JP2012149934A - Current detection circuit - Google Patents

Current detection circuit Download PDF

Info

Publication number
JP2012149934A
JP2012149934A JP2011007543A JP2011007543A JP2012149934A JP 2012149934 A JP2012149934 A JP 2012149934A JP 2011007543 A JP2011007543 A JP 2011007543A JP 2011007543 A JP2011007543 A JP 2011007543A JP 2012149934 A JP2012149934 A JP 2012149934A
Authority
JP
Japan
Prior art keywords
current
resistor
shunt
sense
current detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011007543A
Other languages
Japanese (ja)
Other versions
JP5720259B2 (en
Inventor
Jun Muto
潤 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011007543A priority Critical patent/JP5720259B2/en
Publication of JP2012149934A publication Critical patent/JP2012149934A/en
Application granted granted Critical
Publication of JP5720259B2 publication Critical patent/JP5720259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a current detection circuit in which a difference in current detection accuracy between each of sets of resistances can be absorbed.SOLUTION: In a current detection circuit, a plurality of sets of a shunt resistance and a sense resistance connected to the shunt resistance in parallel, which are provided in a current path, are arranged on a substrate corresponding to a plurality of current paths in which amounts of currents flowing therein have correlation, and each of currents flowing in each of the current paths is detected by using a shunt ratio between the shunt resistance and the sense resistor. In the current detection circuit, each of the shunt resistances and the sense resistances in each of the sets are arranged on the substrate so that temperature differences, which are generated between the shunt resistances and the sense resistances when current detection is performed for the current paths, become equal in each of the sets.

Description

本発明は、電流検出回路に係り、特に、電流経路上に設けられるシャント抵抗とそのシャント抵抗に並列に接続されるセンス抵抗とが複数組、流れる電流量が相関を有する複数の電流経路に対応して基板上に配設され、各電流経路に流れる電流それぞれをシャント抵抗とセンス抵抗との分流比を利用して検出するうえで好適な電流検出回路に関する。   The present invention relates to a current detection circuit, and in particular, corresponds to a plurality of current paths in which a plurality of sets of shunt resistors provided on a current path and sense resistors connected in parallel to the shunt resistance are correlated. In addition, the present invention relates to a current detection circuit suitable for detecting each current flowing through each current path using a shunt ratio between a shunt resistor and a sense resistor.

従来、電流経路上に設けられるシャント抵抗を備え、そのシャント抵抗を用いてその電流経路に流れる電流を検出する電流検出回路が知られている(例えば、特許文献1参照)。かかる電流検出回路において、電流経路にシャント抵抗を通じて電流が流れると、そのシャント抵抗の両端間にその電流量に応じた電圧が発生する。従って、シャント抵抗の両端間に生じる電圧の大きさを検出することで、その電圧とシャント抵抗の抵抗値とに基づいて電流経路に流れる電流を検出することができる。   2. Description of the Related Art Conventionally, a current detection circuit that includes a shunt resistor provided on a current path and detects a current flowing through the current path using the shunt resistance is known (see, for example, Patent Document 1). In such a current detection circuit, when a current flows through the shunt resistor in the current path, a voltage corresponding to the amount of current is generated between both ends of the shunt resistor. Therefore, by detecting the magnitude of the voltage generated across the shunt resistor, the current flowing through the current path can be detected based on the voltage and the resistance value of the shunt resistor.

特開2007−181349号公報JP 2007-181349 A

一般に、例えばモータの各通電相の如く流れる電流量が相関を有する複数の電流経路に流れる電流それぞれを検出する場合、モータ制御を適切に行ううえでは、各電流経路に流れる電流のすべてを精度よく検出できることが望ましい。ここで、抵抗特性は温度に応じて変動するので、各電流経路に流れる電流のすべてを精度よく検出するうえでは、各通電相に流れる電流の検出時にシャント抵抗側に作用する温度が各相間でほぼ等しいことが望ましい。各通電相に流れる電流の検出時にシャント抵抗側に作用する温度が各相間で異なるものであると、各電流経路に流れる電流を精度よく検出することが難しくなり、その結果として、モータ制御を適切に行うことが困難となる。   In general, for example, when detecting each of the currents flowing through a plurality of current paths in which the amount of current flowing like each energized phase of the motor correlates, all of the currents flowing through the current paths are accurately detected in order to properly control the motor. It is desirable that it can be detected. Here, since the resistance characteristics vary depending on the temperature, the temperature that acts on the shunt resistor side when detecting the current flowing in each energized phase is detected between the phases in order to accurately detect all of the current flowing in each current path. It is desirable that they are approximately equal. If the temperature acting on the shunt resistor side during the detection of the current flowing through each energized phase differs between the phases, it will be difficult to accurately detect the current flowing through each current path, and as a result, appropriate motor control will be performed. Difficult to do.

本発明は、上述の点に鑑みてなされたものであり、各組間での電流検出精度の差を吸収することが可能な電流検出回路を提供することを目的とする。   The present invention has been made in view of the above-described points, and an object of the present invention is to provide a current detection circuit capable of absorbing a difference in current detection accuracy between each set.

上記の目的は、電流経路上に設けられるシャント抵抗と該シャント抵抗に並列に接続されるセンス抵抗とが複数組、流れる電流量が相関を有する複数の電流経路に対応して基板上に配設され、各電流経路に流れる電流それぞれを前記シャント抵抗と前記センス抵抗との分流比を利用して検出する電流検出回路であって、各組それぞれの前記シャント抵抗と前記センス抵抗とを、該電流経路の電流検出時に該シャント抵抗と該センス抵抗との間に生じる温度差が各組間で等しくなるように前記基板上に配置した電流検出回路により達成される。   The purpose is to provide a plurality of sets of shunt resistors provided on the current path and sense resistors connected in parallel to the shunt resistance, and arranged on the substrate corresponding to the plurality of current paths in which the amount of flowing current is correlated. A current detection circuit that detects each current flowing through each current path by using a shunt ratio between the shunt resistor and the sense resistor, wherein the shunt resistor and the sense resistor of each group are This is achieved by a current detection circuit arranged on the substrate so that a temperature difference generated between the shunt resistor and the sense resistor during path current detection is equal between the groups.

