JP2012135432A - Endoscope - Google Patents

Endoscope Download PDF

Info

Publication number
JP2012135432A
JP2012135432A JP2010289661A JP2010289661A JP2012135432A JP 2012135432 A JP2012135432 A JP 2012135432A JP 2010289661 A JP2010289661 A JP 2010289661A JP 2010289661 A JP2010289661 A JP 2010289661A JP 2012135432 A JP2012135432 A JP 2012135432A
Authority
JP
Japan
Prior art keywords
optical system
observation
illumination
liquid
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010289661A
Other languages
Japanese (ja)
Inventor
Makito Komukai
牧人 小向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010289661A priority Critical patent/JP2012135432A/en
Publication of JP2012135432A publication Critical patent/JP2012135432A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an endoscope in which light distribution of an illumination optical system can be switched by an easy control, and light supplied from a light source is efficiently used as illumination light.SOLUTION: An objective optical system 26, an illumination optical system 27a, 27b are disposed in a distal end 16a continuously prepared at an insertion part distal end of the endoscope. The illumination optical system 27a, 27b consist of an optical fiber 31a, 31b, and a liquid lens 40. The light led from a light source to the optical fiber 31a, 31b is supplied to the liquid lens 40. The Illumination optical system 27a, 27b irradiate illumination light to a surface H of a subject by the liquid lens. Electrode members 44, 45 of the liquid lens 40 are impressed by voltage, thereby an illumination angle changes and an illumination angle of the illumination optical system 27a, 27b becomes a wide angle, and a light range Sof the illumination optical system 27a, 27b laps with an observation range Sof the objective optical system 26.

Description

本発明は、被検体内の被観察部位に照明光を照射する内視鏡に関する。   The present invention relates to an endoscope for irradiating illumination light to a site to be observed in a subject.

内視鏡は、被検体内に挿入される挿入部の先端部に、被検体の像光を取り込むための観察光学系と、被検体に照明光を照射するための照明光学系とを備えている。照明光学系による照明光の照射角及び光軸方向は、観察光学系による観察範囲に合わせるように設定されている。   An endoscope includes an observation optical system for capturing image light of a subject and an illumination optical system for irradiating the subject with illumination light at a distal end portion of an insertion portion to be inserted into the subject. Yes. The irradiation angle and optical axis direction of the illumination light by the illumination optical system are set so as to match the observation range by the observation optical system.

従来の内視鏡では、照明光学系による照明光の照射角、光軸方向は固定されていたが、特許文献1記載の内視鏡では、光源装置から供給される光を導くライトガイドの出射端と、照明光学系の最先端側に位置する照明窓との間に、対向面が軸線方向に対して傾いた一対の透明部材を軸方向に沿って間隔可変に配置しており、これら一対の透明部材の間隔を変化させることにより、照明光の光軸の向きが変わるようにしている。   In the conventional endoscope, the illumination angle of the illumination light by the illumination optical system and the optical axis direction are fixed. However, in the endoscope described in Patent Document 1, the light guide that guides the light supplied from the light source device is emitted. Between the end and the illumination window located on the most distal side of the illumination optical system, a pair of transparent members whose opposing surfaces are inclined with respect to the axial direction are arranged in a variable manner along the axial direction. By changing the interval between the transparent members, the direction of the optical axis of the illumination light is changed.

特許文献2,3では、照明光学系を構成する照明レンズの1つを光軸方向に沿って移動させるアクチュエータを備えており、アクチュエータを駆動させて照明レンズを光軸方向に沿って移動させることにより照明光の配光特性、すなわち高い照度を照射する照射角を変化させる構成が記載されている。また、特許文献3では、照明レンズを内視鏡先端部に対して揺動可能に取り付け、圧電素子などのアクチュエータを駆動させて照明レンズを傾けることにより光軸方向を観察範囲へ傾けている。   In Patent Documents 2 and 3, an actuator that moves one of the illumination lenses constituting the illumination optical system along the optical axis direction is provided, and the actuator is driven to move the illumination lens along the optical axis direction. Describes a configuration for changing the light distribution characteristic of illumination light, that is, the irradiation angle at which high illuminance is applied. In Patent Document 3, the illumination lens is attached to the endoscope distal end so as to be swingable, and an actuator such as a piezoelectric element is driven to tilt the illumination lens so that the optical axis direction is tilted to the observation range.

また、特許文献3には、照明光学系による照明光の配光特性を切り換える配光補正手段として、液晶フィルタなどからなる配光変換フィルタを備える内視鏡の構成が記載されている。このような内視鏡では、照明光をそのまま透過させるフィルタ、及び周辺光を遮光するフィルタなどを備えており、観察部位の表面状態や観察者の意図に応じてフィルタを切り換えて配光特性を変化させている。   Patent Document 3 describes the configuration of an endoscope that includes a light distribution conversion filter formed of a liquid crystal filter or the like as a light distribution correction unit that switches a light distribution characteristic of illumination light by an illumination optical system. Such an endoscope is provided with a filter that transmits illumination light as it is, a filter that blocks ambient light, and the like, and switches the filter according to the surface condition of the observation site and the intention of the observer to provide light distribution characteristics. It is changing.

特開2006−334043号公報JP 2006-334043 A 特開平10−239740号公報Japanese Patent Laid-Open No. 10-239740 特開平5−323211号公報JP-A-5-323211

内視鏡では、被検体の表面に対して挿入部先端が数ミリメートル程度まで接近して観察を行う場合でも、鮮明な観察像が得られることが求められている。しかしながら、内視鏡では観察光学系と照明光学系とが同軸に設けられていないため、内視鏡の挿入部先端面を被検体の表面に近づけるにつれて、観察光学系による観察範囲、及び照明光学系による照明範囲がともに狭くなり、互いに重ならなくなる。よって、観察範囲には照明光が届かなくなり鮮明な観察像を得ることが困難になる場合がある。   Endoscopes are required to obtain a clear observation image even when observation is performed with the distal end of the insertion portion approaching a few millimeters with respect to the surface of the subject. However, since the observation optical system and the illumination optical system are not provided coaxially in the endoscope, the observation range by the observation optical system and the illumination optics are increased as the distal end surface of the insertion portion of the endoscope is brought closer to the surface of the subject. Both the illumination ranges by the system are narrowed and do not overlap each other. Therefore, illumination light does not reach the observation range, and it may be difficult to obtain a clear observation image.

そこで、接近観察における照明光量の不足を解消するために、照明光学系として照射角が広角な照明レンズを使用することが考えられるが、広角な照明レンズを使用する場合、照明レンズ内に入射した光が出射面に届かずにロスする割合が多くなるため、被検体に照射される照明光量としては小さくなる。よって、通常時の観察では十分な明るさを得ることができない。また、広角な照明レンズ内でロスした光は、外周面で熱に変換されるため、照明レンズの周辺における発熱が問題となる。あるいは、広角な照明レンズの光量不足を補うため、光源の光量自体を増加させると、照明レンズ内でロスする光の量も増加するため、発熱の問題がさらに出てくる。   Therefore, in order to solve the shortage of illumination light quantity in close-up observation, it is conceivable to use an illumination lens with a wide illumination angle as the illumination optical system. However, when using a wide-angle illumination lens, it enters the illumination lens. Since the rate at which light is lost without reaching the exit surface increases, the amount of illumination light applied to the subject decreases. Therefore, sufficient brightness cannot be obtained by normal observation. Further, since light lost in the wide-angle illumination lens is converted into heat on the outer peripheral surface, heat generation around the illumination lens becomes a problem. Alternatively, when the light amount of the light source itself is increased in order to compensate for the shortage of the light amount of the wide-angle illumination lens, the amount of light lost in the illumination lens also increases, which further raises the problem of heat generation.

そこで、上記特許文献1〜3記載の内視鏡のように、照明光の照射角や、光軸方向などの配光特性を可変させることで、接近観察における照明光量不足に対応することが考えられるが、一対の透明部材の間隔を可変させる機構、あるいは、照明レンズを移動させる機構などは、透明部材や照明レンズを移動させるアクチュエータの駆動を高い精度で制御しなければ、照明光の照射角や光軸方向が所定の角度や向きにならない。また、高い精度で制御するためには、各部品の精度が必要となるため、内視鏡のコスト増加の原因となる。   Therefore, as in the endoscopes described in Patent Documents 1 to 3, it is possible to cope with the shortage of the illumination light amount in the close-up observation by changing the light distribution characteristics such as the illumination angle of the illumination light and the optical axis direction. However, the mechanism for changing the distance between the pair of transparent members, or the mechanism for moving the illumination lens, etc., does not control the driving of the actuator that moves the transparent member or the illumination lens with high accuracy. Or the optical axis direction does not have a predetermined angle or orientation. Moreover, in order to control with high accuracy, the accuracy of each component is required, which causes an increase in the cost of the endoscope.

また、特許文献3のように配光補正フィルタを備える内視鏡では、接近観察時は、照明光の全てを透過させるフィルタとし、通常観察時は、接近観察時よりも照明範囲を小さくするために、周辺の照明光を遮光するフィルタとするように切り換えを行うことが考えられるが、接近観察で照明光量が不足する場合、照明光学系の性能以上には照明光量を増加させることができないため、従来の内視鏡と同様の問題が発生する。また、特許文献3の配光補正フィルタと広角な照明レンズとを組み合わせたとしても、上述した照明レンズ内での光のロス、光量不足及び照明レンズの発熱などが発生する。さらにまた、通常観察時に配光補正フィルタで周辺を遮光すると、照明光量が低下するため、やはり上述した広角な照明レンズを用いた場合と同様に光量不足の問題が発生する。   In addition, in an endoscope including a light distribution correction filter as in Patent Document 3, a filter that transmits all of the illumination light is used during close-up observation, and the illumination range is smaller during normal observation than during close-up observation. In addition, it is conceivable to switch the filter so as to block the surrounding illumination light, but if the illumination light quantity is insufficient in the close-up observation, the illumination light quantity cannot be increased beyond the performance of the illumination optical system. A problem similar to that of a conventional endoscope occurs. Even if the light distribution correction filter of Patent Document 3 and a wide-angle illumination lens are combined, the above-described loss of light, insufficient light quantity, and heat generation of the illumination lens occur. Furthermore, if the surroundings are shielded by the light distribution correction filter during normal observation, the amount of illumination light decreases, so that a problem of insufficient light amount occurs as in the case of using the wide-angle illumination lens described above.

本発明は、上記課題を鑑みてなされたものであり、簡単な制御で照明光学系の配光を切り換えることを可能とし、且つ光源から供給される光を効率良く照明光として用いることが可能な内視鏡を提供することを目的とする。   The present invention has been made in view of the above-described problems, makes it possible to switch light distribution of an illumination optical system with simple control, and to efficiently use light supplied from a light source as illumination light. An object is to provide an endoscope.

本発明の内視鏡は、被検体内に挿入される挿入部と、前記挿入部の先端部に配され、被検体の像光を取り込むための観察光学系と、液体の境界面を変形させて照明光の配光特性を可変させる液体レンズからなり、被検体内に前記照明光を照射する照明光学系とを備えることを特徴とする。   An endoscope according to the present invention includes an insertion portion that is inserted into a subject, a distal end portion of the insertion portion, an observation optical system that captures image light of the subject, and a liquid boundary surface. And an illumination optical system for irradiating the illumination light in a subject.

