JP2012131460A - Target path calculation device - Google Patents

Target path calculation device Download PDF

Info

Publication number
JP2012131460A
JP2012131460A JP2010287532A JP2010287532A JP2012131460A JP 2012131460 A JP2012131460 A JP 2012131460A JP 2010287532 A JP2010287532 A JP 2010287532A JP 2010287532 A JP2010287532 A JP 2010287532A JP 2012131460 A JP2012131460 A JP 2012131460A
Authority
JP
Japan
Prior art keywords
circle
target
trajectory
vehicle
start position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010287532A
Other languages
Japanese (ja)
Inventor
Satoshi Saito
聡 齋藤
Kenichi Yamada
憲一 山田
Shiho Tanaka
志歩 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2010287532A priority Critical patent/JP2012131460A/en
Publication of JP2012131460A publication Critical patent/JP2012131460A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Traffic Control Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve fuel economy by calculating a target path of a vehicle in automatic parking or the like by two circular path calculation in consideration of energy saving.SOLUTION: A start-up calculation part 6 of the vehicle 1 sets radiuses of one main circle passing though a start-up position and movement starting position and the other main circle which passes through the movement starting position and a target position and is in contact with the one main circle under a condition that a total value indicating a turning angle value of steering in both of the main circles becomes a predetermined value or less. An path along arcs of both of the main circles having the respectively set radiuses is calculated as the target path, and the target path is calculated by the two circular path calculation in which energy loss is reduced and energy saving is taken into consideration.

Description

この発明は、自動駐車等の際の車両の目標軌道を算出する目標軌道算出装置に関し、詳しくは、省エネルギーを考慮した目標軌道の算出に関する。   The present invention relates to a target trajectory calculation apparatus that calculates a target trajectory of a vehicle at the time of automatic parking or the like, and more particularly to calculation of a target trajectory in consideration of energy saving.

従来、車両の運転支援装置の一つとして自動駐車装置がある。この自動駐車装置は、例えば自動運転で車庫入れのバック駐車等をする際に、車両の目標軌道を1円軌道より移動の自由度が高い2円軌道の計算で算出し、算出した目標軌道に沿って自動操舵で車両を目標位置としての駐車位置に移動する(例えば、特許文献1(段落[0034]、[0042]−[0043]、図1、図2等)参照)。   Conventionally, there is an automatic parking device as one of driving support devices for vehicles. This automatic parking device calculates a target trajectory of a vehicle by calculating a two-circle trajectory with a higher degree of freedom of movement than a one-circle trajectory, for example, when performing back parking in a garage by automatic driving, Then, the vehicle is moved to a parking position as a target position by automatic steering (see, for example, Patent Document 1 (paragraphs [0034], [0042]-[0043], FIG. 1, FIG. 2, etc.)).

図9は、前記の自動駐車目標軌道の例を示し、p1は自動駐車の制御が起動する起動位置であり、後述する駐車位置(紙面の上下方向の目標位置)p3の手前の位置であり、車両は紙面の右から左に走行してこの位置p1に到達する。p2は起動位置p1の前後方向(図9では前方)の退行開始位置(移動開始位置)であり、車両は前側が後側より駐車位置p3から離れるように、図9の軌道r12に沿って起動位置p1から後退開始位置p2に前進する。その後、後退開始位置p2から図9の軌道r23に沿って駐車位置p3に後ろ向きに移動し(以下、この後ろ向きの移動を「後進」という)、車両が駐車位置p3に駐車する。   FIG. 9 shows an example of the above-described automatic parking target trajectory, where p1 is an activation position at which automatic parking control is activated, and is a position before a parking position (target position in the vertical direction on the paper surface) p3 described later, The vehicle travels from right to left on the page and reaches this position p1. p2 is a retreat start position (movement start position) in the front-rear direction (forward in FIG. 9) of the activation position p1, and the vehicle is activated along the track r12 in FIG. 9 so that the front side is separated from the parking position p3 from the rear side. The vehicle advances from the position p1 to the reverse start position p2. Thereafter, the vehicle moves backward from the reverse start position p2 to the parking position p3 along the track r23 in FIG. 9 (hereinafter, this backward movement is referred to as “reverse”), and the vehicle parks at the parking position p3.

なお、図9の自動駐車の方法としては、駐車位置p3の手前の起動位置p1から後退開始位置p2までの軌道r12に沿った前進をドライバの操舵で行ない、後退開始位置p2から駐車位置p3への軌道r23に沿った後進を自動操舵で行なう方法や、軌道r12、r23を固定パターンとして、起動位置p1から後退開始位置p2までの前進および、後退開始位置p2から駐車位置p3への後進を自動操舵で行なう方法とがある。   As an automatic parking method in FIG. 9, the driver advances to move along the track r12 from the starting position p1 before the parking position p3 to the reverse start position p2, and from the reverse start position p2 to the parking position p3. Automatically moving along the track r23 by automatic steering, or automatically moving from the start position p1 to the reverse start position p2 and reverse from the reverse start position p2 to the parking position p3 using the tracks r12 and r23 as a fixed pattern. There is a method of performing by steering.

そして、2円軌道の演算で算出される軌道r12、r23は、図9の起動位置p1、後退開始位置p2を通る破線の一方の円c1の円弧の一部と、後退開始位置p2、駐車位置p3を通り円c1に接する破線の他方の円c2の円弧の一部とに沿った軌道である。   The trajectories r12 and r23 calculated by the calculation of the two-circle trajectory are a part of the arc of one of the broken circles c1 passing through the start position p1 and the reverse start position p2 in FIG. 9, the reverse start position p2, and the parking position. This is a trajectory along a part of the arc of the other broken circle c2 passing through p3 and in contact with the circle c1.

特開2003−312413号公報JP 2003-31413 A

特許文献1の自動駐車装置等の従来装置が2円軌道の計算で算出する目標軌道は、操舵のエネルギーロスについては全く考慮されていない。   A target trajectory calculated by a conventional device such as an automatic parking device of Patent Document 1 by calculating a two-circle trajectory does not take into account any energy loss of steering.

そして、図9の実線の軌道r12、r23の目標軌道の場合、とくに、ハンドルを切って後退開始位置p2への走行を開始する起動位置p1や、ハンドルを逆に切って駐車位置p3への走行を開始する後退開始位置p2においては、舵(ハンドル)の切角値が大きく、摩擦力が大きいので、エネルギーロスが大きくなって燃費が低下する問題がある。   In the case of the target trajectories r12 and r23 shown by solid lines in FIG. 9, in particular, the starting position p1 at which the steering wheel is turned and the driving to the reverse starting position p2 is started, and the driving to the parking position p3 by turning the steering wheel in the reverse direction. Since the turning angle value of the rudder (steering wheel) is large and the frictional force is large at the reverse start position p2 at which starting is started, there is a problem that energy loss increases and fuel consumption decreases.

そして、この種のエネルギーロスの問題は、自動駐車により起動位置から後進で後方の前進開始位置に移動し、前進開始位置から駐車位置に前進して車庫入れ駐車する場合にも生じる。また、自動駐車による縦列駐車や、駐車以外の目的で自動操舵で目標位置に移動するような場合にも同様に生じる。   The problem of this type of energy loss also occurs when the automatic parking moves backward from the starting position to the backward forward starting position, moves forward from the forward starting position to the parking position, and parks in the garage. This also occurs in the case of parallel parking by automatic parking or when moving to a target position by automatic steering for purposes other than parking.