本発明によれば、各組間での電流検出精度の差を吸収することができる。   According to the present invention, it is possible to absorb a difference in current detection accuracy between each set.

本発明の一実施例である電流検出回路の構成図である。It is a block diagram of the current detection circuit which is one Example of this invention. 本実施例におけるシャント抵抗及びセンス抵抗の温度係数X,Yを表した図である。It is a figure showing the temperature coefficients X and Y of the shunt resistance and sense resistance in a present Example. 本実施例におけるシャント抵抗とセンス抵抗との基板上での配置位置を表した斜視図である。It is the perspective view showing the arrangement position on the board | substrate of the shunt resistance and sense resistance in a present Example. 本実施例におけるシャント抵抗の発熱による温度分布下でのシャント抵抗とセンス抵抗との配置位置を表した上面図である。It is a top view showing the arrangement position of a shunt resistor and a sense resistor under a temperature distribution due to heat generation of the shunt resistor in the present embodiment.

以下、図面を用いて、本発明に係る電流検出回路の具体的な実施の形態について説明する。   Hereinafter, specific embodiments of a current detection circuit according to the present invention will be described with reference to the drawings.

図1は、本発明の一実施例である電流検出回路10の構成図を示す。本実施例の電流検出回路10は、例えば車両に搭載される可変吸気システムなどが備えるモータ12の制御回路に適用される。   FIG. 1 shows a configuration diagram of a current detection circuit 10 according to an embodiment of the present invention. The current detection circuit 10 of the present embodiment is applied to a control circuit for a motor 12 provided in a variable intake system mounted on a vehicle, for example.

モータ12は、U相,V相,W相を有する三相交流モータである。モータ12には、そのモータ12を駆動する駆動回路14が接続されている。駆動回路14は、モータ12の各通電相U,V,Wごとに一組ずつ対応して設けられた三組の半導体素子16,18を有している。半導体素子16,18は、例えばMOS型の電界効果トランジスタである。各通電相U,V,Wの半導体素子16,18はそれぞれ、所定のバッテリ電圧VBが印加される電源端子20と車体が接続される接地端子22との間で直列接続されている。以下、適宜、半導体素子16を正側半導体素子16と、半導体素子18を負側半導体素子18と、それぞれ称す。モータ12の制御回路は、各通電相U,V,Wごとに一組の半導体素子16,18を適当なタイミングで交互にスイッチング駆動すると共に、U相,V相,W相に対して所定の順序でスイッチング駆動を行う。   The motor 12 is a three-phase AC motor having a U phase, a V phase, and a W phase. A drive circuit 14 that drives the motor 12 is connected to the motor 12. The drive circuit 14 includes three sets of semiconductor elements 16 and 18 that are provided in correspondence with each of the energized phases U, V, and W of the motor 12. The semiconductor elements 16 and 18 are, for example, MOS type field effect transistors. The semiconductor elements 16 and 18 of the energized phases U, V, and W are connected in series between a power supply terminal 20 to which a predetermined battery voltage VB is applied and a ground terminal 22 to which a vehicle body is connected. Hereinafter, as appropriate, the semiconductor element 16 is referred to as a positive-side semiconductor element 16, and the semiconductor element 18 is referred to as a negative-side semiconductor element 18, respectively. The control circuit of the motor 12 alternately drives a set of semiconductor elements 16 and 18 for each energized phase U, V, and W at an appropriate timing, and performs predetermined driving for the U phase, V phase, and W phase. Switching driving is performed in order.

各組の半導体素子16,18のうち正側半導体素子16がオンされると、電源端子20から正側半導体素子16を介してモータ12の当該通電相へ電流が流通する。また、各組の半導体素子16,18のうち負側半導体素子18がオンされると、モータ12の当該通電相から負側半導体素子18を介して接地端子22へ電流が流通する。かかる電流流通が各通電相U,V,Wにおいて適当に行われると、モータ12が適切に作動する。   When the positive-side semiconductor element 16 is turned on among the semiconductor elements 16 and 18 in each group, a current flows from the power supply terminal 20 to the current-carrying phase of the motor 12 via the positive-side semiconductor element 16. Further, when the negative semiconductor element 18 of the pair of semiconductor elements 16 and 18 is turned on, current flows from the current-carrying phase of the motor 12 to the ground terminal 22 via the negative semiconductor element 18. When such a current flow is appropriately performed in each energized phase U, V, W, the motor 12 operates appropriately.

上記の電流が流通する電流経路24上には、シャント抵抗26が設けられている。シャント抵抗26は、電源端子20と正側半導体素子16との間に介在しており、モータ12の通電相U,V,Wごとに一つずつ設けられている。シャント抵抗26は、所定の温度係数(例えば、100ppm/℃)Xを有する抵抗であって、素子温度に応じて変化する抵抗値(例えば、3mΩ程度)Roを有している。   A shunt resistor 26 is provided on the current path 24 through which the current flows. The shunt resistor 26 is interposed between the power supply terminal 20 and the positive-side semiconductor element 16, and one shunt resistor 26 is provided for each energized phase U, V, W of the motor 12. The shunt resistor 26 has a predetermined temperature coefficient (for example, 100 ppm / ° C.) X, and has a resistance value (for example, about 3 mΩ) Ro that changes according to the element temperature.

電流経路24には、センス抵抗28の一端が接続されている。具体的には、センス抵抗28の一端は、電源端子20にすなわちシャント抵抗26の電源端子20側端子に接続されている。センス抵抗28は、シャント抵抗26ごとに、対となる抵抗として設けられている。センス抵抗28は、所定の温度係数(例えば、150ppm/℃)Yを有する抵抗であって、素子温度に応じて変化する抵抗値(例えば、12Ω程度)Rsを有している。尚、センス抵抗28の抵抗値Rsは、シャント抵抗26の抵抗値Roのn倍(“1”を超える倍数であって、例えば、4000倍)に設定されている。また、センス抵抗28の温度係数Yは、シャント抵抗26の温度係数Xよりも大きい値に設定されている。   One end of a sense resistor 28 is connected to the current path 24. Specifically, one end of the sense resistor 28 is connected to the power supply terminal 20, that is, the power supply terminal 20 side terminal of the shunt resistor 26. The sense resistor 28 is provided as a pair of resistors for each shunt resistor 26. The sense resistor 28 has a predetermined temperature coefficient (for example, 150 ppm / ° C.) Y, and has a resistance value (for example, about 12Ω) Rs that changes according to the element temperature. Note that the resistance value Rs of the sense resistor 28 is set to n times (a multiple exceeding “1”, for example, 4000 times) the resistance value Ro of the shunt resistor 26. The temperature coefficient Y of the sense resistor 28 is set to a value larger than the temperature coefficient X of the shunt resistor 26.

