン等の金属材料で構成されている。また、発光部25の内部空間には、発光物質と気体とが封入されている。発光物質としては例えば水銀、金属ハロゲン化物等が用いられ、気体としては例えば希ガス、ハロゲンガス等が用いられる。
一対の電極27a,27bの各々は、各封止部26a,26bによって封止されている。各封止部26a,26bの端部にはリード線29a,29bが接続されている。発光管22の一方の封止部26aは反射鏡23に固定されている。この構成により、各電極27a,27bにはリード線29a,29bを介して外部から電力が供給される。
以上の構成を有する発光管22において、一対の電極27a,27b間に高電圧を印加すると、一対の電極27a,27b間に放電が生じ、一対の電極27a,27b間の略中央にあたる発光点Pから略全周方向に光Lが放射される。このとき、光Lの放射に伴って発生する熱は発光部25の内部空間での気体の対流によって上方に移動するため、発光部25の上部の温度が上昇する。なお、アーク放電型の発光管22には、高圧水銀ランプ、メタルハライドランプ、キセノンランプ等が含まれる。
本実施形態の発光管22として、例えば電極間距離が0.9mm以下の短アーク型の発光管を用いることが望ましい。このような短アーク型の発光管では、従来の発光管に比べて点灯時の電圧が低下し、電流が増大する結果、発熱量が増大する。すると、発光部25の内部空間での対流が強くなり、アークの熱によって発光部25の上部がより強く熱せられるため、発光部25の上部と下部との温度差が極めて大きくなる。したがって、この種の短アーク型の発光管を、後述する冷却装置と組み合わせて用いることが効果的である。
反射鏡23は、基材と、基材の表面に形成された反射膜と、から構成されている。基材は、例えばガラスや結晶化ガラス等の耐熱性が高く、機械的強度が大きい材料で構成されている。反射膜は、例えば誘電体多層膜や金属膜等から構成されている。反射膜は、基材の内面(発光管22が配置された側の面)のうち、縁部を除く領域に形成されている。反射鏡23は、発光管22の封止部26aを挿入して固定するための後方貫通孔30aを備えた首部30と、照明対象に向けて光を射出するための前方開口部23dと、を有している。
図4、図5に示すように、反射鏡23の反射膜が形成された面、すなわち反射面23aは中心軸に対して回転対称とされた回転放物面となっている。なお、反射鏡23の反射面23aは、回転放物面に限らず、回転楕円面を含む非球面や球面であっても良いし、自由曲面であっても良い。発光管22は、反射鏡23に対して、反射鏡23の中心軸上に発光管22の一対の封止部26a,26bが延在するような位置関係で固定されている。
以下の説明では、反射鏡23の中心軸(回転対称軸)であって、発光管22の一対の封止部26a,26bの延在方向に一致する軸のことを「ランプ光軸L1」と称する。ランプ光軸L1はz軸と一致する。
本実施形態の場合、反射鏡23は、図4、図5に示すように、全体が完全に回転対称な形状ではなく、鉛直方向上方の一部および下方の一部が鉛直方向に対して垂直な平面(xz平面)でカットされた形状となっている。したがって、鉛直方向上方(y軸方向)から見たとき、反射鏡23は略半円状の開口部23b,23cを有している。このように、反射鏡23の上部および下部に開口部23b,23cを有しているため、上部の開口部23bを通して冷却装置14からの冷却風が発光管22に当たり易く、下部の開口部23cを通して発光管22を冷却した後の冷却風が排出し易くなる。
図1に戻って、照明光学装置16は、一対のレンズアレイ31,32と、偏光変換素子33と、重畳レンズ34と、を備えている。色分離光学装置17は、第1のダイクロイックミラー35と、第2のダイクロイックミラー36と、反射ミラー37と、を備えている。リレー光学装置18は、入射側レンズ38と、リレーレンズ群39と、第1の反射ミラー40と、第2の反射ミラー41と、を備えている。