本発明は、自動駐車等の際の車両の目標軌道を省エネルギーを考慮した2円軌道計算で算出し、燃費の向上を図ることを目的とする。   An object of the present invention is to improve the fuel efficiency by calculating a target trajectory of a vehicle at the time of automatic parking or the like by a two-circle trajectory calculation considering energy saving.

上記した目的を達成するために、本発明の目標軌道算出装置は、起動位置から前後方向の移動開始位置に移動した後、前記移動開始位置から目標位置に移動する車両の目標軌道を算出する目標軌道算出装置であって、前記起動位置、前記移動開始位置を通る一方の主円と、前記移動開始位置、前記目標位置を通り前記一方の主円に接する他方の主円との半径を、前記両主円における舵の切角値を示す総合値が所定値以下になる条件下で設定する半径設定手段と、前記半径設定手段により設定されたそれぞれの半径の前記両主円の弧に沿う軌道を前記目標軌道として算出する算出手段とを備えたことを特徴としている(請求項1)。   In order to achieve the above-described object, the target trajectory calculation apparatus of the present invention calculates a target trajectory of a vehicle that moves from the movement start position to the target position after moving from the start position to the front and rear movement start position. In the trajectory calculation device, the radius of one main circle passing through the start position and the movement start position and the other main circle passing through the movement start position and the target position and touching the one main circle, Radius setting means that is set under the condition that the total value indicating the turning angle value of the rudder in both main circles is a predetermined value or less, and the trajectory along the arcs of the two main circles of the respective radii set by the radius setting means Is calculated as the target trajectory (Claim 1).

また、本発明の目標軌道算出装置は、さらに、車両の前記起動位置から前記目標位置への移動の障害となる障害物を検出する検出手段と、前記障害物の検出時に、前記両主円が前記障害物を迂回回避する補助円を介して接するように設定する補助円設定手段とを備え、前記半径設定手段により、前記両主円および前記補助円の半径を、前記両主円および前記補助円における前記舵の切角値を示す総合値が所定値以下になる条件下で設定し、前記算出手段により、前記両主円および前記補助円の弧に沿う軌道を前記目標軌道として算出することを特徴としている(請求項2)。   The target trajectory calculation apparatus according to the present invention further includes a detecting unit that detects an obstacle that obstructs movement of the vehicle from the start position to the target position, and the two main circles are detected when the obstacle is detected. Auxiliary circle setting means for setting so as to be in contact with each other via an auxiliary circle that bypasses the obstacle, and by means of the radius setting means, the radii of both the main circle and the auxiliary circle are changed to the both main circle and the auxiliary circle. Set under the condition that the total value indicating the turning angle value of the rudder in a circle is equal to or less than a predetermined value, and calculate the trajectory along the arcs of the two main circles and the auxiliary circle as the target trajectory by the calculating means. (Claim 2).

請求項1に記載の本発明の目標軌道算出装置によれば、起動位置、移動開始位置を通る一方の主円と、移動開始位置、目標位置を通り一方の軌道円に接する他方の主円との2円軌道の演算で自動駐車等の目標軌道を算出する際に、半径設定手段により、両主円の半径を、該両主円における舵の切角値を示す総合値が所定値以下になる条件下で設定するため、算出した目標軌道に沿って自動駐車等すれば、走行中の舵(ハンドル)の切角値が小さくなってエネルギーロスが少なくなる。   According to the target trajectory calculation apparatus of the present invention described in claim 1, one main circle passing through the start position and the movement start position and the other main circle passing through the movement start position and the target position and touching one of the trajectory circles When calculating the target trajectory such as automatic parking by calculating the two-circle trajectory, the radius setting means reduces the radius of both main circles so that the total value indicating the turning angle of the rudder in the two main circles is less than a predetermined value. Therefore, if automatic parking or the like is performed along the calculated target trajectory, the turning angle value of the rudder (steering wheel) during traveling becomes small and energy loss is reduced.

したがって、目標軌道を省エネルギーを考慮した2円軌道計算で算出し、燃費の向上を図ることができる。   Accordingly, it is possible to improve the fuel consumption by calculating the target trajectory by the two-circle trajectory calculation considering energy saving.

また、請求項2に記載の本発明の目標軌道算出装置によれば、検出手段により、車両の起動位置から目標位置への移動の障害となる障害物(主に静止物)を検出したときには、2円軌道の演算で車両の目標軌道を算出する際に、障害物に接触しないようにして障害物を迂回回避するために障害物の周囲を囲む補助円を使用し、補助円設定手段により、両主円が補助円を介して接するように設定し、算出手段により、それら3円の円弧に沿う軌道を目標軌道として算出するため、算出された目標軌道に沿って車両が自動駐車する間に車両が障害物に衝突することがない。しかも、半径設定手段により、前記3円の半径を、3円における舵の切角値を示す総合値が所定値以下になる条件下で設定するするため、算出した目標軌道に沿って自動駐車等する際に、車両が動き始める低速の摩擦力の大きな状態を含む走行中の舵の切角値が小さくなり、エネルギーロスが少ない。   According to the target trajectory calculation apparatus of the present invention as set forth in claim 2, when the detecting means detects an obstacle (mainly a stationary object) that obstructs movement from the starting position of the vehicle to the target position, When calculating the target trajectory of the vehicle by calculating the two-circle trajectory, an auxiliary circle surrounding the obstacle is used to avoid the obstacle so as not to touch the obstacle, and the auxiliary circle setting means Both main circles are set so as to contact each other via an auxiliary circle, and the calculation means calculates the trajectory along these three circle arcs as the target trajectory, so that the vehicle automatically parks along the calculated target trajectory. The vehicle does not collide with obstacles. In addition, since the radius of the three circles is set by the radius setting means under the condition that the total value indicating the turning angle value of the rudder in the three circles is equal to or less than a predetermined value, automatic parking, etc. along the calculated target trajectory, etc. When the vehicle is turned, the turning angle value of the rudder during traveling including a state where the frictional force at a low speed at which the vehicle starts to move is large is reduced, and the energy loss is small.

したがって、障害物が存在していても、それを迂回回避しつつ省エネルギーを考慮した目標軌道を補助円を加えた2円軌道計算で算出し、燃費の向上を図ることができる。   Therefore, even if an obstacle exists, the target trajectory considering energy saving can be calculated by the two-circle trajectory calculation including the auxiliary circle while avoiding the circumvention, and the fuel efficiency can be improved.