シャント抵抗26の半導体素子16側端子、及び、センス抵抗28の他端には、電流検出回路10の有する制御ASIC30が接続されている。シャント抵抗26及びセンス抵抗28は、電流経路24上の同一点(具体的には、電源端子20)と制御ASIC30との間で互いに並列に接続されている。制御ASIC30は、各通電相の電流経路24に流れる電流Ioを、センス抵抗28に流れる電流(以下、センス電流と称す)Isに基づいて検出する機能を有している。   A control ASIC 30 of the current detection circuit 10 is connected to the terminal of the shunt resistor 26 on the semiconductor element 16 side and the other end of the sense resistor 28. The shunt resistor 26 and the sense resistor 28 are connected in parallel between the same point on the current path 24 (specifically, the power supply terminal 20) and the control ASIC 30. The control ASIC 30 has a function of detecting a current Io flowing through the current path 24 of each energized phase based on a current (hereinafter referred to as a sense current) Is flowing through the sense resistor 28.

制御ASIC30は、センス抵抗28の他端に生じる電位(以下、センス出力電位Vsと称す)をシャント抵抗26の半導体素子16側端子に生じる電位(以下、シャント出力電位Voと称す)に等しい電位に調整するための電圧調整部32を有している。制御ASIC30は、シャント抵抗26の半導体素子16側端子が接続する第1入力端子34と、センス抵抗28の他端が接続する第2入力端子36と、を有している。   The control ASIC 30 makes the potential generated at the other end of the sense resistor 28 (hereinafter referred to as sense output potential Vs) equal to the potential generated at the semiconductor element 16 side terminal of the shunt resistor 26 (hereinafter referred to as shunt output potential Vo). A voltage adjustment unit 32 for adjustment is provided. The control ASIC 30 has a first input terminal 34 to which the semiconductor element 16 side terminal of the shunt resistor 26 is connected, and a second input terminal 36 to which the other end of the sense resistor 28 is connected.

電圧調整部32は、非反転入力端子が第1入力端子34に接続されかつ反転入力端子が第2入力端子36に接続されるオペアンプ38を有している。オペアンプ38の出力は、pnpトランジスタQ1のベースに接続されている。pnpトランジスタQ1のエミッタはオペアンプ38の反転入力端子に接続されており、そのコレクタはnpnトランジスタQ2のベースに接続されている。npnトランジスタQ2のコレクタはオペアンプ38の反転入力端子に接続されており、そのエミッタは端子40を介して抵抗42の一端に接続されている。抵抗42の他端は接地されている。   The voltage adjustment unit 32 includes an operational amplifier 38 having a non-inverting input terminal connected to the first input terminal 34 and an inverting input terminal connected to the second input terminal 36. The output of the operational amplifier 38 is connected to the base of the pnp transistor Q1. The emitter of the pnp transistor Q1 is connected to the inverting input terminal of the operational amplifier 38, and the collector thereof is connected to the base of the npn transistor Q2. The collector of the npn transistor Q 2 is connected to the inverting input terminal of the operational amplifier 38, and the emitter thereof is connected to one end of the resistor 42 via the terminal 40. The other end of the resistor 42 is grounded.

上記した制御ASIC30において、電圧調整部32は、センス出力電位Vsとシャント出力電位Voとが同電位となるように帰還動作を行う。オペアンプ38の非反転入力端子にはシャント出力電位Voが入力されると共に、オペアンプ38の反転入力端子にはセンス出力電位Vsが入力される。   In the control ASIC 30 described above, the voltage adjustment unit 32 performs a feedback operation so that the sense output potential Vs and the shunt output potential Vo become the same potential. The shunt output potential Vo is input to the non-inverting input terminal of the operational amplifier 38 and the sense output potential Vs is input to the inverting input terminal of the operational amplifier 38.

Vs<Voが成立するときは、(Vo−Vs)が正であるため、オペアンプ38の出力端子からハイ信号が出力される。この場合、pnpトランジスタQ1のベース電位が高電位となってそのベースに電流が流れないので、pnpトランジスタQ1はオフに維持される。このため、かかる場合は、npnトランジスタQ2のベース電位が低電位となってそのベースに電流が流れないので、npnトランジスタQ2はオフに維持され、その結果として、npnトランジスタQ2のコレクタ電位すなわちセンス出力電位Vsが一気に上昇する。   When Vs <Vo is established, since (Vo−Vs) is positive, a high signal is output from the output terminal of the operational amplifier 38. In this case, since the base potential of the pnp transistor Q1 is high and no current flows through the base, the pnp transistor Q1 is kept off. Therefore, in such a case, since the base potential of the npn transistor Q2 is low and no current flows through the base, the npn transistor Q2 is kept off. As a result, the collector potential of the npn transistor Q2, that is, the sense output The potential Vs rises at a stretch.

一方、Vs>V0が成立するときは、(Vo−Vs)が負であるため、オペアンプ38の出力端子からロー信号が出力される。この場合、pnpトランジスタQ1のベース電位が低電位となってそのベースに電流が流れるので、pnpトランジスタQ1はオンする。pnpトランジスタQ1がオンすると、npnトランジスタQ2のベース電位が高電位となってそのベースに電流が流れるので、npnトランジスタQ2はオンする。このため、かかる場合は、センス電流IsがnpnトランジスタQ2を介して抵抗42に流れると共に、npnトランジスタQ2のコレクタ電位すなわちセンス出力電位Vsが一気に下降する。   On the other hand, when Vs> V0 is established, since (Vo−Vs) is negative, a low signal is output from the output terminal of the operational amplifier 38. In this case, since the base potential of the pnp transistor Q1 becomes low and current flows through the base, the pnp transistor Q1 is turned on. When the pnp transistor Q1 is turned on, the base potential of the npn transistor Q2 becomes high and current flows through the base, so that the npn transistor Q2 is turned on. For this reason, in such a case, the sense current Is flows to the resistor 42 via the npn transistor Q2, and the collector potential of the npn transistor Q2, that is, the sense output potential Vs drops at a stretch.