画像形成光学装置10は、フィールドレンズ42と、光変調装置としての赤色光、緑色光、青色光の各色光用の液晶ライトバルブ43と、各液晶ライトバルブ43に対応した入射側偏光板44、視野角補償板45および射出側偏光板46と、色合成光学装置としてのクロスダイクロイックプリズム47と、を備えている。なお、赤色光変調用の液晶ライトバルブを43R、緑色光変調用の液晶ライトバルブを43G、青色光変調用の液晶ライトバルブを43Bとする。投射光学装置9は、筒状の鏡筒内に複数のレンズが収納された組レンズとして構成されている。投射光学装置9は、画像形成光学装置10によって形成された画像光をスクリーン等の被投射面上に拡大投射する。
光学部品用筐体19は、前述の照明光学装置16、色分離光学装置17、リレー光学装置18、および画像形成光学装置10を内部に収納する箱状の筐体である。光学部品用筐体19には、内部に設定されたランプ光軸L1上の所定の位置に、照明光学装置16、色分離光学装置17、リレー光学装置18、画像形成光学装置10が順次配置されている。光源収納部材20は、光学部品用筐体19の一面に接続されており、内部に光源装置11が収納されている。
上記構成の光学ユニット4において、光源装置11から射出された光は、照明光学装置16によって照明領域内の照度が均一化された後、色分離光学装置17によって赤色光、緑色光、青色光の3つの色光に分離される。これら分離された各色光は、対応する各液晶ライトバルブ43において画像情報に応じてそれぞれ変調され、色光毎の画像光が形成される。そして、色光毎の画像光は、クロスダイクロイックプリズム47によって合成され、投射光学装置9によって被投射面上に拡大投射される。
[光源ランプおよび冷却装置の構成]
以下、本実施形態の特徴点である光源装置11の構成について説明する。
図2は、本実施形態の光源装置11のうち、光源ランプ13と冷却装置14のみを取り出して示す側面図である。図3は、同じく斜視図であって、さらに、図3では冷却風の流れを見やすくするため、光源ランプ13のうちの発光管22のみを描いている。
冷却装置14は、図2、図3に示すように、ファン15と、冷却風分配用装着具49と、から構成されている。冷却装置14は、光源ランプ13の光射出側であって、光源ランプ13が設置された高さよりも高い位置に設置されている。ファン15の具体的な構成としては、例えばシロッコファン、ターボファン等、羽根の遠心方向に冷却空気を送風する形態の遠心送風機を用いることが望ましい。羽根が収容されたケース50の一端には、ケース50の外形形状である円の外側に向けて若干折曲した形状を有する冷却風の送風口51が設けられている。
以下の説明では、図2に示したように、ケース50の外形形状である円(符号Aで示す破線の円)を想定し、その外側にはみ出した部分を「ケース送風口」と称する。ケース送風口51には、ケース送風口51から排出される冷却風を複数の冷却風に分配するための冷却風分配用装着具49が取り付けられている。本実施形態において、冷却風分配用装着具49はファン15のケース送風口51に常時装着された状態で使用されるため、冷却風分配用装着具49の送風口のことを「冷却装置の送風口」または単に「送風口」と称する。
次に、冷却風分配用装着具49について説明する。
図8(A)〜(E)は冷却風分配用装着具49を示す図であって、図8(A)は冷却風分配用装着具49を冷却風の出口側から見た斜視図、図8(B)は冷却風分配用装着具49を冷却風の入口側から見た斜視図、図8(C)は冷却風分配用装着具49を冷却風の出口側から見た正面図、図8(D)は冷却風分配用装着具49を冷却風の入口側から見た裏面図、図8(E)は冷却風分配用装着具49の側面図、である。図9(A)、(B)は、冷却風分配用装着具49の各流路における冷却風の流れを示す図である。なお、冷却風分配用装着具49はランプ光軸L1に対して傾いた姿勢で配置されるため(図2参照)、図8(A)〜(E)の座標軸として、x軸、y軸、z軸に対して傾いたx’軸、y’軸、z’軸を用いる。
なお、説明を簡潔にするため、以下の説明では冷却風分配用装着具のことを単に「装着具」と称する。また、後述する第1の送風口の外形形状を冷却風の流出方向に垂直な面に投影した図形の幾何重心とランプ光軸とを含む面に垂直な方向を「幅方向」と称し、前記重心とランプ光軸とを含む面に平行な方向を「高さ方向」と称する。
