JP2012154728A - Method and device for measuring structure - Google Patents

Method and device for measuring structure Download PDF

Info

Publication number
JP2012154728A
JP2012154728A JP2011013109A JP2011013109A JP2012154728A JP 2012154728 A JP2012154728 A JP 2012154728A JP 2011013109 A JP2011013109 A JP 2011013109A JP 2011013109 A JP2011013109 A JP 2011013109A JP 2012154728 A JP2012154728 A JP 2012154728A
Authority
JP
Japan
Prior art keywords
comb
light
frequency
interference
angular frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011013109A
Other languages
Japanese (ja)
Other versions
JP5724133B2 (en
Inventor
Ken Kashiwagi
謙 柏木
Takashi Kurokawa
隆志 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Original Assignee
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture and Technology NUC, Tokyo University of Agriculture filed Critical Tokyo University of Agriculture and Technology NUC
Priority to JP2011013109A priority Critical patent/JP5724133B2/en
Publication of JP2012154728A publication Critical patent/JP2012154728A/en
Application granted granted Critical
Publication of JP5724133B2 publication Critical patent/JP5724133B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce unclearness and an error of an image in the depth direction to be generated by interference of a carrier frequency to more clearly observe/measure structure in the depth direction with higher accuracy.SOLUTION: A light source 11 which generates a plurality of laser beams with different frequencies, an optical interferometer 13 on which comb beams from a comb beam generator 12 which sequentially generates a plurality of comb beams of which the comb frequency intervals are variable and the center angle frequencies are different are sequentially made incident, and which detects interference output between a return beam from a reference mirror and a return beam from a measuring object for a plurality of times by sweeping the comb frequency intervals, and an arithmetic control part 14 which sets the center angle frequencies of the plurality of comb beams, sweeps the comb frequency intervals, and performs a predetermined operation detect the interference output between the return beam from the reference mirror and the return beam from the measuring object in the optical interferometer 13 for the plurality of times by sweeping the comb frequency intervals, and measures the structure of the measuring object by performing an operation for taking out only reflectance distribution and scattering coefficient distribution in the depth direction of the measuring object from a detection value of an interference component obtained in each detection.

Description

本発明は、光周波数コムを用いて、物体や人体の表面形状あるいは表面近傍の内部構造(本発明において、表面形状および内部構造を、単に「構造」と言う)を観察・測定する技術に関する。具体的には、光周波数コムを光学干渉計に入射し、前記光学干渉計における固定された参照鏡からの戻り光と測定対象からの戻り光との干渉出力を、コム周波数間隔を掃引することにより検出し、測定対象の深さ方向の反射率分布あるいは散乱係数分布を測定する方法において、中心角周波数の異なる複数の光周波数コムを用いることにより、深さ方向の構造をより鮮明かつ高精度に観察・測定する構造測定方法および構造測定装置に関する。   The present invention relates to a technique for observing and measuring a surface shape of an object or a human body or an internal structure near the surface (in the present invention, the surface shape and the internal structure are simply referred to as “structure”) using an optical frequency comb. Specifically, the optical frequency comb is incident on the optical interferometer, and the interference output between the return light from the fixed reference mirror and the return light from the measurement target in the optical interferometer is swept at the comb frequency interval. By using multiple optical frequency combs with different central angular frequencies, the structure in the depth direction is clearer and more accurate. The present invention relates to a structure measuring method and a structure measuring apparatus for observation and measurement.

光の干渉現象を用いた測定対象の表面形状の計測(Profilometry)、および内部構造の観察(Tomography)を行う技術として、従来、特許文献1,非特許文献1に記載された「白色干渉法」、特許文献2,非特許文献2に記載された「周波数走査干渉法」、特許文献3−5,非特許文献3に記載された「光コム周波数間隔掃引干渉法」が知られている。これらの干渉測定法は、光源からの光を測定対象からの戻り光(信号光)と参照鏡からの戻り光(信号光)に分けて干渉測定を行う点は共通である。   As a technique for measuring the surface shape of a measurement object using the light interference phenomenon (Profilometry) and observing the internal structure (Tomography), the “white interference method” described in Patent Document 1 and Non-Patent Document 1 has been conventionally used. "Frequency scanning interferometry" described in Patent Document 2 and Non-Patent Document 2, and "Optical comb frequency interval sweep interferometry" described in Patent Document 3-5 and Non-Patent Document 3 are known. These interferometric methods are common in that interference measurement is performed by dividing light from a light source into return light (signal light) from a measurement target and return light (signal light) from a reference mirror.

「白色干渉法」では、図12に示すように、広帯域な白色光源71からの光Sを干渉計72に入射して、干渉計測を行う。信号光S1と参照光S2の光路差がゼロとなる付近でのみ干渉が起こる。参照ミラー721を機械的に掃引することでフォトダイオード(PD)723により干渉光を測定する。参照ミラー721の位置と干渉信号から、信号光S1の反射位置(測定対象722の形状)を同定する。図12では、干渉出力と、信号光S1と参照光S2との光路差との関係がグラフにより示されている。奥行き方向の分解能は、白色光源71の帯域に反比例するため、広い帯域の光源を用いるほど、細かい形状を測定することができる.   In the “white interferometry”, as shown in FIG. 12, light S from a broadband white light source 71 is incident on an interferometer 72 to perform interference measurement. Interference occurs only in the vicinity where the optical path difference between the signal light S1 and the reference light S2 is zero. Interference light is measured by a photodiode (PD) 723 by mechanically sweeping the reference mirror 721. From the position of the reference mirror 721 and the interference signal, the reflection position of the signal light S1 (the shape of the measurement object 722) is identified. In FIG. 12, the relationship between the interference output and the optical path difference between the signal light S1 and the reference light S2 is shown by a graph. Since the resolution in the depth direction is inversely proportional to the band of the white light source 71, a finer shape can be measured as a wider band light source is used.

「周波数掃引法」では、図13に示すように、周波数掃引レーザ(周波数が走査可能なレーザ)81からの光Sを干渉計82に入射して、干渉計測を行う。参照ミラー821は固定である。周波数掃引レーザ81の周波数を掃引しつつ、フォトダイオード(PD)823により、信号光S1と参照光S2との干渉光の波形を測定する。干渉波をフーリエ変換して信号光S1の反射位置(測定対象822の内部構造等)を計算する。図13では、周波数掃引レーザ81からの光Sが掃引されている様子をグラフで示すとともに、PD823が検出した干渉出力と光源周波数fとの関係、フーリエ変換した波形と光路差との関係がグラフにより示されている。奥行き方向の分解能は、光源周波数が走査可能な帯域で決まり、走査帯域が広いほど高い分解能が実現できる。   In the “frequency sweep method”, as shown in FIG. 13, light S from a frequency sweep laser (laser whose frequency can be scanned) 81 is incident on an interferometer 82 to perform interference measurement. The reference mirror 821 is fixed. While sweeping the frequency of the frequency sweep laser 81, the waveform of the interference light between the signal light S1 and the reference light S2 is measured by the photodiode (PD) 823. The reflection position of the signal light S1 (such as the internal structure of the measurement object 822) is calculated by Fourier transforming the interference wave. FIG. 13 is a graph showing how the light S from the frequency sweep laser 81 is swept, and the relationship between the interference output detected by the PD 823 and the light source frequency f, and the relationship between the Fourier transformed waveform and the optical path difference. Is indicated by The resolution in the depth direction is determined by the band where the light source frequency can be scanned, and the higher the scanning band, the higher the resolution can be realized.

「光コム周波数間隔掃引干渉法」では、図14に示すように、単一周波数光源911からの光Sが、周波数コム光発生器912に入射する。周波数コム光発生器912が、コム周波数間隔fiが掃引可能なコム光Scmbを発生する。コム光Scmbは、周波数軸上に多数の輝線スペクトルが一定の周波数間隔で整列した光のことを指す。参照ミラー921は固定である。イメージセンサ923により、信号光S1と参照光S2との干渉光の波形を測定する。干渉ピークが現れる光路差の位置はコム周波数間隔fiに依存し、等間隔に現れる。そのため、コム周波数間隔fiを掃引すると、光路差0の位置は動かないが、それ以外の位置は周波数間隔に依存して動くので測定対象922の深さ方向の反射率分布(測定対象922の内部構造等)が周波数間隔から同定できる。図14では、周波数コム光発生器912が発生する帯域fBの周波数コム光を図示するとともに、コム光Scmbが掃引されている様子も図示する。   In the “optical comb frequency interval sweep interferometry”, the light S from the single frequency light source 911 is incident on the frequency comb light generator 912 as shown in FIG. The frequency comb light generator 912 generates comb light Scmb that can be swept by the comb frequency interval fi. Comb light Scmb refers to light in which a number of emission line spectra are aligned at a certain frequency interval on the frequency axis. The reference mirror 921 is fixed. The waveform of the interference light between the signal light S1 and the reference light S2 is measured by the image sensor 923. The position of the optical path difference where the interference peak appears depends on the comb frequency interval fi and appears at equal intervals. Therefore, when the comb frequency interval fi is swept, the position of the optical path difference 0 does not move, but the other positions move depending on the frequency interval, so the reflectance distribution in the depth direction of the measurement target 922 (inside the measurement target 922) Structure etc.) can be identified from the frequency interval. FIG. 14 illustrates the frequency comb light in the band fB generated by the frequency comb light generator 912 and also illustrates how the comb light Scmb is swept.

特許第2010042号「光波反射像測定装置」Patent No. 20110042 “Light wave reflection image measuring device” WO2006/022342「生体組織測定用の光干渉トモグラフィー用光発生装置及び生体組織測定用の光干渉トモグラフィー装置」WO 2006/022342 “Light Interference Tomography Light Generation Device for Biological Tissue Measurement and Optical Interference Tomography Device for Biological Tissue Measurement” 日本国特許第4543180号 「形状測定方法、形状測定装置およびコム光発生装置」Japanese Patent No. 4543180 “Shape Measuring Method, Shape Measuring Device, and Comb Light Generator” 米国特許 7440112US Patent 7440112 ドイツ特許 PN16001DEGerman patent PN16001DE

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254(1991) 1178.D. Huang, E .; A. Swanson, C.I. P. Lin, J. et al. S. Schuman, W.H. G. Stinson, W.M. Chang, M.C. R. Hee, T.A. Flotte, K.M. Gregory, C.I. A. Puriafito, and J.M. G. Fujimoto, Science 254 (1991) 1178. T. Kubota, M. Nara and T. Yoshino: Opt. Lett., 12 (1987) 310−312.T.A. Kubota, M.M. Nara and T. Yoshino: Opt. Lett. , 12 (1987) 310-312. S. Choi, M. Yamamoto, D. Moteki, T. Shioda, Y. Tanaka, and T. Kurokawa,“Frequency−comb−based Interferometer for Profilometry and Tomography,” Optics.Letters,Vol. 31 No. 13, pp. 1976.−1978, July, 2006.S. Choi, M.M. Yamamoto, D.H. Moteki, T .; Shioda, Y. et al. Tanaka, and T.K. Kurokawa, “Frequency-comb-based Interferometer for Profilometry and Tomography,” Optics. Letters, Vol. 31 No. 13, pp. 1976. -1978, July, 2006.