本発明の目標軌道算出装置の一実施形態のブロック図である。It is a block diagram of one embodiment of a target trajectory calculation device of the present invention. 図1の装置の障害物がない場合の目標軌道の算出の説明図である。It is explanatory drawing of calculation of the target track | orbit when there is no obstruction of the apparatus of FIG. (a)は図1の装置の目標軌道の算出における2主円の半径の関係の説明図、(b)は図1の装置の目標軌道の算出における一方の主円の半径と省エネルギー評価の関係の説明図である。(A) is explanatory drawing of the relationship of the radius of two main circles in calculation of the target trajectory of the apparatus of FIG. 1, (b) is the relationship between the radius of one main circle and energy saving evaluation in the calculation of the target trajectory of the apparatus of FIG. It is explanatory drawing of. 図1の装置の障害物がない場合の目標軌道例の説明図である。It is explanatory drawing of the example of a target track | orbit when there is no obstruction of the apparatus of FIG. (a)は図1の装置の障害物がある場合の目標軌道の算出の説明図、(b)は比較例の障害物がある場合の目標軌道の算出の説明図である。(A) is explanatory drawing of calculation of the target trajectory when there is an obstacle of the apparatus of FIG. 1, (b) is explanatory drawing of calculation of the target trajectory when there is an obstacle of the comparative example. 障害物との衝突可能エリアの説明図である。It is explanatory drawing of the collision possible area with an obstruction. 舵の切角値が最小になる半径の組み合わせを選定するための3次元データのグラフ例の説明図である。It is explanatory drawing of the example of a graph of the three-dimensional data for selecting the combination of the radius where the turning angle value of a rudder becomes the minimum. 図1の装置の動作説明用のフローチャートである。It is a flowchart for operation | movement description of the apparatus of FIG. 従来の目標軌道例の説明図である。It is explanatory drawing of the example of the conventional target track | orbit.

本発明の一実施形態について、図1〜図8を参照して説明する。   An embodiment of the present invention will be described with reference to FIGS.

図1は車両1が備える本実施形態の目標軌道算出装置を示し、この目標軌道算出装置は、車両1が例えば後進(バック走行)の車庫入れで所定の目標位置(駐車位置)に自動駐車する目標軌道を算出する。   FIG. 1 shows a target trajectory calculation apparatus according to the present embodiment provided in a vehicle 1, and this target trajectory calculation apparatus automatically parks a vehicle 1 at a predetermined target position (parking position), for example, when moving backward (backward traveling). Calculate the target trajectory.

そのため、車両1の目標軌道算出装置は、例えばCCDイメージセンサ、CMOSイメージセンサ等の単眼カメラで構成されたカメラ部2により車両1の前方および後方を時々刻々(毎フレーム)に撮影し、レーザレーダ、ミリ波レーダ等のレーダ部3により例えば車両1の前方を時々刻々に探査する。   Therefore, the target trajectory calculation device of the vehicle 1 captures the front and rear of the vehicle 1 from moment to moment (every frame) by the camera unit 2 constituted by a monocular camera such as a CCD image sensor or a CMOS image sensor, for example. For example, the radar unit 3 such as a millimeter wave radar searches the front of the vehicle 1 every moment.

時々刻々のカメラ部2の撮影画像(駐車位置を含む)およびレーダ部3の探査結果の測距データは、目標位置探査部4、障害物探知部5に送られる。   The captured images (including the parking position) of the camera unit 2 and the distance measurement data of the search result of the radar unit 3 are sent to the target position search unit 4 and the obstacle detection unit 5 from time to time.

目標位置探査部4は、カメラ部2の撮影画像のモニタ画面(例えばカーナビゲーション装置の表示画面により形成される)上でのドライバの指定等により、駐車位置を探査して認識し、レーダ部3とともに本発明の検出手段を形成する障害物探知部5は、レーダ部3の探査結果に基づき、車両1の後述する起動位置から駐車位置への前進移動の障害となる障害物(静止物)を探知して検出する。   The target position search unit 4 searches and recognizes the parking position by specifying a driver on the monitor screen (for example, formed by the display screen of the car navigation device) of the captured image of the camera unit 2, and the radar unit 3. The obstacle detection unit 5 that forms the detection means of the present invention also detects an obstacle (stationary object) that obstructs the forward movement of the vehicle 1 from a starting position to a parking position, which will be described later, based on the search result of the radar unit 3. Detect and detect.

目標位置探査部4の駐車位置の情報や、障害物探知部5の障害物の位置の情報は、マイクロコンピュータ構成の軌道計画部6に入力される。軌道計画部6は、予め設定された自動駐車の軌道計画プログラムを実行して本発明の半径設定手段、算出手段、補助円設定手段等を形成し、自動駐車の目標軌道を計画する。   Information on the parking position of the target position search unit 4 and information on the position of the obstacle in the obstacle detection unit 5 are input to the trajectory planning unit 6 having a microcomputer configuration. The trajectory planning unit 6 executes a preset automatic parking trajectory planning program to form a radius setting means, a calculation means, an auxiliary circle setting means, and the like of the present invention, and plans a target trajectory for automatic parking.

<障害物が存在しない場合の目標軌道の算出>
図2は障害物が存在しない場合の目標軌道の算出例を示す。図中のPaは図9の起動位置p1と同じ起動位置であり、ドライバの運転操作で車両1がこの位置Paに到達すると、ドライバはブレーキペダルを踏んで車両1をその位置に一時停止し、前記軌道計画プログラムをスタートする。図中のPbは図9の後退開始位置p2に対応する後退開始位置(本発明の移動開始位置)、Pcは図9の駐車位置p3と同じ駐車位置(本発明の目標位置)である。
<Calculation of target trajectory when no obstacle exists>
FIG. 2 shows an example of calculating the target trajectory when no obstacle is present. Pa in the figure is the same starting position as the starting position p1 in FIG. 9, and when the vehicle 1 reaches this position Pa by the driving operation of the driver, the driver steps on the brake pedal to temporarily stop the vehicle 1 at that position, Start the trajectory planning program. Pb in the figure is the reverse start position (movement start position of the present invention) corresponding to the reverse start position p2 of FIG. 9, and Pc is the same parking position (target position of the present invention) as the parking position p3 of FIG.

そして、軌道計画プログラムがスタートすると、起動位置Paから前後方向(後進して車庫入れ駐車を行なう本実施形態の場合は前方)の後退開始位置Pbに前進走行で移動し、その位置で一旦停止し、その後、走行方向を切り戻して後退開始位置Pbから後退走行で駐車位置Pcに移動するための目標軌道が2円軌道計算で算出される。   When the trajectory planning program is started, the vehicle travels forward from the starting position Pa to the backward start position Pb in the front-rear direction (in the case of the present embodiment where the vehicle moves backward and parks in the garage), and temporarily stops at that position. Thereafter, a target trajectory for switching back the traveling direction and moving from the reverse start position Pb to the parking position Pc by reverse travel is calculated by a two-circle trajectory calculation.

障害物が存在しない場合、2円は、起動位置Pa、後退開始位置Pbを通る図2の破線の一方の主円としての前進円Cfと、後退開始位置Pb、駐車位置Pcを通り前進円Cfに接する他方の主円としての同図の破線の後退円Cbである。後退円Cbは後退開始位置Pbで前進円Cfに接する。   When there is no obstacle, the two circles are a forward circle Cf as one main circle of the broken line in FIG. 2 passing through the starting position Pa and the reverse start position Pb, and a forward circle Cf passing through the reverse start position Pb and the parking position Pc. The broken circle receding circle Cb of the same figure as the other main circle in contact with. The backward circle Cb contacts the forward circle Cf at the backward start position Pb.

ここで、車両1が2円Cf、Cbの弧に沿って、起動位置Paから後退開始位置Pbに前進移動し、後退開始位置Pbから駐車位置Pcに後進移動するものとして、2円Cf、Cbの半径Rf、Rbの舵の切角値が少なくなる組み合わせを考える。   Here, it is assumed that the vehicle 1 moves forward from the starting position Pa to the reverse start position Pb and moves backward from the reverse start position Pb to the parking position Pc along the arcs of the two circles Cf and Cb. Consider a combination in which the turning angle values of the rudder radiuses Rf and Rb are reduced.