前記液体レンズは、前記観察光学系の接近観察時に、通常観察時よりも前記照明光学系による照射角を広角に切り換えることが好ましい。   In the liquid lens, it is preferable that the angle of irradiation by the illumination optical system is switched to a wider angle when approaching the observation optical system than when performing normal observation.

前記液体レンズは、エレクトロウェッティング現象を利用した液体レンズであり、先端及び基端が透明カバーで覆われた略円筒形のケースと、前記ケースに封入された互いに混ざり合わない通電性液体及び絶縁性液体と、前記通電性液体及び前記絶縁性液体の基端及び先端側、且つ全周に亘って配置され、電圧が印加される一対の電極とからなり、前記電極に電圧を印加することにより、一方の電極に前記通電性液体を引き寄せて前記通電性液体と前記絶縁性液体との境界面の湾曲率を変化させて前記照射角を可変させることが好ましい。   The liquid lens is a liquid lens using an electrowetting phenomenon, and a substantially cylindrical case whose front end and base end are covered with a transparent cover, and a non-mixable conductive liquid and an insulation sealed in the case. A conductive liquid and a pair of electrodes that are arranged over the entire circumference of the base end and the distal end side of the conductive liquid and the insulating liquid and to which a voltage is applied, by applying a voltage to the electrode Preferably, the conductive liquid is attracted to one of the electrodes to change the curvature of the boundary surface between the conductive liquid and the insulating liquid to vary the irradiation angle.

前記液体レンズは、前記観察光学系の接近観察時に、前記照明光学系の光軸方向を前記観察光学系による観察範囲側に傾けることが好ましい。   It is preferable that the liquid lens tilts the optical axis direction of the illumination optical system toward the observation range by the observation optical system when the observation optical system approaches.

前記液体レンズは、エレクトロウェッティング現象を利用した液体レンズであり、先端及び基端が透明カバーで覆われた略円筒形のケースと、前記ケースに封入された互いに混ざり合わない通電性液体及び絶縁性液体と、前記通電性液体及び前記絶縁性液体の基端及び先端側、且つ周方向の一部分に配され、電圧が印加される一対の電極とからなり、前記電極に電圧を印加することにより、一方の電極に前記通電性の液体を引き寄せて前記通電性液体と前記絶縁性液体との境界面を傾けて前記光軸方向を可変させることが好ましい。   The liquid lens is a liquid lens using an electrowetting phenomenon, and a substantially cylindrical case whose front end and base end are covered with a transparent cover, and a non-mixable conductive liquid and an insulation sealed in the case. A conductive liquid and a pair of electrodes that are arranged at a base end and a distal end side of the conductive liquid and the insulating liquid and a part of the circumferential direction, and to which a voltage is applied, and by applying a voltage to the electrode Preferably, the conductive liquid is attracted to one of the electrodes, and the boundary surface between the conductive liquid and the insulating liquid is inclined to vary the optical axis direction.

前記一対の電極は、前記ケースと一体に設けられることが好ましい。   The pair of electrodes are preferably provided integrally with the case.

前記観察光学系が通常観察から接近観察に切り換わったか否かを判定する判定手段を備え、前記判定手段により前記観察光学系が通常観察から接近観察に切り換わったと判定されたとき、前記液体レンズに電圧を印加して前記照明光学系の前記照射角を広角に切り換えること、または前記光軸方向を前記観察光学系による観察範囲側に傾けることが好ましい。   The liquid lens includes a determination unit that determines whether or not the observation optical system has switched from normal observation to close-up observation, and when the determination unit determines that the observation optical system has switched from normal observation to close-up observation. It is preferable to apply a voltage to the illumination optical system so that the irradiation angle of the illumination optical system is switched to a wide angle, or to incline the optical axis direction toward the observation range by the observation optical system.

前記観察光学系により像光を取り込む観察範囲の照明光量を検出する光量検出手段を備え、前記判定手段は、前記光量検出手段により検知される光量が増加から減少に切り換わったとき、前記観察光学系が通常観察から接近観察に切り換わったと判定することが好ましい。   A light amount detecting unit that detects an illumination light amount of an observation range in which image light is captured by the observation optical system, and the determination unit is configured to change the observation optical when the light amount detected by the light amount detection unit is switched from increase to decrease; It is preferable to determine that the system has switched from normal observation to close-up observation.

本発明によれば、液体の境界面を変形させて照明光の配光特性を可変させる液体レンズからなる照明光学系で被検体内に照明光を照射しているので、簡単な制御で照明光学系の配光を切り換えることを可能とし、且つ光源から供給される光を効率良く照明光として用いることができる。   According to the present invention, the illumination light is irradiated into the subject by the illumination optical system composed of the liquid lens that deforms the boundary surface of the liquid and varies the light distribution characteristic of the illumination light. The light distribution of the system can be switched, and the light supplied from the light source can be used efficiently as illumination light.

内視鏡システムの外観斜視図である。It is an external appearance perspective view of an endoscope system. 電子内視鏡の先端部の構成を示す平面図である。It is a top view which shows the structure of the front-end | tip part of an electronic endoscope. 照明光学系及び観察光学系に沿って切断した先端部の断面図である。It is sectional drawing of the front-end | tip part cut | disconnected along the illumination optical system and the observation optical system. 液体レンズの構成を示す断面図である。It is sectional drawing which shows the structure of a liquid lens. 液体レンズのケースの構成を示す斜視図である。It is a perspective view which shows the structure of the case of a liquid lens. 液体レンズからなる照明光学系の照射角を可変させた状態を示す断面図である。It is sectional drawing which shows the state which varied the irradiation angle of the illumination optical system which consists of a liquid lens. 電子内視鏡システムの電気的構成の概略を示すブロック図である。It is a block diagram which shows the outline of the electrical constitution of an electronic endoscope system. 挿入部先端から被検体の表面までの距離と照明光量の関係を示すグラフである。It is a graph which shows the relationship between the distance from the front-end | tip of an insertion part to the surface of a subject, and illumination light quantity. 液体レンズからなる照明光学系の光軸の向きを可変させる第2実施形態の構成を示す断面図である。It is sectional drawing which shows the structure of 2nd Embodiment which changes the direction of the optical axis of the illumination optical system which consists of a liquid lens. 光軸の向きを可変させる液体レンズの構成を示す断面図である。It is sectional drawing which shows the structure of the liquid lens which changes the direction of an optical axis. 光軸の向きを可変させる液体レンズのケースの構成を示す斜視図である。It is a perspective view which shows the structure of the case of the liquid lens which changes the direction of an optical axis.

図1に示すように、電子内視鏡システム10は、電子内視鏡11、プロセッサ装置12、光源装置13、送気・送水装置14などから構成されている。送気・送水装置14は、光源装置13に内蔵され、エアーの送気を行う周知の送気装置(ポンプなど)14aと、光源装置13の外部に設けられ、洗浄水を貯留する洗浄水タンク14bから構成されている。電子内視鏡11は、被検体内に挿入される挿入部16と、挿入部16の基端部分に連設された操作部17と、プロセッサ装置12及び光源装置13に接続されるコネクタ18と、操作部17とコネクタ18との間を繋ぐユニバーサルコード19とを有する。   As shown in FIG. 1, the electronic endoscope system 10 includes an electronic endoscope 11, a processor device 12, a light source device 13, an air / water supply device 14, and the like. The air / water supply device 14 is built in the light source device 13 and is a well-known air supply device (pump or the like) 14a for supplying air, and a washing water tank that is provided outside the light source device 13 and stores washing water. 14b. The electronic endoscope 11 includes an insertion portion 16 to be inserted into a subject, an operation portion 17 connected to a proximal end portion of the insertion portion 16, and a connector 18 connected to the processor device 12 and the light source device 13. And a universal cord 19 that connects between the operation unit 17 and the connector 18.

挿入部16は、その先端に設けられ、被検体内撮影用の撮像素子としてのCCD型イメージセンサ(図3参照。以下、CCDという)36等が内蔵された先端部16aと、先端部16aの基端に連設された湾曲自在な湾曲部16bと、湾曲部16bの基端に連設された可撓性を有する可撓管部16cとからなる。   The insertion portion 16 is provided at the distal end thereof, and includes a distal end portion 16a having a built-in CCD type image sensor (see FIG. 3, hereinafter referred to as a CCD) 36 as an imaging element for imaging within the subject, and the distal end portion 16a. It comprises a bendable bending portion 16b provided continuously at the base end, and a flexible flexible tube portion 16c provided continuously at the base end of the bending portion 16b.

コネクタ18は複合タイプのコネクタであり、プロセッサ装置12、及び光源装置13、送気・送水装置14がそれぞれ接続されている。操作部17には、湾曲部16bを上下左右に湾曲させるためのアングルノブ20や、送気・送水用ノズル29(図2参照)からエアー、水を噴出させるための送気・送水ボタン21といった操作部材が設けられている。また、操作部17には、鉗子チャンネル(図示せず)に電気メス等の処置具を挿入するための鉗子口22が設けられている。   The connector 18 is a composite type connector to which the processor device 12, the light source device 13, and the air / water supply device 14 are connected. The operation unit 17 includes an angle knob 20 for bending the bending portion 16b vertically and horizontally, and an air / water supply button 21 for ejecting air and water from an air / water supply nozzle 29 (see FIG. 2). An operating member is provided. The operation unit 17 is provided with a forceps port 22 for inserting a treatment tool such as an electric knife into a forceps channel (not shown).

プロセッサ装置12は、光源装置13と電気的に接続され、電子内視鏡システム10の動作を統括的に制御する。プロセッサ装置12は、ユニバーサルコード19や挿入部16内に挿通された伝送ケーブルを介して電子内視鏡11に給電を行い、CCD36の駆動を制御する。また、プロセッサ装置12は、伝送ケーブルを介してCCD36から出力された撮像信号を取得し、各種画像処理を施して画像データを生成する。プロセッサ装置12で生成された画像データは、プロセッサ装置12にケーブル接続されたモニタ23に観察画像として表示される。   The processor device 12 is electrically connected to the light source device 13 and comprehensively controls the operation of the electronic endoscope system 10. The processor device 12 supplies power to the electronic endoscope 11 via the universal cord 19 and a transmission cable inserted into the insertion portion 16 and controls the driving of the CCD 36. In addition, the processor device 12 acquires an imaging signal output from the CCD 36 via a transmission cable, and performs various image processing to generate image data. The image data generated by the processor device 12 is displayed as an observation image on a monitor 23 connected to the processor device 12 by a cable.