このように電圧調整部32における動作が繰り返されると、センス出力電位Vsは、シャント出力電位Voと略同電位となるように調整される。シャント出力電位Voとセンス出力電位Vsとが略同電位に調整されると、シャント抵抗26の両端間電圧とセンス抵抗28の両端間電圧とが略等しくされる。上記の如く、センス抵抗28の抵抗値Rsは、シャント抵抗26の抵抗値Roのn倍に設定される。従って、シャント抵抗26に流れる電流すなわち電流経路24に流れる電流Ioは、センス電流Isのn倍となる。以下、nをセンス比(分流比)nとする。   When the operation of the voltage adjustment unit 32 is repeated in this manner, the sense output potential Vs is adjusted to be substantially the same potential as the shunt output potential Vo. When the shunt output potential Vo and the sense output potential Vs are adjusted to substantially the same potential, the voltage across the shunt resistor 26 and the voltage across the sense resistor 28 are made substantially equal. As described above, the resistance value Rs of the sense resistor 28 is set to n times the resistance value Ro of the shunt resistor 26. Therefore, the current flowing through the shunt resistor 26, that is, the current Io flowing through the current path 24 is n times the sense current Is. In the following, n is the sense ratio (diversion ratio) n.

制御ASIC30は、抵抗42の両端間電圧(具体的には、抵抗42のnpnトランジスタQ2側端子に生じる電位(=端子40へ向けて出力される電位))と、予め規定された抵抗42の抵抗値と、に基づいて、次式(1)を参照して、センス電流Isを検出する。そして、その検出したセンス電流Isを予め規定されたセンス比n倍で乗算することにより、電流経路24に流れる電流Ioを検出する(Io=n×Is)。制御ASIC30は、各通電相ごとに上記の電流検出処理を行うことで、検出したセンス電流Isとセンス比nとに基づいて、各通電相の電流経路24に流れる電流Ioをそれぞれ検出する。   The control ASIC 30 includes a voltage across the resistor 42 (specifically, a potential generated at the npn transistor Q2 side terminal of the resistor 42 (= potential output toward the terminal 40)) and a predetermined resistance of the resistor 42. Based on the value, the sense current Is is detected with reference to the following equation (1). Then, the detected current Io flowing through the current path 24 is detected by multiplying the detected sense current Is by a predetermined sense ratio n times (Io = n × Is). The control ASIC 30 detects the current Io flowing through the current path 24 of each energized phase based on the detected sense current Is and the sense ratio n by performing the above-described current detection process for each energized phase.

図2は、本実施例におけるシャント抵抗26及びセンス抵抗28の温度係数X,Yを表した図を示す。図3は、本実施例におけるシャント抵抗26とセンス抵抗28との基板上での配置位置を表した斜視図を示す。また、図4は、本実施例におけるシャント抵抗26の発熱による温度分布下でのシャント抵抗26とセンス抵抗28との配置位置を表した上面図を示す。   FIG. 2 is a diagram showing temperature coefficients X and Y of the shunt resistor 26 and the sense resistor 28 in this embodiment. FIG. 3 is a perspective view showing the arrangement position of the shunt resistor 26 and the sense resistor 28 on the substrate in this embodiment. FIG. 4 is a top view showing the arrangement positions of the shunt resistor 26 and the sense resistor 28 under a temperature distribution due to heat generation of the shunt resistor 26 in this embodiment.

一般に、素子の特性は温度変化に伴って変化する。例えば、温度が高くなるほど、抵抗の抵抗値が大きくなる。抵抗の抵抗値が変動すると、流れる電流量が変化する。この際、温度変化に伴った抵抗値変化率がシャント抵抗26とセンス抵抗28とで異なるものとすると、シャント抵抗26に流れる電流とセンス抵抗28に流れる電流との実際の分流比が、予め規定したセンス比nに一致しなくなり、その結果として、電流経路24に流れる電流Ioを精度よく検出することができなくなる。従って、電流経路24に流れる電流Ioを精度よく検出するためには、温度変化に伴う抵抗値変化率がシャント抵抗26とセンス抵抗28とで等しくなることが必要である。   In general, the characteristics of an element change with a temperature change. For example, the resistance value of the resistor increases as the temperature increases. When the resistance value of the resistor fluctuates, the amount of current flowing changes. At this time, assuming that the rate of change in resistance value with temperature change is different between the shunt resistor 26 and the sense resistor 28, the actual shunt ratio between the current flowing through the shunt resistor 26 and the current flowing through the sense resistor 28 is specified in advance. As a result, the current Io flowing through the current path 24 cannot be accurately detected. Therefore, in order to accurately detect the current Io flowing through the current path 24, it is necessary that the rate of change in the resistance value accompanying the temperature change be equal between the shunt resistor 26 and the sense resistor 28.

また、シャント抵抗26は、モータ12を駆動するための比較的大きな電流が流通するので、センス抵抗28に比べて大きな発熱量を有する。この点、シャント抵抗26の温度係数とセンス抵抗28の温度係数とが等しいものとすると、シャント抵抗26の抵抗値変化率が常にセンス抵抗28の抵抗値変化率に比べて大きくなり、その結果として、電流経路24に流れる電流Ioを精度よく検出することができなくなる。従って、電流経路24に流れる電流Ioを精度よく検出するためには、シャント抵抗26の抵抗値変化率とセンス抵抗28の抵抗値変化率とが等しくなるようにシャント抵抗26の温度変化とセンス抵抗28の温度変化とがそれぞれ生じること、すなわち、かかる特性が実現されるように各抵抗26,28の温度係数が互いに異なることが必要である。   Further, the shunt resistor 26 has a larger amount of heat generation than the sense resistor 28 because a relatively large current for driving the motor 12 flows. In this regard, if the temperature coefficient of the shunt resistor 26 and the temperature coefficient of the sense resistor 28 are equal, the rate of change in the resistance value of the shunt resistor 26 is always larger than the rate of change in the resistance value of the sense resistor 28. As a result, The current Io flowing through the current path 24 cannot be detected with high accuracy. Therefore, in order to accurately detect the current Io flowing in the current path 24, the temperature change of the shunt resistor 26 and the sense resistor so that the resistance value change rate of the shunt resistor 26 and the resistance value change rate of the sense resistor 28 are equal. It is necessary that the temperature coefficients of the resistors 26 and 28 are different from each other so that the temperature change of 28 occurs.

