JP2012096337A - Parallel mechanism using a plurality of elastic wires having rigidity - Google Patents

Parallel mechanism using a plurality of elastic wires having rigidity Download PDF

Info

Publication number
JP2012096337A
JP2012096337A JP2010248098A JP2010248098A JP2012096337A JP 2012096337 A JP2012096337 A JP 2012096337A JP 2010248098 A JP2010248098 A JP 2010248098A JP 2010248098 A JP2010248098 A JP 2010248098A JP 2012096337 A JP2012096337 A JP 2012096337A
Authority
JP
Japan
Prior art keywords
side member
parallel mechanism
elastic
elastic wires
rigidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010248098A
Other languages
Japanese (ja)
Inventor
Shinjiro Sato
慎二郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RYUTAI SERVO KK
Original Assignee
RYUTAI SERVO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RYUTAI SERVO KK filed Critical RYUTAI SERVO KK
Priority to JP2010248098A priority Critical patent/JP2012096337A/en
Publication of JP2012096337A publication Critical patent/JP2012096337A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)
  • Flexible Shafts (AREA)
  • Transmission Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem in a conventional multi-freedom mechanism such as a parallel mechanism that the structure is complicated in general, and also flexibility is low.SOLUTION: A multi-freedom mechanism carrying out flexible movement that has been impossible in a conventional parallel mechanism is provided by rationally using a plurality of elastic wires having rigidity to configure a parallel mechanism. Namely, a plurality of single elastic wires 1 with circular cross sections and having rigidity are connected by placing them in the same arrangement in each fulcrum position of a driven side member 2 and a driving side member 3, and a middle support member 4 supporting the elastic wires so as to move in an axial direction and to rotate around the axial direction while maintaining the arrangement of the elastic wires as seen from a cross section direction is provided between the driven side member and the driving side member.

Description

本発明は、一般産業、試験機、航空宇宙、医療福祉、マイクロマシン、遊戯施設等に関する多分野において利用可能な多自由度機構、特に、剛性を有する複数の弾性ワイヤーを用いたパラレルメカニズムに関する。   The present invention relates to a multi-degree-of-freedom mechanism that can be used in various fields related to general industries, test machines, aerospace, medical welfare, micromachines, amusement facilities, and the like, and more particularly, to a parallel mechanism using a plurality of rigid elastic wires.

多自由度機構としてのパラレルメカニズムは、フライトシミュレータや遊戯施設を始めとして、多くの分野において利用されており、その応用例は非常に多い。   The parallel mechanism as a multi-degree-of-freedom mechanism is used in many fields including a flight simulator and a play facility, and its application examples are very many.

パラレルメカニズムとしては、ベースと、プレート等のエンドエフェクタとの間に、球面軸受けを有するジョイントを介して6個の伸縮式アクチュエータを配置して、6自由度の運動を行わせるようにした、いわゆるスチュアートプラットホームと称される伸縮型のパラレルメカニズムが広く知られている。この他、パラレルメカニズムの種類としては、回転式アクチュエータを用いた回転型、固定された直動アクチュエータを用いた直動型、複数の弾性ワイヤーを用いた弾性ワイヤー型、弾性ワイヤーとリンクによるハイブリッド型等が知られている。そして、これらに用いるアクチュエータの駆動方式としては、電動方式、油圧方式、空気圧方式など各種の方式が行われている。   As a parallel mechanism, six telescopic actuators are arranged between a base and an end effector such as a plate via a joint having a spherical bearing so as to perform a motion of six degrees of freedom. A telescopic parallel mechanism called a Stewart platform is widely known. Other types of parallel mechanisms include a rotary type that uses a rotary actuator, a linear type that uses a fixed linear actuator, an elastic wire type that uses multiple elastic wires, and a hybrid type that uses elastic wires and links. Etc. are known. Various methods such as an electric method, a hydraulic method, and a pneumatic method are used as driving methods for the actuators used for these.

特許文献1は伸縮型パラレルメカニズムの従来例、特許文献2は回転式パラレルメカニズムの従来例、特許文献3は直動型パラレルメカニズムの従来例を示すものである。   Patent Document 1 shows a conventional example of a telescopic parallel mechanism, Patent Document 2 shows a conventional example of a rotary parallel mechanism, and Patent Document 3 shows a conventional example of a linear motion parallel mechanism.

これらの型のパラレルメカニズムは、いずれも被駆動側部材に取り付けた複数の支点と、駆動側部材の複数の支点間の夫々に、剛体リンク又は支点間の距離を可変できる伸縮式アクチュエータを連結した構成であり、剛体リンク又は伸縮式アクチュエータで被駆動側部材の支点の位置を移動することにより、被駆動側部材の位置と姿勢を制御する方式である。   In each of these types of parallel mechanisms, a rigid link or a telescopic actuator capable of varying the distance between the fulcrums is connected to each of the fulcrums attached to the driven member and the fulcrums of the drive member. This is a system in which the position and posture of the driven side member are controlled by moving the position of the fulcrum of the driven side member with a rigid link or a telescopic actuator.