「白色干渉法」では、表面形状測定(Profilometry)、および内部構造測定(Tomography)が可能である。しかし、機械的に可動される参照ミラー721の保守に手間がかかる。また、白色光源71からの光強度が弱いため、測定時間が長くなり、また安定性が悪い。   In “white interferometry”, surface shape measurement (Profilometry) and internal structure measurement (Tomography) are possible. However, it takes time to maintain the mechanically movable reference mirror 721. Further, since the light intensity from the white light source 71 is weak, the measurement time becomes long and the stability is poor.

「周波数走査法」では、表面形状測定、および内部構造測定が可能であり、機械的可動部分がないため、動作が安定しており、小型化が図られる。しかし、広い範囲に渉って周波数を掃引することが難しく、また周波数掃引光源が高価である。   In the “frequency scanning method”, surface shape measurement and internal structure measurement are possible, and since there are no mechanical movable parts, the operation is stable and downsizing is achieved. However, it is difficult to sweep the frequency over a wide range, and the frequency sweep light source is expensive.

「光コム間隔周波数掃引法」では、機械的可動部分がないため、動作が安定しており、小型化が図られ、また高速な測定が可能である。しかし、「光コム間隔周波数掃引法」は、図4において後述するように、キャリア周波数の干渉が弱めあう位置となった場合、包絡線信号全体が小さくなり、鮮明な画像が得られず正確な測定ができない場合が生じる。すなわち、表面形状測定を行う場合には、境界面の反射が大きいため測定できるが、内部構造測定の場合には、微弱で連続した散乱を測定しなければならず、測定ができない場合が生じてしまう。   In the “optical comb interval frequency sweeping method”, since there is no mechanical moving part, the operation is stable, downsizing, and high-speed measurement are possible. However, as will be described later with reference to FIG. 4, the “optical comb interval frequency sweep method” is accurate when a position where the carrier frequency interference is weakened becomes small, and the entire envelope signal becomes small. There are cases where measurement is not possible. In other words, when measuring the surface shape, it can be measured because the reflection at the interface is large, but in the case of measuring the internal structure, it is necessary to measure weak and continuous scattering, and there are cases where measurement cannot be performed. End up.

本発明の目的は、キャリア周波数の干渉により生じる深さ方向の像の不鮮明さや誤差を低減して、深さ方向の構造をより鮮明かつ高精度に観察・測定する技術を提供することにある。   An object of the present invention is to provide a technique for observing and measuring a structure in the depth direction more clearly and with high accuracy by reducing the unclearness and error of the image in the depth direction caused by carrier frequency interference.

本発明の構造測定方法は、(1)から(3)を要旨とする。
(1)
周波数が異なる複数のレーザ光から中心角周波数が異なる複数のコム光を順次生成して光学干渉計に入射し、複数のコム光ごとに、前記光学干渉計における固定された参照鏡からの戻り光と測定対象からの戻り光との干渉出力を、コム周波数間隔を掃引することにより複数回検出し、これらの検出値に基づき測定対象の構造を測定する構造測定方法であって、
前記複数回の検出ごとに、前記各検出において得られた干渉成分の検出値から、反射分布および/または散乱分布を取り出す演算を行うことで、前記測定対象の構造測定を行うことを特徴とする構造測定方法。
The structure measuring method of the present invention is summarized from (1) to (3).
(1)
A plurality of comb lights having different center angular frequencies are sequentially generated from a plurality of laser lights having different frequencies and incident on an optical interferometer, and return light from a fixed reference mirror in the optical interferometer is obtained for each of the plurality of comb lights. And the interference output of the return light from the measurement object, multiple times by sweeping the comb frequency interval, and measuring the structure of the measurement object based on these detection values,
The structure measurement of the measurement target is performed by performing an operation of extracting a reflection distribution and / or a scattering distribution from the detection value of the interference component obtained in each detection for each of the plurality of detections. Structure measurement method.

(2)
m次の干渉成分が現れるように前記光学干渉計の参照側と測定対象側との光学長差を設定する(1)に記載の構造測定方法であって、
用意される中心角周波数が異なるコム光が2つであり、これら2つの中心角周波数ω1,ω2の差(ω1−ω2)を、
ω1−ω2=Ω0/4m
m:次数(正の整数)
ω1:一方のコム光の中心角周波数
ω2:他方のコム光の中心角周波数
Ω0:基準となるコム間隔角周波数
となるように設定することを特徴とする構造測定方法。
(2)
The structure measurement method according to (1), wherein an optical length difference between a reference side and a measurement target side of the optical interferometer is set so that an m-order interference component appears.
Two comb lights with different central angular frequencies are prepared, and the difference (ω 1 −ω 2 ) between these two central angular frequencies ω 1 and ω 2 is expressed as follows:
ω 1 −ω 2 = Ω 0 / 4m
m: degree (positive integer)
ω 1 : Center angular frequency of one comb light ω 2 : Center angular frequency of the other comb light Ω 0 : A structure measuring method characterized by setting the reference comb interval angular frequency.

(3)
干渉出力が得られる測定対象の深さzが、
z=m×(πc/Ω)
となるようなm次の干渉を測定する設定において、
境界面や内部構造の散乱分布sc(z,Ω)を、p1(Ω),p2(Ω)を実数として、
c(z,Ω)={p1(Ω)2+p2(Ω)21/2
により求め、
または、
1(Ω)=dp1(Ω)/dΩ
2(Ω)=dp2(Ω)/dΩ
の2つの式から、
c(z,Ω)=−mπc{q2 1(Ω)+q2 2(Ω)}1/2/z2
により求めることを特徴とする(2)に記載の構造測定方法。
z:測定対象の基準位置からの深さ方向の距離
m:次数(正の整数)
Ω:コム間隔の角周波数(掃引角周波数)
c:光速
ω1:一方のコム光の中心角周波数
ω2:他方のコム光の中心角周波数
c(z,Ω):Ωで掃引したときの演算値(測定値)
1(Ω):中心角周波数ω1のコム光に対し、Ωを掃引したときのイメージセンサ出力の干渉項(測定値)
2(Ω):中心角周波数ω2のコム光に対し、Ωを掃引したときのイメージセンサ出力の干渉項(測定値)
(3)
The depth z of the object to be measured at which the interference output is obtained is
z = m × (πc / Ω)
In a setting to measure m-th order interference such that
The scattering distribution s c (z, Ω) of the boundary surface and the internal structure is represented by p 1 (Ω) and p 2 (Ω) as real numbers.
s c (z, Ω) = {p 1 (Ω) 2 + p 2 (Ω) 2 } 1/2
Sought by
Or
q 1 (Ω) = dp 1 (Ω) / dΩ
q 2 (Ω) = dp 2 (Ω) / dΩ
From the two equations
s c (z, Ω) = − mπc {q 2 1 (Ω) + q 2 2 (Ω)} 1/2 / z 2
(2) The structure measuring method according to (2).
z: distance in the depth direction from the reference position of the measurement object m: degree (positive integer)
Ω: angular frequency of comb interval (sweep angular frequency)
c: speed of light ω 1 : center angular frequency of one comb light ω 2 : center angular frequency of the other comb light s c (z, Ω): computed value when swept by Ω (measured value)
p 1 (Ω): Interference term (measured value) of the image sensor output when Ω is swept with respect to the comb light having the center angular frequency ω 1
p 2 (Ω): Interference term (measured value) of the image sensor output when Ω is swept with respect to the comb light having the center angular frequency ω 2

本発明の構造測定装置は、(4)から(7)を要旨とする。
(4)
周波数が異なる複数のレーザ光を発生する光源と、
前記光源から出射されるレーザ光を元に、コム周波数間隔が可変で中心角周波数が異なる複数のコム光を順次生成するコム光生成装置と、
前記コム光生成装置からのコム光が順次入射され、固定された参照鏡からの戻り光と測定対象からの戻り光との干渉出力を、コム周波数間隔を掃引することにより複数回検出する光学干渉計と、
前記複数のコム光の中心角周波数を設定し、コム周波数間隔を掃引し、所定の演算を行う演算制御部と、
を備えた構造測定装置であって、
前記演算制御部は、前記光学干渉計における前記参照鏡からの戻り光と前記測定対象からの戻り光との干渉出力を、コム周波数間隔を掃引することにより複数回検出し、前記各検出において得られた干渉成分の検出値から、測定対象の深さ方向の反射構率分布および/または散乱係数分布のみを取り出す演算を行うことで、前記測定対象の構造測定を行うことを特徴とする構造測定装置。
The structure measuring device of the present invention is summarized as (4) to (7).
(4)
A light source that generates a plurality of laser beams having different frequencies;
Based on the laser light emitted from the light source, a comb light generating device that sequentially generates a plurality of comb lights with variable comb frequency intervals and different central angular frequencies;
Optical interference in which comb light from the comb light generation device is sequentially incident and an interference output between the return light from the fixed reference mirror and the return light from the measurement target is detected a plurality of times by sweeping the comb frequency interval Total
A calculation control unit that sets a central angular frequency of the plurality of comb lights, sweeps a comb frequency interval, and performs a predetermined calculation;
A structural measuring device comprising:
The arithmetic control unit detects an interference output between the return light from the reference mirror and the return light from the measurement target in the optical interferometer a plurality of times by sweeping a comb frequency interval, and is obtained in each detection. The structure measurement is characterized in that the structure of the measurement object is measured by calculating only the reflection structure distribution and / or the scattering coefficient distribution in the depth direction of the measurement object from the detected value of the interference component. apparatus.

(5)
前記光源として、単一周波数光源と、前記単一周波数光源からの光を入射し、周波数を僅かに変化させる周波数シフタとからなることを特徴とする(4)に記載の構造測定装置。
(5)
The structure measuring apparatus according to (4), wherein the light source includes a single frequency light source and a frequency shifter that receives light from the single frequency light source and slightly changes the frequency.