上述したように、装着具49は、ファン15のケース送風口51に装着され、ケース送風口51から排出される冷却風を複数の冷却風に分配するためのものである。装着具49は、各図面から明らかなように、例えば一般的なダクト(管体)のように、冷却風の流れ方向に長尺の部材ではない。冷却風の流れ方向における装着具49の寸法は、図2に示すように、例えばケース送風口51の冷却風の流れ方向の寸法と同等か、もしくはそれよりも短い程度である。装着具49は、例えば金属材料で構成することができるが、金属材料に限定されることはない。
本実施形態の装着具49は、冷却風の流路が3つ設けられ、ケース送風口51から排出される冷却風を3つの冷却風に分配する機能を有している。例えば図8(D)に各流路の入口を示すように、3つの流路53,54は装着具49の幅方向(x’軸方向)に並んでいる。図6(A)、(B)に示すように、中央の流路53は、発光管22の発光部25に向けて冷却風Fを流出させる機能を有している。図7(A)、(B)に示すように、左右の2つの流路54は、発光管22の一対の封止部26a,26bのうち、光射出側(反射鏡23の前面開口部23d側)の封止部26bに向けて冷却風Fを流出させる機能を有している。以下、中央の流路53を第1流路と称し、両側方の2つの流路54をそれぞれ第2流路と称する。
第1流路53は、冷却風Fの流れ方向に垂直に切断したときの断面形状が矩形であり、図8(D)に示す第1流路53の入口53iの形状(斜線を付した部分)、および図8(C)に示す第1流路53の出口の形状53o(斜線を付した部分)もともに矩形である。ただし、第1流路53の入口53iの開口面積は出口53oの開口面積よりも小さい。すなわち、第1流路53の入口53iの開口面積をSi、出口53oの開口面積をSoとすると、Si<Soの関係となっている。
詳細には、図8(B)に示すように、第1流路53を構成する六角柱状の筐体55のうち、装着具49の幅方向(x’軸方向)にあたる両側の壁部56が中央に向けて逆テーパ状に傾斜しており、入口53iの幅方向の寸法Wiが絞られている。一方、高さ方向については、図9(A)に示すように、第1流路53の高さ方向の寸法Tiは第1流路53の入口53iから出口53oにかけて一定である。すなわち、図8(C)、(D)に示すように、第1流路53の入口53iの幅をWi、入口53iの高さをTi、出口53oの幅をWo、出口53oの高さをToとすると、Wi<Wo、Ti=Toの関係となっている。
このように、第1流路53の入口53iの幅方向の寸法Wiを絞ることで、入口53iの開口面積Siを小さくしたことによって、発光管22の発光部25に向けて排出する冷却風Fの量を適宜調整することができる。また、入口53iの開口面積Siを出口53oの開口面積Soよりも小さくしたことにより、出口53oから流出する冷却風Fの流速が速くなり過ぎないように調整することができる。
なお、本実施形態では、第1流路53の入口53iの幅方向の寸法Wiを絞る構成としたが、装着具49の構成や流路の形状に応じて、第1流路53の入口53iの高さ方向の寸法Tiを絞る構成としても良い。
ファン15から排出された冷却風は装着具49によって3つの流れに分配されるため、図9(A)に示すように、ケース送風口51から装着具49に到達した冷却風F0のうちの一部が第1流路53に流れ込む。第1流路53における冷却風Fの流れを説明すると、ケース送風口51から排出される冷却風F0の一部が入口53iから第1流路53内に流れ込み、第1流路53内を流れた後、出口53oから冷却装置14(装着具49)の外部に排出される。したがって、第1流路53からの冷却風Fの流出方向は第1流路53の延在方向と略一致する。その後、冷却装置14の外部に排出された冷却風Fは、図6(A)、(B)に示すように、発光管22の発光部25に吹き付けられ、発光部25を冷却する。
図8(D)に示すように、第1流路53を構成する筐体55の両側方が第2流路54となる。筐体55の両側方には、図8(B)、(E)に示すように、ケース送風口51から排出される冷却風の流れ方向を下方に曲げるように、流れ方向をガイドするガイド部57が設けられている。冷却風の流れ方向上流側におけるガイド部57の端部57aは装着具49の側板58よりも外側に突出している。図8(A)に示すように、冷却風の流れ方向下流側におけるガイド部57の端部57bは、筐体55の第1流路出口53o側の端面55bと一致している。また、図8(E)に示すように、冷却風に接するガイド部57のガイド面57cは滑らかな弧を描くように湾曲した形状となっている。
