JP2012136957A - Internal combustion engine and egr method therefor - Google Patents

Internal combustion engine and egr method therefor Download PDF

Info

Publication number
JP2012136957A
JP2012136957A JP2010288158A JP2010288158A JP2012136957A JP 2012136957 A JP2012136957 A JP 2012136957A JP 2010288158 A JP2010288158 A JP 2010288158A JP 2010288158 A JP2010288158 A JP 2010288158A JP 2012136957 A JP2012136957 A JP 2012136957A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
exhaust
supercharger
intercooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010288158A
Other languages
Japanese (ja)
Inventor
Junichiro Nitta
淳一郎 新田
Naoya Ishikawa
直也 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2010288158A priority Critical patent/JP2012136957A/en
Publication of JP2012136957A publication Critical patent/JP2012136957A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an internal combustion engine capable of preventing the corrosion and stain of an intercooler due to EGR gas, and suppressing the discharge of white smoke in exhaust gas at the cold start of the internal combustion engine, and an EGR method and control method therefor.SOLUTION: An internal combustion engine 1, 1A is provided with a compressor 3a of a discharge turbo supercharger 13, an intercooler 14 and externally driven supercharger 15 in order from the upstream side in a suction passage 11 of the internal combustion engine 1, 1A, with a turbine 13b of the discharge turbo supercharger 13 in a discharge passage 12, and with a bypass passage 16 having a flow rate adjustment valve 16a for bypassing the externally driven supercharger 15, wherein EGR gas Ge which is a part of exhaust gas G is supplied to the upstream side of the externally driven supercharger 15 from the upstream side of the turbine 13b.

Description

本発明は、外部駆動式過給機と排気ターボ式過給機を備えた内燃機関、及びそのEGR方法に関し、より詳細には、EGRガスによるインタークーラの腐食及び汚損を防止できると共に、内燃機関の冷間始動時に、排気ガス中に白煙が排出されることを防止することができる内燃機関、及びそのEGR方法に関する。   The present invention relates to an internal combustion engine including an externally driven supercharger and an exhaust turbocharger, and to an EGR method thereof. More specifically, the internal combustion engine can prevent corrosion and fouling of an intercooler due to EGR gas. The present invention relates to an internal combustion engine capable of preventing white smoke from being discharged into exhaust gas during a cold start, and an EGR method thereof.

ディーゼル機関等の内燃機関においては、低燃費化及び排気ガスの改善化に対して、過給技術を使用しての高過給化及び高EGR化が有効かつ重要であり、これに関連して排気ターボ式過給機等の様々な過給技術が開発されている。   In internal combustion engines such as diesel engines, high supercharging and high EGR using supercharging technology are effective and important for reducing fuel consumption and improving exhaust gas. Various supercharging technologies such as an exhaust turbocharger have been developed.

しかしながら、排気ターボ式過給機を用いる場合には、ターボラグと呼ばれる過給遅れを解消することは難しく、内燃機関の急加速等の過渡運転条件におけるトルク応答性の改善や排気ガス対策には限界がある。この過給遅れにより、シリンダ内での燃焼に必要な空気量が不足して黒煙が発生したり、燃焼に必要な最低限の空気量を確保するために、EGRガスの導入が困難となって、瞬間的にNOxが発生したりする場合が生じる。   However, when using an exhaust turbo-type supercharger, it is difficult to eliminate the turbocharge delay called turbo lag, and there is a limit to improving torque response in transient operating conditions such as sudden acceleration of an internal combustion engine and measures against exhaust gas. There is. Due to the delay in supercharging, the amount of air necessary for combustion in the cylinder is insufficient and black smoke is generated, or the introduction of EGR gas becomes difficult in order to secure the minimum amount of air necessary for combustion. In some cases, NOx is generated instantaneously.

この過渡運転条件における過給遅れを改善するために、排気タービンを用いない、機械式や電動式等で駆動される外部駆動式過給機を採用することが行われている。この外部駆動式過給機には、容積型や遠心型の過給機がある。   In order to improve the supercharging delay in this transient operation condition, an externally driven supercharger that does not use an exhaust turbine and is driven by a mechanical type or an electric type is employed. Examples of the externally driven supercharger include a positive displacement type and a centrifugal type supercharger.

多くの外部駆動式過給機はその特性上、優れた過渡過給特性を有するが、その作動により、吸気圧力を排気圧力より高くすることが容易にできるため、図7に示すような従来技術で用いられている、外部駆動式過給機15の下流側にEGRガスを導入するハイプレーシャー(HI-EGR)方式のEGRガス導入方法ではEGRガスを吸気側に取り込むことができなくなる。これを解決するために、図8に示すような、外部駆動式過給機15の上流側にEGRガスを導入するロープレーシャー(LP-EGR)方式のEGRガス導入方法が採用されている。   Many externally driven superchargers have excellent transient supercharging characteristics due to their characteristics. However, since the operation can easily make the intake pressure higher than the exhaust pressure, the prior art as shown in FIG. In the high pressure (HI-EGR) type EGR gas introduction method that introduces EGR gas to the downstream side of the externally driven supercharger 15, the EGR gas cannot be taken into the intake side. In order to solve this, a low pressure (LP-EGR) type EGR gas introduction method for introducing EGR gas upstream of the externally driven supercharger 15 as shown in FIG. 8 is employed.

このロープレーシャー方式のEGRガス導入方法では、インタークーラ(吸気中間冷却器)に排気ガスの一部であるEGRガスが流れ込むことになる。このインタークーラでは、走行風を用いて通過するガス(吸気又は吸気とEGRガス)を冷却してその温度を大幅に低下させるために、インタークーラの内部において水の凝縮等が生じる。従って、インタークーラの内部にEGRガスが流入する場合には、EGRガス中の成分が内部の凝縮水と反応して酸性物質が発生してインタークーラが腐食したり、EGRガス中の固体物質(ススなど)がインタークーラの内部に蓄積して目詰まりを起こしたりする等の問題がある。   In this low pressure type EGR gas introduction method, EGR gas, which is part of exhaust gas, flows into an intercooler (intake intermediate cooler). In this intercooler, the gas (intake air or intake air and EGR gas) passing using the traveling wind is cooled and the temperature thereof is greatly reduced, so that water condenses inside the intercooler. Therefore, when the EGR gas flows into the intercooler, the components in the EGR gas react with the condensed water in the interior to generate an acidic substance, and the intercooler is corroded, or the solid substance in the EGR gas ( Soot) accumulates inside the intercooler and causes clogging.