(6)
m次の干渉成分が現れるように前記光学干渉計の参照側と測定対象側との光学長差を設定する(4)または(5)に記載の構造測定方法であって、
用意される中心角周波数の異なるコム光が2つであり、これら2つの中心角周波数ω1,ω2の差(ω1−ω2)を、
ω1−ω2=Ω0/4m
中心角周波数ω1,ω2の差(ω1−ω2)を、
ω1−ω2=Ω0/4m
m:次数(正の整数)
ω1:一方のコム光の中心角周波数
ω2:他方のコム光の中心角周波数
Ω0:基準となるコム間隔角周波数
となるように設定することを特徴とする構造測定装置。
(6)
The structure measuring method according to (4) or (5), wherein an optical length difference between a reference side and a measurement target side of the optical interferometer is set so that an m-th order interference component appears.
Two comb lights having different central angular frequencies are prepared, and the difference (ω 1 −ω 2 ) between the two central angular frequencies ω 1 and ω 2 is expressed as follows:
ω 1 −ω 2 = Ω 0 / 4m
The difference (ω 1 −ω 2 ) between the central angular frequencies ω 1 and ω 2 is
ω 1 −ω 2 = Ω 0 / 4m
m: degree (positive integer)
ω 1 : Center angular frequency of one comb light ω 2 : Center angular frequency of the other comb light Ω 0 : A structure measuring apparatus that is set to have a reference comb interval angular frequency.

(7)
干渉出力が得られる測定対象の深さzが、
z=m×(πc/Ω)
となるように設定した請求項6に記載の構造測定装置において、
前記演算制御部は、
境界面や内部構造の散乱分布sc(z,Ω)を、p1(Ω),p2(Ω)を実数として、
c(z,Ω)={p1(Ω)2+p2(Ω)21/2
により求め、
または、
1(Ω)=dp1(Ω)/dΩ、
2(Ω)=dp2(Ω)/dΩ
の2つの式から、
c(z,Ω)=−mπc{q2 1(Ω)+q2 2(Ω)}1/2/z2
により求めることを特徴とする請求項6に記載の構造測定装置。
z:基準位置からの深さ方向の距離
m:次数(正の整数)
Ω:コム光の角周波数間隔(掃引角周波数の間隔)
c:光速
ω1:一方のコム光の中心角周波数
ω2:他方のコム光の中心角周波数
c(z,Ω):Ωで掃引したときの演算値(測定値)
1(Ω):中心角周波数ω1のコム光に対し、Ωを掃引したときのイメージセンサ出力の干渉項(測定値)
2(Ω):中心角周波数ω2のコム光に対し、Ωを掃引したときのイメージセンサ出力の干渉項(測定値)
(7)
The depth z of the object to be measured at which the interference output is obtained is
z = m × (πc / Ω)
In the structure measuring apparatus according to claim 6, which is set to be
The arithmetic control unit is
The scattering distribution s c (z, Ω) of the boundary surface and the internal structure is represented by p 1 (Ω) and p 2 (Ω) as real numbers.
s c (z, Ω) = {p 1 (Ω) 2 + p 2 (Ω) 2 } 1/2
Sought by
Or
q 1 (Ω) = dp 1 (Ω) / dΩ,
q 2 (Ω) = dp 2 (Ω) / dΩ
From the two equations
s c (z, Ω) = − mπc {q 2 1 (Ω) + q 2 2 (Ω)} 1/2 / z 2
The structure measuring apparatus according to claim 6, wherein the structure measuring apparatus is obtained by:
z: distance in the depth direction from the reference position m: order (positive integer)
Ω: angular frequency interval of comb light (interval of sweep angular frequency)
c: speed of light ω 1 : center angular frequency of one comb light ω 2 : center angular frequency of the other comb light s c (z, Ω): computed value when swept by Ω (measured value)
p 1 (Ω): Interference term (measured value) of the image sensor output when Ω is swept with respect to the comb light having the center angular frequency ω 1
p 2 (Ω): Interference term (measured value) of the image sensor output when Ω is swept with respect to the comb light having the center angular frequency ω 2

従来の「光コム間隔周波数掃引法」で問題となっていた、キャリア周波数の干渉により生じる深さ方向の像の不鮮明さや誤差を低減して、深さ方向の構造をより鮮明かつ高精度に観察・測定できる。特に、微弱で連続した散乱を測定する内部構造測定の場合にも、十分に適用できる。   Observe the depth-wise structure more clearly and accurately by reducing the unclearness and errors of the image in the depth direction caused by the interference of the carrier frequency, which was a problem with the conventional "optical comb interval frequency sweep method"・ It can be measured. In particular, the present invention can be sufficiently applied to the internal structure measurement for measuring weak and continuous scattering.

本発明の構造測定装置の概要を示す図である。It is a figure which shows the outline | summary of the structure measuring apparatus of this invention. 本発明で使用される光学干渉計の構成を示す図である。It is a figure which shows the structure of the optical interferometer used by this invention. (A)は単一周波数光源からの光を周波数シフタにより周波数変換する光源を示す図、(B)は2つの単一周波数光源からの周波数が異なる光を光切替えスイッチにより切り替える光源を示す図である。(A) is a figure which shows the light source which frequency-converts the light from a single frequency light source with a frequency shifter, (B) is a figure which shows the light source which switches the light from which the frequency from two single frequency light sources differs with an optical changeover switch. is there. 従来の「光コム間隔周波数掃引干渉法」の干渉出力を示す説明図である。It is explanatory drawing which shows the interference output of the conventional "optical comb space | interval frequency sweep interferometry". 本発明の構造測定方法による干渉出力を示す説明図である。It is explanatory drawing which shows the interference output by the structure measuring method of this invention. 光周波数コムのパワースペクトルを示す図である。It is a figure which shows the power spectrum of an optical frequency comb. 従来の光コム間隔周波数掃引による形状測定装置を示す図である。It is a figure which shows the shape measuring apparatus by the conventional optical comb space | interval frequency sweep. 周波数コムを光源に用いた干渉計の出力を示す図であり、横軸は参照側と測定側の遅延時間差を示す。It is a figure which shows the output of the interferometer which used the frequency comb for the light source, and a horizontal axis shows the delay time difference of a reference side and a measurement side. 測定対象の一例を示す図であり、n1はガラス、n2は空気である。Is a diagram showing an example of a measurement object, n 1 is glass, n 2 is air. 従来の光コム間隔周波数掃引法で、図9の測定対象を測定した結果を示す図である。It is a figure which shows the result of having measured the measuring object of FIG. 9 with the conventional optical comb space | interval frequency sweep method. 本発明の方法で、図9の測定対象を測定した結果を示す図である。It is a figure which shows the result of having measured the measuring object of FIG. 9 with the method of this invention. 従来の、白色干渉法による形状測定の概要を示す図である。It is a figure which shows the outline | summary of the shape measurement by the conventional white interference method. 従来の、周波数掃引法による形状測定の概要を示す図である。It is a figure which shows the outline | summary of the shape measurement by the conventional frequency sweep method. 従来の、光コム周波数間隔掃引干渉法による形状測定の概要を示す図である。It is a figure which shows the outline | summary of the shape measurement by the conventional optical comb frequency space | interval sweep interferometry.

《発明の概要》
本発明の構造測定装置の概要を図1に示す。なお、本発明の構造測定方法は以下の説明に含まれるので、特に記載はしない。
図1において、構造測定装置1は、光源11と、コム光生成装置12と、光学干渉計13と、演算制御部14とを備える。光学干渉計13は、図2に示すように、固定された参照鏡131と、ビームスプリッタ(BS)と、イメージセンサ133とを有しており、コム光生成装置12からの光をコリメータCLを介して入射する。イメージセンサ133により、参照鏡131からの戻り光と測定対象132からの戻り光との干渉出力を、コム間隔周波数を掃引することにより検出し、これらの検出値に基づき測定対象132の構造を測定する。ただし、周波数コムの中心角周波数を複数回変化させ、その度ごとに前記コム間隔周波数の掃引による測定を行う。なお、以下の説明において、構造測定装置1において、本発明の本質とはならない構成要素については図示を省略する。たとえば、演算制御部14には、表示装置や印刷装置が接続されてもよいが、これらの図示はしない。また、光学干渉計13では、説明に必要ではないレンズ系の図示は省略してある。
<< Summary of Invention >>
An outline of the structure measuring apparatus of the present invention is shown in FIG. In addition, since the structure measuring method of this invention is contained in the following description, it does not describe in particular.
In FIG. 1, the structure measurement device 1 includes a light source 11, a comb light generation device 12, an optical interferometer 13, and a calculation control unit 14. As shown in FIG. 2, the optical interferometer 13 includes a fixed reference mirror 131, a beam splitter (BS), and an image sensor 133. The optical interferometer 13 converts the light from the comb light generator 12 into the collimator CL. Through. The image sensor 133 detects the interference output between the return light from the reference mirror 131 and the return light from the measurement target 132 by sweeping the comb interval frequency, and measures the structure of the measurement target 132 based on these detection values. To do. However, the center angular frequency of the frequency comb is changed a plurality of times, and measurement is performed by sweeping the comb interval frequency each time. In the following description, components of the structure measuring apparatus 1 that are not essential to the present invention are not shown. For example, a display device or a printing device may be connected to the arithmetic control unit 14, but these are not shown. In the optical interferometer 13, illustration of a lens system that is not necessary for the description is omitted.

光源11は、周波数が異なる複数のレーザ光を生成する。光源11は、周波数が異なる光を生成するものであれば、(a)単一周波数レーザと周波数シフタとからなるもの、(b)周波数がわずかに異なる2つの単一周波数レーザと光切替スイッチを用いたもの、(c)波長可変レーザからなるもの等を使用することができる。
(a)の構成の光源を図3(A)に示す。図3(A)に示すように、周波数が異なる複数の光を順次生成するための光源11として、単一周波数光源111と周波数シフタ112とを組み合わせて使用することができる。たとえば、周波数シフタ112として、単側波帯(SSB)変調器を用いることができ、周波数シフト量は、マイクロ波発生器113によりSSB変調器に印加する周波数によって決まる。したがって、演算制御部14(図1に示されている)がマイクロ波発生器113を正確に制御できる。
(b)の構成の光源を図3(B)に示す。図3(B)に示すように、2つの単一周波数レーザ111Aの出射光と、単一周波数レーザ111Bの出射光とを、
光切替スイッチ114により切り替え、周波数が異なる複数の光を順次生成することができる。
The light source 11 generates a plurality of laser beams having different frequencies. As long as the light source 11 generates light having different frequencies, (a) a single-frequency laser and a frequency shifter are used, and (b) two single-frequency lasers having slightly different frequencies and an optical changeover switch. The one used, (c) one made of a wavelength tunable laser, or the like can be used.
A light source having the configuration (a) is shown in FIG. As shown in FIG. 3A, a single frequency light source 111 and a frequency shifter 112 can be used in combination as the light source 11 for sequentially generating a plurality of lights having different frequencies. For example, a single sideband (SSB) modulator can be used as the frequency shifter 112, and the frequency shift amount is determined by the frequency applied to the SSB modulator by the microwave generator 113. Therefore, the arithmetic control unit 14 (shown in FIG. 1) can accurately control the microwave generator 113.
A light source having the configuration (b) is shown in FIG. As shown in FIG. 3B, the emitted light of the two single frequency lasers 111A and the emitted light of the single frequency laser 111B are
A plurality of lights having different frequencies can be sequentially generated by switching with the light changeover switch 114.