第2流路54の入口54iは、図8(D)に示すように、第1流路53の入口53iの両側方であって、高さ方向の寸法が第1流路53の入口53iよりも大きい矩形の部分(斜線を付した部分)となる。第2流路54の出口54oは、図8(A)に示すように、装着具49の下側の開口部分(斜線を付した部分)となる。
さらに、図8(C)、(D)に示すように、装着具49の側板58の下端は第1流路53を構成する筐体55よりも下方に突出するとともに、この突出部59が中央側(ランプ光軸L1側)に向けて折り曲げられ、高さ方向に対して所定の角度をもって傾いている。この突出部59は、第2流路54の出口54oから流出した冷却風がランプ光軸L1から離れる方向(図8(C)、(D)における左右方向)にあまり広がらないように、冷却風の流れを規制する整流板として機能する。
ファン15から排出された冷却風は装着具49によって3つの流れに分配されるため、図9(B)に示すように、ケース送風口51から装着具49に到達した冷却風F0のうちの一部が2つの第2流路54に流れ込む。第2流路54における冷却風Fの流れを説明すると、ケース送風口51から排出される冷却風F0の一部が入口54iから第2流路54内に流れ込み、第2流路54内をガイド部57のガイド面57cに沿って流れつつ流れ方向を変えた後、下方の出口54oから冷却装置14(装着具49)の外部に流出する。その後、冷却装置の外部に流出した冷却風Fは、図7(A)、(B)に示すように、発光管22の一方の封止部26bに吹き付けられ、封止部26bを冷却する。このとき、整流板として機能する突出部59が装着具49の下部に設けられているため、冷却風Fがランプ光軸L1から離れる方向にそれほど広がることなく、封止部26bを効率良く冷却することができる。
以下の説明において、第1流路53の出口53oを「第1送風口」と称する。これは特許請求の範囲における「第1送風口」に相当する。また、第2流路54の出口54oを「第2送風口」と称する。これは特許請求の範囲における「第2送風口」に相当する。
上述したように、冷却装置14は光源ランプ13の設置位置よりも高い位置にあるため、冷却装置14の第1送風口53oの下端は、例えば図3に示すように、発光管22の発光部25の頂点Tを通る水平面(xz平面)よりも鉛直方向上方に位置している。また、第1送風口53oは、ランプ光軸L1の鉛直方向上方に位置しており、光源装置14を鉛直方向上方(y軸方向)から見たとき、第1送風口53oからの冷却風Fの流出方向を鉛直方向に垂直な平面(xz平面)内に投影した方向はランプ光軸L1の延在方向と略一致する。
なお、冷却風Fの流れは実際には広がりを持っているため、上述の「冷却風の流出方向」とは冷却風Fの中心部の平均的な流出方向を意味する。
一方、図2に示すように、光源装置14を側方から見たとき、ランプ光軸L1を通り、鉛直方向に平行な平面(yz平面)内において、第1送風口53oからの冷却風Fの流出方向とランプ光軸L1の方向とは90度以外の角度をなす。第1送風口53oからの冷却風Fの流出方向とランプ光軸L1の方向とのなす角度をθとすると、0°<θ<90°となる。すなわち、第1送風口53oからの冷却風Fは、発光管22の発光部25に対して光射出方向の斜め上側から吹き付けられる。これにより、冷却風Fは、反射鏡23の反射面23aに沿った流れとなって対流し、反射鏡23内の空間に行き渡る。
ここで、第1送風口53oの幅方向の寸法(第1の寸法)は、略球状の発光部25の外形寸法(直径)よりも小さく設定されている。第1送風口53oの幅方向の寸法をWo(図8(C)に示す)、発光部25の外形寸法(直径)をD(図6(A)に示す)とすると、下記の(2)式で示す関係となっている。
Wo<D …(2)
本実施形態では、第1送風口53oの形状が矩形であるが、必ずしも矩形でなくても良く、例えば円形(楕円形を含む)や多角形でも良いし、その他の不定形状でも良い。その場合でも対応可能なように、「幅方向の寸法」を一般化して定義する。まず、第1送風口の外形形状を冷却風の流出方向に垂直な面に投影した図形を想定する。本実施形態の場合、投影図形は図8(C)に斜線で示した第1送風口53oの輪郭に相当する長方形となる。この長方形の幾何重心を点Gとすると、点Gとランプ光軸Lとを含む仮想平面に垂直な方向における最大寸法のことを幅方向の寸法と言うことができる。第1送風口53oの形状が不定形状である場合においては、不定形状の幾何重心とランプ光軸Lとを含む仮想平面に垂直な方向における寸法は複数となることがあるが、複数の寸法のうちの最大寸法を幅方向の寸法とすれば良い。