まず、前進円Cfの半径Rfが決まると、後退円Cbの半径Rpも一義的に決まる。   First, when the radius Rf of the forward circle Cf is determined, the radius Rp of the backward circle Cb is also uniquely determined.

図3(a)は前進円Caの半径Rfに対する後退円Cbの半径Rpの変化特性例を示し、前進円Caの半径Rfと後退円Cbの半径Rpは一対一対応し、前進円Caの半径Rfが大きくなると後退円Cbの半径Rbが小さくなる。   FIG. 3A shows an example of a change characteristic of the radius Rp of the backward circle Cb with respect to the radius Rf of the forward circle Ca. The radius Rf of the forward circle Ca and the radius Rp of the backward circle Cb have a one-to-one correspondence. As Rf increases, the radius Rb of the receding circle Cb decreases.

つぎに、舵の切角値について説明すると、前進円Cf、後退円Cbそれぞれについての舵の切角値は、前進円Cf、後退円Cbの単位角度あたりの走行距離である。また、前進円Cf、後退円Cbにおける舵の切角値を示す本発明の総合値は、本実施形態の場合、前進円Cfと後退円Cbの切角値の和の評価関数である。この評価関数をEとすると、評価関数Eはつぎの数1の(1)式で示される。   Next, the turning angle value of the rudder will be described. The turning angle values of the rudder for the forward circle Cf and the backward circle Cb are travel distances per unit angle of the forward circle Cf and the backward circle Cb. In the present embodiment, the total value of the present invention indicating the turning angle value of the rudder in the forward circle Cf and the backward circle Cb is an evaluation function of the sum of the cutting angle values of the forward circle Cf and the backward circle Cb. Assuming that this evaluation function is E, the evaluation function E is expressed by the following equation (1).

Figure 2012131460
Figure 2012131460

例えば、前進円Cfにおいて、全周の長さは「2×π×Rf」であり、全周の角度は「2×π」であるので、単位長さあたりの角度(1mあたりの円周角(rad))は「2×π/2×π×Rf=1/Rf」であり、この角度「1/Rf」が大きい程、前進円Cfでの切角値が大きいといえる。したがって、前進円Cfの角度「1/Rf」、後退円Cbの角度「1/Rb」の和が大きい程、前進円Cfと後退円Cbの総合の切角値が大きいといえる。   For example, in the forward circle Cf, the length of the entire circumference is “2 × π × Rf”, and the angle of the entire circumference is “2 × π”, so the angle per unit length (circumference angle per 1 m) (Rad)) is “2 × π / 2 × π × Rf = 1 / Rf”, and it can be said that the greater the angle “1 / Rf”, the greater the cut angle value in the forward circle Cf. Accordingly, it can be said that the greater the sum of the angle “1 / Rf” of the forward circle Cf and the angle “1 / Rb” of the backward circle Cb, the larger the total cut angle value of the forward circle Cf and the backward circle Cb.

そして、評価関数Eが所定値以下になる条件下で半径Rf、Rbを設定すると、その半径Rf、Rbの組み合わせが、舵の切角値が所定値以下に少なくなる2円Cf、Cbの半径Rf、Rbの組み合わせとして求まり、評価関数Eが最小値となる半径Rf、Rbの組み合わせが、舵の切角値が最小値なる2円Cf、Cbの半径Rf、Rbの組み合わせとして求まる。   Then, when the radii Rf and Rb are set under the condition that the evaluation function E is less than or equal to a predetermined value, the combination of the radii Rf and Rb is the radius of the two circles Cf and Cb in which the turning angle value of the rudder is less than the predetermined value The combination of the radii Rf and Rb at which the evaluation function E is the minimum value is obtained as the combination of the radii Rf and Rb of the two circles Cf and Cb at which the turning angle value of the rudder is the minimum value.

図3(b)は前進円Cfの半径Rfに対する評価関数Eの変化特性例を示し、前進円Cfの半径Rfが所定値以上になると、評価関数Eの値が略最小値になることが分かる。   FIG. 3B shows an example of change characteristics of the evaluation function E with respect to the radius Rf of the forward circle Cf, and it can be seen that when the radius Rf of the forward circle Cf exceeds a predetermined value, the value of the evaluation function E becomes a substantially minimum value. .

そこで、前進円Cfの半径Rfを大きくすればする程、すなわち、起動位置Paから後退開始位置Pbに至る軌道が直線に近づく程、2円Cf、Cbの半径Rf、Rbの舵の切角値が少なくなる組み合わせになり、半径Rfを無限大にして起動位置Paから後退開始位置Pbに至る軌道を直線にすると、2円Cf、Cbの半径Rf、Rbの舵の切角値が最小になる。   Therefore, the greater the radius Rf of the forward circle Cf, that is, the closer the trajectory from the starting position Pa to the reverse start position Pb approaches a straight line, the radius Rf of the two circles Cf and Cb, the turning angle value of the rudder of the Rb When the radius Rf is infinite and the trajectory from the starting position Pa to the reverse starting position Pb is a straight line, the turning angle values of the radii Rf and Rb of the two circles Cf and Cb are minimized. .

そして、舵の切角値が所定値以下に少なくなる半径Rf、Rbの2円Cf、Cbの弧に沿って車両1が起動位置Paから後退開始位置Pb、後退開始位置Pbから駐車位置Pcに移動する軌道を目標軌道とすれば、省エネルギーを考慮した2円軌道計算で車両1の目標軌道を算出し、燃費の向上を図ることができる。さらに、起動位置Paから後退開始位置Pbに至る軌道を直線にした目標軌道にすれば、最も省エネルギー効果の高い目標軌道を算出して燃費の向上を図ることができる。   Then, the vehicle 1 moves from the start position Pa to the reverse start position Pb and from the reverse start position Pb to the parking position Pc along the arcs of the two circles Cf and Cb of the radii Rf and Rb at which the turning angle value of the rudder decreases to a predetermined value or less. If the moving trajectory is the target trajectory, the target trajectory of the vehicle 1 can be calculated by the two-circle trajectory calculation in consideration of energy saving, and the fuel efficiency can be improved. Furthermore, if the trajectory from the starting position Pa to the reverse start position Pb is a straight target trajectory, the target trajectory with the highest energy saving effect can be calculated to improve fuel efficiency.

図4は半径Rfを無限大にした場合の目標軌道例を示し、この場合、前進円Cfの弧に沿って起動位置Paから後退開始位置Pbに移行する軌道は、直線の軌道になる。   FIG. 4 shows an example of a target trajectory when the radius Rf is infinite. In this case, the trajectory that moves from the starting position Pa to the reverse starting position Pb along the arc of the forward circle Cf is a linear trajectory.