コム光生成装置12は、光源11から出射されるレーザ光を元に、コム周波数間隔が可変で中心角周波数が異なる複数のコム光Scmb,k(k=1,2,3,・・・)を順次を生成することができる。コム光生成装置としては、例えば次のような構成のものを用いることができる。
単一周波数レーザの光をマイクロ波駆動のLN変調器で変調して種となるコム光を発生する。最終的に発生する光コムの周波数間隔は、このマイクロ波周波数で決定される。次にこの種コム光の各モードの振幅と位相を光パルスシンセサイザで調整し、種コム光から数ピコ秒幅の短光パルスを合成する。次にこの光パルスを増幅してファイバに入射することによりパルス幅を圧縮したのち、非線形ファイバに入射してスーパーコンティニューム(SC)コム光を発生させる。なお、前記光パルスシンセサイザは、回折格子と変調器が石英光回路に集積された構造からなり、振幅と位相の調整によりピコ秒程度の短光パルスを合成するデバイスである。このSCコム光のコム間隔周波数は、前記マイクロ波の周波数で決定される。したがって、前記マイクロ波の周波数を僅かの範囲で掃引すれば、SCコム光のコム間隔周波数も掃引される。
The comb light generation device 12 has a plurality of comb light Scmb, k (k = 1, 2, 3,...) Based on the laser light emitted from the light source 11 and having different comb frequency intervals and different center angular frequencies. Can be generated sequentially. For example, a comb light generation apparatus having the following configuration can be used.
Single-frequency laser light is modulated by a microwave-driven LN modulator to generate seed comb light. The frequency interval of the finally generated optical comb is determined by this microwave frequency. Next, the amplitude and phase of each mode of the seed comb light are adjusted by an optical pulse synthesizer, and a short optical pulse having a width of several picoseconds is synthesized from the seed comb light. Next, the optical pulse is amplified and incident on the fiber to compress the pulse width, and then incident on the nonlinear fiber to generate supercontinuum (SC) comb light. The optical pulse synthesizer has a structure in which a diffraction grating and a modulator are integrated in a quartz optical circuit, and is a device that synthesizes a short optical pulse of about picoseconds by adjusting amplitude and phase. The comb interval frequency of the SC comb light is determined by the frequency of the microwave. Therefore, if the microwave frequency is swept within a small range, the comb interval frequency of the SC comb light is also swept.

光学干渉計13は、コム光生成装置12からのコム光が順次入射され、固定された参照鏡からの戻り光と測定対象からの戻り光との干渉出力を、コム間隔周波数の掃引に同期して検出する。
演算制御部14は、複数のコム光Scmb,k(k=1,2,3,・・・)の中心角周波数を設定し、コム間隔周波数を掃引する。すなわち、周波数コムの中心角周波数を複数回変化させ、その度ごとに前記コム間隔周波数の掃引に同期した干渉出力を測定する。複数回の測定において得られた干渉成分の検出値から、測定対象の反射分布および/または散乱分布を取り出す演算を行う。
The optical interferometer 13 sequentially receives the comb light from the comb light generation device 12, and synchronizes the interference output between the return light from the fixed reference mirror and the return light from the measurement target with the sweep of the comb interval frequency. To detect.
The arithmetic control unit 14 sets the central angular frequency of the plurality of comb lights Scmb, k (k = 1, 2, 3,...) And sweeps the comb interval frequency. That is, the center angular frequency of the frequency comb is changed a plurality of times, and the interference output synchronized with the sweep of the comb interval frequency is measured each time. An operation is performed to extract the reflection distribution and / or the scattering distribution of the measurement object from the detected values of the interference components obtained in a plurality of measurements.

光学干渉計13は、参照側のBSから鏡までの光学長Lr、および測定対象側のBSから測定対象までの光学長Lsの差が、基準コム間隔周波数Ω0に対して次のような関係を満たすように設定する。
r−Ls=m×(πc/Ω0
このとき、光学干渉計13からm次(m:正の整数)の干渉が出力される(c:光速)。すなわち、コム間隔周波数をΩ0に設定したとき、測定対象の深さ方向に対して距離z0(=mπc/Ω0)の点からの干渉出力が得られる。
ここで、コム間隔周波数をΩ0からΩに僅かに変化させると、次の式で表される深さzからの干渉出力が得られる。
z=m×(πc/Ω)
以上のような設定において、
用意される中心角周波数の異なるコム光(それぞれの中心角周波数をω1,ω2とする)が2つであり、これら2つの中心角周波数の差を、
(中心角周波数の差)=(基準コム間隔周波数)÷(干渉次数の4倍)
すなわち、
ω1−ω2=Ω0/4m
となるように設定する。
中心角周波数ω1のコム光のコム間隔周波数Ωを掃引して得られる検出値の干渉成分をp1(Ω),中心角周波数ω2のコム光のコム間隔周波数Ωを掃引して得られる検出値の干渉成分をp2(Ω)とする。
測定対象に明確な反射境界が存在する(例えば、物体の表面形状を測定する)場合は、p1(Ω)とp2(Ω)から、反射率分布sr(Ω)を次式により求められる。
r(Ω)={p1(Ω)2+p2(Ω)21/2
一方、内部構造の測定(例えばOCTのように物体の内部断面の測定)をする場合は、p1(Ω)とp2(Ω)をそれぞれΩで微分する。
1(Ω)=dp1(Ω)/dΩ
2(Ω)=dp2(Ω)/dΩ
上記の2つの式から次のようにして、内部構造の散乱分布sc(z,Ω)を求めることができる。
c(z,Ω)=−mπc{q2 1(Ω)+q2 2(Ω)}1/2/z2
なお、演算の詳細については、実施例において説明する。
In the optical interferometer 13, the difference between the optical length L r from the BS on the reference side to the mirror and the optical length L s from the BS on the measurement target side to the measurement target is as follows with respect to the reference comb interval frequency Ω 0 : Set to satisfy the relationship.
L r −L s = m × (πc / Ω 0 )
At this time, m-order (m: positive integer) interference is output from the optical interferometer 13 (c: speed of light). That is, when the comb interval frequency is set to Ω 0 , an interference output from a point at a distance z 0 (= mπc / Ω 0 ) with respect to the depth direction of the measurement object is obtained.
Here, when the comb interval frequency is slightly changed from Ω 0 to Ω, an interference output from the depth z expressed by the following equation is obtained.
z = m × (πc / Ω)
With the above settings,
There are two comb lights with different central angular frequencies (the central angular frequencies are ω 1 and ω 2 ), and the difference between these two central angular frequencies is
(Center angular frequency difference) = (reference comb interval frequency) ÷ (four times the interference order)
That is,
ω 1 −ω 2 = Ω 0 / 4m
Set to be.
Resulting interference components of the detected values obtained by the center angular frequency omega 1 of the comb spacing frequency comb light Omega is swept by sweeping the p 1 (Ω), comb spacing frequency Omega center angular frequency omega 2 of the comb beam Let the interference component of the detected value be p 2 (Ω).
When there is a clear reflection boundary in the measurement target (for example, measuring the surface shape of an object), the reflectance distribution s r (Ω) is obtained from the following equation from p 1 (Ω) and p 2 (Ω). It is done.
s r (Ω) = {p 1 (Ω) 2 + p 2 (Ω) 2 } 1/2
On the other hand, when measuring the internal structure (for example, measuring the internal cross section of an object like OCT), p 1 (Ω) and p 2 (Ω) are differentiated by Ω, respectively.
q 1 (Ω) = dp 1 (Ω) / dΩ
q 2 (Ω) = dp 2 (Ω) / dΩ
The scattering distribution s c (z, Ω) of the internal structure can be obtained from the above two expressions as follows.
s c (z, Ω) = − mπc {q 2 1 (Ω) + q 2 2 (Ω)} 1/2 / z 2
Details of the calculation will be described in the embodiment.

このようにして、図13で説明した「光コム間隔周波数掃引干渉法」の問題点(キャリア周波数の干渉により生じる深さ方向の像の不鮮明さや誤差)を回避できる。
これにより、測定対象や生体の断層画像を連続的に測定するトモグラフィーも実現可能となる。
In this way, the problems of the “optical comb interval frequency sweep interferometry” described with reference to FIG. 13 (the image blur and error in the depth direction caused by the interference of the carrier frequency) can be avoided.
Thereby, the tomography which measures continuously the tomographic image of a measuring object or a living body is also realizable.

図13で説明した従来の「光コム間隔周波数掃引干渉法」の干渉出力を図4に示し、本発明の構造測定方法による干渉出力を図5に示す。
これらは、何れもコム間隔周波数掃引により干渉出力の包絡線が変化することを利用する。測定対象からの反射光を信号光とし、その反射位置をコム間隔周波数により同定して、測定対象の表面形状や内部構造の測定を行う。
The interference output of the conventional “optical comb interval frequency sweep interferometry” described in FIG. 13 is shown in FIG. 4, and the interference output by the structure measuring method of the present invention is shown in FIG.
All of these utilize the fact that the envelope of the interference output changes due to the comb interval frequency sweep. The reflected light from the measurement object is used as signal light, the reflection position is identified by the comb interval frequency, and the surface shape and internal structure of the measurement object are measured.