このインタークーラ内におけるカーボン粒子の堆積対策として、機械式過給機をバイパスする通路にカーボン粒子捕獲用のフィルタを設けたり(例えば、特許文献1参照。)、EGRガス中の水分の凝縮対策として、機械式過給機の上流側のEGR通路接続部分から機械式過給機にわたる範囲の吸気通路を下流側ほど高さが低くなるように傾斜若しくは湾曲させ、その最低部に機械式過給機本体のケーシングの内底壁が位置するように配置したり(例えば、特許文献2参照。)することが行われている。しかしながら、排気ガス中の成分を変化あるいは除去しない限り、インタークーラにおける腐食を回避することは極めて難しい。   As a countermeasure against the accumulation of carbon particles in the intercooler, a filter for capturing carbon particles is provided in a passage bypassing the mechanical supercharger (for example, refer to Patent Document 1), or as a countermeasure against condensation of moisture in the EGR gas. The intake passage in the range from the EGR passage connecting portion on the upstream side of the mechanical supercharger to the mechanical supercharger is inclined or curved so that the height becomes lower toward the downstream side, and the mechanical supercharger is at the lowest portion Arrangement is made such that the inner bottom wall of the casing of the main body is positioned (see, for example, Patent Document 2). However, it is very difficult to avoid corrosion in the intercooler unless the components in the exhaust gas are changed or removed.

また、機械式過給機単体で高圧力比運転、即ち高過給運転を行う場合には、高過給運転時に必要となる必要駆動力が非常に大きくなり、燃費に多大な影響を及ぼすことと、高圧力比運転が構造上の問題で困難であること等から得策ではない。これに対しては、高過給運転を必要としているディーゼル機関で、機械式過給機と排気ターボ式過給機と組み合わせることが提案されている(例えば、特許文献3参照。)。   In addition, when a high pressure ratio operation, that is, a high supercharging operation is performed with a mechanical supercharger alone, the required driving force required during the high supercharging operation becomes very large, which greatly affects fuel consumption. And it is not a good idea because high pressure ratio operation is difficult due to structural problems. In response to this, it has been proposed to combine a mechanical supercharger and an exhaust turbocharger in a diesel engine that requires high supercharging operation (see, for example, Patent Document 3).

また、冷間始動時においては次のような問題がある。この冷間始動直後は排気系統の温度が低下しているため、排気ガスの冷却損失が多く、その分タービンに供給される熱量が低下し、排気温度が低下する。さらに、潤滑油温度も低下しているため、潤滑油の粘度が増加しており、過給機におけるフリクションの増加により作動効率、作動量は大幅に低下する。その結果、過給機によって得られる過給圧、過渡応答性は著しく低下する。また、冷間始動時においては、EGRガス増加による排ガス対策が十分とれず、排気ガスの特性が著しく悪化する。   Moreover, there are the following problems at the time of cold start. Immediately after this cold start, the temperature of the exhaust system is lowered, so that there is a lot of exhaust gas cooling loss, and the amount of heat supplied to the turbine is reduced accordingly, and the exhaust temperature is lowered. Further, since the temperature of the lubricating oil is also lowered, the viscosity of the lubricating oil is increased, and the operation efficiency and the operation amount are greatly reduced due to the increase of friction in the supercharger. As a result, the supercharging pressure and the transient response obtained by the supercharger are significantly reduced. Further, at the time of cold start, exhaust gas countermeasures due to an increase in EGR gas cannot be taken sufficiently, and the exhaust gas characteristics are significantly deteriorated.

この冷間始動時の排気ガス対策と暖機促進対策に対しては、排気系部品の肉厚を低減することによる熱容量の減少対策や排気管を2重管にすることによる保温対策などが実施されている。しかし、排気系の熱容量の低減や保温等の対策では、これらの冷間始動時の問題を根本的に解決することは困難である。   For exhaust gas countermeasures and warm-up acceleration countermeasures during cold start, measures are taken to reduce heat capacity by reducing the thickness of exhaust system parts and heat insulation measures by using a double exhaust pipe. Has been. However, it is difficult to fundamentally solve these cold start problems by measures such as reducing the heat capacity of the exhaust system and keeping warm.

特開平07−332166号公報Japanese Patent Application Laid-Open No. 07-332166 特開平08−177646号公報Japanese Patent Laid-Open No. 08-177646 特開平07−91265号公報JP 07-91265 A

本発明は、上記の状況を鑑みてなされたものであり、その目的は、外部駆動式過給機と排気ターボ式過給機を備えた内燃機関、及びそのEGR方法において、EGRガスによるインタークーラの腐食及び汚損を防止できると共に、内燃機関の冷間始動時に、排気ガス中に白煙が排出されることを抑制することができる内燃機関、及びそのEGR方法を提供することにある。   The present invention has been made in view of the above situation, and an object of the present invention is to provide an internal combustion engine including an externally driven supercharger and an exhaust turbocharger, and an EGR method using an intercooler using EGR gas. It is an object of the present invention to provide an internal combustion engine and an EGR method thereof that can prevent corrosion and fouling of the engine and prevent white smoke from being discharged into the exhaust gas when the internal combustion engine is cold started.

上記のような目的を達成するための本発明の内燃機関は、内燃機関の吸気通路に上流側から順に排気ターボ式過給機のコンプレッサとインタークーラと外部駆動式過給機を備え、排気通路に前記排気ターボ式過給機のタービンを備えると共に、流量調整バルブを有して前記外部駆動式過給機を迂回するバイパス通路を備えた内燃機関において、前記タービンの上流側の排気通路と、前記インタークーラよりも下流側で、かつ、前記外部駆動式過給機よりも上流側の吸気通路を接続して構成される。   In order to achieve the above object, an internal combustion engine of the present invention comprises, in an intake passage of an internal combustion engine, a compressor, an intercooler, and an externally driven supercharger in order from the upstream side, and an exhaust passage. And an exhaust passage on the upstream side of the turbine in the internal combustion engine having a bypass passage that has a flow rate adjusting valve and bypasses the externally driven supercharger. An intake passage is connected downstream of the intercooler and upstream of the externally driven supercharger.

なお、この外部駆動式過給機は、排気ターボ式過給機のように、排気ガスのエネルギーから回転駆動力を得ずに、他の動力から駆動力を得る過給機のことを言い、この外部駆動式過給機としては、内燃機関の出力で駆動される機械式過給機と、内燃機関の出力で発電した電力で駆動される電動式過給機等があり、その構造に関しては、それぞれ容量型や遠心型がある。   In addition, this externally driven supercharger refers to a supercharger that obtains a driving force from other power without obtaining a rotational driving force from the energy of exhaust gas, like an exhaust turbo-type supercharger, As this externally driven supercharger, there are a mechanical supercharger driven by the output of the internal combustion engine, an electric supercharger driven by electric power generated by the output of the internal combustion engine, etc. Each has a capacity type and a centrifugal type.