以上より、自動駐車の軌道周辺に障害物が存在しない場合は、軌道計画部6の半径設定手段により、起動位置Pa、後退開始位置Pbを通る前進円Cfと後退開始位置Pb、駐車位置Pcを通り前進円Cfに接する後退円Cbとの半径Rf、Rbを、前進円Cfと後退円Cbとにおける舵の切角値を示す総合値としての評価関数Eが所定値以下になる条件で設定する。このとき、半径Rfは十分に大きくなり、前進円Cfの弧に沿う起動位置Paから後退開始位置Pbへの軌道は略直線軌道になる。この点に着目し、前進円Cfの半径Rfを無限大に設定し、前進円Cfの弧に沿う起動位置Paから後退開始位置Pbへの軌道を直線軌道とし、後退円Cbの半径を、後退円Cbがこの直線軌道に接する半径Rbにして、最も省エネルギー効果の高い目標軌道になる半径Rf、Rbの組み合わせに設定してもよい。   As described above, when there is no obstacle around the track for automatic parking, the radius setting means of the track planning unit 6 determines the forward circle Cf, the reverse start position Pb, and the parking position Pc that pass through the starting position Pa and the reverse start position Pb. The radii Rf and Rb of the backward circle Cb that is in contact with the forward circle Cf are set under the condition that the evaluation function E as the total value indicating the turning angle value of the rudder in the forward circle Cf and the backward circle Cb is equal to or less than a predetermined value. . At this time, the radius Rf becomes sufficiently large, and the trajectory from the activation position Pa along the arc of the forward circle Cf to the reverse start position Pb becomes a substantially linear trajectory. Focusing on this point, the radius Rf of the forward circle Cf is set to infinity, the trajectory from the starting position Pa to the backward start position Pb along the arc of the forward circle Cf is a straight trajectory, and the radius of the backward circle Cb is set backward. The circle Cb may be set to a radius Rb that is in contact with the straight track, and may be set to a combination of radii Rf and Rb that is the target track having the highest energy saving effect.

つぎに、軌道計画部6の演算手段により、半径設定手段により設定されたそれぞれの半径Rf、Rbの前進円Cf、後退円Cbの弧に沿う軌道、すなわち、車両1が前進円Cfに沿って起動位置Paから後退開始位置Pbに前進走行で移動し、前進円Cbに沿って後退開始位置Pbから駐車位置Pcに後退走行で移動する軌道を、目標軌道として算出する。   Next, the trajectory along the arc of the forward circle Cf and the backward circle Cb of each of the radii Rf and Rb set by the radius setting means by the calculation means of the trajectory planning unit 6, that is, the vehicle 1 follows the forward circle Cf. A trajectory that moves forward from the start position Pa to the reverse start position Pb and moves along the forward circle Cb from the reverse start position Pb to the parking position Pc is calculated as a target trajectory.

このようにして、軌道計画部6が目標軌道を算出すると、図1に示す車両センサ部7の車輪速センサの車輪速、舵角センサの舵角、ヨーレートセンサのヨーレートや、アクセルペダル、ブレーキペダルの踏み込み量等に基づく、移動量管理部8による車両1の起動位置Paからの移動の量、移動の方向の監視のフィードバック制御により、算出された目標軌道に沿って車両1が起動位置Paから後退開始位置Pb、後退開始位置Pbから駐車位置Pcに移動するように、運転制御部9が、例えば車両安定性制御部(VSC(Vehicle Stability Control)のECU等)10を介して車両1の加速・制動を制御する。また、電動パワーステアリング制御部(EPSのECU等)11を介して車両1の操舵を制御する。なお、移動量管理部8、運転制御部9もマイクロコンピュータ等により形成され、それぞれ設定されたプログラムにしたがって動作する。また、起動位置Paから後退開始位置Pbへの前進走行中はカメラ部2の前方の撮影画像をモニタ画面に表示し、後退開始位置Pbから駐車位置Pcへの後退走行中はカメラ部2の後方の撮影画像をモニタ画面に表示することが好ましい。   When the trajectory planning unit 6 calculates the target trajectory in this way, the wheel speed of the wheel speed sensor of the vehicle sensor unit 7 shown in FIG. 1, the rudder angle of the rudder angle sensor, the yaw rate of the yaw rate sensor, the accelerator pedal, and the brake pedal The amount of movement of the vehicle 1 from the starting position Pa by the movement amount management unit 8 based on the amount of depression of the vehicle and the feedback control for monitoring the direction of movement cause the vehicle 1 to move from the starting position Pa along the calculated target trajectory. The operation control unit 9 accelerates the vehicle 1 via, for example, a vehicle stability control unit (VSC (Vehicle Stability Control) ECU or the like) 10 so as to move from the reverse start position Pb and the reverse start position Pb to the parking position Pc. • Control braking. In addition, the steering of the vehicle 1 is controlled via an electric power steering control unit (an ECU of EPS, etc.) 11. The movement amount management unit 8 and the operation control unit 9 are also formed by a microcomputer or the like, and operate according to a set program. In addition, a captured image in front of the camera unit 2 is displayed on the monitor screen during forward travel from the starting position Pa to the reverse start position Pb, and behind the camera unit 2 during reverse travel from the reverse start position Pb to the parking position Pc. It is preferable to display the captured image on the monitor screen.

そして、上記の制御に基づき、車両1を、省エネルギーを考慮した目標軌道に沿って駐車位置Pcに自動駐車することができ、車両1の燃費が向上する。   And based on said control, the vehicle 1 can be automatically parked in the parking position Pc along the target track | truck which considered energy saving, and the fuel consumption of the vehicle 1 improves.

<障害物が存在する場合の目標軌道の算出>
図5(a)、(b)は起動位置Paから駐車位置Pc(図示せず)に至る例えば破線laの軌道の周辺(前記した前進円Cfと後退円Cbとから算出した破線laの目標軌道上を含む)に障害物αが存在する場合の本実施形態の軌道、比較例の目標軌道を示す。障害物αとの衝突の可能性があれば目標軌道を、障害物を迂回して回避するように修正する必要がある。
<Calculation of target trajectory when obstacles exist>
5A and 5B show, for example, the vicinity of the trajectory of the broken line la from the starting position Pa to the parking position Pc (not shown) (the target trajectory of the broken line la calculated from the forward circle Cf and the backward circle Cb described above). The trajectory of this embodiment and the target trajectory of the comparative example when the obstacle α is present (including above) are shown. If there is a possibility of collision with the obstacle α, it is necessary to correct the target trajectory so as to avoid the obstacle.

そこで、起動位置Paにおいて、レーダ部3が車両1の起動位置Paから駐車位置(目標位置)Pcへの移動の障害となる障害物を検出すると、軌道計画部6は、つぎに説明するように障害物の可能性を判断するための衝突可能エリアと衝突エリアとから車両1と障害物との衝突可能性の有無を判断する。   Therefore, when the radar unit 3 detects an obstacle that hinders movement of the vehicle 1 from the starting position Pa to the parking position (target position) Pc at the starting position Pa, the trajectory planning unit 6 will be described next. It is determined whether or not there is a possibility of collision between the vehicle 1 and the obstacle from the collision possible area for judging the possibility of the obstacle and the collision area.

図6は障害物αの可能性を判断するための衝突可能エリアβを示し、このエリアβは、起動位置Paにおいて、例えば左右に破線lb、lcに示した最小回転半径の円(前進円)Cminを設定し、両円Cminが前進して起動位置Paから駐車位置Pcの線分上の位置まで進むときのほぼ両円Cminの軌跡範囲とする。   FIG. 6 shows a collision possible area β for judging the possibility of an obstacle α. This area β is a circle with a minimum turning radius (forward circle) indicated by broken lines lb and lc on the left and right at the starting position Pa, for example. Cmin is set so that both circles Cmin move forward and are substantially in the locus range of both circles Cmin when moving from the starting position Pa to a position on the line segment of the parking position Pc.