図2及び図3に示すように、先端部16aは、先端硬性部24と、この先端硬性部24の先端側に装着される先端保護キャップ25と、対物光学系26(観察光学系)と、照明光学系27a,27bと、鉗子出口28と、送気・送水用ノズル29とを備える。先端硬性部24は、ステンレス鋼等の金属からなり、長手方向に沿って複数の貫通孔が形成されている。この先端硬性部24の各貫通孔に撮像部30、ライトガイドとしての光ファイバ31a,31b、鉗子チャンネル(図示せず)などの各種部品が嵌合して固定されている。先端硬性部24の後端は、湾曲部16bを構成する先端の湾曲駒32に連結されている。また、先端硬性部24の外周には、外皮チューブ33が被覆される。   As shown in FIGS. 2 and 3, the distal end portion 16 a includes a distal end rigid portion 24, a distal end protective cap 25 attached to the distal end side of the distal end rigid portion 24, an objective optical system 26 (observation optical system), Illumination optical systems 27a and 27b, a forceps outlet 28, and an air / water supply nozzle 29 are provided. The distal end hard portion 24 is made of a metal such as stainless steel, and a plurality of through holes are formed along the longitudinal direction. Various parts such as the imaging unit 30, optical fibers 31a and 31b as light guides, and forceps channels (not shown) are fitted and fixed in the respective through holes of the distal end rigid portion 24. The rear end of the distal end rigid portion 24 is coupled to the distal bending piece 32 constituting the bending portion 16b. The outer tube 33 is covered on the outer periphery of the distal end hard portion 24.

先端保護キャップ25は、ゴムまたは樹脂等からなり、挿入部16の軸方向と略直交する面であり、挿入部16の先端面を構成する平坦面25aが形成されている。先端保護キャップ25には、対物光学系26、照明光学系27a,27b、及び送気・送水用ノズル29を露呈させる貫通孔25b〜25e、及び鉗子出口28が形成されている。一対の照明光学系27a,27bは、対物光学系26を挟んで対称な位置に配されている。   The tip protection cap 25 is made of rubber, resin, or the like, is a surface that is substantially orthogonal to the axial direction of the insertion portion 16, and is formed with a flat surface 25 a that constitutes the tip surface of the insertion portion 16. The tip protection cap 25 is formed with through holes 25b to 25e that expose the objective optical system 26, illumination optical systems 27a and 27b, and the air / water supply nozzle 29, and a forceps outlet 28. The pair of illumination optical systems 27a and 27b are arranged at symmetrical positions with the objective optical system 26 in between.

図3に示すように、撮像部30は、対物光学系26(観察光学系)と、対物光学系26を保持する鏡筒35、CCD36などからなる。鏡筒35は、先端部16aの中心軸に対物光学系26の光軸が平行となるように先端硬性部24に取り付けられる。対物光学系26は、レンズ群及びプリズムから構成され、レンズ群のうち、最も先端側に位置するレンズ26Aが先端保護キャップ25の貫通孔25bから露呈する。対物光学系26の出射端側には、CCD36が配設されており、対物光学系26で取り込まれる観察範囲の像光は、CCD36の受光面(図示せず)に結像されて撮像信号に変換される。CCD36から出力された撮像信号は、信号ケーブルを介してプロセッサ装置12へ伝送される。   As shown in FIG. 3, the imaging unit 30 includes an objective optical system 26 (observation optical system), a lens barrel 35 that holds the objective optical system 26, a CCD 36, and the like. The lens barrel 35 is attached to the distal end rigid portion 24 so that the optical axis of the objective optical system 26 is parallel to the central axis of the distal end portion 16a. The objective optical system 26 includes a lens group and a prism. Among the lens group, the lens 26 </ b> A located closest to the distal end is exposed from the through hole 25 b of the distal end protection cap 25. A CCD 36 is disposed on the exit end side of the objective optical system 26, and the image light in the observation range taken in by the objective optical system 26 is imaged on the light receiving surface (not shown) of the CCD 36 to be an imaging signal. Converted. The imaging signal output from the CCD 36 is transmitted to the processor device 12 via a signal cable.

照明光学系27a,27bは、被検体内の被観察部位に光源装置13からの照明光を照射する。鉗子出口28は、挿入部16内に配設された鉗子チャンネル(図示せず)に接続され、操作部17の鉗子口22に連通している。   The illumination optical systems 27a and 27b irradiate the observation site in the subject with illumination light from the light source device 13. The forceps outlet 28 is connected to a forceps channel (not shown) disposed in the insertion portion 16 and communicates with the forceps port 22 of the operation portion 17.

照明光学系27aは、光源装置13から光を導く光ファイバ31aと、エレクトロウェッティング現象を利用して照明光の配光特性を可変させる液体レンズ40からなる。なお、照明光学系27bは、光ファイバ31bと、液体レンズ40とからなり、照明光学系27aと同様の構成である。   The illumination optical system 27a includes an optical fiber 31a that guides light from the light source device 13, and a liquid lens 40 that varies the light distribution characteristics of the illumination light using an electrowetting phenomenon. The illumination optical system 27b includes an optical fiber 31b and a liquid lens 40, and has the same configuration as the illumination optical system 27a.

液体レンズ40は、光ファイバ31a,31bの出射端に面している。光ファイバ31a,31bは、挿入部16、操作部17、ユニバーサルコード19、及びコネクタ18の内部を通っており、被検体内の被観察部位に光源装置13からの照明光を液体レンズ40に導く。光源装置13から光ファイバ31a,31bで導かれた光は、液体レンズ40により照明光として被検体に照射される。   The liquid lens 40 faces the emission ends of the optical fibers 31a and 31b. The optical fibers 31a and 31b pass through the insertion portion 16, the operation portion 17, the universal cord 19, and the connector 18, and guide the illumination light from the light source device 13 to the liquid lens 40 to the observation site in the subject. . Light guided from the light source device 13 through the optical fibers 31 a and 31 b is irradiated to the subject as illumination light by the liquid lens 40.

図4に示すように、液体レンズ40は、ケース41と、このケース41に封入され、互いに混ざり合わない通電性液体42及び絶縁性液体43とから構成される。通電性液体42としては、例えば水を、絶縁性液体43としては例えば油を用いる。   As shown in FIG. 4, the liquid lens 40 includes a case 41, and a conductive liquid 42 and an insulating liquid 43 that are sealed in the case 41 and do not mix with each other. For example, water is used as the conductive liquid 42 and oil is used as the insulating liquid 43.

図5に示すように、ケース41は、第1の電極部材44、第2の電極部材45、シール部材46、透明カバー47,48が一体に設けられてなる。第1の電極部材44は、金属等の導電性材料からなり、略円筒形状に形成され、内周面44a(図4参照)が先端側から基端側に向かって徐々に内径が小さくなるテーパー状に形成されている。この第1の電極部材44の内周面44a及び先端面44b(図4参照)には、表面に薄膜状の絶縁膜49が形成されている。また、第1の電極部材44には、基端側に透明カバー47を保持するカバー保持部44cが形成されている。カバー保持部44cは、円板状の透明カバー47の外形に合わせて凹となっており、光ファイバ31aと対面する基端側が開放された凹部状に形成されている。   As shown in FIG. 5, the case 41 includes a first electrode member 44, a second electrode member 45, a seal member 46, and transparent covers 47 and 48 that are integrally provided. The first electrode member 44 is made of a conductive material such as metal, is formed in a substantially cylindrical shape, and an inner peripheral surface 44a (see FIG. 4) is a taper whose inner diameter gradually decreases from the distal end side toward the proximal end side. It is formed in a shape. A thin insulating film 49 is formed on the inner peripheral surface 44a and the front end surface 44b (see FIG. 4) of the first electrode member 44. Further, the first electrode member 44 is formed with a cover holding portion 44c that holds the transparent cover 47 on the proximal end side. The cover holding portion 44c is concave according to the outer shape of the disk-shaped transparent cover 47, and is formed in a concave shape with the proximal end facing the optical fiber 31a open.

第2の電極部材45は、金属等の導電性材料からなり、第1の電極部材44の外周を覆う円筒部51と、先端側を覆う先端板部52とからなり、円筒部51は、第1の電極部材44の外径よりも内径が大きく形成されている。先端板部52には、先端側に透明カバー48を保持するカバー保持部52aが形成されている。カバー保持部52aは、円板状の透明カバー48の外形に合わせて凹となっており、光ファイバ31aとは反対側に位置する先端側が開放された凹部状に形成されている。   The second electrode member 45 is made of a conductive material such as metal, and includes a cylindrical portion 51 that covers the outer periphery of the first electrode member 44 and a distal end plate portion 52 that covers the distal end side. One electrode member 44 has an inner diameter larger than the outer diameter. The tip plate portion 52 is formed with a cover holding portion 52a that holds the transparent cover 48 on the tip side. The cover holding portion 52a is concave in accordance with the outer shape of the disc-shaped transparent cover 48, and is formed in a concave shape with the distal end located on the side opposite to the optical fiber 31a being opened.

第2の電極部材45は、シール部材46を介して第1の電極部材44の先端側に、第1の電極部材44と互いの中心軸を合わせて取り付けられる。シール部材46は、ゴムなどの絶縁性材料からなり、略円筒状に形成され、第1及び第2の電極部材44,45の間に挟まれることにより、両者を絶縁する。   The second electrode member 45 is attached to the distal end side of the first electrode member 44 via the seal member 46 so that the central axes of the first electrode member 44 and each other are aligned. The seal member 46 is made of an insulating material such as rubber, is formed in a substantially cylindrical shape, and is sandwiched between the first and second electrode members 44 and 45 to insulate them.

第1及び第2の電極部材44,45がシール部材46を間に挟んで固着され、カバー保持部44c,52aに透明カバー47,48が固着されて先端及び基端が封止されることによりケース41が形成される。第1及び第2の電極部材44,45とシール部材46との固着、カバー保持部44c,52aと透明カバー47,48との固着においては、隙間に接着剤を流す等の方法で確実に接着することが好ましい。液体レンズ40は、ケース41が先端部16aの先端硬性部24及び先端保護キャップ25の間に挟持されて取り付けられ、貫通孔25c,25dから透明カバー48が露呈する。なお、透明カバー47,48としては、例えば、石英ガラスやサファイヤガラスなど透明な材料から形成される。   The first and second electrode members 44 and 45 are fixed with the seal member 46 interposed therebetween, and the transparent covers 47 and 48 are fixed to the cover holding portions 44c and 52a to seal the distal end and the proximal end. Case 41 is formed. When the first and second electrode members 44 and 45 are fixed to the seal member 46 and the cover holding portions 44c and 52a are fixed to the transparent covers 47 and 48, the adhesive is surely adhered by a method such as flowing an adhesive into the gap. It is preferable to do. The liquid lens 40 is attached with the case 41 sandwiched between the distal end rigid portion 24 of the distal end portion 16a and the distal end protective cap 25, and the transparent cover 48 is exposed from the through holes 25c and 25d. The transparent covers 47 and 48 are made of a transparent material such as quartz glass or sapphire glass.