後述するように、光コム間隔周波数を掃引したときに現れる干渉出力は、包絡線の関数にcos(2ω0z/c)というキャリア周波数の干渉による項が掛かった形となる。そのため、信号光S1と参照光S2が強め合う干渉が起きる場合(図4の位置zd)、包絡線の位置を走査して包絡線をなぞるように波形が取得でき計測が可能となる。弱め合う干渉が起きる場合には(図4の位置zb)、干渉出力がゼロとなるため、包絡線を走査しても信号出力がゼロとなり、何も信号が得られない。
このように、奥行き方向に沿って測定位置がzaからzgへ動くと、その位置に応じた干渉出力は図のように変化するため、反射境界が鮮明でなくなる。
As will be described later, the interference output that appears when the optical comb interval frequency is swept is in a form in which a term due to the carrier frequency interference of cos (2ω 0 z / c) is applied to the envelope function. For this reason, when constructive interference occurs between the signal light S1 and the reference light S2 (position z d in FIG. 4), the waveform can be acquired by scanning the envelope position and tracing the envelope, thereby enabling measurement. When destructive interference occurs (position z b in FIG. 4), the interference output becomes zero, so even if the envelope is scanned, the signal output becomes zero and no signal is obtained.
Thus, when the measurement position moves from z a to z g along the depth direction, the interference output corresponding to the position changes as shown in the figure, and the reflection boundary becomes unclear.

一方、本発明での構造測定方法および構造測定装置では、所定周波数の光から生成した周波数コム光により作られる干渉波と、この光と中心角周波数が所定周波数分異なる光により生成した周波数コム光から作られる干渉波を生成する。この2つの干渉波(図5参照)は、π/2位相が異なる。
これら2つの干渉波を利用して2回測定して二乗和を計算すると、どの位置(za−zg)でも測定が可能となり、3次元形状・断層構造が測定できる。
On the other hand, in the structure measuring method and the structure measuring apparatus according to the present invention, the interference wave generated by the frequency comb light generated from the light having the predetermined frequency and the frequency comb light generated by the light whose center angular frequency is different from the light by the predetermined frequency. Generates an interference wave made from The two interference waves (see FIG. 5) have different π / 2 phases.
When these two interference waves are used for measurement twice and the sum of squares is calculated, measurement is possible at any position (za-zg), and a three-dimensional shape / fault structure can be measured.

《実施形態》
<周波数コムを用いた従来の干渉計測法の原理>
図6は、コム光のパワースペクトルを示している。
コム光のパワースペクトル|U0(ω−ω0)|2は次式のように表すことができる。
|U0(ω−ω0)|2
∝F(ω−ω0)[G(ω)*Σδ(ω−ω0−mΩ0)] (1)
(*は畳み込み積分を表す)
ω0:コムの中心角周波数
Ω0:基準のコム間隔角周波数
F(ω):スペクトルの包絡線形状を示す関数
G(ω):周波数コムの縦モードの形状を示す関数
Σ:m=0,1,2としたときのδ(ω−ω0−mΩ0)の総和
δ:デルタ関数
<Embodiment>
<Principle of conventional interferometry using frequency comb>
FIG. 6 shows the power spectrum of the comb light.
The power spectrum | U 0 (ω−ω 0 ) | 2 of the comb light can be expressed as follows.
| U 0 (ω−ω 0 ) | 2
∝F (ω−ω 0 ) [G (ω) * Σδ (ω−ω 0 −mΩ 0 )] (1)
(* Represents convolution integral)
ω 0 : Center angular frequency of comb Ω 0 : Reference comb interval angular frequency F (ω): Function indicating the shape of the envelope of the spectrum G (ω): Function indicating the shape of the longitudinal mode of the frequency comb Σ: m = 0 , 1 and 2, the sum of δ (ω−ω 0 −mΩ 0 ) δ: delta function

図7は従来の形状計測装置3を示す図であり、形状計測装置3により、図14においてすでに説明した「光コム周波数間隔掃引干渉法」が実施される。
図7において、形状計測装置3は、レーザ311と、周波数コム光発生器312と、コリメータCLと、干渉計33とからなる。
干渉計33は、コリメータCLにより、周波数コム光発生器312から出射した光を広げてコリメートし、干渉計33に入射する。ここで、コリメートされた光は、一様であるとする。
FIG. 7 is a diagram showing a conventional shape measuring apparatus 3. The shape measuring apparatus 3 performs the “optical comb frequency interval sweep interferometry” already described in FIG.
In FIG. 7, the shape measuring apparatus 3 includes a laser 311, a frequency comb light generator 312, a collimator CL, and an interferometer 33.
The interferometer 33 spreads and collimates the light emitted from the frequency comb light generator 312 by the collimator CL, and enters the interferometer 33. Here, the collimated light is assumed to be uniform.

干渉計33に入射された周波数コム光は、
Z方向を測定対象の深さ方向にとる。イメージセンサ上の平面(x,y)上の1点で考える。
2つの分枝の遅延時間差をτとして、
サンプル側からの複素光振幅を、
s(t−τ)=s(τ)u0(t−τ)
とする。また、参照側からの複素光振幅を、
r(t)=ru0(t)
とする。ここで
s(τ):遅延時間τに相当する測定対象の深さ方向の点からの光の戻る割合
r:参照鏡の反射率
である。
The frequency comb light incident on the interferometer 33 is
The Z direction is taken as the depth direction of the measurement target. Consider one point on the plane (x, y) on the image sensor.
Let τ be the delay time difference between the two branches,
The complex light amplitude from the sample side
u s (t−τ) = s (τ) u 0 (t−τ)
And Also, the complex light amplitude from the reference side is
u r (t) = ru 0 (t)
And Here, s (τ): the ratio of light returning from the point in the depth direction of the measurement object corresponding to the delay time τ, r: the reflectance of the reference mirror.

イメージセンサの1つの画素の出力i(τ)は、次のように表される。
i(τ)∝<|us(t−τ)+ur(t)|2
=(s2(τ)+r2)<|u0(t)|2
+2Re[s(τ)r<u0(t)u0 *(t−τ)>] (2)
ここで<・・>は、イメージセンサの蓄積時間内での時間平均を表す。
An output i (τ) of one pixel of the image sensor is expressed as follows.
i (τ) ∝ <| u s (t−τ) + u r (t) | 2 >
= (S 2 (τ) + r 2 ) <| u 0 (t) | 2 >
+ 2Re [s (τ) r <u 0 (t) u 0 * (t−τ)>] (2)
Here, <••> represents a time average within the accumulation time of the image sensor.

ウィナーキンチン(Wiener−Khintchine)の定理から、干渉信号(自己相関関数)は光源のパワースペクトルのフーリエ逆変換となるので、自己相関関数Γ(τ)は次のようになる。
Γ(τ)≡<u0(t)u0 *(t−τ)>
=[f(τ)・Σδ(τ−mT)]g(τ)exp(jω0τ)
T≡2π/Ω0 (3)
Since the interference signal (autocorrelation function) is the inverse Fourier transform of the power spectrum of the light source from the Wiener-Khintchine theorem, the autocorrelation function Γ (τ) is as follows.
Γ (τ) ≡ <u 0 (t) u 0 * (t−τ)>
= [F (τ) · Σδ (τ−mT)] g (τ) exp (jω 0 τ)
T≡2π / Ω 0 (3)

式(3)より、図8に示すように、一定の遅延時間差(すなわち干渉距離差)の箇所ごとにきわめて強い干渉出力が現れる。つまり、周波数コムを干渉系に入射すると、遅延時間差τが次のような条件を満たす時、干渉はきわめて強い値を示す。
τ=mπ/Ω
f(τ),g(τ)は実関数である。またm次の干渉のみを考える。すなわち、測定対象側と参照側の遅延時間差をτとし、これがmTの近傍にあるように参照鏡の位置を設定する。
From Equation (3), as shown in FIG. 8, a very strong interference output appears for each portion having a certain delay time difference (that is, interference distance difference). That is, when the frequency comb is incident on the interference system, the interference shows a very strong value when the delay time difference τ satisfies the following condition.
τ = mπ / Ω
f (τ) and g (τ) are real functions. Only m-th order interference is considered. That is, the delay time difference between the measurement target side and the reference side is τ, and the position of the reference mirror is set so that it is in the vicinity of mT.

このとき、
<|u0(t)|2>=Γ(0)≒f(0)g(0)
<u0(t)u0 *(t−τ)>
=Γ(τ)≒g(mT)f(τ−mT)exp(jω0τ)
したがって、イメージセンサ上の出力は、
i(τ)∝f(0)g(0)(s2(τ)+r2
+2rs(τ)g(mT)f(τ−mT)cos(ω0τ)
=f(0)g(0)(s2(τ)+r2
+2rs(τ)g(m・2π/Ω0)f(τ−m・2π/Ω)cos(ω0τ) (4)
ここで、Ωはコム角周波数間隔(Ω0は基準のコム角周波数間隔)、ω0は光の中心角周波数である。ΩはΩ0の近傍で掃引される。
At this time,
<| U 0 (t) | 2 > = Γ (0) ≈f (0) g (0)
<U 0 (t) u 0 * (t−τ)>
= Γ (τ) ≈g (mT) f (τ−mT) exp (jω 0 τ)
Therefore, the output on the image sensor is
i (τ) ∝f (0) g (0) (s 2 (τ) + r 2 )
+ 2rs (τ) g (mT) f (τ−mT) cos (ω 0 τ)
= F (0) g (0) (s 2 (τ) + r 2 )
+ 2rs (τ) g (m · 2π / Ω 0 ) f (τ−m · 2π / Ω) cos (ω 0 τ) (4)
Here, Ω is a comb angular frequency interval (Ω 0 is a reference comb angular frequency interval), and ω 0 is a central angular frequency of light. Ω is swept around Ω 0 .

光学的深さ方向のzを2分枝の遅延時間の差をもとに、次のように定義する。
z≡cτ/2
ここで、遅延時間差τがmTの近傍にあるので、 z≒m・πc/Ω0(=mλRF/2) (5)
i(z,Ω)∝f(0)g(0)(s2(z)+r2)+2rs(z)g(m・2π/Ω0)f(2/c(z−m・πc/Ω))cos(2πω0z/c) (6)
これは、掃引されるマイクロ波周波数がΩのとき、深さzの点から戻ってくる光の干渉出力を表している。
Z in the optical depth direction is defined as follows based on the difference in delay time between the two branches.
z≡cτ / 2
Here, since the delay time difference τ is in the vicinity of mT, z≈m · πc / Ω 0 (= mλ RF / 2) (5)
i (z, Ω) ∝f (0) g (0) (s 2 (z) + r 2 ) + 2rs (z) g (m · 2π / Ω 0 ) f (2 / c (z−m · πc / Ω) )) Cos (2πω 0 z / c) (6)
This represents the interference output of light returning from the point of depth z when the microwave frequency to be swept is Ω.