また特許文献4は複数の弾性ワイヤーを用いたパラレルメカニズムの従来例を示すもので、このパラレルメカニズムは、弾性ワイヤーに加えて剛体リンクを用いたハイブリット型である。このパラレルメカニズムでは、被駆動側部材に取り付けた複数の支点と、駆動側部材の複数の支点間に、弾性ワイヤーを連結し、駆動側部材のアクチュエータにより弾性ワイヤーの長さを変化させて、被駆動側部材の支点の位置を移動することにより、被駆動側部材の位置と姿勢を制御する方式である。この場合、被駆動側部材の姿勢を変更する各動作は、全ての弾性ワイヤーに張力が常に加わる状態を維持して行われるものである。   Patent Document 4 shows a conventional example of a parallel mechanism using a plurality of elastic wires. This parallel mechanism is a hybrid type using a rigid body link in addition to an elastic wire. In this parallel mechanism, an elastic wire is connected between a plurality of fulcrums attached to the driven side member and a plurality of fulcrums of the driving side member, and the length of the elastic wire is changed by an actuator of the driving side member, thereby In this method, the position and posture of the driven member are controlled by moving the position of the fulcrum of the driving member. In this case, each operation for changing the attitude of the driven side member is performed while maintaining a state in which tension is always applied to all the elastic wires.

一方、一つ又は剛性を有する複数の弾性ワイヤーを用いた従来の機構として、上述した特許文献4の他に、特許文献5、特許文献6に示されるような内視鏡における先端部の湾曲機構や、特許文献7に示されるようなロボットハンドの関節駆動機構が知られている。   On the other hand, as a conventional mechanism using one or a plurality of rigid elastic wires, in addition to the above-mentioned Patent Document 4, the bending mechanism of the distal end portion in the endoscope as shown in Patent Document 5 and Patent Document 6 In addition, a joint driving mechanism of a robot hand as disclosed in Patent Document 7 is known.

特開平8−300290号公報JP-A-8-300200 特開2001−38551号公報JP 2001-38551 A 特開2001−254798号公報JP 2001-254798 A 特開2007−209572号公報JP 2007-209572 A 特開2003−126024号公報JP 2003-126024 A 特開2003−204926号公報JP 2003-204926 A 特開2006−123149号公報JP 2006-123149 A

特許文献1−3により例示しているパラレルメカニズム、即ち、被駆動側部材に取り付けた複数の支点と、駆動側部材の複数の支点間の夫々に、剛体リンク又は支点間の距離を可変できる伸縮式アクチュエータを連結した構成では、次のような課題を有している。
1.一般的に構造が複雑である。
2.各支点には球面軸受に代表される自由度の高い軸受が必要で、一般的に回転や滑りを伴うため構造が複雑になる。そのため潤滑の問題やガタの問題や耐久性の問題が発生しやすく、費用も高価になる。
3.被駆動側部材の姿勢の自由度(一般的には6自由度)を得るための剛体リンク又は伸縮式アクチュエータの数は数学的に決まり、一般的には6本であり、そのため6軸モーションとも称される。それ以下の数では姿勢を保てず、また6本以上では冗長な機構となり、制御が各段に難しくなる。
4.駆動機構である剛体リンクや伸縮式アクチュエータを含め、メカニズム全体としての柔軟性がない。
The parallel mechanism exemplified in Patent Documents 1-3, that is, expansion and contraction that can change the distance between the rigid links or the fulcrums between the fulcrums attached to the driven member and the fulcrums of the drive member. The configuration in which the type actuators are connected has the following problems.
1. Generally, the structure is complicated.
2. Each fulcrum requires a highly flexible bearing represented by a spherical bearing, and generally involves rotation and slipping, which complicates the structure. As a result, lubrication problems, backlash problems and durability problems are likely to occur, and the cost is high.
3. The number of rigid links or telescopic actuators for obtaining the degree of freedom (generally 6 degrees of freedom) of the driven side member is mathematically determined and is generally 6 so that both 6-axis motions Called. If the number is less than that, the posture cannot be maintained, and if it is 6 or more, the mechanism becomes redundant and the control becomes difficult at each stage.
4). There is no flexibility as a whole mechanism including a rigid link and a telescopic actuator as a drive mechanism.

一方、特許文献4−7により例示している弾性ワイヤーを用いた機構は、パラレルメカニズムにしても、シリアルメカニズムにしても、柔軟なメカニズム又は構造体を構成することができるが、被駆動側部材の位置と姿勢の制御は、弾性ワイヤーを牽引・弛緩することにより各支点間の距離を変える方式であり、弾性ワイヤーの引張方向の剛性は利用しているが、圧縮、曲げ及び捩り方向の剛性は利用しておらず、従って弾性ワイヤーのみでは空間的自立性がない。   On the other hand, the mechanism using the elastic wire exemplified in Patent Documents 4-7 can constitute a flexible mechanism or structure, whether it is a parallel mechanism or a serial mechanism. The position and posture control is a method of changing the distance between each fulcrum by pulling / relaxing the elastic wire, and the rigidity in the tensile direction of the elastic wire is used, but the rigidity in the compression, bending and twisting directions is used. Is not used, and therefore, the elastic wire alone is not spatially independent.

そこで本発明では、以上の課題を解決し、複数の弾性ワイヤーのみで空間的な位置・姿勢を保持して自立し、弾性ワイヤーの引張り、圧縮、曲げ及び捩り方向の剛性を利用して柔軟な動きを行えるパラレルメカニズムを提供することを目的とするものである。   Therefore, in the present invention, the above problems are solved, the spatial position / posture is maintained with only a plurality of elastic wires, and it is self-supporting, and the elastic wires are flexible by utilizing the tension, compression, bending, and torsional rigidity. The object is to provide a parallel mechanism that can move.