通電性液体42及び絶縁性液体43は、ケース41内の先端側及び基端側にそれぞれ封入されており、絶縁性液体43は、第1の電極部材44の内部、具体的には、絶縁膜49に接し、先端面44bから突出しない程度の量あり、通電性液体42は、第2の電極部材45の内周面45a、絶縁膜49の一部に接触する程度の量に設定されている。これにより、第1及び第2の電極部材44,45は、通電性液体42及び絶縁性液体43の先端側及び基端側、且つ全周に亘って配される。   The conductive liquid 42 and the insulating liquid 43 are sealed at the distal end side and the proximal end side in the case 41, respectively. The insulating liquid 43 is disposed inside the first electrode member 44, specifically, an insulating film. The conductive liquid 42 is set to such an amount that it is in contact with the inner peripheral surface 45 a of the second electrode member 45 and a part of the insulating film 49. . As a result, the first and second electrode members 44 and 45 are disposed over the entire circumference of the conductive liquid 42 and the insulating liquid 43 at the distal end side and the proximal end side.

第1及び第2の電極部材44,45は、配線53を介してプロセッサ装置12に接続され、プロセッサ装置12のコントローラ66(図7参照)により電圧の印加が制御される。電子内視鏡システム10による通常観察時、液体レンズ40の第1及び第2の電極部材44,45に電圧が印加されていないとき、図4に示すように、第1及び第2の電極部材44,45の境界面54は、略平面状となっている(図4の実線で示す状態)。   The first and second electrode members 44 and 45 are connected to the processor device 12 via a wiring 53, and application of voltage is controlled by a controller 66 (see FIG. 7) of the processor device 12. During normal observation by the electronic endoscope system 10, when no voltage is applied to the first and second electrode members 44 and 45 of the liquid lens 40, as shown in FIG. 4, the first and second electrode members The boundary surface 54 between 44 and 45 is substantially planar (state indicated by a solid line in FIG. 4).

そして、挿入部16の先端(平坦面25a)が被検体の表面に近接する接近観察時、第1及び第2の電極部材44,45に所定の電圧Vが印加されると、通電性液体42は、一方の第1の電極部材44の方に近づくようにして引き寄せられる。このとき、第1及び第2の電極部材44,45は、通電性液体42及び絶縁性液体43の全周に亘って配置されているため、第1の電極部材44の付近にあった絶縁性液体43が押し出されてケース41の中心に集まろうとする。これにより、境界面54が湾曲して照明光の屈折率が可変するため(図4の2点鎖線で示す状態)、照明光学系27aの照射角が、通常観察時の狭角な照射角(図4の点線矢印で示す範囲)よりも広角な照射角に切り換わる(図4の2点鎖線矢印で示す範囲)。なお、照明光学系27bにおいても液体レンズ40に電圧が印加されたとき、同様に広角な照射角に切り換わる。   When a predetermined voltage V is applied to the first and second electrode members 44 and 45 at the time of approaching observation in which the distal end (flat surface 25a) of the insertion portion 16 is close to the surface of the subject, the conductive liquid 42 is applied. Is drawn closer to one of the first electrode members 44. At this time, since the first and second electrode members 44 and 45 are disposed over the entire circumference of the conductive liquid 42 and the insulating liquid 43, the insulating properties that existed in the vicinity of the first electrode member 44. The liquid 43 is pushed out and tries to gather at the center of the case 41. Thereby, since the boundary surface 54 is curved and the refractive index of the illumination light is variable (a state indicated by a two-dot chain line in FIG. 4), the illumination angle of the illumination optical system 27a is a narrow angle during normal observation ( The irradiation angle is switched to a wider angle than the range indicated by the dotted line arrow in FIG. 4 (range indicated by the two-dot chain line arrow in FIG. 4). In the illumination optical system 27b, when a voltage is applied to the liquid lens 40, the illumination angle is similarly switched to a wide angle.

図6に示すように、近接観察時の照明光学系27a,27bが、通常観察時よりも広角な照射角に切り換わったとき、照明光学系27a,27bによる照明範囲Sが広がり、対物光学系26による観察範囲Sと重なる。 As shown in FIG. 6, the illumination optical system 27a in the nearby observation, 27b is, when switched to the wide angle illumination angle than the normal observation, the illumination optical system 27a, the illumination range S L by 27b spread, the objective optical overlapping the observation range S O by system 26.

図7は、電子内視鏡システム10の電気的構成の概略を示す。電子内視鏡11には、照明光学系27a,27b、及び撮像部30の他に、AFE60、撮像制御部61を備えている。CCD36は、対物光学系26によって撮像面に結像された被検体内の像を光電変換して信号電荷を蓄積し、蓄積した信号電荷を撮像信号として出力する。出力された撮像信号はAFE60に送られる。AFE60は、AFE60は、相関二重サンプリング(CDS)回路、自動ゲイン調節(AGC)回路、A/D変換器など(いずれも図示は省略)から構成されている。CDSは、CCD36が出力する撮像信号に対して相関二重サンプリング処理を施し、CCD36を駆動することによって生じるノイズを除去する。AGCは、CDSによってノイズが除去された撮像信号を増幅する。   FIG. 7 shows an outline of the electrical configuration of the electronic endoscope system 10. The electronic endoscope 11 includes an AFE 60 and an imaging control unit 61 in addition to the illumination optical systems 27a and 27b and the imaging unit 30. The CCD 36 photoelectrically converts an image in the subject imaged on the imaging surface by the objective optical system 26, accumulates signal charges, and outputs the accumulated signal charges as an imaging signal. The output imaging signal is sent to the AFE 60. The AFE 60 includes a correlated double sampling (CDS) circuit, an automatic gain adjustment (AGC) circuit, an A / D converter, and the like (all not shown). The CDS performs correlated double sampling processing on the imaging signal output from the CCD 36 to remove noise generated by driving the CCD 36. The AGC amplifies the imaging signal from which noise has been removed by CDS.

撮像制御部61は、電子内視鏡11とプロセッサ装置12とが接続されたとき、プロセッサ装置12内のコントローラ66に接続され、コントローラ66から指示がなされたときにCCD36に対して駆動信号を送る。CCD36は、撮像制御部61からの駆動信号に基づいて、所定のフレームレートで撮像信号をAFE60に出力する。   The imaging control unit 61 is connected to the controller 66 in the processor device 12 when the electronic endoscope 11 and the processor device 12 are connected, and sends a drive signal to the CCD 36 when an instruction is issued from the controller 66. . The CCD 36 outputs an imaging signal to the AFE 60 at a predetermined frame rate based on the drive signal from the imaging control unit 61.

プロセッサ装置12は、デジタル信号処理回路(DSP)62、デジタル画像処理回路(DIP)63、表示制御回路64、VRAM65、コントローラ66、操作部67等を備える。   The processor device 12 includes a digital signal processing circuit (DSP) 62, a digital image processing circuit (DIP) 63, a display control circuit 64, a VRAM 65, a controller 66, an operation unit 67, and the like.

コントローラ66は、プロセッサ装置12全体の動作を統括的に制御する。DSP62は、電子内視鏡11のAFE60から出力された撮像信号に対し、色分離、色補間、ゲイン補正、ホワイトバランス調整、ガンマ補正等の各種信号処理を施し、画像データを生成する。DSP62で生成された画像データは、DIP63の作業メモリに入力される。また、DSP62は、例えば生成した画像データの各画素の輝度を平均した平均輝度値等、照明光量の自動制御(ALC制御)に必要なALC制御用データを生成し、コントローラ66に入力する。   The controller 66 controls the overall operation of the processor device 12. The DSP 62 performs various signal processing such as color separation, color interpolation, gain correction, white balance adjustment, and gamma correction on the imaging signal output from the AFE 60 of the electronic endoscope 11 to generate image data. The image data generated by the DSP 62 is input to the working memory of the DIP 63. Further, the DSP 62 generates ALC control data necessary for automatic control (ALC control) of the amount of illumination light, such as an average luminance value obtained by averaging the luminance of each pixel of the generated image data, and inputs the generated data to the controller 66.

DIP63は、DSP62で生成された画像データに対して、電子変倍、色強調処理、エッジ強調処理等の各種画像処理を施す。DIP63で各種画像処理が施された画像データは、観察画像としてVRAM65に一時的に記憶された後、表示制御回路64に入力される。表示制御回路64は、VRAM65から観察画像を選択して取得し、モニタ23上に表示する。   The DIP 63 performs various image processing such as electronic scaling, color enhancement processing, and edge enhancement processing on the image data generated by the DSP 62. Image data that has been subjected to various types of image processing by the DIP 63 is temporarily stored in the VRAM 65 as an observation image and then input to the display control circuit 64. The display control circuit 64 selects and acquires an observation image from the VRAM 65 and displays it on the monitor 23.

操作部67は、プロセッサ装置12の筐体に設けられる操作パネル、マウスやキーボード等の周知の入力デバイスからなる。コントローラ66は、操作部67や電子内視鏡11の操作部17からの操作信号に応じて、電子内視鏡システム10の各部を動作させる。   The operation unit 67 includes a known input device such as an operation panel, a mouse, and a keyboard provided in the housing of the processor device 12. The controller 66 operates each unit of the electronic endoscope system 10 in accordance with operation signals from the operation unit 67 and the operation unit 17 of the electronic endoscope 11.

光源装置13は、光源68と、集光レンズ69と、光源制御部70とを備えている。光源68としては、キセノン管などの白色光源からなり、光源68から供給される白色光は集光レンズ69等を介して光ファイバ71に導光される。光ファイバ71は、コネクタ18を介して電子内視鏡11の光ファイバ31a,31bに接続される。このため、光源68が発光した白色光は、光ファイバ31a,31bに導かれ、液体レンズ40に入射する。そして、液体レンズ40により照明光として被検体内に照射される。光源制御部70は、プロセッサ装置12のコントローラ66から入力される調節信号や同期信号にしたがって光源68の点灯/消灯のタイミングを調節する。   The light source device 13 includes a light source 68, a condenser lens 69, and a light source control unit 70. The light source 68 is a white light source such as a xenon tube, and the white light supplied from the light source 68 is guided to the optical fiber 71 through the condenser lens 69 and the like. The optical fiber 71 is connected to the optical fibers 31 a and 31 b of the electronic endoscope 11 via the connector 18. For this reason, the white light emitted from the light source 68 is guided to the optical fibers 31 a and 31 b and enters the liquid lens 40. The liquid lens 40 irradiates the subject as illumination light. The light source control unit 70 adjusts the timing of turning on / off the light source 68 according to an adjustment signal or a synchronization signal input from the controller 66 of the processor device 12.

コントローラ66は、電子内視鏡11が接近観察を行っているか否かを判定する判定手段を兼ねている。このコントローラ66は、電子内視鏡11の観察範囲における照明光量の検出として、例えば電子内視鏡11から取得した撮像信号に基づき生成した画像データの各画素の輝度を平均した平均輝度値を算出する。そして、この撮像信号から検出した照明光量から、コントローラ66は、電子内視鏡11が接近観察を行っているか否かを判定する。   The controller 66 also serves as a determination unit that determines whether or not the electronic endoscope 11 is performing close-up observation. For example, the controller 66 calculates an average luminance value obtained by averaging the luminance of each pixel of image data generated based on an imaging signal acquired from the electronic endoscope 11 as detection of the amount of illumination light in the observation range of the electronic endoscope 11. To do. Then, from the amount of illumination light detected from this imaging signal, the controller 66 determines whether or not the electronic endoscope 11 is performing close observation.