同様に、第1送風口53oの高さ方向の寸法(第2の寸法)は、略球状の発光部25の外形寸法(直径)よりも小さく設定されている。第1送風口53oの高さ方向の寸法をTo(図8(C)に示す)、発光部25の外形寸法(直径)をD(図6(A)に示す)とすると、下記の(3)式で示す関係となっている。
To<D …(3)
「幅方向」と同様、「高さ方向の寸法」を一般化して定義すると、第1送風口の外形形状を冷却風の流出方向に垂直な面に投影した図形を想定する。本実施形態の場合、投影図形は図8(C)に斜線で示した長方形となる。この長方形の幾何重心を点Gとすると、点Gとランプ光軸Lとを含む仮想平面に平行な方向における最大寸法のことを高さ方向の寸法と言うことができる。第1送風口53oの形状が不定形状である場合においては、不定形状の幾何重心とランプ光軸Lとを含む仮想平面に平行な方向における寸法は複数となることがあるが、複数の寸法のうちの最大寸法を高さ方向の寸法とすれば良い。
また、第1送風口53oの幅方向の寸法Wo、高さ方向の寸法Toの各々が上記の(2)式、(3)式を満足した上で、第1送風口53oの幅方向の寸法Woと高さ方向の寸法Toとを比較すると、幅方向の寸法Woが高さ方向の寸法Toよりも小さく設定されていることが望ましい。すなわち、下記の(4)式で示す関係となっていることが望ましい。
Wo<To …(4)
以上の第1送風口53oと発光部25との寸法の関係((2)式、(3)式)から明らかであるが、第1送風口53oの外形形状を冷却風の流出方向に垂直な面に投影した図形(図8(C)の斜線で示す長方形)の面積は、上記と同一の面に発光部25の外形形状を投影した図形(円)の面積よりも小さい。すなわち、第1送風口53oの投影面積をSoとし、発光部25の外形寸法をDとしたとき、投影面積Soと寸法Dとの関係は下記の(5)式で示す関係となっている。
So<π×D/4 …(5)
基本的には、上記の(2)式および(3)式、もしくは(5)式を満足すれば、冷却風の流束の大きさを発光部25の外形寸法よりも小さくすることができる。ところが、実際には冷却風の流束の大きさは第1送風口53oから発光部25までの距離に応じて変化し、距離が長くなる程、冷却風が広がるため、冷却風の流束の大きさは大きくなる。このような冷却風の流れの広がりを考慮した場合、第1送風口53oの投影面積Soを第1送風口53oから発光部25までの距離に応じて設計すれば良い。
例えば発光部25の外形寸法(直径)Dを9.0mm以上と想定し、第1送風口53oから発光部25までの距離Lが最短で25mmのときに第1送風口53oの幅寸法Woを8mmと想定し、距離Lが最長で50mmのときに第1送風口53oの幅寸法Woを5mmと想定し、第1送風口53oの高さ寸法Toを幅寸法Woの1.2倍と想定したとき、第1送風口53oの投影面積Soと距離Lとの関係、は下記の(6)式で示す関係を満たすことが望ましい。具体的には、例えば距離Lを30mmとしたとき、第1送風口53oの投影面積Soを、下記の(6)式を満たす30mm(幅寸法Wo:5mm、高さ寸法To:6mm)とすることが望ましい。
So≦0.01728×L−3.168×L+145.2 …(6)
本実施形態の光源装置11では、第1送風口53oの幅寸法および高さ寸法が発光部25の外形寸法よりも小さく、冷却風の流出方向に垂直な仮想面における第1送風口53oの投影面積が発光部25の投影面積よりも小さくなるように、発光部25に対する第1送風口53oの大きさが設定されている。これにより、冷却風の流れが発光部25に到達したときに、冷却風の流束が発光部25の外側に広がらないように、冷却風を発光部25に集中的に吹き付けることができる。