また、図5(a)、(b)および図6に示すように、障害物αの周囲に沿って所定半径の円Cαを回転し、その周部輪郭で囲まれる衝突エリアγを定める。   Further, as shown in FIGS. 5A, 5B, and 6, a circle Cα having a predetermined radius is rotated along the periphery of the obstacle α to define a collision area γ surrounded by the peripheral contour thereof.

そして、軌道計画部6は、衝突可能エリアβ内に衝突エリアγが含まれて重なれば、車両1と障害物αとの衝突可能性ありと判断する。   Then, the trajectory planning unit 6 determines that there is a possibility of collision between the vehicle 1 and the obstacle α if the collision area γ is included in the colliding area β and overlaps.

障害物αの検出時、車両1と障害物αとの衝突可能性ありと判断すると、本実施形態の場合は、軌道計画部6の本発明の補助円設定手段により、図5(a)に示すように起動位置Paを通る前進円Cf*と、駐車位置(目標位置)Pcを通る後退円Cb*とが障害物αを迂回回避する補助円Ccを介して接するように、前進円Cf、後退円Cbに代えて、3円Cf*、Cb*、Ccを設定する。   When it is determined that there is a possibility of collision between the vehicle 1 and the obstacle α at the time of detecting the obstacle α, in the case of this embodiment, the auxiliary circle setting means of the present invention in the trajectory planning unit 6 shows the result in FIG. As shown, the forward circle Cf * passing through the starting position Pa and the backward circle Cb * passing through the parking position (target position) Pc are in contact with each other via an auxiliary circle Cc that bypasses the obstacle α, Instead of the backward circle Cb, three circles Cf *, Cb *, and Cc are set.

このとき、補助円Ccは、起動位置Paを前後方向に延ばした線分より駐車位置Pcの反対側に中心点がある。   At this time, the auxiliary circle Cc has a center point on the opposite side of the parking position Pc from the line segment extending the activation position Pa in the front-rear direction.

一方、図5(b)の比較例の場合、目標軌道を省エネルギーを考慮した2円軌道計算で算出するのではなく、補助円Ccの弧と、元の前進円Cf(図示せず)、後退円Cb(図示せず)に基づく破線laの軌道とをつなぎ合わせて実線Lbの目標軌道を算出する。その際、回避するための迂回エリアを極力小さくするため、補助円Ccの半径は無条件に車両1の最小回転半径に設定される。この場合、算出された実線Lbの目標軌道に沿って車両1が起動位置Paから後退開始位置に前進し、後退開始位置から駐車位置Pcに後進して自動駐車すると、その間に操舵の切角は大きく変化し、目標軌道はエネルギー消費が大きな軌道になる。   On the other hand, in the comparative example of FIG. 5B, the target trajectory is not calculated by the two-circle trajectory calculation considering energy saving, but the arc of the auxiliary circle Cc, the original forward circle Cf (not shown), the reverse The target trajectory of the solid line Lb is calculated by connecting the trajectory of the broken line la based on the circle Cb (not shown). At this time, the radius of the auxiliary circle Cc is unconditionally set to the minimum turning radius of the vehicle 1 in order to minimize the bypass area for avoidance. In this case, when the vehicle 1 moves forward from the starting position Pa to the reverse start position along the calculated solid line Lb and moves backward from the reverse start position to the parking position Pc and automatically parks, the turning angle of the steering is The target trajectory becomes a trajectory with large energy consumption.

そこで、本実施形態の場合は、軌道計画部6に設けられた本発明の補助円設定手段により、図5(a)の実線Laの目標軌道に示すように、前進円Cf*と後退円Cb*とが補助円Ccを介して接触するように補助円Ccを設定して目標軌道を算出し、障害物αを迂回回避する。   Therefore, in the case of the present embodiment, the auxiliary circle setting means of the present invention provided in the trajectory planning unit 6 causes the forward circle Cf * and the backward circle Cb as shown in the target trajectory indicated by the solid line La in FIG. The target circle is calculated by setting the auxiliary circle Cc so that * and the auxiliary circle Cc come into contact with each other, and the obstacle α is bypassed.

その際、前進円Cf*の半径をRf*、後退円Cb*の半径をRb*、補助円Ccの半径をRcとすると、半径Rf*、Rb*、Rcは、障害物αのない場合と同様、半径設定手段により、半径Rf*、半径Rb*、半径Rcを、前進円Cf*、後退円Cb*、補助円Ccにおける舵の切角値を示す総合値が定値以下になる条件下で設定する。補助円Ccを用いる場合(障害物αがある場合)、前記総合値は、前進円Cf*、後退円Cb*および補助円Ccの切角値の和の評価関数E*である。評価関数E*はつぎの数2の(2)式で示される。   At that time, assuming that the radius of the forward circle Cf * is Rf *, the radius of the backward circle Cb * is Rb *, and the radius of the auxiliary circle Cc is Rc, the radius Rf *, Rb *, Rc is the case where there is no obstacle α. Similarly, under the condition that the radius Rf *, the radius Rb *, and the radius Rc are set by the radius setting means so that the total value indicating the turning angle value of the rudder in the forward circle Cf *, the backward circle Cb *, and the auxiliary circle Cc is equal to or less than a predetermined value. Set. When the auxiliary circle Cc is used (when there is an obstacle α), the total value is an evaluation function E * of the sum of the cut angle values of the forward circle Cf *, the backward circle Cb *, and the auxiliary circle Cc. The evaluation function E * is expressed by the following equation (2).

Figure 2012131460
Figure 2012131460

この場合も、角度「1/Rf*」、「1/Rb*」、「1/Rc」の和が大きい程、前進円Cf*、後退円Cb*、補助円Ccの総合の切角値が大きいといえる。   Also in this case, as the sum of the angles “1 / Rf *”, “1 / Rb *”, and “1 / Rc” is larger, the total cut angle value of the forward circle Cf *, the backward circle Cb *, and the auxiliary circle Cc is larger. It can be said that it is big.

そして、評価関数E*が所定値以下になる条件下で半径Rf*、Rb*、Rcを設定すると、その半径Rf*、Rb*、Rcの組み合わせが、舵の切角値が所定値以下に少なくなる2円Cf*、Cb*および補助円Ccの半径Rf*、Rb*、Rcの組み合わせとして求まり、この場合も、前進円Cf*の半径Rfを所定値以上で極力大きくすることにより、評価関数E*が小さくなって、2円Cf*、Cb*および補助円Ccの半径Rf*、Rb*およびRcに基づく舵の切角値が最小になる。   Then, when the radii Rf *, Rb *, and Rc are set under the condition that the evaluation function E * is less than or equal to the predetermined value, the combination of the radii Rf *, Rb *, and Rc is such that the turning angle value of the rudder is less than the predetermined value. It is obtained as a combination of the radii Rf *, Rb *, Rc of the decreasing two circles Cf *, Cb * and the auxiliary circle Cc. In this case as well, the evaluation is performed by increasing the radius Rf of the forward circle Cf * to a predetermined value or more as much as possible. The function E * becomes smaller, and the turning angle value of the rudder based on the radii Rf *, Rb * and Rc of the two circles Cf * and Cb * and the auxiliary circle Cc is minimized.