更に、本実施例の如く、各通電相U,V,Wに流れる電流量が相関を有する複数の電流経路24に流れる電流Ioをそれぞれ検出し、その検出電流Ioに基づくモータ12の制御を適切に行ううえでは、各通電相U,V,Wの電流経路24に流れる電流Ioのすべてを精度よく検出できることが望ましい。各通電相U,V,W間でシャント抵抗26とセンス抵抗28との相対的な温度環境(例えば、シャント抵抗26とセンス抵抗28との基板上での離間距離)が異なると、各通電相U,V,Wのシャント抵抗26が同じ発熱量で発熱しているときすなわち各通電相U,V,Wのシャント抵抗26の発熱による上昇温度が同じであるときにも、センス抵抗28に作用する温度が各通電相U,V,W間で異なるものとなり、各通電相U,V,W間での電流検出精度に差が発生して、モータ制御を適切に行うことができなくなってしまう。従って、各通電相U,V,W間での電流検出精度に差を生じさせないためには、シャント抵抗26とセンス抵抗28との温度環境が各通電相U,V,W間で同じであることが必要である。   Further, as in this embodiment, the currents Io flowing through the plurality of current paths 24 in which the amounts of current flowing through the energized phases U, V, and W are correlated are detected, and the motor 12 is appropriately controlled based on the detected currents Io. Therefore, it is desirable that all the currents Io flowing through the current paths 24 of the energized phases U, V, and W can be accurately detected. If the relative temperature environment of the shunt resistor 26 and the sense resistor 28 (for example, the distance between the shunt resistor 26 and the sense resistor 28 on the substrate) differs between the energized phases U, V, and W, the energized phases. Even when the U, V, and W shunt resistors 26 generate heat with the same amount of heat, that is, when the temperature rise due to the heat generation of the current-carrying phases U, V, and W is the same, they act on the sense resistor 28. The temperature to be changed is different between the current-carrying phases U, V, and W, and a difference occurs in current detection accuracy between the current-carrying phases U, V, and W, and the motor control cannot be performed properly. . Therefore, in order not to cause a difference in current detection accuracy between the energized phases U, V, and W, the temperature environment of the shunt resistor 26 and the sense resistor 28 is the same between the energized phases U, V, and W. It is necessary.

そこで、本実施例においては、比較的広い温度領域に亘って電流経路24に流れる電流Ioを精度よく検出しつつ、各通電相U,V,W間での電流検出精度の差を吸収することとしている。   Therefore, in this embodiment, the current Io flowing through the current path 24 over a relatively wide temperature range is detected with high accuracy, and the difference in current detection accuracy between the energized phases U, V, and W is absorbed. It is said.

本実施例においては、上記の如く、センス抵抗28の温度係数Yが、シャント抵抗26の温度係数Xよりも大きい値に設定されている。このため、センス抵抗28は、シャント抵抗26に比べて同じ温度変化に対して大きな抵抗値変化率を示し、逆に、少ない温度変化でシャント抵抗26と同等の抵抗値変化率を示すので、シャント抵抗26の温度が発熱により大きく上昇する一方でセンス抵抗28の温度があまり上昇しなくても、センス抵抗28の抵抗値変化率をシャント抵抗26の抵抗値変化率と一致させることが可能である。尚、「抵抗値変化率」とは、例えば常温での基準抵抗値を基準とした抵抗値の増加率又は減少率のことである。   In the present embodiment, as described above, the temperature coefficient Y of the sense resistor 28 is set to a value larger than the temperature coefficient X of the shunt resistor 26. For this reason, the sense resistor 28 exhibits a larger resistance value change rate with respect to the same temperature change than the shunt resistor 26, and conversely shows a resistance value change rate equivalent to the shunt resistor 26 with a small temperature change. Even if the temperature of the resistor 26 rises greatly due to heat generation and the temperature of the sense resistor 28 does not rise so much, it is possible to make the resistance value change rate of the sense resistor 28 coincide with the resistance value change rate of the shunt resistor 26. . The “resistance value change rate” is, for example, an increase rate or a decrease rate of the resistance value based on the reference resistance value at room temperature.

本実施例において、電流検出回路10や駆動回路14を構成する各素子は、基板44上に配設されている。基板44は、例えばセラミック基板やガラエポ基板などの熱伝導効率の良い基板である。電流検出回路10を構成するセンス抵抗28とシャント抵抗26とは、基板44上で所定の離間距離Lだけ離れており、センス抵抗28は、基板44上で、モータ12への駆動電流で発熱するシャント抵抗26からの熱伝導を受ける位置に配置されている。このため、センス抵抗28は、シャント抵抗26の発熱により温度上昇し、そのセンス抵抗28の温度上昇は、シャント抵抗26の温度上昇に応じたもの(具体的には、シャント抵抗26の上昇温度よりも少ない上昇温度だけ上げたもの)となる。   In this embodiment, each element constituting the current detection circuit 10 and the drive circuit 14 is disposed on the substrate 44. The substrate 44 is a substrate having good heat conduction efficiency, such as a ceramic substrate or a glass epoxy substrate. The sense resistor 28 and the shunt resistor 26 constituting the current detection circuit 10 are separated from each other by a predetermined separation distance L on the substrate 44, and the sense resistor 28 generates heat on the substrate 44 due to the drive current to the motor 12. It is arranged at a position to receive heat conduction from the shunt resistor 26. Therefore, the temperature of the sense resistor 28 rises due to the heat generated by the shunt resistor 26, and the temperature rise of the sense resistor 28 corresponds to the temperature rise of the shunt resistor 26 (specifically, from the rise temperature of the shunt resistor 26). Is also increased by a small temperature rise).