この構成によれば、EGRガスがインタークーラ(吸気中間冷却器)を通過しないので、EGRガスによるインタークーラ内における凝縮水の発生や固体物質の堆積等の腐食及び汚損を防止できる。   According to this configuration, since EGR gas does not pass through the intercooler (intake intercooler), it is possible to prevent corrosion and fouling such as generation of condensed water and accumulation of solid substances in the intercooler due to EGR gas.

また、外部駆動式過給機を内燃機関本体の直近に配置し、外部駆動式過給機から内燃機関本体までの吸気系配管の長さを減少させることができ、これにより、吸気系配管の熱容量を減少できるので、暖機が促進され、その結果、内燃機関の冷間作動時間が短縮されるので、冷間始動時における、排気ガス中への白煙の排出量を減少することができる。   In addition, an externally driven supercharger can be arranged in the immediate vicinity of the internal combustion engine body to reduce the length of the intake system piping from the externally driven supercharger to the internal combustion engine body. Since the heat capacity can be reduced, warm-up is promoted, and as a result, the cold operation time of the internal combustion engine is shortened, so that the amount of white smoke discharged into the exhaust gas during cold start can be reduced. .

また、上記の内燃機関において、前記排気ターボ式過給機の制御装置が、内燃機関の暖機状態を示す暖機指標温度が所定の判定温度以下のときに、前記排気ターボ式過給機のタービンを迂回する排気ガス量を増加させて、前記排気ターボ式過給機の作動を低下させる制御を行うように構成すると、外部駆動式過給機による過給運転の仕事量を増加させて、シリンダ内に吸気されるガスの温度を増加させることができ、暖機をより促進できる。また、排気ターボ式過給機の作動を低下させることで、このタービンにおける排気エネルギー回収量を低下させることが可能になるため、タービン出口温度を昇温でき、その結果、後流に接続される触媒システムの暖機も同時に促進できる。   Further, in the internal combustion engine, when the exhaust turbo supercharger control device has a warm-up index temperature indicating a warm-up state of the internal combustion engine equal to or lower than a predetermined determination temperature, the exhaust turbo supercharger When it is configured to increase the amount of exhaust gas that bypasses the turbine and perform control to reduce the operation of the exhaust turbocharger, the amount of supercharging operation by the externally driven supercharger is increased, The temperature of the gas sucked into the cylinder can be increased, and warm-up can be further promoted. Moreover, since the exhaust energy recovery amount in this turbine can be reduced by reducing the operation of the exhaust turbocharger, the turbine outlet temperature can be raised, and as a result, connected to the downstream The warm-up of the catalyst system can be promoted at the same time.

この暖機指標温度としてはエンジン冷却水の温度、排気ガス温度、排気通路に設けられた排気ガス処理装置の触媒温度などがあり、また、排気ターボ式過給機のタービンを迂回する排気ガス量を増加させる方法としては、排気ターボ式過給機における、VGT(可変容量型ターボ)のタービンブレードの開度(開口面積)、ウェストゲートバルブの開度、又はこれらに相当の排気バイパスバルブの開度を大きくする方法がある。   The warm-up indicator temperature includes the temperature of the engine cooling water, the exhaust gas temperature, the catalyst temperature of the exhaust gas treatment device provided in the exhaust passage, and the amount of exhaust gas that bypasses the turbine of the exhaust turbocharger. As a method of increasing the exhaust gas pressure, an opening degree of a VGT (variable capacity turbo) turbine blade (opening area), an opening degree of a wastegate valve, or an opening of an exhaust bypass valve corresponding to these is used. There is a way to increase the degree.

また、上記の内燃機関において、前記外部駆動式過給機よりも下流側に第2のインタークーラを設けると共に、バイパスバルブを有して前記第2のインタークーラを迂回する第2のバイパス通路を設けて構成する。この第2のインタークーラは、外部駆動式過給機よりも上流側に配置されるインタークーラよりも容量が小さく、配管系並びに冷却器体積を最小限に抑制可能な空冷型吸気冷却装置、又は、EGRガス汚染対策を考えなくてもよい既存のEGRクーラのような水冷型の吸気冷却装置が好ましい。   In the above internal combustion engine, a second intercooler is provided on the downstream side of the externally driven supercharger, and a second bypass passage having a bypass valve and bypassing the second intercooler is provided. Provide and configure. This second intercooler has a smaller capacity than an intercooler arranged on the upstream side of the externally driven supercharger, and an air-cooled intake air cooling device capable of minimizing the piping system and the volume of the cooler, or A water-cooled intake air cooling device such as an existing EGR cooler that does not need to take measures against EGR gas contamination is preferable.

そして、上記のような目的を達成するための本発明の内燃機関のEGR方法は、内燃機関の吸気通路に上流側から順に排気ターボ式過給機のコンプレッサとインタークーラと外部駆動型過給機を備え、排気通路に前記排気ターボ式過給機のタービンを備えると共に、流量調整バルブを有して前記外部駆動式過給機を迂回するバイパス通路を備えた内燃機関のEGR方法において、EGRガスを前記タービンの上流側から前記外部駆動式過給機の上流側に供給することを特徴とする方法である。   And the EGR method of the internal combustion engine of the present invention for achieving the above-described object is a compressor, an intercooler, and an externally driven supercharger of an exhaust turbocharger in order from the upstream side to the intake passage of the internal combustion engine. In the EGR method for an internal combustion engine, the exhaust gas turbocharger turbine is provided in an exhaust passage, and a bypass passage that has a flow rate adjusting valve and bypasses the externally driven supercharger is provided. Is supplied from the upstream side of the turbine to the upstream side of the externally driven supercharger.

この方法によれば、EGRガスがインタークーラを通過しないので、EGRガスによるインタークーラ内における凝縮水の発生や固体物質の堆積等の腐食及び汚損を防止できる。   According to this method, since the EGR gas does not pass through the intercooler, it is possible to prevent corrosion and fouling such as generation of condensed water and accumulation of solid substances in the intercooler due to the EGR gas.

本発明に係る内燃機関、及びそのEGR方法によれば、インタークーラにおける腐食と汚損の防止、内燃機関の冷間始動時における外部過給機による暖機促進による白煙の発生の抑制という効果を奏することができる。   According to the internal combustion engine and the EGR method thereof according to the present invention, the effects of preventing corrosion and fouling in the intercooler, and suppressing the generation of white smoke by promoting warm-up by an external supercharger at the time of cold start of the internal combustion engine. Can play.