このとき、発光部25の上部に接触した冷却風が発光部25を冷却し、冷却風自身は発光部25で暖められて温度が上昇した後、発光部25の周囲を回り込むようにして発光部25の下部に流れ込む。特に本実施形態の場合、装着具49の第1流路53の入口53iの開口面積を出口53oの開口面積よりも小さくしたことで、出口53oから流出する冷却風の流速が速くなり過ぎないように調整している。その結果、冷却風の流速が速い場合に比べて冷却風が発光部25の上部に滞留する時間が増え、冷却風が低温のままの状態で発光部25の下部に流れ込むことが少なくなる。
このようにして、本実施形態の光源装置11では、発光部25の上部が十分に冷却される一方、発光部25の下部が過剰に冷却されることがなく、発光部25の上部と下部との温度差を小さくすることができる。その結果、発光管22の失透と黒化の双方を効率良く防止でき、輝度低下の少ない光源装置が得られる。このような光源装置の使用により、明るい投射画像が得られるプロジェクターを実現することができる。
また、ファン15のケース送風口51に、発光管22の発光部25に向けて冷却風を流すための第1流路53と封止部26bに向けて冷却風を流すための第2流路54とを備えた装着具49が取り付けられている。この装着具49を使用することにより、1個のファン15で発光管22の発光部25と封止部26bの双方を同時に冷却することができる。特に本実施形態の場合、第1流路53の両側方に第2流路54がそれぞれ設けられているため、封止部26bを冷却するための第2送風口54oが対称的な配置となる。そのため、冷却風の流れが傾くことなく、封止部26bを均一に冷却することができる。
その結果、本実施形態の光源装置11では、発光部25において失透と黒化の双方を防止できることに加え、熱応力等に起因する封止部26bの破損を防止することができる。また、装着具49の設計を適宜変更することで冷却風を第1流路53と第2流路54とに分配する風量の比率が変えられるため、いずれの不良を重点的に対策するか等の観点から、各冷却風の風量を最適化することができる。同様に、発光管22の形状や寸法に応じて、各冷却風の流れの方向を最適化することができる。第1流路53が装着具49の幅方向の中央に設けられ、第2流路54がその側方に設けられているため、第1流路53からの冷却風と第2流路54からの冷却風とが干渉することがなく、発光部25と封止部26bとを冷却する各々の冷却風の流出角度を最適な角度に設定できる。
また、装着具49の第1流路53および第2流路54が十分に短いため、配管等の長い流路を用いて冷却風を送風する場合と比べて冷却風の圧力損失が小さくなり、所定の風量を得るのに必要なファンの回転数を下げることができる。これにより、プロジェクター使用時のファンによる騒音や消費電力の改善が期待できる。また、第1流路53では冷却風が直線的に流れるのに対し、第2流路54においては冷却風の流れ方向が大きく曲げられる。しかしながら、装着具49がガイド部57を有しており、冷却風が滑らかに湾曲したガイド面57cに沿って流れつつ方向を変えるようになっている。また、整流板として機能する突出部59が装着具49の下部に設けられているため、第2送風口54oから流出する冷却風が封止部26bに向けて集束するように流れる。これらの構成により、第2流路54を流れる冷却風の流れが乱れたり、圧力損失が増大したりすることがなく、封止部26bを効率良く冷却することができる。
なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば上記実施形態では、第1送風口の幅寸法および高さ寸法の双方を発光部の外形寸法よりも小さく設定したが、本発明において、第1送風口の幅寸法は発光部の外形寸法よりも小さくする必要があるが、高さ寸法は発光部の外形寸法より大きくても良い。言い換えると、発光管における封止部の延在方向と垂直な方向に対応する第1送風口の寸法は発光部の外形寸法より小さくする必要があるが、封止部の延在方向に対応する第1送風口の寸法は発光部の外形寸法より大きくても良い。その場合、第1送風口からの冷却風で封止部も冷却することができる。
上記実施形態では、第1流路の両側方に第2流路をそれぞれ設けた装着具を例示したが、この構成に代えて、第1流路の片側のみに第2流路を設けた装着具としても良い。また、一対の封止部のうち、光射出側に位置する封止部の方がより多くの光を受けて高温となるため、上記実施形態のように、第2流路からの冷却風を光射出側の封止部に向けて流すことが好ましい。しかしながら、光射出側と反対側に位置する封止部を冷却したい要求がある場合には、この封止部に向けて冷却風を流すための流路を装着具に設けても良い。また、冷却装置の一例としてファンを挙げたが、ファン以外の送風手段を用い、その送風口に装着具を取り付ける構成としても良い。