本発明では、上記課題を解決するために、剛性を有し、円形断面で単線の弾性ワイヤーの複数本が、被駆動側部材と駆動側部材の各支点位置において、同一配置となるように接続されており、また前記被駆動側部材と前記駆動側部材間には、前記弾性ワイヤーを、横断面方向から見て前記配置を維持しつつ軸方向に移動及び軸方向の回りに回転可能に支持する中間支持部材が設けられている構成のパラレルメカニズムを提案する。   In the present invention, in order to solve the above-described problem, a plurality of single-wire elastic wires having rigidity and a circular cross section are connected so as to be arranged at the same position at each fulcrum position of the driven side member and the driving side member. The elastic wire is supported between the driven side member and the driven side member so that the elastic wire can be moved in the axial direction and rotated about the axial direction while maintaining the arrangement when viewed from the cross-sectional direction. A parallel mechanism having a structure in which an intermediate supporting member is provided is proposed.

また本発明では、上記課題を解決するために、剛性を有し、円形断面で単線の弾性ワイヤーの複数本が、被駆動側部材と駆動側部材の各支点位置において、相似配置となるように接続されており、また前記被駆動側部材と前記駆動側部材間には、前記弾性ワイヤーを、横断面方向から見て前記相似配置を維持しつつ軸方向に移動及び軸方向の回りに回転可能に支持する中間支持部材が設けられている構成のパラレルメカニズムを提案する。   Further, in the present invention, in order to solve the above problems, a plurality of single-wire elastic wires having rigidity and a circular cross section are arranged in a similar manner at each fulcrum position of the driven side member and the driving side member. Connected, and between the driven side member and the driven side member, the elastic wire can be moved in the axial direction and rotated around the axial direction while maintaining the similar arrangement as seen from the cross-sectional direction. The parallel mechanism of the structure provided with the intermediate | middle support member which supports is proposed.

そして本発明では、上記構成において、駆動側部材は、他のパラレルメカニズムの被駆動側部材として構成した、剛性を有する複数の弾性ワイヤーを用いたパラレルメカニズムを提案する。   The present invention proposes a parallel mechanism using a plurality of rigid elastic wires in which the driving side member is configured as a driven side member of another parallel mechanism.

また本発明では、上記の構成において、駆動側部材は、夫々の弾性ワイヤー毎に設け、弾性ワイヤーを進退及び捩り回転可能とした複数の駆動装置により構成した、剛性を有する複数の弾性ワイヤーを用いたパラレルメカニズムを提案する。   Further, in the present invention, in the above configuration, the drive side member is provided for each elastic wire, and uses a plurality of rigid elastic wires configured by a plurality of drive devices that can move the elastic wire forward and backward and torsionally rotate. Proposed parallel mechanism.

また本発明では、以上の構成にパラレルメカニズムの中間支持部材を密閉室の壁に気密的に取り付けて、被駆動側部材を密閉室内に位置させると共に、駆動側部材を密閉室外に位置させた構成の密閉室内作業機構を提案する。   In the present invention, the intermediate support member of the parallel mechanism is airtightly attached to the wall of the sealed chamber in the above configuration, and the driven side member is positioned in the sealed chamber and the driving side member is positioned outside the sealed chamber. A closed indoor working mechanism is proposed.

そして本発明では、上記構成において、密閉室は真空又は特殊環境の材料試験室とした密閉室内作業機構を提案する。   According to the present invention, in the above-described configuration, a sealed chamber working mechanism is proposed in which the sealed chamber is a vacuum or special environment material testing chamber.

本発明のパラレルメカニズムは、中間支持部材を、被駆動側部材と駆動側部材間に配置した適宜の支持部位に取り付けて使用する。この状態において、被駆動側部材は、駆動側部材から中間支持部材を経て延びている弾性ワイヤーの剛性によって自立的に位置と姿勢が維持される。   In the parallel mechanism of the present invention, the intermediate support member is attached to an appropriate support portion disposed between the driven side member and the driving side member. In this state, the position and posture of the driven side member are independently maintained by the rigidity of the elastic wire extending from the driving side member through the intermediate support member.

駆動側部材を、他のパラレルメカニズムの被駆動側部材として構成した場合において、この駆動側部材を、初期状態から、その姿勢を維持しながら軸方向、即ち、弾性ワイヤーの延びている方向に移動させると、全ての弾性ワイヤーが、中間支持部材に支持されて前進又は後退方向に等距離移動するので、被駆動側部材は、初期状態の姿勢が維持されたまま前進又は後退する。   When the drive-side member is configured as a driven-side member of another parallel mechanism, the drive-side member is moved from the initial state in the axial direction, that is, the direction in which the elastic wire extends, while maintaining the posture. As a result, all the elastic wires are supported by the intermediate support member and moved by the same distance in the forward or backward direction, so that the driven member moves forward or backward while maintaining the initial state posture.

次に、初期状態において、駆動側部材を適宜の方向に傾斜させると、この傾斜により、駆動側部材側において中間支持部材までの距離が近くなる場合には、対応する弾性ワイヤーは被駆動側部材を押す方向に作用し、一方、傾斜により、駆動側部材側において中間支持部材からの距離が遠くなる場合には、対応する弾性ワイヤーは被駆動側部材を引く方向に作用するため、被駆動側部材は、駆動側部材の傾斜方向と同方向に傾斜する。   Next, in the initial state, when the driving side member is tilted in an appropriate direction, if the distance to the intermediate support member is reduced on the driving side member side due to this tilting, the corresponding elastic wire becomes the driven side member. On the other hand, when the distance from the intermediate support member is increased on the driving side member side due to the inclination, the corresponding elastic wire acts in the direction of pulling the driven side member. The member is inclined in the same direction as the inclination direction of the drive side member.