また、上記した基板44上でのセンス抵抗28の配置位置は、電流経路24に流れる電流Ioの検出時におけるシャント抵抗26の温度上昇に対する抵抗値変化率と、そのシャント抵抗26の温度上昇に伴うセンス抵抗28の温度上昇に対する抵抗値変化率と、が等しくなるような位置である。また逆に、シャント抵抗26の温度係数Xとセンス抵抗28の温度係数Yとは、基板44上でのセンス抵抗28の配置位置で電流経路24に流れる電流Ioの検出時におけるシャント抵抗26の温度上昇に対する抵抗値変化率と、そのシャント抵抗26の温度上昇に伴うセンス抵抗28の温度上昇に対する抵抗値変化率と、が等しくなる関係が実現されるように設定されている。   Further, the position of the sense resistor 28 on the substrate 44 described above is related to the rate of change of the resistance value with respect to the temperature rise of the shunt resistor 26 when the current Io flowing through the current path 24 is detected, and the temperature rise of the shunt resistor 26. This is a position where the rate of change of the resistance value with respect to the temperature rise of the sense resistor 28 becomes equal. Conversely, the temperature coefficient X of the shunt resistor 26 and the temperature coefficient Y of the sense resistor 28 are the temperature of the shunt resistor 26 when the current Io flowing in the current path 24 is detected at the position where the sense resistor 28 is disposed on the substrate 44. The resistance value change rate with respect to the rise and the resistance value change rate with respect to the temperature rise of the sense resistor 28 accompanying the temperature rise of the shunt resistor 26 are set to be equal.

かかる電流検出回路10の構成においては、電流経路24に流れる電流Ioの検出時にシャント抵抗26の発熱に伴う温度上昇に応じてセンス抵抗28が温度上昇して、シャント抵抗26の抵抗値変化率とセンス抵抗28の抵抗値変化率とが略等しくなる。このため、電流経路24に流れる電流Ioの検出時にシャント抵抗26に流れる電流とセンス抵抗28に流れる電流との分流比を一定に保つことすなわち予め規定したセンス比nに一致させることができ、その分流比の変化を小さく抑えることができる。   In the configuration of the current detection circuit 10, when the current Io flowing through the current path 24 is detected, the sense resistor 28 increases in temperature according to the temperature increase accompanying the heat generation of the shunt resistor 26, and the resistance value change rate of the shunt resistor 26 is The resistance value change rate of the sense resistor 28 is substantially equal. For this reason, when the current Io flowing through the current path 24 is detected, the shunt ratio between the current flowing through the shunt resistor 26 and the current flowing through the sense resistor 28 can be kept constant, that is, matched to a predetermined sense ratio n. Changes in the diversion ratio can be kept small.

尚、上記した電流検出回路10の構成においては、電流経路24の電流検出時にシャント抵抗26に流れる電流量に応じてそのシャント抵抗26の発熱量が変動するが、かかる発熱量の変動が生じても、センス抵抗28の温度上昇がそのシャント抵抗26の温度上昇に応じたものとなり、シャント抵抗26の抵抗値及びセンス抵抗28の抵抗値は共に温度変化に対して一定の変化を示すので、両抵抗26,28の抵抗値変化率を略等しくすることが可能である。従って、本実施例の電流検出回路10によれば、比較的広い温度領域に亘って電流経路24に流れる電流Ioを精度よく検出することができる。   In the configuration of the current detection circuit 10 described above, the amount of heat generated by the shunt resistor 26 varies in accordance with the amount of current flowing through the shunt resistor 26 when the current in the current path 24 is detected. However, since the temperature rise of the sense resistor 28 corresponds to the temperature rise of the shunt resistor 26, both the resistance value of the shunt resistor 26 and the resistance value of the sense resistor 28 show a constant change with respect to the temperature change. It is possible to make the resistance value change rates of the resistors 26 and 28 substantially equal. Therefore, according to the current detection circuit 10 of the present embodiment, it is possible to accurately detect the current Io flowing through the current path 24 over a relatively wide temperature range.

また、本実施例において、センス抵抗28は、上記の如く、基板44上で、モータ12への駆動電流で発熱するシャント抵抗26からの熱伝導を受ける位置に配置されているが、各通電相U,V,Wそれぞれのシャント抵抗26とセンス抵抗28とは、両抵抗26,28の基板44上での離間距離Lが各通電相U,V,W間でほぼ等しくなるように配置されている。各通電相U,V,Wそれぞれのシャント抵抗26は、各通電相U,V,W間で同じ温度係数Xを有していると共に、各通電相U,V,Wそれぞれのセンス抵抗28は、各通電相U,V,W間で同じ温度係数Yを有している。   In the present embodiment, as described above, the sense resistor 28 is disposed on the substrate 44 at a position that receives heat conduction from the shunt resistor 26 that generates heat by the drive current to the motor 12. The shunt resistor 26 and the sense resistor 28 of each of U, V, and W are arranged so that the distance L between the resistors 26 and 28 on the substrate 44 is substantially equal between the energized phases U, V, and W. Yes. The shunt resistors 26 of the respective energized phases U, V, W have the same temperature coefficient X between the energized phases U, V, W, and the sense resistors 28 of the respective energized phases U, V, W are The energized phases U, V, W have the same temperature coefficient Y.