図7は評価関数E*が小さくなって舵の切角値が最小になる、半径Rf*、Rb*、Rcの組み合わせを選定するための3次元データのグラフを示し、このグラフは、半径Rf*、Rb*、Rcの3軸に、実験等に基づいて、複数の各評価関数E*の値になる半径Rf*、Rb*、Rcをプロットしたものである。そして、軌道計画部6の半径設定手段はこのグラフを3次元マップデータとして保持し、2円Cf*、Cb*が補助円Ccを介して接する条件下で評価関数E*が最も小さくなる半径Rf*、Rb*、Rcの組み合わせを、そのデータマップの評価関数平面eから選択して決定する。   FIG. 7 shows a graph of three-dimensional data for selecting a combination of radii Rf *, Rb *, and Rc in which the evaluation function E * is reduced and the turning angle value of the rudder is minimized, and this graph shows the radius Rf. On the three axes *, Rb *, and Rc, radii Rf *, Rb *, and Rc that are values of a plurality of evaluation functions E * are plotted based on experiments and the like. The radius setting means of the trajectory planning unit 6 holds this graph as three-dimensional map data, and the radius Rf that minimizes the evaluation function E * under the condition that the two circles Cf * and Cb * are in contact with each other via the auxiliary circle Cc. A combination of *, Rb *, and Rc is selected and determined from the evaluation function plane e of the data map.

この決定に基づき、軌道計画部6の演算手段が、舵の切角値が所定値以下に少なくなる2円Cf*、Cb*および補助円Ccの弧に沿って車両1が障害物αを迂回回避しながら起動位置Paから後退開始位置(図5(a)には図示せず)Pb、後退開始位置Pbから駐車位置Pcに移動する軌道を目標軌道として算出することにより、本実施形態においては、障害物αがある場合も、省エネルギーを考慮しつつ障害物αを回避する2円軌道計算で車両1の目標軌道を算出し、車両1を、省エネルギーを考慮した目標軌道に沿って駐車位置Pcに自動駐車することができ、車両1の燃費が向上する。   Based on this determination, the calculation means of the trajectory planning unit 6 causes the vehicle 1 to bypass the obstacle α along the arcs of the two circles Cf * and Cb * and the auxiliary circle Cc in which the turning angle value of the rudder decreases below a predetermined value. In this embodiment, by calculating the trajectory moving from the starting position Pa to the reverse start position (not shown in FIG. 5A) Pb and moving from the reverse start position Pb to the parking position Pc as the target trajectory while avoiding Even when there is an obstacle α, the target trajectory of the vehicle 1 is calculated by a two-circle trajectory calculation that avoids the obstacle α while considering energy saving, and the vehicle 1 is parked along the target trajectory considering energy saving. The vehicle 1 can be automatically parked, and the fuel efficiency of the vehicle 1 is improved.

図8は本実施形態の軌道計画部6の処理手順例を示し、まず、カメラの画像から駐車位置(目標位置)の情報を取得し(ステップS1)、レーダの情報から周囲の障害物αの情報を取得する(ステップS2)。   FIG. 8 shows an example of the processing procedure of the trajectory planning unit 6 of this embodiment. First, information on the parking position (target position) is acquired from the camera image (step S1), and the surrounding obstacle α is detected from the radar information. Information is acquired (step S2).

障害物αが存在しなければ(ステップS3のNO)、前進円Cfと後退円Cbとが接する組み合わせを算出する(ステップS4)。さらに、評価関数Eが最も小さくなる半径Rf、Rbの組み合わせを求め(ステップS5)、求めた半径Rf、Rbの前進円Cf、後退円Cbの接点の位置を後退開始位置Pbとする目標軌道を算出する(ステップS6)。   If there is no obstacle α (NO in step S3), a combination in which the forward circle Cf and the backward circle Cb are in contact is calculated (step S4). Further, a combination of the radii Rf and Rb that minimizes the evaluation function E is obtained (step S5), and a target trajectory having the contact points of the forward circle Cf and the backward circle Cb with the obtained radii Rf and Rb as the backward start position Pb is obtained. Calculate (step S6).

障害物αが存在すれば(ステップS3のYES)、衝突の可能性を判断し(ステップS7)、衝突の可能性がなければ(ステップS7のNO)、ステップS4に移行し、障害物αが存在しない場合と同様にして、前進円Cfと後退円Cbとから目標軌道を算出する。一方、衝突の可能性があれば(ステップS7のYES)、前進円Cf*と後退円Cb*に接する補助円Ccの半径Rcを求め(ステップS8)、評価関数E*が最も小さくなる半径Rf*、Rb*、Rcの組み合わせを求め(ステップS9)、求めた半径Rf*、Rb*、Rcの前進円Cf、後退円Cb、補助円Ccの接点までを結んで目標軌道を算出する(ステップS10)。   If there is an obstacle α (YES in step S3), the possibility of a collision is determined (step S7). If there is no possibility of a collision (NO in step S7), the process proceeds to step S4. The target trajectory is calculated from the forward circle Cf and the backward circle Cb in the same manner as when it does not exist. On the other hand, if there is a possibility of collision (YES in step S7), a radius Rc of the auxiliary circle Cc in contact with the forward circle Cf * and the backward circle Cb * is obtained (step S8), and the radius Rf that minimizes the evaluation function E * is obtained. A combination of *, Rb *, and Rc is obtained (step S9), and the target trajectory is calculated by connecting to the contact points of the calculated forward radius Cf, backward circle Cb, and auxiliary circle Cc of the radii Rf *, Rb *, and Rc (step S9). S10).

以上説明したように、本実施形態の場合、障害物αの有無によらず、起動位置Paの車両1を、省エネルギーを考慮した目標軌道に沿って駐車位置Pcに自動駐車することができ、車両1の燃費が向上する。   As described above, in the case of the present embodiment, the vehicle 1 at the starting position Pa can be automatically parked at the parking position Pc along the target track in consideration of energy saving, regardless of the presence or absence of the obstacle α. 1 fuel efficiency is improved.

そして、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能であり、例えば、障害物αの考慮が不要であれば、図7のステップS1、S2、S4〜S6の構成だけで駐車位置を算出してもよく、この場合は処理が簡単になる。   The present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention. For example, it is not necessary to consider the obstacle α. If there is, the parking position may be calculated only by the configuration of steps S1, S2, and S4 to S6 in FIG. 7, and in this case, the process is simplified.

また、目標位置が後進の車庫入れの駐車位置Pcでない場合、例えば、前進での車庫入れの駐車位置や縦列駐車の駐車位置、駐車位置以外の車両1の停止位置や到達位置であってもよいのは勿論である。   Further, when the target position is not the reverse parking garage parking position Pc, for example, it may be a forward garage parking position, a parallel parking parking position, or a stop position or arrival position of the vehicle 1 other than the parking position. Of course.

つぎに、起動位置Paや目標位置Pc等が固定位置で決まっている場合は、カメラの撮影画像からそれらの位置を検出(確認)しなくてもよく、カメラを省くことができる。また、それらの位置は、ドライバが指定する代わりに、車外の装置から通信で提供される構成であってもよい。   Next, when the starting position Pa, the target position Pc, etc. are fixed positions, it is not necessary to detect (confirm) those positions from the captured image of the camera, and the camera can be omitted. Moreover, the structure provided by communication from the apparatus outside a vehicle may be sufficient instead of a driver | operator specifying those positions.