次に、初期状態において、駆動側部材を軸方向の回りに適宜角度回転させると、全ての弾性ワイヤーが回転軌跡に沿って移動し、これにより全ての弾性ワイヤーが回転方向に捩られる。このように全ての弾性ワイヤーが同一方向に捩られるため、被駆動側部材は、全ての弾性ワイヤーに駆動されて、軸方向の回りに、駆動側部材と同方向に同角度回転する。   Next, in the initial state, when the drive side member is rotated by an appropriate angle around the axial direction, all the elastic wires move along the rotation locus, whereby all the elastic wires are twisted in the rotational direction. Since all the elastic wires are twisted in the same direction as described above, the driven side member is driven by all the elastic wires and rotates around the axial direction in the same direction as the driving side member.

以上の各方向の動作は、駆動側部材として、夫々の弾性ワイヤー毎に設け、弾性ワイヤーを進退及び捩り回転可能とした複数の駆動装置により構成した場合においても同様に行うことができる。   The operation in each direction described above can be performed in the same manner even when the drive side member is provided for each elastic wire and is configured by a plurality of drive devices in which the elastic wire can be advanced and retracted and twisted.

また、以上の各方向の動作は、組み合わせて行わせることができ、これらにより多自由度で柔軟な動きを行わせることができる。そして柔軟な動きは、剛性を有する弾性ワイヤーによって実現しており、弾性ワイヤーと、駆動側部材及び被駆動側部材とは単に固定すれば良く、相対回転や相対滑りがないので、軸受けは不要である。   In addition, the operations in each direction described above can be performed in combination, and thus, a flexible motion can be performed with multiple degrees of freedom. The flexible movement is realized by an elastic wire having rigidity, and the elastic wire, the driving side member and the driven side member need only be fixed, and there is no relative rotation or sliding, so no bearing is required. is there.

以上のことから本発明では、従来のパラレルメカニズムと比較して構造が非常に簡素化される。   From the above, in the present invention, the structure is greatly simplified as compared with the conventional parallel mechanism.

また従来の多自由度のパラレルメカニズムで必要な球面軸受等の複雑な軸受要素は不要となるため、この点においても構造の簡素化に寄与し、コストを低減すると共に、ガタがなく、耐久性も高い。   In addition, complicated bearing elements such as spherical bearings required by the conventional multi-degree-of-freedom parallel mechanism are no longer necessary. This also contributes to the simplification of the structure, reduces costs, has no play, and is durable. Is also expensive.

本発明において、弾性ワイヤーの数は、2本以上適宜であり、数を増やすことにより、より剛性を高めることができる。   In the present invention, the number of elastic wires is two or more, and the rigidity can be further increased by increasing the number.

被駆動側部材と駆動側部材の各支点位置における複数の弾性ワイヤーの配置は適宜であり、設計上の自由度が高い。   Arrangement | positioning of the some elastic wire in each fulcrum position of a to-be-driven side member and a drive side member is appropriate, and the freedom degree in design is high.

本発明のパラレルメカニズムでは、被駆動側部材と駆動側部材の各支点位置における弾性ワイヤーの接続の配置と、中間支持部材における弾性ワイヤーの支持の配置は、同一配置とすることが基本であるが、この同一配置の場合と比較して、動きが制限されることを許容する場合において相似配置とすることもできる。   In the parallel mechanism of the present invention, the arrangement of the elastic wire connection at each fulcrum position of the driven side member and the driving side member is basically the same as the arrangement of the elastic wire support in the intermediate support member. As compared with the case of the same arrangement, a similar arrangement can be used in a case where the movement is allowed to be limited.