このため、上記した電流検出回路10の構成においては、各通電相それぞれの電流経路24の電流検出時にシャント抵抗26に発生する熱のセンス抵抗28への伝導状態が各通電相U,V,W間でほぼ等しくなり、シャント抵抗26とセンス抵抗28との間の温度差が各通電相U,V,W間でほぼ等しくなる。シャント抵抗26とセンス抵抗28との間の温度差が各通電相U,V,W間で等しければ、シャント抵抗26の発熱による上昇温度が各通電相U,V,W間で同じであるときは、センス抵抗28の温度が各通電相U,V,W間で同じとなるので、各通電相U,V,Wのセンス抵抗28の実際の抵抗値は各通電相U,V,W間でほぼ一致する。従って、本実施例の電流検出回路10によれば、各通電相U,V,Wそれぞれのシャント抵抗26とセンス抵抗28との離間距離をほぼ等しくすることで、各通電相U,V,W間での電流検出精度の差を吸収することができ、その結果として、モータ12の制御を適切に行うことが可能である。   For this reason, in the configuration of the current detection circuit 10 described above, the conduction state of the heat generated in the shunt resistor 26 when the current is detected in the current path 24 of each energized phase to the sense resistor 28 is determined by each energized phase U, V, W. The temperature difference between the shunt resistor 26 and the sense resistor 28 is substantially equal between the energized phases U, V, and W. If the temperature difference between the shunt resistor 26 and the sense resistor 28 is equal between the current-carrying phases U, V, W, the temperature rise due to heat generation of the shunt resistor 26 is the same between the current-carrying phases U, V, W. Since the temperature of the sense resistor 28 is the same between the energized phases U, V, W, the actual resistance value of the sense resistor 28 of each energized phase U, V, W is between the energized phases U, V, W. Almost matches. Therefore, according to the current detection circuit 10 of the present embodiment, the energized phases U, V, W are made substantially equal by separating the distances between the shunt resistors 26 and the sense resistors 28 of the energized phases U, V, W. The difference in current detection accuracy between the two can be absorbed, and as a result, the motor 12 can be appropriately controlled.

このように、本実施例の電流検出回路10によれば、モータ12の各通電相U,V,Wの電流経路24に流れる電流Ioを比較的広い温度領域に亘って精度よく検出することができると共に、モータ12の各通電相U,V,W間での電流経路24に流れる電流Ioの検出精度の差を吸収することができるので、シャント抵抗26の発熱状態に関係なくモータ12の回転駆動を常にスムースに行うことが可能である。   Thus, according to the current detection circuit 10 of the present embodiment, the current Io flowing through the current paths 24 of the energized phases U, V, and W of the motor 12 can be accurately detected over a relatively wide temperature range. In addition, the difference in detection accuracy of the current Io flowing through the current path 24 between the energized phases U, V, and W of the motor 12 can be absorbed, so that the rotation of the motor 12 can be performed regardless of the heat generation state of the shunt resistor 26. It is possible to always drive smoothly.

尚、上記の実施例においては、電流経路24上に設けられるシャント抵抗26を、一対の半導体素子16,18のうち正側半導体素子16と電源端子20との間に介在させることとしたが、本発明はこれに限定されるものではなく、例えば、一対の半導体素子16,18のうち負側半導体素子18と接地端子22との間に介在させることなどとしてもよい。   In the above embodiment, the shunt resistor 26 provided on the current path 24 is interposed between the positive-side semiconductor element 16 and the power supply terminal 20 of the pair of semiconductor elements 16 and 18. The present invention is not limited to this, and may be interposed, for example, between the negative semiconductor element 18 and the ground terminal 22 of the pair of semiconductor elements 16 and 18.

また、上記の実施例においては、電流Ioを検出する対象を、モータ12の各通電相U,V,Wにおける電流量が相関を有する複数の電流経路24としたが、本発明はこれに限定されるものではなく、モータ12の通電相U,V,W以外において少なくとも電流量が相関を有する複数の電流経路に適用すればよい。   In the above embodiment, the current Io is detected by the plurality of current paths 24 in which the current amounts in the energized phases U, V, and W of the motor 12 are correlated. However, the present invention is not limited to this. However, the present invention may be applied to a plurality of current paths in which at least the amount of current has a correlation other than the energized phases U, V, W of the motor 12.

10 電流検出回路
12 モータ
14 駆動回路
16,18 半導体素子
24 電流経路
26 シャント抵抗
28 センス抵抗
30 制御ASIC
32 電圧調整部
44 半導体基板
Ro シャント抵抗の抵抗値
Rs センス抵抗の抵抗値
Io 電流経路に流れる電流
Is センス電流
X シャント抵抗の温度係数
Y センス抵抗の温度係数
DESCRIPTION OF SYMBOLS 10 Current detection circuit 12 Motor 14 Drive circuit 16, 18 Semiconductor element 24 Current path 26 Shunt resistance 28 Sense resistance 30 Control ASIC
32 Voltage adjuster 44 Semiconductor substrate Resistance value of Ro shunt resistor Rs Resistance value of sense resistor Io Current flowing in current path Is Sense current X Temperature coefficient of shunt resistor Y Temperature coefficient of sense resistor

Claims (5)

電流経路上に設けられるシャント抵抗と該シャント抵抗に並列に接続されるセンス抵抗とが複数組、流れる電流量が相関を有する複数の電流経路に対応して基板上に配設され、各電流経路に流れる電流それぞれを前記シャント抵抗と前記センス抵抗との分流比を利用して検出する電流検出回路であって、
各組それぞれの前記シャント抵抗と前記センス抵抗とを、該電流経路の電流検出時に該シャント抵抗と該センス抵抗との間に生じる温度差が各組間で等しくなるように前記基板上に配置したことを特徴とする電流検出回路。
A plurality of sets of shunt resistors provided on the current path and sense resistors connected in parallel to the shunt resistors are arranged on the substrate in correspondence with the plurality of current paths in which the amount of flowing current has a correlation. A current detection circuit for detecting each of the currents flowing through the shunt resistor by using a shunt ratio between the shunt resistor and the sense resistor,
The shunt resistor and the sense resistor of each group are arranged on the substrate so that the temperature difference generated between the shunt resistor and the sense resistor during current detection of the current path is equal between the groups. A current detection circuit.
各組それぞれの前記シャント抵抗と前記センス抵抗とを、該電流経路の電流検出時に該シャント抵抗に発生する熱の該センス抵抗への伝導状態が各組間で等しくなるように前記基板上に配置したことを特徴とする請求項1記載の電流検出回路。   The shunt resistor and the sense resistor of each group are arranged on the substrate so that the conduction state of heat generated in the shunt resistor to the sense resistor during current detection of the current path is equal between the groups. The current detection circuit according to claim 1, wherein: 各組それぞれの前記シャント抵抗と前記センス抵抗との前記基板上での離間距離は、各組間で同じであることを特徴とする請求項2記載の電流検出回路。   The current detection circuit according to claim 2, wherein a distance between the shunt resistor and the sense resistor of each group on the substrate is the same between the groups. 前記センス抵抗の温度係数は、前記シャント抵抗の温度係数よりも大きいことを特徴とする請求項1乃至3の何れか一項記載の電流検出回路。   4. The current detection circuit according to claim 1, wherein a temperature coefficient of the sense resistor is larger than a temperature coefficient of the shunt resistor. 5. 前記複数の電流経路は、モータの有する各通電相に対応する電流経路であることを特徴とする請求項1乃至4の何れか一項記載の電流検出回路。
5. The current detection circuit according to claim 1, wherein the plurality of current paths are current paths corresponding to the respective energized phases of the motor.
JP2011007543A 2011-01-18 2011-01-18 Current detection circuit Active JP5720259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011007543A JP5720259B2 (en) 2011-01-18 2011-01-18 Current detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011007543A JP5720259B2 (en) 2011-01-18 2011-01-18 Current detection circuit