たとえば、f(τ)がガウス関数の場合は、
f(τ)=exp[−(loge2){τ/(Δτ/2)}2
Δτ:半値幅 (7)
で表すことができる。
したがって、
i(z,Ω)∝f(0)g(0)(s2(z)+r2
+2rs(z)g(m・2π/Ω0
×exp[−(loge2){(z−m・πc/Ω)/(zres/2)}2]cos(2ω0z/c) (8)
res=cΔτ/2:深さz方向の分解能
すなわち、参照ミラーを動かし距離差を走査する代わりに、コム周波数間隔Ωを掃引すれば、(8)式の条件を満たすところで干渉信号が現れ、機械的可動部が無い測定が可能になる。しかし、式(8)の干渉項はキャリア周波数成分cos(2ω0z/c)の項がある。そのため図4で説明したように、位置によって干渉成分が変化するので反射境界が明瞭でなくなる、あるいは内部構造が鮮明に見えないという問題がある。
For example, if f (τ) is a Gaussian function,
f (τ) = exp [− (log e 2) {τ / (Δτ / 2)} 2 ]
Δτ: Half width (7)
Can be expressed as
Therefore,
i (z, Ω) ∝f (0) g (0) (s 2 (z) + r 2 )
+ 2rs (z) g (m · 2π / Ω 0 )
Xexp [-(log e 2) {(zm · πc / Ω) / (z res / 2)} 2 ] cos (2ω 0 z / c) (8)
z res = cΔτ / 2: Resolution in the depth z direction In other words, instead of scanning the distance difference by moving the reference mirror, if the comb frequency interval Ω is swept, an interference signal appears where the condition of equation (8) is satisfied, Measurement without mechanical moving parts is possible. However, the interference term of equation (8) has a carrier frequency component cos (2ω 0 z / c). Therefore, as described with reference to FIG. 4, the interference component changes depending on the position, so that there is a problem that the reflection boundary is not clear or the internal structure cannot be seen clearly.

<本発明の原理>
〔A〕 表面形状の測定(膜厚測定のように境界のみを見る場合も含む)
測定される信号は、マイクロ波周波数Ωの掃引により、
c=m・πc/Ω0を中心に、測定対象のzc−a/2からzc+a/2の深さ範囲が検出されるとする。
一般に、aはzc/100のオーダーである。
また、mは一般に、3〜20の範囲の整数値とする。
表面がz0のところにあるとき、z=z0以外のところからくる光は無視できるとする。また、表面からの反射光あるいは散乱光の割合をs(z0)とすると、CCDの1つの画素の信号は次のようになる。
i(Ω)=f(0)g(0)(s2(z0)+r2
+2rs(z0)g(m・2π/Ω0))
×exp[−(loge2){(z0−m・πc/Ω)/(zres/2)}2]cos(2ω00/c) (9)
<Principle of the present invention>
[A] Surface shape measurement (including the case where only the boundary is seen as in film thickness measurement)
The measured signal is swept at the microwave frequency Ω,
Assume that a depth range of z c −a / 2 to z c + a / 2 to be measured is detected around z c = m · πc / Ω 0 .
In general, a is on the order of z c / 100.
Also, m is generally an integer value in the range of 3-20.
When the surface is at z 0 , light coming from places other than z = z 0 can be ignored. If the ratio of reflected light or scattered light from the surface is s (z 0 ), the signal of one pixel of the CCD is as follows.
i (Ω) = f (0) g (0) (s 2 (z 0 ) + r 2 )
+2 rs (z 0 ) g (m · 2π / Ω 0 ))
× exp [- (log e 2 ) {(z 0 -m · πc / Ω) / (z res / 2)} 2] cos (2ω 0 z 0 / c) (9)

図9(A),(B)は、測定対象の一例として積み重ねたガラス板を示す図である。
図10(A),(B)は、図8のガラス板を従来方法で構造測定を行った例を示している。境界となる4つの反射面が観測されるが、cos(2ω00/c)の項によって、正負や大きさが変化する。通常、表面が光入射面に完全に平行であることはないので、表面自体は測定される。しかし、場所によってcosの項のために0に近くなる場合がある。
FIGS. 9A and 9B are diagrams illustrating stacked glass plates as an example of a measurement target.
FIGS. 10A and 10B show an example in which the structure of the glass plate of FIG. 8 is measured by a conventional method. Four reflecting surfaces serving as boundaries are observed, but the sign or magnitude changes depending on the term cos (2ω 0 z 0 / c). Usually, the surface itself is measured because the surface is not completely parallel to the light incident surface. However, it may be close to 0 due to the cos term depending on the location.

そこで、2つのコムの中心角周波数に対し、次のような信号処理を行う。
2つのコムの中心角周波数をω1,ω2とし、それぞれに対してコム間隔周波数を掃引すると干渉信号が得られる。測定結果からバイアス部分を差し引いた干渉項(第2項)を、ω1のコムに対してp1(Ω)、ω2のコムに対してp2(Ω)とする。
ただし、2つのコム中心角周波数の差を次のように設定する。
ω1−ω2=Ω0/4m (10)
Therefore, the following signal processing is performed on the center angular frequency of the two combs.
When the center angular frequencies of the two combs are ω 1 and ω 2 and the comb interval frequency is swept for each, an interference signal is obtained. The interference term minus the bias portion from the measurement result (second term), p 1 (Ω) relative to comb of omega 1, to p 2 and (Omega) relative comb of omega 2.
However, the difference between the two comb center angular frequencies is set as follows.
ω 1 −ω 2 = Ω 0 / 4m (10)

このとき、
1(Ω)=sc(Ω)cos(2ω1z/c) (11)
2(Ω)=sc(Ω)cos(2ω2z/c)
=sc(Ω)cos{2ω1z/c−(π/2)・(z/zc)}
≒sc(Ω)sin(2ω1z/c) (12)
ただし、
c(Ω)=2rs(z0)g(m・2π/Ω0)×exp[−(loge2){(z0−m・πc/Ω)/(zres/2)}2] (13)
At this time,
p 1 (Ω) = s c (Ω) cos (2ω 1 z / c) (11)
p 2 (Ω) = s c (Ω) cos (2ω 2 z / c)
= S c (Ω) cos {2ω 1 z / c− (π / 2) · (z / z c )}
≈ s c (Ω) sin (2ω 1 z / c) (12)
However,
s c (Ω) = 2rs (z 0 ) g (m · 2π / Ω 0 ) × exp [− (log e 2) {(z 0 −m · πc / Ω) / (z res / 2)} 2 ] (13)

取得された2つのデータから次のようにして、sc(Ω)を求めることができる。
c(Ω)={p2 1(Ω)+p2 2(Ω)}1/2
=2rs(z0)g(m・2π/Ω0
×exp[−(loge2){(z0−m・πc/Ω)/(zres/2)}2] (14)
すなわち、これより散乱分布s(z)が求められる。
From the two acquired data, s c (Ω) can be obtained as follows.
s c (Ω) = {p 2 1 (Ω) + p 2 2 (Ω)} 1/2
= 2rs (z 0 ) g (m · 2π / Ω 0 )
Xexp [− (log e 2) {(z 0 −m · πc / Ω) / (z res / 2)} 2 ] (14)
That is, the scattering distribution s (z) is obtained from this.

図11は、上記のようにして、図9のガラス板を測定対象として本発明の構造測定方法による測定を行った例を示している。全ての境界面で高さの揃った鮮明な信号が得られていることが判る。   FIG. 11 shows an example in which measurement is performed by the structure measurement method of the present invention using the glass plate of FIG. 9 as a measurement object as described above. It can be seen that a clear signal having a uniform height is obtained at all the boundary surfaces.

〔B〕 内部構造の測定(OCTのように物体の内部断面の測定をしようとする場合を含む)
測定される信号は、マイクロ波周波数Ωの掃引により、zc=m・πc/Ω0を中心に測定対象のzc−a/2からからzc+a/2の深さ範囲が検出されるとする。一般に、aはzc/100のオーダーである。すると、CCDの1つの画素には、測定対象のいろいろな深さからくる光が合わされて露光されるので、式(6)を積分した信号is(Ω)が画素の信号となる。
[B] Measurement of internal structure (including the case of measuring the internal cross section of an object like OCT)
The measured signal, the sweep of the microwave frequency Ω, z c -a / 2 Karakara z c + a / 2 in the depth range of the measurement object around the z c = m · πc / Ω 0 is detected And In general, a is on the order of z c / 100. Then, since light coming from various depths of the measurement object is combined and exposed to one pixel of the CCD, a signal i s (Ω) obtained by integrating Expression (6) becomes a pixel signal.

s(Ω)=∫i(z,Ω)dz
=∫[f(0)g(0)(s2(z)+r2
+2rs(z)g(m・2π/Ω0))
×exp[−(loge2){(z−m・πc/Ω)/(zres/2)}2]cos(2ω0z/c)]dz
(積分範囲は、zc−a/2からからzc+a/2まで)
(15)
i s (Ω) = ∫i (z, Ω) dz
= ∫ [f (0) g (0) (s 2 (z) + r 2 )
+ 2rs (z) g (m · 2π / Ω 0 ))
Xexp [− (log e 2) {(z−m · πc / Ω) / (z res / 2)} 2 ] cos (2ω 0 z / c)] dz
(Integration range is from z c -a / 2 to z c + a / 2)
(15)

上記の信号のバイアス部分を差し引いた干渉項(積分の第2項)のみを、次のように書き直す。
p(Ω)=∫sc(z,Ω)cos(2ω0z/c)dz (16)
Only the interference term (second term of the integration) obtained by subtracting the bias portion of the above signal is rewritten as follows.
p (Ω) = ∫s c (z, Ω) cos (2ω 0 z / c) dz (16)

ただし、
c(z,Ω)
=2rs(z)g(m・2π/Ω0
×exp[−(loge2){(z−m・πc/Ω)/(zres/2)}2] (17)
上記の干渉項は、cosによって平均化されるので鮮明な画像が得られない。
However,
s c (z, Ω)
= 2rs (z) g (m · 2π / Ω 0 )
× exp [- (log e 2 ) {(z-m · πc / Ω) / (z res / 2)} 2] (17)
Since the interference term is averaged by cos, a clear image cannot be obtained.