図1は本発明のパラレルメカニズムを構成する基本構成要素の実施の形態を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of basic components constituting the parallel mechanism of the present invention. 図2は本発明のパラレルメカニズムを構成する基本構成要素の実施の形態を、他の構成要素と共に示す模式的正面図である。FIG. 2 is a schematic front view showing an embodiment of basic components constituting the parallel mechanism of the present invention together with other components. 図3は本発明のパラレルメカニズムの第1の実施の形態を示すもので、(a)は模式的正面図、(b)は模式的斜視図である。3A and 3B show a first embodiment of the parallel mechanism of the present invention. FIG. 3A is a schematic front view and FIG. 3B is a schematic perspective view. 図4(a)、(b)は本発明のパラレルメカニズムの第1の実施の形態の第1の動作を示す模式的正面図である。4 (a) and 4 (b) are schematic front views showing a first operation of the first embodiment of the parallel mechanism of the present invention. 図5(a)、(b)は本発明のパラレルメカニズムの第1の実施の形態の第2の動作を示す模式的正面図である。FIGS. 5A and 5B are schematic front views showing a second operation of the first embodiment of the parallel mechanism of the present invention. 図6(a)、(b)は本発明のパラレルメカニズムの第1の実施の形態の第3の動作を示す模式的正面図であり、また(c)、(d)は夫々(a)、(b)を上方から見た模式的平面図である。6 (a) and 6 (b) are schematic front views showing a third operation of the first embodiment of the parallel mechanism of the present invention, and (c) and (d) are (a) and (a), respectively. It is the typical top view which looked at (b) from the upper part. 図7は本発明のパラレルメカニズムの第2の実施の形態を示すもので、(a)は模式的正面図、(b)は模式的斜視図、(c)は(a)を上方から見た模式的平面図である。FIG. 7 shows a second embodiment of the parallel mechanism of the present invention, where (a) is a schematic front view, (b) is a schematic perspective view, and (c) is a view of (a) from above. It is a typical top view. 図8(a)、(b)は本発明のパラレルメカニズムの第2の実施の形態の第1の動作を示す模式的正面図である。FIGS. 8A and 8B are schematic front views showing a first operation of the second embodiment of the parallel mechanism of the present invention. 図9(a)、(b)は本発明のパラレルメカニズムの第2の実施の形態の第2の動作を示す模式的正面図である。FIGS. 9A and 9B are schematic front views showing the second operation of the second embodiment of the parallel mechanism of the present invention. 図10(a)、(b)は本発明のパラレルメカニズムの第2の実施の形態の第3の動作を示す模式的正面図であり、また(c)、(d)は夫々(a)、(b)を上方から見た模式的平面図である。10 (a) and 10 (b) are schematic front views showing a third operation of the second embodiment of the parallel mechanism of the present invention, and (c) and (d) are (a) and (a), respectively. It is the typical top view which looked at (b) from the upper part. 図11(a)、(b)は本発明のパラレルメカニズムの第1の実施の形態を利用して構成した密閉室内作業機構の構成及び動作を示す一部断面模式的正面図である。FIGS. 11A and 11B are partial cross-sectional schematic front views showing the configuration and operation of the sealed indoor working mechanism configured by using the first embodiment of the parallel mechanism of the present invention. 図12(a)、(b)は本発明のパラレルメカニズムの第2の実施の形態を利用して構成した密閉室内作業機構の構成及び動作を示す一部断面模式的正面図である。12 (a) and 12 (b) are partial cross-sectional schematic front views showing the configuration and operation of a sealed indoor working mechanism configured using the second embodiment of the parallel mechanism of the present invention. 図13(a)、(b)は本発明のパラレルメカニズムを構成する基本構成要素の他の実施の形態を示す斜視図である。FIGS. 13 (a) and 13 (b) are perspective views showing other embodiments of the basic components constituting the parallel mechanism of the present invention.

次に本発明のパラレルメカニズムの実施の形態を添付図面を参照して説明する。
まず図1は本発明に係るパラレルメカニズムを構成する基本構成要素を示すもので、この基本構成要素は、剛性を有し、円形断面で単線の弾性ワイヤー1の複数本が、被駆動側部材2と駆動側部材3の各支点位置において、同一配置となるように接続されている。被駆動側部材2と駆動側部材3の各支点に対しての弾性ワイヤー1の接続は、単なる固定接続であり、相対回転や相対滑りを設ける必要はない。このため従来のパラレルメカニズムでは必要であった球面軸受等の複雑な構成の軸受は不要である。本発明の基本構成要素は、以上の構成に加えて、被駆動側部材2と駆動側部材3間に、前記弾性ワイヤー1を、横断面方向から見て前記配置を維持しつつ軸方向に移動及び軸方向の回りに回転可能に支持する中間支持部材4を設けた構成である。
Next, an embodiment of the parallel mechanism of the present invention will be described with reference to the accompanying drawings.
First, FIG. 1 shows basic constituent elements constituting a parallel mechanism according to the present invention. The basic constituent elements are rigid and a plurality of single-wire elastic wires 1 having a circular cross section are connected to a driven member 2. And at the respective fulcrum positions of the drive side member 3 are connected so as to have the same arrangement. The connection of the elastic wire 1 to each fulcrum of the driven side member 2 and the driving side member 3 is merely a fixed connection, and it is not necessary to provide relative rotation or relative slip. For this reason, the bearing of complicated structure, such as a spherical bearing required with the conventional parallel mechanism, is unnecessary. In addition to the above-described configuration, the basic component of the present invention moves between the driven side member 2 and the driving side member 3 in the axial direction while maintaining the arrangement when the elastic wire 1 is viewed from the cross-sectional direction. And it is the structure which provided the intermediate | middle support member 4 supported rotatably around an axial direction.

本発明において、弾性ワイヤー1は、予め設定した荷重を自立的に支持可能な剛性、即ち、引張り、圧縮、曲げ及び捩り方向の剛性を有し、円形断面の単線であり、材質は、鉄系、非鉄系の金属や、合成樹脂、複合材料等の非金属等、適宜に選択することができる。   In the present invention, the elastic wire 1 has a rigidity capable of autonomously supporting a preset load, that is, a rigidity in the direction of tension, compression, bending and torsion, and is a single wire having a circular cross section. Non-ferrous metals, non-metals such as synthetic resins and composite materials can be selected as appropriate.

この実施の形態においては、弾性ワイヤー1は5本としており、これらの弾性ワイヤー1を、横断面方向から見て正五角形の各頂点に対応させた配置として、被駆動側部材2と駆動側部材3に固定すると共に、中間支持部材4には、弾性ワイヤー1を、前記配置を維持しつつ、軸方向に移動及び軸方向の回りに回転可能に支持する部材として案内孔5を設けている。   In this embodiment, the number of elastic wires 1 is five, and these elastic wires 1 are arranged so as to correspond to the respective apexes of a regular pentagon when viewed from the cross-sectional direction. 3, the intermediate support member 4 is provided with a guide hole 5 as a member that supports the elastic wire 1 so as to be movable in the axial direction and rotatable about the axial direction while maintaining the above-described arrangement.