つまり、EGRガスがインタークーラを通過しないので、EGRガス中の成分によるインタークーラの腐食及び汚損を回避できる。そのため、EGRガスによる汚損に対しての対策は、外部駆動式過給機に対してのみ実施すればよいことになる。従って、外部駆動式過給機におけるEGR導入対策とEGR汚損対策を両立させることが可能となり、大幅なコスト低減が可能となる。   That is, since the EGR gas does not pass through the intercooler, it is possible to avoid corrosion and fouling of the intercooler due to components in the EGR gas. Therefore, countermeasures against contamination by EGR gas need only be implemented for the externally driven supercharger. Therefore, it is possible to achieve both the EGR introduction countermeasure and the EGR contamination countermeasure in the external drive supercharger, and the cost can be greatly reduced.

また、外部駆動式過給機を内燃機関本体の直近に配置し、外部駆動式過給機から内燃機関本体までの吸気系配管の長さを減少させることができ、これにより、吸気系配管の熱容量を減少できるので、暖機が促進され、その結果、内燃機関の冷間作動時間が短縮されるので、冷間始動時における、排気ガス中への白煙の排出量を減少することができる。   In addition, an externally driven supercharger can be arranged in the immediate vicinity of the internal combustion engine body to reduce the length of the intake system piping from the externally driven supercharger to the internal combustion engine body. Since the heat capacity can be reduced, warm-up is promoted, and as a result, the cold operation time of the internal combustion engine is shortened, so that the amount of white smoke discharged into the exhaust gas during cold start can be reduced. .

本発明に係る第1の実施の形態の内燃機関の構成を示す図である。It is a figure showing composition of an internal-combustion engine of a 1st embodiment concerning the present invention. 本発明に係る第2の実施の形態の内燃機関の構成を示す図である。It is a figure which shows the structure of the internal combustion engine of 2nd Embodiment which concerns on this invention. 過渡過給特性の改善シミュレーション結果を示す図である。It is a figure which shows the improvement simulation result of a transient supercharging characteristic. 吸気温度に対する昇温効果の評価値を示す図である。It is a figure which shows the evaluation value of the temperature rising effect with respect to intake temperature. 圧縮端温度に対する昇温効果の評価値を示す図である。It is a figure which shows the evaluation value of the temperature rising effect with respect to compression end temperature. 排気温度に対する昇温効果の評価値を示す図である。It is a figure which shows the evaluation value of the temperature rising effect with respect to exhaust temperature. 従来技術における機械式過給機を備えた内燃機関のハイプレッシャー方式のEGRガス導入方法を示す図である。It is a figure which shows the EGR gas introduction method of the high pressure system of the internal combustion engine provided with the mechanical supercharger in a prior art. 従来技術における機械式過給機を備えた内燃機関のロープレッシャー方式のEGRガス導入方法を示す図である。It is a figure which shows the EGR gas introduction method of the low pressure system of the internal combustion engine provided with the mechanical supercharger in a prior art.

以下、本発明に係る実施の形態の内燃機関、及びそのEGR方法について、図面を参照しながら説明する。   Hereinafter, an internal combustion engine according to an embodiment of the present invention and an EGR method thereof will be described with reference to the drawings.

図1に示すように、本発明に係る第1の実施の形態の内燃機関(以下、エンジンという)1は、エンジン本体10の吸気マニホールド10aに連結されている吸気通路11に上流側から順に排気ターボ式過給機13のコンプレッサ13aとインタークーラ(吸気中間冷却器)14と外部駆動式過給機15を備え、また、排気マニホールド10bに連結されている排気通路12に排気ターボ式過給機13のタービン13bを備えて構成される。   As shown in FIG. 1, an internal combustion engine (hereinafter referred to as an engine) 1 according to a first embodiment of the present invention exhausts exhaust air in order from an upstream side into an intake passage 11 connected to an intake manifold 10a of an engine body 10. The turbocharger 13 includes a compressor 13a, an intercooler (intake intermediate cooler) 14, an externally driven supercharger 15, and an exhaust turbocharger in an exhaust passage 12 connected to an exhaust manifold 10b. 13 turbines 13b are provided.

更に、外部駆動式過給機15を迂回するバイパス通路16を設けて、このバイパス通路16にバイパス通路16を通過する吸気Aの流量を調整できるように流量調整バルブ16aを配置する。また、EGR通路17を、タービン13bの上流側の排気通路12と、インタークーラ14よりも下流側で、かつ、バイパス通路16の分岐点16bよりも上流側の吸気通路11を接続して設け、このEGR通路17にEGRクーラ17aとEGR弁17bを設ける。   Further, a bypass passage 16 that bypasses the externally driven supercharger 15 is provided, and a flow rate adjustment valve 16 a is arranged in the bypass passage 16 so that the flow rate of the intake air A that passes through the bypass passage 16 can be adjusted. Further, the EGR passage 17 is provided by connecting the exhaust passage 12 upstream of the turbine 13b and the intake passage 11 downstream of the intercooler 14 and upstream of the branch point 16b of the bypass passage 16, The EGR passage 17 is provided with an EGR cooler 17a and an EGR valve 17b.

排気ターボ式過給機13は、タービン13bを通過する排気ガスによってタービン13bが回転駆動され、このタービン13bの回転軸に連結されたコンプレッサ13bが回転し、吸気Aを圧縮して高圧にして過給する。この排気ターボ式過給機13のタービン13bには回転を制御するために、図示しないが、排気ガスGの一部を迂回させるためのVGT(可変容量型ターボ)等のタービンブレードの開度(開口面積)やウェストゲートバルブやこれらに相当する排気バイパス通路と排気バイパスバルブを備えて形成される。なお、この排気ターボ式過給機13に関しては、排気ターボ式過給機を一つだけでなく複数備えた多段過給システムで構成してもよい。   In the exhaust turbocharger 13, the turbine 13b is rotationally driven by exhaust gas passing through the turbine 13b, and the compressor 13b connected to the rotating shaft of the turbine 13b rotates to compress the intake air A to a high pressure. To pay. In order to control the rotation of the turbine 13b of the exhaust turbocharger 13, although not shown, the opening degree of a turbine blade such as a VGT (variable capacity turbo) for bypassing a part of the exhaust gas G (not shown) Opening area), waste gate valves, and exhaust bypass passages and exhaust bypass valves corresponding to these. The exhaust turbo supercharger 13 may be constituted by a multi-stage supercharge system including not only one exhaust turbo supercharger but also a plurality of exhaust turbo superchargers.