コントローラ66が行う判定は以下のように行われる。電子内視鏡11で被検体内の観察を行うとき、挿入部16の先端(平坦面25a)から被検体の表面Hまでの距離と、照明光量の関係は、図8に示すようになる。挿入部16を被検体内に挿入して電子内視鏡11が通常観察をしている状態から、さらに挿入部16を押し込んで接近観察に移行したとき、すなわち、平坦面25aが被検体の表面Hに徐々に接近していくときは、先ず、被検体からの反射光が増加するため、対物光学系26によって取り込まれる照明光量が増加し、その後、照明範囲が狭まってくるため、照明光量が減少する。すなわち、照明光量が増加する状態から照明光量が減少する状態に切り換わったときが、通常観察から接近観察に移行したときになる。このことから、コントローラ66は、照明光量が増加から減少に切り換わるピーク値Pを通り過ぎた後に、接近観察を行っていると判定し、それ以外の場合、通常観察を行っていると判定する。   The determination made by the controller 66 is performed as follows. When the inside of the subject is observed with the electronic endoscope 11, the relationship between the distance from the distal end (flat surface 25a) of the insertion portion 16 to the surface H of the subject and the amount of illumination light is as shown in FIG. When the insertion portion 16 is inserted into the subject and the electronic endoscope 11 performs normal observation, when the insertion portion 16 is further pushed into the close-up observation, that is, the flat surface 25a is the surface of the subject. When approaching H gradually, first, the reflected light from the subject increases, so that the amount of illumination light captured by the objective optical system 26 increases, and then the illumination range becomes narrower. Decrease. That is, the time when the illumination light quantity is increased to the state where the illumination light quantity is reduced is when the normal observation is shifted to the close observation. From this, the controller 66 determines that the close observation is performed after passing the peak value P where the illumination light quantity switches from increase to decrease, and otherwise determines that the normal observation is performed.

コントローラ66は、接近観察を行っていると判定した場合、図示しない電源回路を制御することにより電子内視鏡11に電力を供給して液体レンズ40に電圧を印加させる。これにより、液体レンズ40は、境界面が湾曲するように変化して照明光が広角に変化する。   When it is determined that the approach observation is performed, the controller 66 controls the power supply circuit (not shown) to supply power to the electronic endoscope 11 and apply a voltage to the liquid lens 40. As a result, the liquid lens 40 changes so that the boundary surface is curved, and the illumination light changes to a wide angle.

上記構成の作用について説明する。被検体内に挿入部16を挿入し、電子内視鏡11での被検体の観察を行っている際、平坦面25aが被検体の表面Hに近接して照明光学系27a,27bによる照明範囲及び対物光学系26による観察範囲が狭くなり、観察像が暗くなる場合がある。このとき、プロセッサ装置12のコントローラ66は、電子内視鏡11から取得した撮像信号から照明光量を検出し、電子内視鏡11が接近観察を行っているか否かの判定を行う。そして、コントローラ66は、照明光量が増加から減少に切り換わるピーク値Pを過ぎた後、電子内視鏡11が接近観察を行っていると判定する。   The operation of the above configuration will be described. When the insertion portion 16 is inserted into the subject and the subject is being observed with the electronic endoscope 11, the flat surface 25a is close to the surface H of the subject and the illumination range by the illumination optical systems 27a and 27b. In addition, the observation range by the objective optical system 26 becomes narrow, and the observation image may become dark. At this time, the controller 66 of the processor device 12 detects the amount of illumination light from the imaging signal acquired from the electronic endoscope 11 and determines whether or not the electronic endoscope 11 is performing close observation. Then, the controller 66 determines that the electronic endoscope 11 is performing close-up observation after the peak value P at which the illumination light amount switches from increase to decrease has passed.

接近観察を行っていると判定したコントローラ66は、液体レンズ40の第1及び第2の電極部材44,45に電圧を印加させる。これにより、液体レンズ40から構成される照明光学系27a,27bは、通常観察時の狭角な照射角よりも広角な照射角に切り換わり、広い照明範囲に照明光を照射することができる。これにより、照明光学系27a,27bの照明範囲Sが、対物光学系26の観察範囲Sと重なるため(図6に示す状態)、対物光学系26から取り込まれる観察像を明るくし、鮮明な観察像を取得することができる。 The controller 66 that has determined that the close-up observation is performed applies a voltage to the first and second electrode members 44 and 45 of the liquid lens 40. As a result, the illumination optical systems 27a and 27b constituted by the liquid lens 40 can switch to a wider illumination angle than a narrow illumination angle during normal observation, and irradiate illumination light over a wide illumination range. Accordingly, the illumination optical system 27a, 27b illumination range S L of, for overlapping the observation range S O of the objective optical system 26 (the state shown in FIG. 6), to brighten an observation image taken in from the objective optical system 26, clearly An observation image can be acquired.

以上のように、電子内視鏡11は、液体レンズ40の第1及び第2の電極部材44,45に電圧を印加するという簡単な制御で、照射角を切り換え可能とし、照明光学系27a,27bの配光特性を可変させることができる。さらに、照射角を切り換えることにより、照明範囲を切り換えているため、光源68から供給され、液体レンズ40内に入射した光をロスすることがなく、照明光を効率良く照射させることができる。   As described above, the electronic endoscope 11 can switch the irradiation angle by a simple control of applying a voltage to the first and second electrode members 44 and 45 of the liquid lens 40, and the illumination optical system 27a, The light distribution characteristic of 27b can be varied. Furthermore, since the illumination range is switched by switching the irradiation angle, the light supplied from the light source 68 and entering the liquid lens 40 is not lost, and the illumination light can be efficiently irradiated.

なお、上記実施形態においては、液体レンズ40の境界面54を湾曲させることにより照射角を可変させて、観察範囲に照明範囲を重ねるようにしているが、本発明はこれに限るものではなく、以下で説明する本発明の第2実施形態では、液体レンズの境界面を傾かせて光軸の向きを変えることにより、観察範囲に照明範囲を重ねる。   In the above embodiment, the illumination angle is varied by curving the boundary surface 54 of the liquid lens 40 to overlap the illumination range with the observation range, but the present invention is not limited to this. In the second embodiment of the present invention described below, the illumination range is overlapped with the observation range by tilting the boundary surface of the liquid lens and changing the direction of the optical axis.

この第2実施形態の電子内視鏡では、図9に示すように、挿入部の先端部80に照明光学系81a,81bを備える。なお、この先端部80以外の構成は上記第1実施形態の電子内視鏡システム10と同様である。照明光学系81aは液体レンズ82及び光ファイバ31aからなり、照明光学系81aは液体レンズ82及び光ファイバ31bからなる。なお、図9では、上記第1実施形態と同じ部品を用いるものについては同符号を付して説明を省略する。図10に示すように、液体レンズ82は、ケース83と、このケース83に封入された、互いに混ざり合わない通電性液体84、絶縁性液体85とから構成される。   In the electronic endoscope of the second embodiment, as shown in FIG. 9, illumination optical systems 81a and 81b are provided at the distal end portion 80 of the insertion portion. The configuration other than the distal end portion 80 is the same as that of the electronic endoscope system 10 of the first embodiment. The illumination optical system 81a includes a liquid lens 82 and an optical fiber 31a, and the illumination optical system 81a includes a liquid lens 82 and an optical fiber 31b. In FIG. 9, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. As shown in FIG. 10, the liquid lens 82 includes a case 83, and a conductive liquid 84 and an insulating liquid 85 that are sealed in the case 83 and do not mix with each other.

図11に示すように、ケース83は、ベース86、キャップ87、シール部材88、透明カバー89,90が一体に設けられてなる。ベース86は、上記第1実施形態の第1の電極部材44と同様の形状、すなわち、略円筒形状で、内周面86a(図10参照)が先端側から基端側に向かって徐々に内径が小さくなるテーパー状に形成され、基端側にカバー保持部86cが形成されている。また、ベース86の内周面86a及び先端面86b(図10参照)には、表面に薄膜状の絶縁膜91が形成されている。このベース86は、周方向に対して半分ずつ、第1の電極部材92と、絶縁部材93とが一体になって形成されている。第1の電極部材92は、導電性の材料からなり、絶縁部材93は、絶縁性材料からなる。   As shown in FIG. 11, the case 83 includes a base 86, a cap 87, a seal member 88, and transparent covers 89 and 90 that are integrally provided. The base 86 has the same shape as the first electrode member 44 of the first embodiment, that is, a substantially cylindrical shape, and the inner peripheral surface 86a (see FIG. 10) gradually increases in inner diameter from the distal end side toward the proximal end side. Is formed in a tapered shape, and a cover holding portion 86c is formed on the base end side. A thin insulating film 91 is formed on the inner peripheral surface 86a and the tip end surface 86b (see FIG. 10) of the base 86. The base 86 is formed by integrating the first electrode member 92 and the insulating member 93 in half with respect to the circumferential direction. The first electrode member 92 is made of a conductive material, and the insulating member 93 is made of an insulating material.

キャップ87は、上記第1実施形態の第2の電極部材45と同様の形状をしており、ベース86の外周を覆う円筒部94と、先端側を覆う先端板部95とからなり、先端板部95には、先端側にカバー保持部95aが形成されている。このキャップ87は、周方向に対して半分ずつ、第2の電極部材96と、絶縁部材97とが一体になって形成されている。第2の電極部材96は、導電性の材料からなり、絶縁部材97は、絶縁性材料からなる。   The cap 87 has the same shape as the second electrode member 45 of the first embodiment, and includes a cylindrical portion 94 that covers the outer periphery of the base 86 and a tip plate portion 95 that covers the tip side. In the portion 95, a cover holding portion 95a is formed on the tip side. The cap 87 is formed by integrating the second electrode member 96 and the insulating member 97 in half with respect to the circumferential direction. The second electrode member 96 is made of a conductive material, and the insulating member 97 is made of an insulating material.

キャップ87は、シール部材88を介してベース86の先端側に、第1の電極部材92と第2の電極部材96の周方向に対する位置を合わせて取り付けられる。ベース86及びキャップ87がシール部材88を間に挟んで固着され、カバー保持部86c,95aに透明カバー89,90が固着されて先端及び基端が封止されることによりケース83が形成される。ベース86、キャップ87、及びシール部材46との固着、カバー保持部86c,95aと透明カバー89,90との固着においては、隙間に接着剤を流す等の方法で確実に接着することが好ましい。   The cap 87 is attached to the distal end side of the base 86 through the seal member 88 so that the positions of the first electrode member 92 and the second electrode member 96 in the circumferential direction are aligned. The base 86 and the cap 87 are fixed with the seal member 88 interposed therebetween, and the transparent covers 89 and 90 are fixed to the cover holding portions 86c and 95a, and the front end and the base end are sealed to form the case 83. . In fixing the base 86, the cap 87, and the seal member 46, and fixing the cover holding portions 86c and 95a and the transparent covers 89 and 90, it is preferable to securely bond them by a method such as flowing an adhesive into the gap.