中間支持部材4は、上述したように、弾性ワイヤー1を、前記配置を維持しつつ、軸方向に移動及び軸方向の回りに回転可能に支持することができれば、直線状に構成することは勿論であるが、直線状でなく、曲がった構成とすることもできる。また中間支持部材4は、剛体により構成することは勿論であるが、可撓性を有する材質により構成することもできるものである。   As described above, the intermediate support member 4 can be configured in a straight line as long as the elastic wire 1 can be supported so as to be movable in the axial direction and rotatable about the axial direction while maintaining the arrangement. However, it is also possible to have a curved configuration instead of a straight line. In addition, the intermediate support member 4 can be made of a rigid material, but can also be made of a flexible material.

この実施の形態において、被駆動側部材2と駆動側部材3は円環状プレートとして構成しているが、その形状等は適宜である。また中間支持部材4は、軸方向の貫通穴6を有するスリーブ状に構成しているが、貫通穴6を有しない適宜の構成とすることもできる。   In this embodiment, the driven side member 2 and the driving side member 3 are configured as an annular plate, but the shape and the like are appropriate. Moreover, although the intermediate support member 4 is configured in a sleeve shape having an axial through hole 6, an appropriate configuration without the through hole 6 may be employed.

本発明のパラレルメカニズムでは、このような基本構成要素において、中間支持部材4を被駆動側部材2と駆動側部材3間に配置した適宜の支持部位7に取り付けて使用し、駆動側部材3を、適宜の駆動機構8により駆動するようにして、パラレルメカニズムとして動作させることができる。尚、駆動機構8は手動でも良く、被駆動側部材2の動きを見ながら、被駆動側部材2が、所望の位置・姿勢になるように駆動側部材3を手動で動かすようにすることも可能である。   In the parallel mechanism of the present invention, in such a basic component, the intermediate support member 4 is used by being attached to an appropriate support portion 7 disposed between the driven side member 2 and the driving side member 3, and the driving side member 3 is used. It can be operated as a parallel mechanism by being driven by an appropriate drive mechanism 8. The driving mechanism 8 may be manually operated, and the driving side member 3 may be manually moved so that the driven side member 2 is in a desired position / posture while observing the movement of the driven side member 2. Is possible.

次に、本発明のパラレルメカニズムを動作させる具体的な実施の形態を説明すると、まず図3〜図6は第1の実施の形態を示すもので、この実施の形態では、駆動側部材3は、他のパラレルメカニズム8の被駆動側部材として構成したものであり、このパラレルメカニズム8が上述した駆動機構に相当するものである。   Next, a specific embodiment for operating the parallel mechanism of the present invention will be described. First, FIG. 3 to FIG. 6 show the first embodiment. In this embodiment, the drive side member 3 is The other parallel mechanism 8 is configured as a driven side member, and the parallel mechanism 8 corresponds to the drive mechanism described above.

このパラレルメカニズム8は、従来技術として説明したスチュアートプラットホームと称される伸縮型のパラレルメカニズムであり、駆動側部材9と、被駆動側部材、即ち、本発明のパラレルメカニズムにおける駆動側部材3との間に、球面軸受けを有するジョイント10を介して6個の伸縮式アクチュエータ11を配置して、6自由度の運動を行わせるようにしたものである。このパラレルメカニズムの構成や動作は周知であるので、詳細な説明は省略する。尚、図3(b)においては、支持部位7を模式的に描いている。   This parallel mechanism 8 is a telescopic parallel mechanism called a Stuart platform described as the prior art, and includes a driving side member 9 and a driven side member, that is, the driving side member 3 in the parallel mechanism of the present invention. In the middle, six telescopic actuators 11 are arranged via a joint 10 having a spherical bearing so as to perform a motion with six degrees of freedom. Since the configuration and operation of this parallel mechanism are well known, detailed description thereof is omitted. In addition, in FIG.3 (b), the support part 7 is drawn typically.

以上の構成において、他のパラレルメカニズム8により、駆動側部材3を、図4(a)に示す状態から、(b)に示すように、その姿勢を維持しながら軸方向、即ち、図中下方に移動させると、全ての弾性ワイヤー1が、中間支持部材4の案内孔5に支持されて下降するので、被駆動側部材2は、(a)の姿勢が維持されたまま下降する。また逆の動作により、(b)の状態から(a)の状態まで動作させることができる。   In the above configuration, the drive-side member 3 is moved in the axial direction from the state shown in FIG. 4A by the other parallel mechanism 8 while maintaining its posture as shown in FIG. When moved to, all the elastic wires 1 are supported by the guide holes 5 of the intermediate support member 4 and are lowered, so that the driven member 2 is lowered while maintaining the posture of (a). Moreover, it can be made to operate | move from the state of (b) to the state of (a) by reverse operation | movement.

次に図5の(a)に示す状態において、他のパラレルメカニズム8により駆動側部材3を、(b)に示すように傾斜させると、傾斜により、駆動側部材3側において中間支持部材4までの距離が近くなる側に対応する弾性ワイヤー1、即ち、図中左側の弾性ワイヤー1は被駆動側部材2の対応個所を押す方向に作用する。一方、傾斜により、駆動側部材3側において中間支持部材4からの距離が遠くなる側に対応する弾性ワイヤー1、即ち、図中右側の弾性ワイヤー1は被駆動側部材2の対応個所を引く方向に作用するため、被駆動側部材2は、駆動側部材3の傾斜方向と同方向に傾斜する。   Next, in the state shown in FIG. 5A, when the drive side member 3 is tilted as shown in FIG. 5B by another parallel mechanism 8, the drive side member 3 side is moved to the intermediate support member 4 by the tilt. The elastic wire 1 corresponding to the side where the distance becomes closer, that is, the elastic wire 1 on the left side in the figure acts in the direction of pushing the corresponding portion of the driven side member 2. On the other hand, due to the inclination, the elastic wire 1 corresponding to the side where the distance from the intermediate support member 4 is increased on the driving side member 3 side, that is, the elastic wire 1 on the right side in the figure pulls the corresponding portion of the driven side member 2. Therefore, the driven side member 2 is inclined in the same direction as the inclination direction of the driving side member 3.