外部駆動式過給機15は、排気ターボ式過給機13のように、排気ガスGのエネルギーから回転駆動力を得ずに、他の動力から駆動力を得る過給機であり、この外部駆動式過給機15としては、エンジン1の出力で駆動される機械式過給機と、エンジン1の出力で発電した電力で駆動される電動式過給機等があり、その構造に関しては、それぞれ容量型や遠心型がある。   The externally driven supercharger 15 is a supercharger that obtains a driving force from other power without obtaining a rotational driving force from the energy of the exhaust gas G, like the exhaust turbocharger 13. Examples of the drive supercharger 15 include a mechanical supercharger driven by the output of the engine 1 and an electric supercharger driven by the electric power generated by the output of the engine 1. There are capacity type and centrifugal type respectively.

機械式過給機を採用する場合は、エンジン本体10の出力軸と、通常のギア、あるいはベルト等(図示しない)で接続して駆動され、機械式過給機15とエンジン本体10の出力軸との間は、必要に応じて、無段階変速機などを使用して増速比を可変にしてもよく、また、これらの変速機を設けずに増速比一定にしてよい。なお、機械式過給機15とエンジン10の出力軸との間にクラッチ(図示しない)を設けて、機械式過給機15をON/OFF可能に構成する。また、電動式過給機を用いる場合には、エンジン側の発電機で発電される電気により電動式過給機15の電動モータが駆動される。   When a mechanical supercharger is employed, the mechanical supercharger 15 and the output shaft of the engine main body 10 are driven by being connected to the output shaft of the engine main body 10 via a normal gear or a belt (not shown). If necessary, the speed increasing ratio may be made variable using a continuously variable transmission or the like, or the speed increasing ratio may be made constant without providing these transmissions. A clutch (not shown) is provided between the mechanical supercharger 15 and the output shaft of the engine 10 so that the mechanical supercharger 15 can be turned ON / OFF. When an electric supercharger is used, the electric motor of the electric supercharger 15 is driven by electricity generated by the generator on the engine side.

そして、排気ターボ式過給機13の回転制御、外部駆動式過給機15のON/OFF動作と増速比制御(変速機を設けた場合)、流量調整バルブ16aのON/OFF動作と弁開度調整、EGR弁17bのON/OFF動作と弁開度調整等を制御する制御装置(図示しない)を設ける。この制御装置は、通常は、エンジン10の運転全般を制御するECU(エンジンコントロールユニット)と呼ばれる制御装置に組み込まれて構成される。   Then, the rotation control of the exhaust turbocharger 13, the ON / OFF operation of the externally driven supercharger 15 and the speed increase ratio control (when a transmission is provided), the ON / OFF operation of the flow rate adjustment valve 16 a and the valve A control device (not shown) for controlling the opening adjustment, the ON / OFF operation of the EGR valve 17b, the valve opening adjustment, and the like is provided. This control device is usually configured to be incorporated in a control device called an ECU (Engine Control Unit) that controls the overall operation of the engine 10.

次に、本発明に係る第2の実施の形態の内燃機関1Aは、図2に示すように、第1の実施の形態の内燃機関1の構成に加えて、第2のインタークーラ(第2の吸気中間冷却装置)20を外部駆動式過給機15から吸気マニホールド10aまでの吸気配管11aに配置して構成する。この第2のインタークーラ20は、インタークーラ14よりも容量が小さく、配管系並びに冷却器体積を最小限にした構成とすることが好ましい。更に、この第2のインタークーラ20には、第2のバイパス通路21と第2のバイパスバルブ21aを設けて、暖機状態等の状態に応じて、第2のインタークーラ20をバイパスさせて吸気混合気(吸気+EGRガス:A+(Ge))を流すことができるように構成する。その他の構成は第1の実施の形態の内燃機関1の構成と同じである。   Next, as shown in FIG. 2, the internal combustion engine 1 </ b> A according to the second embodiment of the present invention has a second intercooler (the second intercooler) in addition to the configuration of the internal combustion engine 1 according to the first embodiment. The intake intermediate cooling device 20) is arranged in the intake pipe 11a from the externally driven supercharger 15 to the intake manifold 10a. The second intercooler 20 preferably has a smaller capacity than the intercooler 14 and has a configuration in which the piping system and the cooler volume are minimized. Further, the second intercooler 20 is provided with a second bypass passage 21 and a second bypass valve 21a so that the second intercooler 20 can be bypassed in accordance with a warm-up state or the like. The air-fuel mixture (intake air + EGR gas: A + (Ge)) can be flowed. Other configurations are the same as the configuration of the internal combustion engine 1 of the first embodiment.

これらの構成のエンジン1、1AにおけるEGR方法は、排気ガスGの一部であるEGRガスGeを、タービン13bの上流側から外部駆動式過給機15の上流側に供給することで行われる。   The EGR method in the engine 1, 1A having these configurations is performed by supplying EGR gas Ge, which is a part of the exhaust gas G, from the upstream side of the turbine 13b to the upstream side of the externally driven supercharger 15.

次に、上記の構成のエンジン1、1Aにおける制御方法について説明する。このエンジン1、1Aでは、エンジン1、1Aの暖機状態を示す暖機指標温度が所定の判定温度以下のときに、排気ターボ式過給機13のタービン13bを迂回する排気ガス量を増加させて、排気ターボ式過給機13の作動を低下させる。   Next, a control method in the engine 1, 1A having the above-described configuration will be described. In the engines 1 and 1A, when the warm-up index temperature indicating the warm-up state of the engines 1 and 1A is equal to or lower than a predetermined determination temperature, the amount of exhaust gas that bypasses the turbine 13b of the exhaust turbocharger 13 is increased. Thus, the operation of the exhaust turbocharger 13 is reduced.

この排気ターボ式過給機13のタービン13bを迂回する排気ガス量を増加させる方法としては、排気ターボ式過給機13のタービンブレードの開度、ウェストゲートバルブの開度、又はこれらに相当の排気バイパスバルブの開度を大きくする方法がある。   As a method for increasing the amount of exhaust gas that bypasses the turbine 13b of the exhaust turbocharger 13, the opening degree of the turbine blade of the exhaust turbocharger 13, the opening degree of the wastegate valve, or the like There is a method of increasing the opening degree of the exhaust bypass valve.