通電性液体84及び絶縁性液体85は、ケース83内の基端側及び先端側にそれぞれ封入されており、絶縁性液体85は、ベース86の内部、絶縁膜91に接し、先端面86bから突出しない程度の量であり、通電性液体84は、キャップ87の内周面87a、ベース86の絶縁膜91の一部に接触する程度の量に設定されている。   The conductive liquid 84 and the insulating liquid 85 are sealed on the proximal end side and the distal end side in the case 83, respectively, and the insulating liquid 85 is in contact with the inside of the base 86 and the insulating film 91 and protrudes from the distal end face 86b. The amount of the conductive liquid 84 is set so as to contact the inner peripheral surface 87 a of the cap 87 and a part of the insulating film 91 of the base 86.

第1及び第2の電極部材89,96は、内視鏡挿入部の先端部80に照明光学系81a,81b、すなわち液体レンズ82が組み込まれるとき、液体レンズ82の周方向に対して、対物光学系26に近接する位置に配される。よって、照明光学系81a,81bについては、互いに対向する位置に第1及び第2の電極部材92,96が配されている(図9参照)。   The first and second electrode members 89 and 96 are arranged so as to be objective with respect to the circumferential direction of the liquid lens 82 when the illumination optical systems 81a and 81b, that is, the liquid lens 82 are incorporated in the distal end portion 80 of the endoscope insertion portion. It is arranged at a position close to the optical system 26. Therefore, in the illumination optical systems 81a and 81b, the first and second electrode members 92 and 96 are arranged at positions facing each other (see FIG. 9).

第1及び第2の電極部材92,96は、上記第1実施形態の第1及び第2の電極部材44,45と同様に、配線98を介してプロセッサ装置12に接続され、プロセッサ装置12のコントローラ66により電圧の印加が制御される。第1及び第2の電極部材92,96に電圧が印加されていないとき、通電性液体84及び絶縁性液体85の境界面99は、略平面状となっている(図10の実線で示す状態)。このとき、照明光学系81a,81bの光軸方向は、対物光学系26の光軸方向と略平行になっている。   The first and second electrode members 92 and 96 are connected to the processor device 12 via the wiring 98 in the same manner as the first and second electrode members 44 and 45 of the first embodiment. The controller 66 controls the application of voltage. When no voltage is applied to the first and second electrode members 92 and 96, the boundary surface 99 between the conductive liquid 84 and the insulating liquid 85 is substantially planar (the state shown by the solid line in FIG. 10). ). At this time, the optical axis directions of the illumination optical systems 81 a and 81 b are substantially parallel to the optical axis direction of the objective optical system 26.

そして、第1及び第2の電極部材92,96に電圧を印加すると、通電性液体84は、一方の第1の電極部材92の方に近づくようにして引き寄せられる。このとき、液体レンズ82の周方向に対して、第1及び第2の電極部材92,96が位置する側の絶縁性液体85が押し出されてケース41の反対側に集まろうとする。これにより、境界面99が湾曲するとともに第1及び第2の電極部材92,96が位置する側に傾く、これにより照明光学系の光軸の向きが可変する(図10の2点鎖線で示す状態)。   When a voltage is applied to the first and second electrode members 92 and 96, the conductive liquid 84 is drawn so as to approach one of the first electrode members 92. At this time, the insulating liquid 85 on the side where the first and second electrode members 92 and 96 are located is pushed out and gathers on the opposite side of the case 41 with respect to the circumferential direction of the liquid lens 82. As a result, the boundary surface 99 is curved and tilted to the side where the first and second electrode members 92 and 96 are located, thereby changing the direction of the optical axis of the illumination optical system (indicated by a two-dot chain line in FIG. 10). Status).

第1及び第2の電極部材92,96は、液体レンズ82の周方向に対して、対物光学系26に近接する部分に配されているため、液体レンズ82への電圧の印加により切り換わった照明光学系81a,81bの光軸Lは、対物光学系26の観察範囲S側に傾く。これにより、照明光学系81a,81bの照明範囲Sと対物光学系の観察範囲Sとが重なり、観察像を明るくすることができる。以上のように、第1及び第2の電極部材92,96に電圧を印加するという簡単な制御で照明光学系81a,81bの配光特性を可変させることができる(図9に示す状態)。さらに、照明光学系81a,81bの光軸方向を可変させることにより、照明範囲を切り換えているため、液体レンズ82内に入射した光をロスすることがなく、照明光を効率良く照射させることができる。 Since the first and second electrode members 92 and 96 are disposed in the vicinity of the objective optical system 26 with respect to the circumferential direction of the liquid lens 82, the first and second electrode members 92 and 96 are switched by applying a voltage to the liquid lens 82. the illumination optical system 81a, an optical axis L of 81b tilts the observation range S O side of the objective optical system 26. Accordingly, the illumination optical system 81a, overlap the observation range S O of the illumination range S L and the objective optical system 81b, it is possible to brighten an observation image. As described above, the light distribution characteristics of the illumination optical systems 81a and 81b can be varied by a simple control of applying a voltage to the first and second electrode members 92 and 96 (state shown in FIG. 9). Furthermore, since the illumination range is switched by changing the optical axis directions of the illumination optical systems 81a and 81b, the illumination light can be efficiently irradiated without losing the light incident on the liquid lens 82. it can.

なお、上記各実施形態では、電子内視鏡で取得した撮像信号から照明光量を検出し、この照明光量から電子内視鏡が接近観察を行っているか否かの判定を行い、この判定結果に応じて液体レンズ40,82に電圧を印加するか否かを切り換える構成となっているが、本発明はこれに限らず、ユーザーがプロセッサ装置の操作部、または電子内視鏡の操作部を操作して電圧を印加するか否かを切り換えるようにしてもよい。また、照明光量を検出する手段としては、撮像信号を取得する撮像素子とは別の光電センサを電子内視鏡の先端部に設けて観察範囲における照明光量を検出するようにしてもよい。   In each of the above embodiments, the amount of illumination light is detected from the imaging signal acquired by the electronic endoscope, and whether or not the electronic endoscope is performing close observation is determined from the amount of illumination light. In response to this, it is configured to switch whether or not to apply a voltage to the liquid lenses 40 and 82, but the present invention is not limited to this, and the user operates the operation unit of the processor device or the operation unit of the electronic endoscope. Then, it may be switched whether to apply a voltage. Further, as a means for detecting the illumination light quantity, a photoelectric sensor different from the image sensor for acquiring the imaging signal may be provided at the distal end portion of the electronic endoscope so as to detect the illumination light quantity in the observation range.

また、上記各実施形態では、光源68としては、キセノン管を用いているが、他の白色光源でもよく、レーザ光源やLED光源を用いてもよい。レーザ光源やLED光源を用いた場合、所定の波長のレーザ光またはLED光で励起して蛍光を発する蛍光体であり、レーザ光またはLED光と、蛍光とからなる白色光を形成する蛍光体を備え、この蛍光体をライトガイドの出射端と、液体レンズ40,82との間に配置して白色光を照射するようにしてもよい。   In each of the above embodiments, a xenon tube is used as the light source 68, but another white light source may be used, and a laser light source or an LED light source may be used. When a laser light source or an LED light source is used, it is a phosphor that emits fluorescence when excited with laser light or LED light of a predetermined wavelength, and a phosphor that forms white light composed of laser light or LED light and fluorescence. The phosphor may be disposed between the light guide emitting end and the liquid lenses 40 and 82 to emit white light.

さらにまた、上記各実施形態では、照明光学系は、光源から光が導かれ、照明光を照射するため、光源からの熱が伝わり、液体レンズ40,82の液体温度が上昇する場合がある。そこで、液体レンズ40の近傍に冷却手段を配置してもよい。この冷却手段としては、例えば、送気・送水ノズル29に流体を伝送する送気・送水チャンネルを液体レンズ40,82の近傍に配置してもよい。この場合、水やエアーなどの流体を伝送するため、挿入部16の内部では比較的温度の低い送気・送水チャンネルが液体レンズ40,82の発熱を吸収する。よって、液体レンズ40,82を十分に冷却することができる。   Furthermore, in each of the above embodiments, the illumination optical system receives light from the light source and irradiates the illumination light, so that heat from the light source is transmitted and the liquid temperature of the liquid lenses 40 and 82 may increase. Therefore, a cooling unit may be disposed in the vicinity of the liquid lens 40. As this cooling means, for example, an air / water channel for transmitting a fluid to the air / water nozzle 29 may be disposed in the vicinity of the liquid lenses 40 and 82. In this case, in order to transmit fluid such as water or air, the air / water supply channel having a relatively low temperature absorbs the heat generated by the liquid lenses 40 and 82 inside the insertion portion 16. Therefore, the liquid lenses 40 and 82 can be sufficiently cooled.

また、上記各実施形態では、エレクトロウェッティング現象を利用し、絶縁性液体及び通電性液体を封入するケースに設けられた一対の電極部材に電圧を印加することにより境界面の形状を変化させる構成としているが、液体レンズの構成はこれに限らず、例えば互いに混ざり合わない2種類の液体を封止するケース内の圧力を可変させることで境界面の形状を変化させる液体レンズなどを用いてもよい。   Further, in each of the above embodiments, the configuration of the boundary surface is changed by applying a voltage to a pair of electrode members provided in a case that encloses the insulating liquid and the conductive liquid using the electrowetting phenomenon. However, the configuration of the liquid lens is not limited to this. For example, a liquid lens that changes the shape of the boundary surface by changing the pressure in the case that seals two types of liquids that do not mix with each other may be used. Good.

また、上記第2実施形態では、通電性液体及び絶縁性液体に対して周方向の半分に電極を配置する部分としているが、本発明はこれに限らず、通電性液体及び絶縁性液体の周方向に対して一部分でも電極が配置されていればよく、例えば、周方向の1/3を電極部材とし、残りの2/3を絶縁部材として配置するように形成してもよい。   Moreover, in the said 2nd Embodiment, it is set as the part which arrange | positions an electrode in the circumferential direction half with respect to electroconductive liquid and insulating liquid, However, this invention is not limited to this, The circumference | surroundings of electroconductive liquid and insulating liquid are used. It is only necessary that the electrode is disposed even at a part with respect to the direction. For example, the electrode may be formed so that 1/3 of the circumferential direction is an electrode member and the remaining 2/3 is disposed as an insulating member.

上記各実施形態においては、撮像装置を用いて被検体の状態を撮像した画像を観察する電子内視鏡を例に上げて説明しているが、本発明はこれに限るものではなく、光学的イメージガイドを採用して被検体の状態を観察する内視鏡にも適用することができる。   In each of the above embodiments, an electronic endoscope that observes an image obtained by imaging the state of a subject using an imaging device has been described as an example. However, the present invention is not limited to this and is not limited to an optical endoscope. The present invention can also be applied to an endoscope that employs an image guide to observe the state of a subject.