その他、光源装置およびプロジェクターを構成する各種構成要素の形状、数、配置、材料等については、上記実施形態に限定されることなく、適宜変更が可能である。
1…プロジェクター、9…投射光学装置、10…画像形成光学装置、11…光源装置、13…光源ランプ、14…冷却装置、22…発光管、23…反射鏡、25…発光部、26a,26b…封止部、53…第1流路、53o…第1流路の出口(第1送風口)、54…第1流路、54o…第2流路の出口(第2送風口)、L1…ランプ光軸、Wo…第1送風口の幅寸法、To…第1送風口の高さ寸法、D…発光部の外形寸法、F…冷却風。

Claims (8)

  1. 光を射出する発光管と前記発光管から射出された光を反射する反射鏡とを有する光源ランプと、
    送風口から冷却気体を送風して前記発光管を冷却する冷却装置と、を備え、
    前記発光管が、光を射出する略球状の発光部と、前記発光部から外方に向けて延在する一対の封止部と、を備え、
    前記発光管の一対の封止部が延在する方向がランプ光軸と略一致しており、
    前記冷却装置の前記送風口の下端が、前記発光部の頂点を通る水平面よりも鉛直方向上方に位置し、
    前記冷却装置が、冷却装置本体と、前記冷却装置本体の送風口に装着されて前記冷却装置本体から流出される冷却気体を複数の冷却風に分配する冷却風分配用装着具と、を備え、
    前記冷却風分配用装着具が、前記冷却装置本体からの冷却気体のうち、一部の冷却気体が導入される第1流路と、残りの冷却気体が導入される第2流路と、前記第1流路からの冷却気体の出口であって前記発光部に向けて冷却気体を送風する第1送風口と、前記第2流路からの冷却気体の出口であって前記封止部に向けて冷却気体を送風する第2送風口と、を備えたことを特徴とする光源装置。
  2. 前記第1流路と前記第2流路とが、前記送風口の外形形状を前記冷却気体の流出方向に垂直な面に投影した図形の幾何重心と前記ランプ光軸とを含む面に垂直な方向において、異なる位置に設けられていることを特徴とする請求項1に記載の光源装置。
  3. 前記幾何重心と前記ランプ光軸とを含む面に垂直な方向において、前記第2流路が、前記第1流路を挟んで両側方に設けられていることを特徴とする請求項2に記載の光源装置。
  4. 前記第2送風口からの冷却気体を前記ランプ光軸寄りに誘導する整流板が設けられていることを特徴とする請求項2または3に記載の光源装置。
  5. 前記第1流路の入口の外形形状を前記冷却気体の流出方向に垂直な面に投影した図形の投影面積が、前記第1送風口の外形形状を前記冷却気体の流出方向に垂直な面に投影した図形の投影面積よりも小さいことを特徴とする請求項1ないし4のいずれか一項に記載の光源装置。
  6. 前記第2流路に、前記冷却装置本体からの冷却風の流れ方向を鉛直方向下方に曲げるようにガイドするための湾曲したガイド面が設けられていることを特徴とする請求項1ないし5のいずれか一項に記載の光源装置。
  7. 前記第1送風口が前記ランプ光軸の鉛直方向上方に位置していることを特徴とする請求項1ないし6のいずれか一項に記載の光源装置。
  8. 請求項1ないし7のいずれか一項に記載の光源装置と、
    前記光源装置から射出された光を変調して画像光を形成する画像形成光学装置と、
    前記画像形成光学装置によって形成された画像光を投射する投射光学装置と、を備えたことを特徴とするプロジェクター。
JP2011018169A 2011-01-31 2011-01-31 光源装置およびプロジェクター Pending JP2012160293A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011018169A JP2012160293A (ja) 2011-01-31 2011-01-31 光源装置およびプロジェクター