上記の構成のエンジン1、1A、及びそのEGR方法によれば、EGRガスGeがインタークーラ14を通過しないので、EGRガスGeによるインタークーラ14内における凝縮水の発生や固体物質の堆積等の腐食及び汚損を防止できる。さらに、EGRガスGeによるインタークーラ14の汚損を気にせず、外部駆動式過給機15によって過給圧を確保することが可能となるため、EGRガス量及びEGR率の増加が可能となり、大幅な排気ガスGの改善が可能となる。   According to the engine 1, 1 </ b> A having the above-described configuration and the EGR method thereof, the EGR gas Ge does not pass through the intercooler 14. And can prevent fouling. Furthermore, since the supercharging pressure can be secured by the externally driven supercharger 15 without worrying about the contamination of the intercooler 14 due to the EGR gas Ge, the amount of EGR gas and the EGR rate can be increased. The exhaust gas G can be improved.

また、このエンジン1、1Aでは、外部駆動式過給機15をエンジン本体10の直近に配置し、外部駆動式過給機15からエンジン本体10までの吸気系配管11aの長さを減少させることができ、これにより、この吸気系配管11aの熱容量を減少できるので、暖機を促進してエンジン1、1Aの冷間作動時間を短縮でき、冷間始動時における、排気ガスG中への白煙の排出を抑制することができる。また、この吸気系配管11aの長さの減少に伴いその内部容積も減少できるので、外部駆動式過給機15の作動に伴う過給応答性を高めることができる。   In the engines 1 and 1A, the externally driven supercharger 15 is disposed in the immediate vicinity of the engine main body 10 to reduce the length of the intake system piping 11a from the externally driven supercharger 15 to the engine main body 10. As a result, the heat capacity of the intake pipe 11a can be reduced, so that warm-up can be promoted and the cold operation time of the engine 1, 1A can be shortened, and the white in the exhaust gas G at the cold start can be reduced. Smoke emission can be suppressed. Further, since the internal volume of the intake system pipe 11a can be reduced as the length of the intake system pipe 11a is reduced, the supercharging response associated with the operation of the externally driven supercharger 15 can be enhanced.

更に、外部駆動式過給機15の後流にインタークーラ14が配置されないことで、あるいは、EGRガス汚損対策がなされた第2のバイパス通路21付きで、小容量の第2のインタークーラ20が配置された場合でも、第2のバイパス通路21を使用することで、外部駆動式過給機15による過給運転により上昇した吸気をそのままシリンダに供給できるので、シリンダ内に入る吸気の温度を上昇させることが可能となる。   Further, since the intercooler 14 is not disposed downstream of the externally driven supercharger 15 or with the second bypass passage 21 in which countermeasures against EGR gas fouling are taken, the second intercooler 20 having a small capacity is provided. Even in the case of being arranged, by using the second bypass passage 21, the intake air increased by the supercharging operation by the externally driven supercharger 15 can be supplied to the cylinder as it is, so that the temperature of the intake air entering the cylinder is increased. It becomes possible to make it.

また、この制御方法によれば、冷間始動時の冷間運転中は排気ターボ式過給機13の作動を低下させるので、外部駆動式過給機15による過給運転の仕事量を増加させて、積極的に吸気温度を増加させることができ、エンジン本体10のシリンダ内に吸気されるガスA(又はA+Ge)の温度を増加させることができる。その結果、シリンダ内の圧縮端温度が上昇するので、COやHCの発生を抑制できる。   Further, according to this control method, since the operation of the exhaust turbocharger 13 is lowered during the cold operation at the cold start, the work amount of the supercharging operation by the externally driven supercharger 15 is increased. Thus, the intake air temperature can be positively increased, and the temperature of the gas A (or A + Ge) sucked into the cylinder of the engine body 10 can be increased. As a result, the compression end temperature in the cylinder rises, so that generation of CO and HC can be suppressed.

また、外部駆動式過給機15の駆動エネルギーは最終的にエンジン1、1Aの軸出力から得るエネルギーであるため、外部駆動式過給機15の仕事を増やすことは、燃料噴射量の増加を意味し、それは同時に排気温度と排気エネルギーの増加を意味する。従って、排気温度を高めることができ、暖機を促進できる。   Further, since the drive energy of the externally driven supercharger 15 is finally obtained from the shaft output of the engine 1 or 1A, increasing the work of the externally driven supercharger 15 increases the fuel injection amount. It means that exhaust temperature and exhaust energy increase at the same time. Therefore, exhaust temperature can be raised and warm-up can be promoted.

冷間始動時には、これに加えて、排気ターボ式過給機13の作動を低下させることで、タービン13bにおける排気ガスGの熱エネルギーの消費量が低下することから、タービン13bの後流における排気ガスGの温度の低下を防ぐことができる。そのため、触媒系の早期活性化も期待できる。   In addition to this, at the time of cold start, since the consumption of the thermal energy of the exhaust gas G in the turbine 13b is reduced by lowering the operation of the exhaust turbocharger 13, the exhaust in the downstream of the turbine 13b. A decrease in the temperature of the gas G can be prevented. Therefore, early activation of the catalyst system can be expected.

図3に、図7と図8の従来例のインタークーラ14の配置と、図1におけるインタークーラ14の配置において、外部駆動式過給機15に対する吸気系体積の変化が過渡性能に及ぼす特性を評価するために「過渡過給特性の改善度合い」をシミュレーション計算した結果を示す。図3は、機関回転速度一定、かつ、EGRが0%の条件下で、図3の横軸の0(ゼロ)秒数より燃料噴射量を増量し、機械式過給機を作動開始した場合の過給圧を示す。本発明の排気ターボ式過給機13に加えて外部駆動式過給機15を用いた場合の実施例Aは、図7や図8の外部駆動式過給機15単独の場合の従来例Bに比べて、速やかに過給圧が増加していることが分かる。   FIG. 3 shows the characteristics of the change in the intake system volume with respect to the externally driven supercharger 15 on the transient performance in the arrangement of the conventional intercooler 14 in FIGS. 7 and 8 and the arrangement of the intercooler 14 in FIG. The results of simulation calculation of “degree of improvement in transient supercharging characteristics” for evaluation are shown. FIG. 3 shows the case where the mechanical supercharger is started by increasing the fuel injection amount from 0 (zero) seconds on the horizontal axis in FIG. 3 under the condition of constant engine speed and 0% EGR. Indicates the supercharging pressure. Example A in the case of using an externally driven supercharger 15 in addition to the exhaust turbocharger 13 of the present invention is a conventional example B in the case of using only the externally driven supercharger 15 of FIGS. It can be seen that the supercharging pressure increases more quickly than.