10 電子内視鏡システム
11 電子内視鏡
16 挿入部
16a,80 先端部
26 対物光学系(観察光学系)
27a,27b,81a,81b 照明光学系
30 撮像部
31a,31b 光ファイバ
40,82 液体レンズ
42,84 通電性液体
43,85 絶縁性液体
44,92 第1の電極部材
45,96 第2の電極部材
54,99 境界面
DESCRIPTION OF SYMBOLS 10 Electronic endoscope system 11 Electronic endoscope 16 Insertion part 16a, 80 Tip part 26 Objective optical system (observation optical system)
27a, 27b, 81a, 81b Illumination optical system 30 Imaging unit 31a, 31b Optical fiber 40, 82 Liquid lens 42, 84 Conductive liquid 43, 85 Insulating liquid 44, 92 First electrode member 45, 96 Second electrode Member 54,99 Interface

Claims (8)

被検体内に挿入される挿入部と、
前記挿入部の先端部に配され、被検体の像光を取り込むための観察光学系と、
液体の境界面を変形させて照明光の配光特性を可変させる液体レンズからなり、被検体内に前記照明光を照射する照明光学系とを備えることを特徴とする内視鏡。
An insertion part to be inserted into the subject;
An observation optical system that is arranged at the distal end of the insertion portion and captures image light of the subject;
An endoscope comprising a liquid lens that deforms a boundary surface of a liquid to vary a light distribution characteristic of illumination light, and includes an illumination optical system that irradiates the illumination light into a subject.
前記液体レンズは、前記観察光学系の接近観察時に、通常観察時よりも前記照明光学系による照射角を広角に切り換えることを特徴とする請求項1記載の内視鏡。   The endoscope according to claim 1, wherein the liquid lens switches an irradiation angle of the illumination optical system to a wider angle when approaching the observation optical system than when performing normal observation. 前記液体レンズは、エレクトロウェッティング現象を利用した液体レンズであり、先端及び基端が透明カバーで覆われた略円筒形のケースと、前記ケースに封入された互いに混ざり合わない通電性液体及び絶縁性液体と、前記通電性液体及び前記絶縁性液体の基端及び先端側、且つ全周に亘って配置され、電圧が印加される一対の電極とからなり、前記電極に電圧を印加することにより、一方の電極に前記通電性液体を引き寄せて前記通電性液体と前記絶縁性液体との境界面の湾曲率を変化させて前記照射角を可変させることを特徴とする請求項2記載の内視鏡。   The liquid lens is a liquid lens using an electrowetting phenomenon, and a substantially cylindrical case whose front end and base end are covered with a transparent cover, and a non-mixable conductive liquid and an insulation sealed in the case. A conductive liquid and a pair of electrodes that are arranged over the entire circumference of the base end and the distal end side of the conductive liquid and the insulating liquid and to which a voltage is applied, by applying a voltage to the electrode 3. The endoscope according to claim 2, wherein the irradiation angle is varied by drawing the conductive liquid to one of the electrodes and changing a curvature of a boundary surface between the conductive liquid and the insulating liquid. mirror. 前記液体レンズは、前記観察光学系の接近観察時に、前記照明光学系の光軸方向を前記観察光学系による観察範囲側に傾けることを特徴とする請求項1記載の内視鏡。   The endoscope according to claim 1, wherein the liquid lens tilts the optical axis direction of the illumination optical system toward an observation range by the observation optical system when the observation optical system approaches. 前記液体レンズは、エレクトロウェッティング現象を利用した液体レンズであり、先端及び基端が透明カバーで覆われた略円筒形のケースと、前記ケースに封入された互いに混ざり合わない通電性液体及び絶縁性液体と、前記通電性液体及び前記絶縁性液体の基端及び先端側、且つ周方向の一部分に配され、電圧が印加される一対の電極とからなり、前記電極に電圧を印加することにより、一方の電極に前記通電性の液体を引き寄せて前記通電性液体と前記絶縁性液体との境界面を傾けて前記光軸方向を可変させることを特徴とする請求項4記載の内視鏡。   The liquid lens is a liquid lens using an electrowetting phenomenon, and a substantially cylindrical case whose front end and base end are covered with a transparent cover, and a non-mixable conductive liquid and an insulation sealed in the case. A conductive liquid and a pair of electrodes that are arranged at a base end and a distal end side of the conductive liquid and the insulating liquid and a part of the circumferential direction, and to which a voltage is applied, and by applying a voltage to the electrode 5. The endoscope according to claim 4, wherein the conductive liquid is attracted to one of the electrodes and a boundary surface between the conductive liquid and the insulating liquid is inclined to change the optical axis direction. 前記一対の電極は、前記ケースと一体に設けられることを特徴とする請求項3または5記載の内視鏡。   The endoscope according to claim 3 or 5, wherein the pair of electrodes are provided integrally with the case. 前記観察光学系が通常観察から接近観察に切り換わったか否かを判定する判定手段を備え、前記判定手段により前記観察光学系が通常観察から接近観察に切り換わったと判定されたとき、前記液体レンズに電圧を印加して前記照明光学系の前記照射角を広角に切り換えること、または前記光軸方向を前記観察光学系による観察範囲側に傾けることを特徴とする請求項2〜6のいずれか1項に記載の内視鏡。   The liquid lens includes a determination unit that determines whether or not the observation optical system has switched from normal observation to close-up observation, and when the determination unit determines that the observation optical system has switched from normal observation to close-up observation. A voltage is applied to the illumination optical system to switch the irradiation angle of the illumination optical system to a wide angle, or the optical axis direction is tilted toward the observation range by the observation optical system. The endoscope according to item. 前記観察光学系により像光を取り込む観察範囲の照明光量を検出する光量検出手段を備え、前記判定手段は、前記光量検出手段により検知される光量が増加から減少に切り換わったとき、前記観察光学系が通常観察から接近観察に切り換わったと判定することを特徴とする請求項7記載の内視鏡。   A light amount detecting unit that detects an illumination light amount of an observation range in which image light is captured by the observation optical system, and the determination unit is configured to change the observation optical when the light amount detected by the light amount detection unit is switched from increase to decrease; 8. The endoscope according to claim 7, wherein it is determined that the system has switched from normal observation to approach observation.
JP2010289661A 2010-12-27 2010-12-27 Endoscope Pending JP2012135432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010289661A JP2012135432A (en) 2010-12-27 2010-12-27 Endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010289661A JP2012135432A (en) 2010-12-27 2010-12-27 Endoscope

Publications (1)

Publication Number Publication Date
JP2012135432A true JP2012135432A (en) 2012-07-19

Family

ID=46673406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010289661A Pending JP2012135432A (en) 2010-12-27 2010-12-27 Endoscope

Country Status (1)

Country Link
JP (1) JP2012135432A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014189091A1 (en) * 2013-05-22 2014-11-27 オリンパスメディカルシステムズ株式会社 Endoscope
JP2015008785A (en) * 2013-06-27 2015-01-19 オリンパス株式会社 Endoscope apparatus, and operation method and program of endoscope apparatus
JP2015194665A (en) * 2014-03-28 2015-11-05 日立Geニュークリア・エナジー株式会社 Radiation resistant camera, in-reactor work device, in-reactor work method and in-reactor inspection device
US20150320300A1 (en) * 2010-10-28 2015-11-12 Endochoice, Inc. Systems and Methods of Distributing Illumination for Multiple Viewing Element and Multiple Illuminator Endoscopes
WO2015171732A1 (en) * 2014-05-07 2015-11-12 Endochoice, Inc. Endoscope illumination with multiple viewing elements and illuminators
WO2016056087A1 (en) * 2014-10-08 2016-04-14 富士機械製造株式会社 Image acquisition device and robot device
WO2016103411A1 (en) * 2014-12-25 2016-06-30 オリンパス株式会社 Light source device
US9474440B2 (en) 2009-06-18 2016-10-25 Endochoice, Inc. Endoscope tip position visual indicator and heat management system
US9667935B2 (en) 2013-05-07 2017-05-30 Endochoice, Inc. White balance enclosure for use with a multi-viewing elements endoscope
US9706908B2 (en) 2010-10-28 2017-07-18 Endochoice, Inc. Image capture and video processing systems and methods for multiple viewing element endoscopes
US9943218B2 (en) 2013-10-01 2018-04-17 Endochoice, Inc. Endoscope having a supply cable attached thereto
US9949623B2 (en) 2013-05-17 2018-04-24 Endochoice, Inc. Endoscope control unit with braking system
US9968242B2 (en) 2013-12-18 2018-05-15 Endochoice, Inc. Suction control unit for an endoscope having two working channels
US10064541B2 (en) 2013-08-12 2018-09-04 Endochoice, Inc. Endoscope connector cover detection and warning system
US10078207B2 (en) 2015-03-18 2018-09-18 Endochoice, Inc. Systems and methods for image magnification using relative movement between an image sensor and a lens assembly
US10105039B2 (en) 2013-06-28 2018-10-23 Endochoice, Inc. Multi-jet distributor for an endoscope
US10123684B2 (en) 2014-12-18 2018-11-13 Endochoice, Inc. System and method for processing video images generated by a multiple viewing elements endoscope
US10130246B2 (en) 2009-06-18 2018-11-20 Endochoice, Inc. Systems and methods for regulating temperature and illumination intensity at the distal tip of an endoscope
CN109283603A (en) * 2018-11-02 2019-01-29 上海酷聚科技有限公司 A kind of zooming liquid lens and its assemble method
US10258222B2 (en) 2014-07-21 2019-04-16 Endochoice, Inc. Multi-focal, multi-camera endoscope systems
US10271713B2 (en) 2015-01-05 2019-04-30 Endochoice, Inc. Tubed manifold of a multiple viewing elements endoscope
US10292570B2 (en) 2016-03-14 2019-05-21 Endochoice, Inc. System and method for guiding and tracking a region of interest using an endoscope
US10376181B2 (en) 2015-02-17 2019-08-13 Endochoice, Inc. System for detecting the location of an endoscopic device during a medical procedure
US10401611B2 (en) 2015-04-27 2019-09-03 Endochoice, Inc. Endoscope with integrated measurement of distance to objects of interest
US10488648B2 (en) 2016-02-24 2019-11-26 Endochoice, Inc. Circuit board assembly for a multiple viewing element endoscope using CMOS sensors
US10516865B2 (en) 2015-05-17 2019-12-24 Endochoice, Inc. Endoscopic image enhancement using contrast limited adaptive histogram equalization (CLAHE) implemented in a processor
US10517464B2 (en) 2011-02-07 2019-12-31 Endochoice, Inc. Multi-element cover for a multi-camera endoscope
US10524645B2 (en) 2009-06-18 2020-01-07 Endochoice, Inc. Method and system for eliminating image motion blur in a multiple viewing elements endoscope
US10542877B2 (en) 2014-08-29 2020-01-28 Endochoice, Inc. Systems and methods for varying stiffness of an endoscopic insertion tube
US10595714B2 (en) 2013-03-28 2020-03-24 Endochoice, Inc. Multi-jet controller for an endoscope
US10663714B2 (en) 2010-10-28 2020-05-26 Endochoice, Inc. Optical system for an endoscope
US10898062B2 (en) 2015-11-24 2021-01-26 Endochoice, Inc. Disposable air/water and suction valves for an endoscope
US10993605B2 (en) 2016-06-21 2021-05-04 Endochoice, Inc. Endoscope system with multiple connection interfaces to interface with different video data signal sources
US11082598B2 (en) 2014-01-22 2021-08-03 Endochoice, Inc. Image capture and video processing systems and methods for multiple viewing element endoscopes
US11234581B2 (en) 2014-05-02 2022-02-01 Endochoice, Inc. Elevator for directing medical tool
US11529197B2 (en) 2015-10-28 2022-12-20 Endochoice, Inc. Device and method for tracking the position of an endoscope within a patient's body