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011018169A JP2012160293A (ja) 2011-01-31 2011-01-31 光源装置およびプロジェクター

Publications (1)

Publication Number Publication Date
JP2012160293A true JP2012160293A (ja) 2012-08-23

Family

ID=46840680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011018169A Pending JP2012160293A (ja) 2011-01-31 2011-01-31 光源装置およびプロジェクター

Country Status (1)

Country Link
JP (1) JP2012160293A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11287103B2 (en) 2019-04-22 2022-03-29 Ism Lighting, Llc. Low wattage balloon work light

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11287103B2 (en) 2019-04-22 2022-03-29 Ism Lighting, Llc. Low wattage balloon work light

Similar Documents

Publication Publication Date Title
US8820938B2 (en) Projector light source having an airflow collision position above a light emission portion
TWI277820B (en) Projection display device, image projection system, and light source device
JP5217904B2 (ja) 光源装置及びプロジェクタ
US8523365B2 (en) Light source device and projector
JP2006267622A (ja) ランプ冷却装置及び投射型表示装置
JP4086399B2 (ja) 投射型表示装置
US20060050512A1 (en) Ultra-high pressure discharge lamp unit and light source apparatus
US9229303B2 (en) Projector light source having three cooling airflow delivery ports
JP2016046471A (ja) 冷却装置、冷却構造、画像投射装置、電子機器
US7866824B2 (en) Sealed lamp device and projector
US20100060862A1 (en) Video projector
TW201319720A (zh) 投影機光機散熱裝置
JP6745051B2 (ja) 画像投写装置
JP2012160293A (ja) 光源装置およびプロジェクター
US20120075864A1 (en) Light source device and projector
JP2004219752A (ja) 映像投射装置及び映像投射装置の冷却方法
JP2019008138A (ja) 冷却装置及びプロジェクター
JP2012159611A (ja) 光源装置およびプロジェクター
JP2005062376A (ja) 光源装置およびそれを用いたプロジェクタ
JP5482929B2 (ja) 光源装置及びプロジェクタ
JP2011209382A (ja) 光源装置およびプロジェクター
JP4877822B2 (ja) 投写型映像表示装置
JP5930080B2 (ja) 光源装置及びプロジェクタ
JP5994870B2 (ja) 光源装置及びプロジェクタ
JP2012113073A (ja) 光源ユニットおよびこれを備えた投射型表示装置