次に図6の(a)に示す状態において、駆動側部材3を軸方向の回りに適宜角度θ回転させると、全ての弾性ワイヤー1が回転軌跡に沿って移動し、これにより全ての弾性ワイヤー1が回転方向に捩られる。このように全ての弾性ワイヤー1が同一方向に捩られるため、被駆動側部材2は、全ての弾性ワイヤー1に駆動されて、(b)に示すように軸方向の回りに、駆動側部材3と同方向に同角度θだけ回転する。尚、(b)中には、2点鎖線の円で囲んだ個所の拡大図を示している。   Next, in the state shown in FIG. 6A, when the drive side member 3 is appropriately rotated around the axial direction by an angle θ, all the elastic wires 1 move along the rotation trajectory, thereby all the elastic wires. 1 is twisted in the direction of rotation. Since all the elastic wires 1 are twisted in the same direction as described above, the driven-side member 2 is driven by all the elastic wires 1 and, as shown in FIG. And the same angle θ in the same direction. In addition, in (b), the enlarged view of the part enclosed with the circle of the dashed-two dotted line is shown.

以上の各方向の動作は、組み合わせて行わせることができ、こうして、多自由度で柔軟な動きを行わせることができる。   The operations in the above directions can be performed in combination, and thus a flexible motion with multiple degrees of freedom can be performed.

そして、本発明においては、被駆動側部材2の位置及び姿勢の制御は、ティーチング等による制御方法により正確に行わせることができる。以下にこの制御方法の例を説明する。   In the present invention, the position and orientation of the driven member 2 can be accurately controlled by a control method such as teaching. An example of this control method will be described below.

まず、図3の駆動機構8のパラレルメカニズムに使用される6本の伸縮式アクチュエータ11は電動方式、油圧方式、空気圧方式およびそれらを組合せたハイブリッド方式などがある。通常、これらのアクチュエータ11には伸縮ロッドの変位量を検出するための位置検出器を取り付けて、位置信号をフィードバック信号とする位置制御系が構成されている。そしてコンピュータからの各アクチュエータ11への位置指令信号に追従して各アクチュエータの伸縮ロッドが駆動される。その結果、駆動部材3の姿勢制御が正確に行われ、最終的には被駆動側部材2の位置および姿勢が正確に制御される。   First, the six telescopic actuators 11 used in the parallel mechanism of the drive mechanism 8 in FIG. 3 include an electric system, a hydraulic system, a pneumatic system, and a hybrid system combining them. Usually, these actuators 11 are provided with a position detector for detecting the amount of displacement of the telescopic rod, and a position control system using a position signal as a feedback signal is configured. The telescopic rod of each actuator is driven following the position command signal from the computer to each actuator 11. As a result, the posture control of the driving member 3 is accurately performed, and finally the position and posture of the driven member 2 are accurately controlled.

また位置検出器だけでなく、さらに各アクチュエータ11の伸縮ロッドに、ロッドに加わる荷重を検出する荷重検出器を取り付けるか、または歪みゲージを貼って荷重を検出し、この荷重信号を検出して各アクチュエータ11の荷重モニタまたは荷重制御を行うこともできる。   In addition to the position detector, a load detector for detecting a load applied to the rod is attached to the expansion / contraction rod of each actuator 11, or a load is detected by attaching a strain gauge, and this load signal is detected to detect each load signal. The load monitoring or load control of the actuator 11 can also be performed.

以上の位置および荷重を検出する検出器を装備した各アクチュエータ11によりパラレルメカニズム8の位置制御系を構成し、例えば、中立位置に静止させる。次に被駆動部材2が希望する動きや姿勢をとるように、駆動部材3を人間の手により希望する方向に動くような力を加える。このとき、各アクチュエータ11には、夫々押しまたは引きの荷重が加わる。この荷重を荷重検出器または歪みゲージにより検出して、同時に位置制御系への変位指令信号とする。すると各アクチュエータ11の伸縮ロッドは押しまたは引きの荷重に対応して短縮方向または伸長方向に変位する。このとき人間の手はあたかもバネを介して駆動部材3を動かしているように感じる。   The position control system of the parallel mechanism 8 is constituted by each actuator 11 equipped with the detector for detecting the position and load described above, and is stationary at, for example, the neutral position. Next, a force that moves the driving member 3 in a desired direction by a human hand is applied so that the driven member 2 takes a desired movement and posture. At this time, a pushing or pulling load is applied to each actuator 11. This load is detected by a load detector or a strain gauge, and at the same time, it is used as a displacement command signal to the position control system. Then, the telescopic rod of each actuator 11 is displaced in the shortening direction or the extending direction in accordance with the pushing or pulling load. At this time, the human hand feels as if the drive member 3 is moving through the spring.