図4〜図6に、図1の構成の内燃機関1における、吸気温度、圧縮端温度、排気温度に対する昇温効果の評価値を示す。この評価値は、50%機関回転速度、50%負荷、EGR0%の一定条件のもとで、例Cは、ターボ式過給器13のタービン13bのタービンブレード100%開度で、更にウェストゲートを全開し機械式過給機15を作動して過給した場合を示し、例Dはタービン13bのタービンブレード100%開度で機械式過給機を作動して過給した場合を示し、例Eは排気ターボ式過給機13のみで過給した場合を示す。   4 to 6 show evaluation values of the temperature rise effect with respect to the intake air temperature, the compression end temperature, and the exhaust gas temperature in the internal combustion engine 1 having the configuration shown in FIG. This evaluation value is a constant condition of 50% engine speed, 50% load, and EGR 0%. Example C is the turbine blade 100b opening degree of the turbine 13b of the turbocharger 13, and further the wastegate. Is fully opened and the mechanical supercharger 15 is operated to perform supercharging, and Example D illustrates the case where the mechanical supercharger is operated with 100% opening of the turbine blade of the turbine 13b and supercharged. E shows a case where the turbocharger 13 is used only for supercharging.

本発明の内燃機関、そのEGR方法及びその制御方法は、EGRガスによるインタークーラの腐食及び汚損を防止できると共に、内燃機関の冷間始動時に、排気ガス中に白煙が排出されることを抑制することができるので、自動車搭載等の内燃機関、そのEGR方法及びその制御方法として使用できる。   INDUSTRIAL APPLICABILITY The internal combustion engine, the EGR method and the control method thereof according to the present invention can prevent corrosion and fouling of the intercooler due to EGR gas, and suppress the discharge of white smoke into the exhaust gas when the internal combustion engine is cold started Therefore, it can be used as an internal combustion engine mounted on an automobile, its EGR method and its control method.

1、1A、1X,1Y エンジン(内燃機関)
10 エンジン本体
11 吸気通路
12 排気通路
13 排気ターボ式過給機
14 インタークーラ(吸気中間冷却器)
15 外部駆動式過給機
16 バイパス通路
16a 流量調整バルブ
17 EGR通路
20 第2のインタークーラ(第2吸気中間冷却器)
21 第2のバイパス通路
21a 第2のバイパスバルブ
A 吸気
G 排気ガス
Ge EGRガス
1, 1A, 1X, 1Y engine (internal combustion engine)
10 Engine Body 11 Intake Passage 12 Exhaust Passage 13 Exhaust Turbo Supercharger 14 Intercooler (Intake Intercooler)
15 Externally driven supercharger 16 Bypass passage 16a Flow rate adjusting valve 17 EGR passage 20 Second intercooler (second intake intermediate cooler)
21 Second bypass passage 21a Second bypass valve A Intake G Exhaust gas Ge EGR gas

Claims (4)

内燃機関の吸気通路に上流側から順に排気ターボ式過給機のコンプレッサとインタークーラと外部駆動式過給機を備え、排気通路に前記排気ターボ式過給機のタービンを備えると共に、流量調整バルブを有して前記外部駆動式過給機を迂回するバイパス通路を備えた内燃機関において、前記タービンの上流側の排気通路と、前記インタークーラよりも下流側で、かつ、前記外部駆動式過給機よりも上流側の吸気通路を接続するEGR通路を設けたことを特徴とする内燃機関。   A compressor, an intercooler, and an externally driven supercharger are provided in the intake passage of the internal combustion engine in order from the upstream side, and an exhaust drive turbocharger turbine is provided in the exhaust passage, and a flow rate adjusting valve. In the internal combustion engine having a bypass passage that bypasses the externally driven supercharger, the exhaust passage on the upstream side of the turbine, the downstream side of the intercooler, and the externally driven supercharger An internal combustion engine having an EGR passage connecting an intake passage upstream of the engine. 前記排気ターボ式過給機の制御装置が、内燃機関の暖機状態を示す暖機指標温度が所定の判定温度以下のときに、前記排気ターボ式過給機のタービンを迂回する排気ガス量を増加させて、前記排気ターボ式過給機の作動を低下させる制御を行うことを特徴とする請求項1記載の内燃機関。   When the warm-up indicator temperature indicating the warm-up state of the internal combustion engine is equal to or lower than a predetermined determination temperature, the exhaust turbo-supercharger control device determines an exhaust gas amount that bypasses the turbine of the exhaust turbo-supercharger. 2. The internal combustion engine according to claim 1, wherein control is performed to increase and decrease the operation of the exhaust turbocharger. 前記外部駆動式過給機よりも下流側に第2のインタークーラを設けると共に、バイパスバルブを有して前記第2のインタークーラを迂回する第2のバイパス通路を設けたことを特徴とする請求項1又は2に記載の内燃機関。   A second intercooler is provided downstream of the externally driven supercharger, and a second bypass passage having a bypass valve and bypassing the second intercooler is provided. Item 3. The internal combustion engine according to Item 1 or 2. 内燃機関の吸気通路に上流側から順に排気ターボ式過給機のコンプレッサとインタークーラと外部駆動型過給機を備え、排気通路に前記排気ターボ式過給機のタービンを備えると共に、流量調整バルブを有して前記外部駆動式過給機を迂回するバイパス通路を備えた内燃機関のEGR方法において、EGRガスを前記タービンの上流側から前記外部駆動式過給機の上流側に供給することを特徴とする内燃機関のEGR方法。   A compressor, an intercooler, and an externally driven supercharger of an exhaust turbocharger are provided in order from the upstream side in the intake passage of the internal combustion engine, and the exhaust turbocharger turbine is provided in the exhaust passage, and a flow rate adjusting valve. And supplying an EGR gas from the upstream side of the turbine to the upstream side of the externally driven supercharger. A feature of the EGR method for an internal combustion engine.
JP2010288158A 2010-12-24 2010-12-24 Internal combustion engine and egr method therefor Pending JP2012136957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010288158A JP2012136957A (en) 2010-12-24 2010-12-24 Internal combustion engine and egr method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010288158A JP2012136957A (en) 2010-12-24 2010-12-24 Internal combustion engine and egr method therefor

Publications (1)

Publication Number Publication Date
JP2012136957A true JP2012136957A (en) 2012-07-19

Family

ID=46674569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010288158A Pending JP2012136957A (en) 2010-12-24 2010-12-24 Internal combustion engine and egr method therefor

Country Status (1)