Publications (2)

Publication Number Publication Date
JP2012149934A true JP2012149934A (en) 2012-08-09
JP5720259B2 JP5720259B2 (en) 2015-05-20

Family

ID=46792319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011007543A Active JP5720259B2 (en) 2011-01-18 2011-01-18 Current detection circuit

Country Status (1)

Country Link
JP (1) JP5720259B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014064128A (en) * 2012-09-20 2014-04-10 Auto Network Gijutsu Kenkyusho:Kk Current detection circuit and power supply control device
JP2014064129A (en) * 2012-09-20 2014-04-10 Auto Network Gijutsu Kenkyusho:Kk Current detection circuit and power supply control device
CN114720033A (en) * 2022-04-07 2022-07-08 扬州市检验检测中心 Intelligent protection type pressure gauge

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111880104B (en) * 2017-10-23 2022-05-13 宁德时代新能源科技股份有限公司 Detection circuit and method, detector, battery device, vehicle and computer-readable storage medium

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4992880U (en) * 1972-12-02 1974-08-12
JPH04216472A (en) * 1990-03-01 1992-08-06 Merlin Gerin Current sensor for electronic tripping device of circuit breaker
JPH0530800A (en) * 1991-07-18 1993-02-05 Mitsubishi Electric Corp Equipment for controlling ac generator for vehicle
JP2000105257A (en) * 1998-09-30 2000-04-11 Toyo Electric Mfg Co Ltd Inverter device
JP2000134955A (en) * 1998-10-26 2000-05-12 Hitachi Ltd Inverter and switching module therefor
JP2004340917A (en) * 2003-04-24 2004-12-02 Auto Network Gijutsu Kenkyusho:Kk Voltage drop current-measuring device
JP2005315729A (en) * 2004-04-28 2005-11-10 Advantest Corp Direct-current testing device
EP2169412A1 (en) * 2008-09-25 2010-03-31 Ilumab AB Electrical current measurement arrangement
JP2010096755A (en) * 2008-09-18 2010-04-30 Masaaki Kando Current shunt

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4992880U (en) * 1972-12-02 1974-08-12
JPH04216472A (en) * 1990-03-01 1992-08-06 Merlin Gerin Current sensor for electronic tripping device of circuit breaker
JPH0530800A (en) * 1991-07-18 1993-02-05 Mitsubishi Electric Corp Equipment for controlling ac generator for vehicle
JP2000105257A (en) * 1998-09-30 2000-04-11 Toyo Electric Mfg Co Ltd Inverter device
JP2000134955A (en) * 1998-10-26 2000-05-12 Hitachi Ltd Inverter and switching module therefor
JP2004340917A (en) * 2003-04-24 2004-12-02 Auto Network Gijutsu Kenkyusho:Kk Voltage drop current-measuring device
JP2005315729A (en) * 2004-04-28 2005-11-10 Advantest Corp Direct-current testing device
JP2010096755A (en) * 2008-09-18 2010-04-30 Masaaki Kando Current shunt
EP2169412A1 (en) * 2008-09-25 2010-03-31 Ilumab AB Electrical current measurement arrangement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014064128A (en) * 2012-09-20 2014-04-10 Auto Network Gijutsu Kenkyusho:Kk Current detection circuit and power supply control device
JP2014064129A (en) * 2012-09-20 2014-04-10 Auto Network Gijutsu Kenkyusho:Kk Current detection circuit and power supply control device
CN114720033A (en) * 2022-04-07 2022-07-08 扬州市检验检测中心 Intelligent protection type pressure gauge
CN114720033B (en) * 2022-04-07 2024-01-12 扬州市检验检测中心 Intelligent protection type pressure gauge

Also Published As

Publication number Publication date
JP5720259B2 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
JP5170208B2 (en) Current detection circuit for power semiconductor devices
JP6089599B2 (en) Insulated gate semiconductor device driving apparatus
JP5712483B2 (en) Overcurrent detection device
JP5720259B2 (en) Current detection circuit
WO2015033449A1 (en) Semiconductor device, and semiconductor switching element drive device
US10324114B2 (en) Semiconductor integrated circuit device and electronic device for driving a power semiconductor device
JPWO2012157118A1 (en) Driving device for driving voltage-driven element
CN107314830A (en) Equipment for correcting temperature measurement signal
JP2010193034A (en) Overcurrent protection circuit
US9334871B2 (en) Fan rotation speed adjusting system
JP2009075957A (en) Power circuit and semiconductor device
JP5596200B2 (en) Temperature compensation power supply voltage output circuit and method for variable power supply
JP5989375B2 (en) Semiconductor device and battery monitoring system
JP6476049B2 (en) Temperature sensor circuit
US9116028B2 (en) Thermal flow sensor and method of generating flow rate detection signal by the thermal flow sensor
JP4692267B2 (en) Current detection device and current control device
JP2017198537A (en) Overcurrent detection circuit
JP2013090153A (en) Semiconductor device, electronic equipment, vehicle, and overheat detection method
JP4655154B2 (en) Window comparator circuit
JP2019161907A (en) Motor drive device
JP2002191179A (en) Inverter apparatus
TWI567372B (en) Thermal detection circuits
JP6175999B2 (en) Amplifier circuit
JP2004045305A (en) Overcurrent detecting circuit
JP2008215844A (en) Electric current detection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150309

R151 Written notification of patent or utility model registration

Ref document number: 5720259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250