そこで、2つのコムの中心角周波数に対し、次のような信号処理を行う。
2つのコムの中心角周波数をω1,ω2とし、それぞれに対してコム間隔周波数を掃引すると干渉信号が得られる。測定結果からバイアス部分を差し引いた干渉項(第2項)を、ω1のコムに対してp1(Ω)、ω2のコムに対してp2(Ω)とする。
ただし、2つのコム中心角周波数の差を次のように設定する。
ω1−ω2=Ω0/4m (18)
Therefore, the following signal processing is performed on the center angular frequency of the two combs.
When the center angular frequencies of the two combs are ω 1 and ω 2 and the comb interval frequency is swept for each, an interference signal is obtained. The interference term minus the bias portion from the measurement result (second term), p 1 (Ω) relative to comb of omega 1, to p 2 and (Omega) relative comb of omega 2.
However, the difference between the two comb center angular frequencies is set as follows.
ω 1 −ω 2 = Ω 0 / 4m (18)

このとき、
1(Ω)=∫sc(z,Ω)cos(2ω1z/c)dz (19)
2(Ω)=∫sc(z,Ω)cos(2ω2z/c)dz
=∫sc(z,Ω)cos{2ω1z/c−(π/2)・(z/zc)}dz
=∫sc(z,Ω)sin(2ω1z/c)dz (20)
At this time,
p 1 (Ω) = ∫s c (z, Ω) cos (2ω 1 z / c) dz (19)
p 2 (Ω) = ∫s c (z, Ω) cos (2ω 2 z / c) dz
= ∫s c (z, Ω) cos {2ω 1 z / c− (π / 2) · (z / z c )} dz
= ∫s c (z, Ω) sin (2ω 1 z / c) dz (20)

取得された2つのデータをそれぞれΩで微分する。
1(Ω)=dp1(Ω)/dΩ (21)
2(Ω)=dp2(Ω)/dΩ (22)
上記の2つの式から次のようにして、sc(z,Ω)を求めることができる。
c(z,Ω)=−mπc{q2 1(Ω)+q2 2(Ω)}1/2/z2
Differentiate each of the two acquired data by Ω.
q 1 (Ω) = dp 1 (Ω) / dΩ (21)
q 2 (Ω) = dp 2 (Ω) / dΩ (22)
From the above two equations, s c (z, Ω) can be obtained as follows.
s c (z, Ω) = − mπc {q 2 1 (Ω) + q 2 2 (Ω)} 1/2 / z 2

これより、sc(z,Ω)、すなわち内部構造の散乱分布sc(z)を求めることができる。 Thus, s c (z, Ω), that is, the scattering distribution s c (z) of the internal structure can be obtained.

1 構造測定装置
3 形状計測装置
11 光源
12 コム光生成装置
13 光学干渉計
14 演算制御部
33 干渉計
71 白色光源
72 干渉計
81 周波数掃引レーザ
82 干渉計
111 単一周波数光源
111A,111B 単一周波数レーザ
112 周波数シフタ
113 マイクロ波発生器
114 光切替スイッチ
131 参照鏡
132 測定対象
133 イメージセンサ
311 レーザ
312 周波数コム光発生器
721 参照ミラー
722 測定対象
723 フォトダイオード
821 参照ミラー
822 測定対象
823 フォトダイオード
911 単一周波数光源
912 周波数コム光発生器
921 参照ミラー
922 測定対象
923 イメージセンサ
CL コリメータ
r,Ls 光学長
S1 信号光
S2 参照光
Scmb コム光
cos キャリア周波数成分
f 光源周波数
B 帯域
i コム周波数間隔
s 信号
s 測定対象の構造の反射または散乱分布
z 測定対象の深さ方向の距離
Ω0 基準となるコム間隔周波数
ω1 コムの中心角周波数
ω2 コムの中心角周波数
DESCRIPTION OF SYMBOLS 1 Structure measuring device 3 Shape measuring device 11 Light source 12 Comb light generation device 13 Optical interferometer 14 Operation control part 33 Interferometer 71 White light source 72 Interferometer 81 Frequency sweep laser 82 Interferometer 111 Single frequency light source 111A, 111B Single frequency Laser 112 Frequency shifter 113 Microwave generator 114 Optical changeover switch 131 Reference mirror 132 Measurement object 133 Image sensor 311 Laser 312 Frequency comb light generator 721 Reference mirror 722 Measurement object 723 Photo diode 821 Reference mirror 822 Measurement object 823 Photo diode 911 Single Single-frequency light source 912 Frequency comb light generator 921 Reference mirror 922 Measurement object 923 Image sensor CL Collimator L r , L s Optical length S1 Signal light S2 Reference light Scmb Comb light cos Carrier circumference Wave number component f Light source frequency f B band f i comb frequency interval i s signal s Reflection or scattering distribution of structure to be measured z Distance in depth direction of measurement object Ω 0 Reference comb interval frequency ω 1 Center angular frequency of 1 comb Center angular frequency of ω 2 comb

Claims (7)

周波数が異なる複数のレーザ光から中心角周波数が異なる複数のコム光を順次生成して光学干渉計に入射し、複数のコム光ごとに、前記光学干渉計における固定された参照鏡からの戻り光と測定対象からの戻り光との干渉出力を、コム周波数間隔を掃引することにより複数回検出し、これらの検出値に基づき測定対象の構造を測定する構造測定方法であって、
前記複数回の検出ごとに、前記各検出において得られた干渉成分の検出値から、反射分布および/または散乱分布を取り出す演算を行うことで、前記測定対象の構造測定を行うことを特徴とする構造測定方法。
A plurality of comb lights having different center angular frequencies are sequentially generated from a plurality of laser lights having different frequencies and incident on an optical interferometer, and return light from a fixed reference mirror in the optical interferometer is obtained for each of the plurality of comb lights. And the interference output of the return light from the measurement object, multiple times by sweeping the comb frequency interval, and measuring the structure of the measurement object based on these detection values,
The structure measurement of the measurement target is performed by performing an operation of extracting a reflection distribution and / or a scattering distribution from the detection value of the interference component obtained in each detection for each of the plurality of detections. Structure measurement method.
m次の干渉成分が現れるように前記光学干渉計の参照側と測定対象側との光学長差を設定する請求項1に記載の構造測定方法であって、
用意される中心角周波数が異なるコム光が2つであり、これら2つの中心角周波数ω1,ω2の差(ω1−ω2)を、
ω1−ω2=Ω0/4m
m:次数(正の整数)
ω1:一方のコム光の中心角周波数
ω2:他方のコム光の中心角周波数
Ω0:基準となるコム間隔角周波数
となるように設定することを特徴とする構造測定方法。
The structure measurement method according to claim 1, wherein an optical length difference between a reference side and a measurement target side of the optical interferometer is set so that an m-th order interference component appears.
Two comb lights with different central angular frequencies are prepared, and the difference (ω 1 −ω 2 ) between these two central angular frequencies ω 1 and ω 2 is expressed as follows:
ω 1 −ω 2 = Ω 0 / 4m
m: degree (positive integer)
ω 1 : Center angular frequency of one comb light ω 2 : Center angular frequency of the other comb light Ω 0 : A structure measuring method characterized by setting the reference comb interval angular frequency.
干渉出力が得られる測定対象の深さzが、
z=m×(πc/Ω)
となるようなm次の干渉を測定する設定において、
境界面や内部構造の散乱分布sc(z,Ω)を、p1(Ω),p2(Ω)を実数として、
c(z,Ω)={p1(Ω)2+p2(Ω)21/2
により求め、
または、
1(Ω)=dp1(Ω)/dΩ
2(Ω)=dp2(Ω)/dΩ
の2つの式から、
c(z,Ω)=−mπc{q2 1(Ω)+q2 2(Ω)}1/2/z2
により求めることを特徴とする請求項2に記載の構造測定方法。
z:測定対象の基準位置からの深さ方向の距離
m:次数(正の整数)
Ω:コム間隔の角周波数(掃引角周波数)
c:光速
ω1:一方のコム光の中心角周波数
ω2:他方のコム光の中心角周波数
c(z,Ω):Ωで掃引したときの演算値(測定値)
1(Ω):中心角周波数ω1のコム光に対し、Ωを掃引したときのイメージセンサ出力の干渉項(測定値)
2(Ω):中心角周波数ω2のコム光に対し、Ωを掃引したときのイメージセンサ出力の干渉項(測定値)
The depth z of the object to be measured at which the interference output is obtained is
z = m × (πc / Ω)
In a setting to measure m-th order interference such that
The scattering distribution s c (z, Ω) of the boundary surface and the internal structure is represented by p 1 (Ω) and p 2 (Ω) as real numbers.
s c (z, Ω) = {p 1 (Ω) 2 + p 2 (Ω) 2 } 1/2
Sought by
Or
q 1 (Ω) = dp 1 (Ω) / dΩ
q 2 (Ω) = dp 2 (Ω) / dΩ
From the two equations
s c (z, Ω) = − mπc {q 2 1 (Ω) + q 2 2 (Ω)} 1/2 / z 2
The structure measuring method according to claim 2, wherein the structure measuring method is obtained by:
z: distance in the depth direction from the reference position of the measurement object m: degree (positive integer)
Ω: angular frequency of comb interval (sweep angular frequency)
c: speed of light ω 1 : center angular frequency of one comb light ω 2 : center angular frequency of the other comb light s c (z, Ω): computed value when swept by Ω (measured value)
p 1 (Ω): Interference term (measured value) of the image sensor output when Ω is swept with respect to the comb light having the center angular frequency ω 1
p 2 (Ω): Interference term (measured value) of the image sensor output when Ω is swept with respect to the comb light having the center angular frequency ω 2
周波数が異なる複数のレーザ光を発生する光源と、
前記光源から出射されるレーザ光を元に、コム周波数間隔が可変で中心角周波数が異なる複数のコム光を順次生成するコム光生成装置と、
前記コム光生成装置からのコム光が順次入射され、固定された参照鏡からの戻り光と測定対象からの戻り光との干渉出力を、コム周波数間隔を掃引することにより複数回検出する光学干渉計と、
前記複数のコム光の中心角周波数を設定し、コム周波数間隔を掃引し、所定の演算を行う演算制御部と、
を備えた構造測定装置であって、
前記演算制御部は、前記光学干渉計における前記参照鏡からの戻り光と前記測定対象からの戻り光との干渉出力を、コム周波数間隔を掃引することにより複数回検出し、前記各検出において得られた干渉成分の検出値から、測定対象の深さ方向の反射構率分布および/または散乱係数分布のみを取り出す演算を行うことで、前記測定対象の構造測定を行うことを特徴とする構造測定装置。
A light source that generates a plurality of laser beams having different frequencies;
Based on the laser light emitted from the light source, a comb light generating device that sequentially generates a plurality of comb lights with variable comb frequency intervals and different central angular frequencies;
Optical interference in which comb light from the comb light generation device is sequentially incident and an interference output between the return light from the fixed reference mirror and the return light from the measurement target is detected a plurality of times by sweeping the comb frequency interval Total
A calculation control unit that sets a central angular frequency of the plurality of comb lights, sweeps a comb frequency interval, and performs a predetermined calculation;
A structural measuring device comprising:
The arithmetic control unit detects an interference output between the return light from the reference mirror and the return light from the measurement target in the optical interferometer a plurality of times by sweeping a comb frequency interval, and is obtained in each detection. The structure measurement is characterized in that the structure of the measurement object is measured by calculating only the reflection structure distribution and / or the scattering coefficient distribution in the depth direction of the measurement object from the detected value of the interference component. apparatus.
前記光源として、単一周波数光源と、前記単一周波数光源からの光を入射し、周波数を僅かに変化させる周波数シフタとからなることを特徴とする請求項4に記載の構造測定装置。   The structure measuring apparatus according to claim 4, wherein the light source includes a single frequency light source and a frequency shifter that receives light from the single frequency light source and slightly changes the frequency. m次の干渉成分が現れるように前記光学干渉計の参照側と測定対象側との光学長差を設定する請求項4または5に記載の構造測定装置であって、
用意される中心角周波数の異なるコム光が2つであり、これら2つの中心角周波数ω1,ω2の差(ω1−ω2)を、
ω1−ω2=Ω0/4m
m:次数(正の整数)
ω1:一方のコム光の中心角周波数
ω2:他方のコム光の中心角周波数
Ω0:基準となるコム間隔角周波数
となるように設定することを特徴とする構造測定装置。
The structure measurement apparatus according to claim 4 or 5, wherein an optical length difference between a reference side and a measurement target side of the optical interferometer is set so that an m-th order interference component appears.
Two comb lights having different central angular frequencies are prepared, and the difference (ω 1 −ω 2 ) between the two central angular frequencies ω 1 and ω 2 is expressed as follows:
ω 1 −ω 2 = Ω 0 / 4m
m: degree (positive integer)
ω 1 : Center angular frequency of one comb light ω 2 : Center angular frequency of the other comb light Ω 0 : A structure measuring apparatus that is set to have a reference comb interval angular frequency.
干渉出力が得られる測定対象の深さzが、
z=m×(πc/Ω)
となるように設定した請求項6に記載の構造測定装置において、
前記演算制御部は、
境界面や内部構造の散乱分布sc(z,Ω)を、p1(Ω),p2(Ω)を実数として、
c(z,Ω)={p1(Ω)2+p2(Ω)21/2
により求め、
または、
1(Ω)=dp1(Ω)/dΩ
2(Ω)=dp2(Ω)/dΩ
の2つの式から、
c(z,Ω)=−mπc{q2 1(Ω)+q2 2(Ω)}1/2/z2
により求めることを特徴とする請求項6に記載の構造測定装置。
z:基準位置からの深さ方向の距離
m:次数(正の整数)
Ω:コム光の角周波数間隔(掃引角周波数の間隔)
c:光速
ω1:一方のコム光の中心角周波数
ω2:他方のコム光の中心角周波数
c(z,Ω):Ωで掃引したときの演算値(測定値)
1(Ω):中心角周波数ω1のコム光に対し、Ωを掃引したときのイメージセンサ出力の干渉項(測定値)
2(Ω):中心角周波数ω2のコム光に対し、Ωを掃引したときのイメージセンサ出力の干渉項(測定値)
The depth z of the object to be measured at which the interference output is obtained is
z = m × (πc / Ω)
In the structure measuring apparatus according to claim 6, which is set to be
The arithmetic control unit is
The scattering distribution s c (z, Ω) of the boundary surface and the internal structure is represented by p 1 (Ω) and p 2 (Ω) as real numbers.
s c (z, Ω) = {p 1 (Ω) 2 + p 2 (Ω) 2 } 1/2
Sought by
Or
q 1 (Ω) = dp 1 (Ω) / dΩ
q 2 (Ω) = dp 2 (Ω) / dΩ
From the two equations
s c (z, Ω) = − mπc {q 2 1 (Ω) + q 2 2 (Ω)} 1/2 / z 2
The structure measuring apparatus according to claim 6, wherein the structure measuring apparatus is obtained by:
z: distance in the depth direction from the reference position m: order (positive integer)
Ω: angular frequency interval of comb light (interval of sweep angular frequency)
c: speed of light ω 1 : center angular frequency of one comb light ω 2 : center angular frequency of the other comb light s c (z, Ω): computed value when swept by Ω (measured value)
p 1 (Ω): Interference term (measured value) of the image sensor output when Ω is swept with respect to the comb light having the center angular frequency ω 1
p 2 (Ω): Interference term (measured value) of the image sensor output when Ω is swept with respect to the comb light having the center angular frequency ω 2
JP2011013109A 2011-01-25 2011-01-25 Structure measuring method and structure measuring apparatus Active JP5724133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011013109A JP5724133B2 (en) 2011-01-25 2011-01-25 Structure measuring method and structure measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011013109A JP5724133B2 (en) 2011-01-25 2011-01-25 Structure measuring method and structure measuring apparatus