そして、本発明は種々の車両の目標軌道の算出に適用することができる。   The present invention can be applied to the calculation of target trajectories for various vehicles.

1 車両
6 軌道計画部
Cb,Cb* 後退円
Cf、Cf* 前進円
Pa 起動位置
Pb 後退開始位置
Pc 駐車位置
Rb、Rb*、Rc、Rf、Rf* 半径
1 Vehicle 6 Trajectory Planning Section Cb, Cb * Backward Circle Cf, Cf * Forward Circle Pa Start Position Pb Backward Start Position Pc Parking Position Rb, Rb *, Rc, Rf, Rf * Radius

Claims (2)

起動位置から前後方向の移動開始位置に移動した後、前記移動開始位置から目標位置に移動する車両の目標軌道を算出する目標軌道算出装置であって、
前記起動位置、前記移動開始位置を通る一方の主円と、前記移動開始位置、前記目標位置を通り前記一方の主円に接する他方の主円との半径を、前記両主円における舵の切角値を示す総合値が所定値以下になる条件下で設定する半径設定手段と、
前記半径設定手段により設定されたそれぞれの半径の前記両主円の弧に沿う軌道を前記目標軌道として算出する算出手段とを備えたことを特徴とする目標軌道算出装置。
A target trajectory calculation device that calculates a target trajectory of a vehicle that moves from a movement start position to a target position after moving from a start position to a movement start position in the front-rear direction,
The radius of one main circle passing through the start position and the movement start position and the other main circle passing through the movement start position and the target position and touching the one main circle is determined by turning the rudder on both main circles. Radius setting means for setting under a condition that the total value indicating the angle value is a predetermined value or less;
A target trajectory calculation apparatus comprising: a calculation means for calculating a trajectory along the arcs of the two main circles having respective radii set by the radius setting means as the target trajectory.
請求項1に記載の目標軌道算出装置において、
車両の前記起動位置から前記目標位置への移動の障害となる障害物を検出する検出手段と、
前記障害物の検出時に、前記両主円が前記障害物を迂回回避する補助円を介して接する
ように設定する補助円設定手段とを備え、
前記半径設定手段により、前記両主円および前記補助円の半径を、前記両主円および前記補助円における前記舵の切角値を示す総合値が所定値以下になる条件下で設定し、
前記算出手段により、前記両主円および前記補助円の弧に沿う軌道を前記目標軌道として算出することを特徴とする目標軌道算出装置。
In the target trajectory calculation apparatus according to claim 1,
Detecting means for detecting an obstacle that obstructs movement of the vehicle from the starting position to the target position;
An auxiliary circle setting means for setting the two main circles so as to contact each other via an auxiliary circle that circumvents the obstacle when the obstacle is detected;
The radius setting means sets the radii of the two main circles and the auxiliary circle under the condition that the total value indicating the turning angle value of the rudder in the two main circles and the auxiliary circle is a predetermined value or less,
A target trajectory calculation apparatus, wherein the calculation means calculates a trajectory along the arcs of the two main circles and the auxiliary circle as the target trajectory.
JP2010287532A 2010-12-24 2010-12-24 Target path calculation device Withdrawn JP2012131460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010287532A JP2012131460A (en) 2010-12-24 2010-12-24 Target path calculation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010287532A JP2012131460A (en) 2010-12-24 2010-12-24 Target path calculation device

Publications (1)

Publication Number Publication Date
JP2012131460A true JP2012131460A (en) 2012-07-12

Family

ID=46647572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010287532A Withdrawn JP2012131460A (en) 2010-12-24 2010-12-24 Target path calculation device

Country Status (1)

Country Link
JP (1) JP2012131460A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104637342A (en) * 2015-01-22 2015-05-20 江苏大学 Intelligent identification and parking path planning system and method for narrow and vertical parking space scene
WO2018198506A1 (en) * 2017-04-27 2018-11-01 アイシン精機株式会社 Parking assistance device
JP2019073229A (en) * 2017-10-19 2019-05-16 アルパイン株式会社 Target track formation device and target track formation method
JP2020050263A (en) * 2018-09-28 2020-04-02 パナソニックIpマネジメント株式会社 Travel control device, travel control method, and program
CN111815999A (en) * 2020-07-31 2020-10-23 深圳市元征科技股份有限公司 Parking space management method and related device
CN115588299A (en) * 2022-11-25 2023-01-10 陕西风润智能制造研究院有限公司 Unmanned vehicle trajectory control system and method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104637342A (en) * 2015-01-22 2015-05-20 江苏大学 Intelligent identification and parking path planning system and method for narrow and vertical parking space scene
WO2018198506A1 (en) * 2017-04-27 2018-11-01 アイシン精機株式会社 Parking assistance device
JP2018184148A (en) * 2017-04-27 2018-11-22 アイシン精機株式会社 Parking support device
US11358591B2 (en) 2017-04-27 2022-06-14 Aisin Corporation Parking assist apparatus
JP2019073229A (en) * 2017-10-19 2019-05-16 アルパイン株式会社 Target track formation device and target track formation method
JP7046558B2 (en) 2017-10-19 2022-04-04 アルパイン株式会社 Target trajectory generator and target trajectory generation method
JP2020050263A (en) * 2018-09-28 2020-04-02 パナソニックIpマネジメント株式会社 Travel control device, travel control method, and program
JP7117603B2 (en) 2018-09-28 2022-08-15 パナソニックIpマネジメント株式会社 TRIP CONTROL DEVICE, TRIP CONTROL METHOD, AND PROGRAM
CN111815999A (en) * 2020-07-31 2020-10-23 深圳市元征科技股份有限公司 Parking space management method and related device
CN115588299A (en) * 2022-11-25 2023-01-10 陕西风润智能制造研究院有限公司 Unmanned vehicle trajectory control system and method
CN115588299B (en) * 2022-11-25 2023-02-28 陕西风润智能制造研究院有限公司 Unmanned vehicle trajectory control system and method

Similar Documents

Publication Publication Date Title
JP6547735B2 (en) Collision avoidance support device
JP6269546B2 (en) Automatic driving device
JP6551382B2 (en) Collision avoidance support device
JP4647201B2 (en) Vehicle travel control device
JP5477515B2 (en) Parking assistance device
JP5899664B2 (en) Vehicle acceleration suppression device and vehicle acceleration suppression method
JP6350383B2 (en) Vehicle travel control device
JPWO2019077739A1 (en) Mobile control system
JP2017001597A (en) Automatic driving device
JP2018156253A (en) Collision avoidance device
JP2007091025A (en) Forward monitoring device for vehicle
JP2012131460A (en) Target path calculation device
JP5595186B2 (en) Target trajectory calculation device
US11628833B2 (en) Vehicle control device
WO2014203334A1 (en) Driving assistance device
JP6394474B2 (en) Automatic driving device
JP2018045397A (en) Automatic operation vehicle
WO2019142312A1 (en) Vehicle control device, vehicle having same, and control method
JP2014100958A (en) Parking support device and control device
CN115335885B (en) Vehicle control device, vehicle entry support device, and vehicle
JP2016175567A (en) Steering assist device
JP2017073059A (en) Lane change support device
WO2014083825A1 (en) Driving assistance device and driving assistance method
JP2012232608A (en) Target trajectory calculating device
US11654896B2 (en) Vehicle control device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140304