Country Link
JP (1) JP2012136957A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120285165A1 (en) * 2011-05-11 2012-11-15 Hyundai Motor Company Engine system based on turbo charger and fuel ratio improving method thereof
US20140305415A1 (en) * 2013-04-15 2014-10-16 Volvo Car Corporation Combustion control for combustion engines
JP2018080606A (en) * 2016-11-15 2018-05-24 株式会社豊田自動織機 Electric supercharger
JP2019138155A (en) * 2018-02-06 2019-08-22 マツダ株式会社 Intake structure of electric supercharged engine
CN113864041A (en) * 2021-09-30 2021-12-31 上海交通大学 Electric supercharging-based high back pressure diesel engine power recovery method and implementation device thereof
US11408330B2 (en) 2018-06-29 2022-08-09 Volvo Truck Corporation Method of operating a four stroke internal combustion engine system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136424A (en) * 1990-09-28 1992-05-11 Toyota Motor Corp Intercooler bypass controller for supercharge engine
JPH11210477A (en) * 1998-01-28 1999-08-03 Fuji Heavy Ind Ltd Intake air temperature controlling device for cylinder injection type engine incorporating supercharger
JP2005220862A (en) * 2004-02-09 2005-08-18 Hino Motors Ltd Internal combustion engine with supercharger
JP2007100627A (en) * 2005-10-06 2007-04-19 Isuzu Motors Ltd Egr system for internal combustion engine
JP2007127070A (en) * 2005-11-04 2007-05-24 Hino Motors Ltd Internal combustion engine with supercharger
JP2007224801A (en) * 2006-02-23 2007-09-06 Nissan Diesel Motor Co Ltd Exhaust recirculating device of engine
JP2010127126A (en) * 2008-11-26 2010-06-10 Hino Motors Ltd Two-stage supercharging system
JP2010138892A (en) * 2008-12-10 2010-06-24 Man Diesel Se Internal combustion engine equipped with two exhaust turbochargers coupled in series together
JP2010203426A (en) * 2009-03-06 2010-09-16 Toyota Motor Corp Control device of internal combustion engine with supercharger
WO2010121684A1 (en) * 2009-04-23 2010-10-28 Daimler Ag Internal combustion engine and method for operating an internal combustion engine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136424A (en) * 1990-09-28 1992-05-11 Toyota Motor Corp Intercooler bypass controller for supercharge engine
JPH11210477A (en) * 1998-01-28 1999-08-03 Fuji Heavy Ind Ltd Intake air temperature controlling device for cylinder injection type engine incorporating supercharger
JP2005220862A (en) * 2004-02-09 2005-08-18 Hino Motors Ltd Internal combustion engine with supercharger
JP2007100627A (en) * 2005-10-06 2007-04-19 Isuzu Motors Ltd Egr system for internal combustion engine
JP2007127070A (en) * 2005-11-04 2007-05-24 Hino Motors Ltd Internal combustion engine with supercharger
JP2007224801A (en) * 2006-02-23 2007-09-06 Nissan Diesel Motor Co Ltd Exhaust recirculating device of engine
JP2010127126A (en) * 2008-11-26 2010-06-10 Hino Motors Ltd Two-stage supercharging system
JP2010138892A (en) * 2008-12-10 2010-06-24 Man Diesel Se Internal combustion engine equipped with two exhaust turbochargers coupled in series together
JP2010203426A (en) * 2009-03-06 2010-09-16 Toyota Motor Corp Control device of internal combustion engine with supercharger
WO2010121684A1 (en) * 2009-04-23 2010-10-28 Daimler Ag Internal combustion engine and method for operating an internal combustion engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120285165A1 (en) * 2011-05-11 2012-11-15 Hyundai Motor Company Engine system based on turbo charger and fuel ratio improving method thereof
US8931274B2 (en) * 2011-05-11 2015-01-13 Hyundai Motor Company Engine system based on turbo charger and fuel ratio improving method thereof
US20140305415A1 (en) * 2013-04-15 2014-10-16 Volvo Car Corporation Combustion control for combustion engines
JP2018080606A (en) * 2016-11-15 2018-05-24 株式会社豊田自動織機 Electric supercharger
CN108071482A (en) * 2016-11-15 2018-05-25 株式会社丰田自动织机 Electric booster
US10711738B2 (en) 2016-11-15 2020-07-14 Kabushiki Kaisha Toyota Jidoshokki Electric supercharger
JP2019138155A (en) * 2018-02-06 2019-08-22 マツダ株式会社 Intake structure of electric supercharged engine
US11408330B2 (en) 2018-06-29 2022-08-09 Volvo Truck Corporation Method of operating a four stroke internal combustion engine system
CN113864041A (en) * 2021-09-30 2021-12-31 上海交通大学 Electric supercharging-based high back pressure diesel engine power recovery method and implementation device thereof

Similar Documents

Publication Publication Date Title
US10107180B2 (en) Two-stage supercharging internal combustion engine having an exhaust-gas aftertreatment arrangement, and method for operating a two-stage supercharged internal combustion engine
JP5887353B2 (en) Internal combustion engine
US7127893B2 (en) Internal combustion engine comprising a compressor in the induction tract
RU2584391C2 (en) Turbocharged internal combustion engine and method for operation thereof
RU150916U1 (en) INFLATED COMBUSTION ENGINE
CN101842565B (en) With the internal combustion engine of exhaust-driven turbo-charger exhaust-gas turbo charger and charger-air cooler
US9670881B2 (en) Supercharger-equipped internal combustion engine
JP4525544B2 (en) Internal combustion engine with a supercharger
US8615998B2 (en) Lubrication device of turbocharger of engine for vehicle
JP2010502880A (en) Method and apparatus for operating an internal combustion engine
JP2008546946A (en) Supercharged diesel engine
JP2012136957A (en) Internal combustion engine and egr method therefor
US20160076466A1 (en) Method of Controlling an Engine System
JP2010255525A (en) Internal combustion engine and method for controlling the same
JP2006322398A (en) Internal combustion engine
CN110637150B (en) Air intake and exhaust structure of compressed natural gas engine
JP6357902B2 (en) Engine exhaust gas recirculation method and exhaust gas recirculation device
JP2011111929A (en) Internal combustion engine and method for controlling the same
JP5742178B2 (en) Engine brake system for internal combustion engine and control method thereof
JP2010223077A (en) Internal combustion engine
GB2522130A (en) Internal combustion engine for a vehicle
JP2012097631A (en) Engine brake system of internal combustion engine and method of controlling the same
JP5682245B2 (en) Low pressure loop EGR device
JP2019157630A (en) Supercharging device for engine
JP4206934B2 (en) Supercharging system for internal combustion engines

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120817

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150728