Publications (2)

Publication Number Publication Date
JP2012154728A true JP2012154728A (en) 2012-08-16
JP5724133B2 JP5724133B2 (en) 2015-05-27

Family

ID=46836615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011013109A Active JP5724133B2 (en) 2011-01-25 2011-01-25 Structure measuring method and structure measuring apparatus

Country Status (1)

Country Link
JP (1) JP5724133B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016048188A (en) * 2014-08-27 2016-04-07 国立大学法人電気通信大学 Distance measuring apparatus
JP2018115993A (en) * 2017-01-19 2018-07-26 日本電信電話株式会社 Three-dimensional shape measurement device
WO2019017392A1 (en) * 2017-07-19 2019-01-24 宏 小川 Tomographic image imaging device
JP2019526060A (en) * 2016-07-20 2019-09-12 ユニヴェルシテ・ドゥ・ボルドー Acoustic resonance spectroscopy measurement method and system
JP2021021744A (en) * 2014-08-27 2021-02-18 国立大学法人電気通信大学 Distance measurement device
WO2023210116A1 (en) * 2022-04-27 2023-11-02 パナソニックIpマネジメント株式会社 Optical interference measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110319A (en) * 1988-10-19 1990-04-23 Canon Inc Interference measuring apparatus using multimode semiconductor laser
WO2006019181A1 (en) * 2004-08-18 2006-02-23 National University Corporation Tokyo University Of Agriculture And Technology Shape measurement method, shape measurement device, and frequency comb light generation device
JP2010261911A (en) * 2009-05-11 2010-11-18 Optical Comb Inc Vibration measuring instrument and vibration measuring method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110319A (en) * 1988-10-19 1990-04-23 Canon Inc Interference measuring apparatus using multimode semiconductor laser
WO2006019181A1 (en) * 2004-08-18 2006-02-23 National University Corporation Tokyo University Of Agriculture And Technology Shape measurement method, shape measurement device, and frequency comb light generation device
JP2010261911A (en) * 2009-05-11 2010-11-18 Optical Comb Inc Vibration measuring instrument and vibration measuring method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016048188A (en) * 2014-08-27 2016-04-07 国立大学法人電気通信大学 Distance measuring apparatus
JP2021021744A (en) * 2014-08-27 2021-02-18 国立大学法人電気通信大学 Distance measurement device
JP2019526060A (en) * 2016-07-20 2019-09-12 ユニヴェルシテ・ドゥ・ボルドー Acoustic resonance spectroscopy measurement method and system
JP6997779B2 (en) 2016-07-20 2022-01-18 ユニヴェルシテ・ドゥ・ボルドー Acoustic resonance spectroscopy measurement method and system
JP2018115993A (en) * 2017-01-19 2018-07-26 日本電信電話株式会社 Three-dimensional shape measurement device
WO2019017392A1 (en) * 2017-07-19 2019-01-24 宏 小川 Tomographic image imaging device
JPWO2019017392A1 (en) * 2017-07-19 2020-05-28 宏 小川 Tomographic imager
WO2023210116A1 (en) * 2022-04-27 2023-11-02 パナソニックIpマネジメント株式会社 Optical interference measuring device

Also Published As

Publication number Publication date
JP5724133B2 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
JP5724133B2 (en) Structure measuring method and structure measuring apparatus
JP7158283B2 (en) High-speed, long-depth range imaging apparatus and method using optical coherence tomography
TWI521195B (en) Mothod for measuring refractive index, refractive index measuring device, and method for producing optical element
US10436569B2 (en) Interferometric distance measurement based on compression of chirped interferogram from cross-chirped interference
US20150177380A1 (en) Three-dimensional tomographic imaging camera
US8842288B2 (en) Phase shift interferometer
JP2019045200A (en) Optical distance measuring device and method
JP2011174920A (en) Method and apparatus of measuring optical interference
CN110646805A (en) Frequency modulation continuous wave laser ranging system based on virtual sweep frequency light source
JP6979391B2 (en) Distance measuring device, distance measuring method, and three-dimensional shape measuring device
US8678594B2 (en) Apparatus and method of monitoring and measurement using spectral low coherence interferometry
JP5563439B2 (en) Optical phase measuring device, optical phase measuring method and program
JP6166697B2 (en) Optical coherence tomography device
JP6576542B2 (en) 3D shape measuring device, 3D shape measuring probe
RU2654379C1 (en) Instant optical coherent tomography in temporary area
JP2005283155A (en) Dispersion correcting apparatus in light interference sectional image imaging method
JP5468836B2 (en) Measuring apparatus and measuring method
WO2018102356A1 (en) True heterodyne spectrally controlled interferometry
EP3548835B1 (en) Extending the range of spectrally controlled interferometry by superpositon of multiple spectral modulations
KR101108693B1 (en) Refractive index measurement device based on white light interferometry and method thereof
JP6259370B2 (en) Optical coherence tomography device
US11385044B2 (en) Extending the range of spectrally controlled interferometry by superposition of multiple spectral modulations
JP2014092425A (en) Optical interference tomographic imaging apparatus and optical interference tomographic imaging method
RU2697900C1 (en) Device for generating phase shift in optical range
JP2021032661A (en) Interferometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150311

R150 Certificate of patent or registration of utility model

Ref document number: 5724133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250