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9907462B2 (en) 2009-06-18 2018-03-06 Endochoice, Inc. Endoscope tip position visual indicator and heat management system
US10130246B2 (en) 2009-06-18 2018-11-20 Endochoice, Inc. Systems and methods for regulating temperature and illumination intensity at the distal tip of an endoscope
US10912454B2 (en) 2009-06-18 2021-02-09 Endochoice, Inc. Systems and methods for regulating temperature and illumination intensity at the distal tip of an endoscope
US10524645B2 (en) 2009-06-18 2020-01-07 Endochoice, Inc. Method and system for eliminating image motion blur in a multiple viewing elements endoscope
US9474440B2 (en) 2009-06-18 2016-10-25 Endochoice, Inc. Endoscope tip position visual indicator and heat management system
US10561308B2 (en) 2009-06-18 2020-02-18 Endochoice, Inc. Systems and methods for regulating temperature and illumination intensity at the distal tip of an endoscope
US10663714B2 (en) 2010-10-28 2020-05-26 Endochoice, Inc. Optical system for an endoscope
US20150320300A1 (en) * 2010-10-28 2015-11-12 Endochoice, Inc. Systems and Methods of Distributing Illumination for Multiple Viewing Element and Multiple Illuminator Endoscopes
US9706908B2 (en) 2010-10-28 2017-07-18 Endochoice, Inc. Image capture and video processing systems and methods for multiple viewing element endoscopes
US10412290B2 (en) 2010-10-28 2019-09-10 Endochoice, Inc. Image capture and video processing systems and methods for multiple viewing element endoscopes
US11966040B2 (en) 2010-10-28 2024-04-23 Endochoice, Inc. Optical system for an endoscope
US10517464B2 (en) 2011-02-07 2019-12-31 Endochoice, Inc. Multi-element cover for a multi-camera endoscope
US10779707B2 (en) 2011-02-07 2020-09-22 Endochoice, Inc. Multi-element cover for a multi-camera endoscope
US11375885B2 (en) 2013-03-28 2022-07-05 Endochoice Inc. Multi-jet controller for an endoscope
US10595714B2 (en) 2013-03-28 2020-03-24 Endochoice, Inc. Multi-jet controller for an endoscope
US10205925B2 (en) 2013-05-07 2019-02-12 Endochoice, Inc. White balance enclosure for use with a multi-viewing elements endoscope
US9667935B2 (en) 2013-05-07 2017-05-30 Endochoice, Inc. White balance enclosure for use with a multi-viewing elements endoscope
US11229351B2 (en) 2013-05-17 2022-01-25 Endochoice, Inc. Endoscope control unit with braking system
US9949623B2 (en) 2013-05-17 2018-04-24 Endochoice, Inc. Endoscope control unit with braking system
US11957311B2 (en) 2013-05-17 2024-04-16 Endochoice, Inc. Endoscope control unit with braking system
US10433715B2 (en) 2013-05-17 2019-10-08 Endochoice, Inc. Endoscope control unit with braking system
WO2014189091A1 (en) * 2013-05-22 2014-11-27 オリンパスメディカルシステムズ株式会社 Endoscope
US9808141B2 (en) 2013-05-22 2017-11-07 Olympus Corporation Endoscope
JP2015008785A (en) * 2013-06-27 2015-01-19 オリンパス株式会社 Endoscope apparatus, and operation method and program of endoscope apparatus
US10105039B2 (en) 2013-06-28 2018-10-23 Endochoice, Inc. Multi-jet distributor for an endoscope
US10064541B2 (en) 2013-08-12 2018-09-04 Endochoice, Inc. Endoscope connector cover detection and warning system
US9943218B2 (en) 2013-10-01 2018-04-17 Endochoice, Inc. Endoscope having a supply cable attached thereto
US9968242B2 (en) 2013-12-18 2018-05-15 Endochoice, Inc. Suction control unit for an endoscope having two working channels
US11082598B2 (en) 2014-01-22 2021-08-03 Endochoice, Inc. Image capture and video processing systems and methods for multiple viewing element endoscopes
JP2015194665A (en) * 2014-03-28 2015-11-05 日立Geニュークリア・エナジー株式会社 Radiation resistant camera, in-reactor work device, in-reactor work method and in-reactor inspection device
US11234581B2 (en) 2014-05-02 2022-02-01 Endochoice, Inc. Elevator for directing medical tool
WO2015171732A1 (en) * 2014-05-07 2015-11-12 Endochoice, Inc. Endoscope illumination with multiple viewing elements and illuminators
US11883004B2 (en) 2014-07-21 2024-01-30 Endochoice, Inc. Multi-focal, multi-camera endoscope systems
US10258222B2 (en) 2014-07-21 2019-04-16 Endochoice, Inc. Multi-focal, multi-camera endoscope systems
US11229348B2 (en) 2014-07-21 2022-01-25 Endochoice, Inc. Multi-focal, multi-camera endoscope systems
US11771310B2 (en) 2014-08-29 2023-10-03 Endochoice, Inc. Systems and methods for varying stiffness of an endoscopic insertion tube
US10542877B2 (en) 2014-08-29 2020-01-28 Endochoice, Inc. Systems and methods for varying stiffness of an endoscopic insertion tube
WO2016056087A1 (en) * 2014-10-08 2016-04-14 富士機械製造株式会社 Image acquisition device and robot device
US10123684B2 (en) 2014-12-18 2018-11-13 Endochoice, Inc. System and method for processing video images generated by a multiple viewing elements endoscope
US10624534B2 (en) 2014-12-25 2020-04-21 Olympus Corporation Light source device
JPWO2016103411A1 (en) * 2014-12-25 2017-09-28 オリンパス株式会社 Light source device
WO2016103411A1 (en) * 2014-12-25 2016-06-30 オリンパス株式会社 Light source device
US10271713B2 (en) 2015-01-05 2019-04-30 Endochoice, Inc. Tubed manifold of a multiple viewing elements endoscope
US10376181B2 (en) 2015-02-17 2019-08-13 Endochoice, Inc. System for detecting the location of an endoscopic device during a medical procedure
US11147469B2 (en) 2015-02-17 2021-10-19 Endochoice, Inc. System for detecting the location of an endoscopic device during a medical procedure
US10078207B2 (en) 2015-03-18 2018-09-18 Endochoice, Inc. Systems and methods for image magnification using relative movement between an image sensor and a lens assembly
US10634900B2 (en) 2015-03-18 2020-04-28 Endochoice, Inc. Systems and methods for image magnification using relative movement between an image sensor and a lens assembly
US11194151B2 (en) 2015-03-18 2021-12-07 Endochoice, Inc. Systems and methods for image magnification using relative movement between an image sensor and a lens assembly
US10401611B2 (en) 2015-04-27 2019-09-03 Endochoice, Inc. Endoscope with integrated measurement of distance to objects of interest
US11555997B2 (en) 2015-04-27 2023-01-17 Endochoice, Inc. Endoscope with integrated measurement of distance to objects of interest
US11750782B2 (en) 2015-05-17 2023-09-05 Endochoice, Inc. Endoscopic image enhancement using contrast limited adaptive histogram equalization (CLAHE) implemented in a processor
US10516865B2 (en) 2015-05-17 2019-12-24 Endochoice, Inc. Endoscopic image enhancement using contrast limited adaptive histogram equalization (CLAHE) implemented in a processor
US11330238B2 (en) 2015-05-17 2022-05-10 Endochoice, Inc. Endoscopic image enhancement using contrast limited adaptive histogram equalization (CLAHE) implemented in a processor
US10791308B2 (en) 2015-05-17 2020-09-29 Endochoice, Inc. Endoscopic image enhancement using contrast limited adaptive histogram equalization (CLAHE) implemented in a processor
US11529197B2 (en) 2015-10-28 2022-12-20 Endochoice, Inc. Device and method for tracking the position of an endoscope within a patient's body
US11311181B2 (en) 2015-11-24 2022-04-26 Endochoice, Inc. Disposable air/water and suction valves for an endoscope
US10898062B2 (en) 2015-11-24 2021-01-26 Endochoice, Inc. Disposable air/water and suction valves for an endoscope
US10908407B2 (en) 2016-02-24 2021-02-02 Endochoice, Inc. Circuit board assembly for a multiple viewing elements endoscope using CMOS sensors
US10488648B2 (en) 2016-02-24 2019-11-26 Endochoice, Inc. Circuit board assembly for a multiple viewing element endoscope using CMOS sensors
US11782259B2 (en) 2016-02-24 2023-10-10 Endochoice, Inc. Circuit board assembly for a multiple viewing elements endoscope using CMOS sensors
US10292570B2 (en) 2016-03-14 2019-05-21 Endochoice, Inc. System and method for guiding and tracking a region of interest using an endoscope
US10993605B2 (en) 2016-06-21 2021-05-04 Endochoice, Inc. Endoscope system with multiple connection interfaces to interface with different video data signal sources
US11672407B2 (en) 2016-06-21 2023-06-13 Endochoice, Inc. Endoscope system with multiple connection interfaces to interface with different video data signal sources
CN109283603A (en) * 2018-11-02 2019-01-29 上海酷聚科技有限公司 A kind of zooming liquid lens and its assemble method

Similar Documents

Publication Publication Date Title
JP2012135432A (en) Endoscope
JP5318142B2 (en) Electronic endoscope
CN101511256B (en) Head hood for endoscope and endoscope with hood
JP5704878B2 (en) Photoelectric conversion connector, optical transmission module, imaging device, and endoscope
WO2011055613A1 (en) Endoscope system
US20180344140A1 (en) Illuminator window for a multiple viewing element endoscope
EP3419497B1 (en) Circuit board assembly for a multiple viewing element endoscope using cmos sensors
JP2006288432A (en) Electronic endoscope
JP2012213441A (en) Electronic endoscope, and electronic endoscope system
JP2017074254A (en) Endoscope
JP5872911B2 (en) Imaging unit and imaging system
US20070223898A1 (en) Endoscopic apparatus
JPWO2012132598A1 (en) Endoscope imaging unit assembly method and endoscope
EP2368489A1 (en) Imaging unit and endoscope
JP5384906B2 (en) Endoscope device
US20220378284A1 (en) Endoscope light source device and light quantity adjusting method
JP6342592B1 (en) Endoscope system
US9537574B2 (en) Optical transmitting and receiving unit
US10905319B2 (en) Endoscope apparatus
JP7251940B2 (en) strabismus endoscope
JP4199441B2 (en) Endoscope
JP5639522B2 (en) Electronic endoscope system
JPH11342105A (en) Observation device for endoscope
JP2012105768A (en) Optical system unit for endoscope, endoscope, and adhesive for endoscope optical member
JP2003164418A (en) Endoscope device