このときの各アクチュエータ11の伸縮ロッドの位置信号を記憶装置に記憶しておく。そして、この位置信号を位置指令信号として再生し、位置制御系が構成された各アクチュエータ11を駆動すると、先に手動で動かした時の駆動側部材3の動作を忠実、且つ正確に再現させることができる。従って結果的に、被駆動側部材2の位置および姿勢の動きを正確かつ忠実に再現できる。以上によりプレイバック方式のティーチングが実現できる。   The position signal of the telescopic rod of each actuator 11 at this time is stored in the storage device. Then, when this position signal is reproduced as a position command signal and each actuator 11 in which the position control system is configured is driven, the operation of the drive side member 3 when it is manually moved first is faithfully and accurately reproduced. Can do. Therefore, as a result, the movement of the position and posture of the driven member 2 can be accurately and faithfully reproduced. Thus, playback-type teaching can be realized.

以上の方法では、ティーチングを行う際に伸縮アクチュエータ11の荷重信号を使って伸縮ロッドを動かしているが、油圧または空気圧シリンダの場合には油圧または空気圧をゼロにすればロッドはほとんど抵抗なく動くので、この状態で駆動部材3を手動で動かして、そのときの各伸縮アクチュエータ11の位置信号を記憶装置に記憶しておき、この位置信号を再生して位置指令信号として油圧または空気圧シリンダを駆動してもティーチングは実現できる。   In the above method, the telescopic rod is moved using the load signal of the telescopic actuator 11 when teaching is performed. However, in the case of a hydraulic or pneumatic cylinder, if the hydraulic pressure or pneumatic pressure is reduced to zero, the rod moves almost without resistance. In this state, the drive member 3 is manually moved, the position signals of the respective expansion / contraction actuators 11 at that time are stored in the storage device, and the position signal is reproduced to drive the hydraulic or pneumatic cylinder as a position command signal. Even teaching can be realized.

次に、図7〜図10は本発明のパラレルメカニズムを動作させる第2の実施の形態を示すもので、第1の実施の形態と同様な構成要素には同一の符号を付して、詳細な説明は省略する。この実施の形態では、駆動側部材3は、夫々の弾性ワイヤー1毎に設け、夫々の弾性ワイヤー1を進退及び捩り回転可能とするようにベース12に突設した複数の駆動装置13により構成している。この実施の形態では、弾性ワイヤー1は3本としており、これらの弾性ワイヤー1を、横断面方向から見て正三角形の各頂点に対応させた配置として、被駆動側部材2と、駆動側部材3としての3つの駆動装置13に固定している。そして第1の実施の形態と同様に、中間支持部材4には、弾性ワイヤー1を、前記配置を維持しつつ、軸方向に移動及び軸方向の回りに回転可能に支持する案内孔5を設けている。尚、図7(b)においては、図3(b)と同様に、支持部位7を模式的に描いている。   Next, FIGS. 7 to 10 show a second embodiment in which the parallel mechanism of the present invention is operated. The same reference numerals are given to the same components as those in the first embodiment, and the details will be described. The detailed explanation is omitted. In this embodiment, the drive-side member 3 is configured by a plurality of drive devices 13 that are provided for each elastic wire 1 and project from the base 12 so that each elastic wire 1 can be advanced and retracted and twisted. ing. In this embodiment, the number of elastic wires 1 is three, and these elastic wires 1 are arranged so as to correspond to the vertices of an equilateral triangle when viewed from the cross-sectional direction. 3 is fixed to three drive devices 13. As in the first embodiment, the intermediate support member 4 is provided with a guide hole 5 for supporting the elastic wire 1 so as to move in the axial direction and rotate around the axial direction while maintaining the arrangement. ing. In FIG. 7B, the support portion 7 is schematically drawn as in FIG. 3B.

以上の構成において、例えば図8(a)の状態から、全ての駆動装置13を等距離短縮させると、被駆動側部材2は全ての弾性ワイヤー1により引っ張られて、図8(b)に示すように姿勢が維持されたまま下降する。また逆に、図8(b)の状態において、全ての駆動装置13を等距離伸長させると、被駆動側部材2は全ての弾性ワイヤー1により押されて、図8(a)に示すように姿勢が維持されたまま上昇する。   In the above configuration, for example, when all the driving devices 13 are shortened by an equal distance from the state of FIG. 8A, the driven side members 2 are pulled by all the elastic wires 1 and are shown in FIG. 8B. So that the posture is maintained. On the contrary, in the state of FIG. 8B, when all the driving devices 13 are extended by the same distance, the driven side member 2 is pushed by all the elastic wires 1, and as shown in FIG. 8A. Ascend while maintaining posture.

次に図9(a)の状態において、図9中の右側に示された駆動装置13を図中矢印に示すように短縮させると、図9中の右側の弾性ワイヤー1のみが被駆動側部材2の対応個所を引っ張るので、被駆動側部材2は図9(a)に示すように右側方向に傾斜して行き、更に短縮することにより、被駆動側部材2の傾斜角度を図9(b)に示すように、更に大きくすることができる。   Next, in the state of FIG. 9A, when the drive device 13 shown on the right side in FIG. 9 is shortened as shown by the arrow in the figure, only the right elastic wire 1 in FIG. 9 is pulled, the driven-side member 2 inclines in the right direction as shown in FIG. 9A, and further shortens so that the inclination angle of the driven-side member 2 is changed to FIG. 9B. As shown in FIG.

駆動装置13における伸縮速度が不変の場合において、所定の傾斜角度に至るまでの時間を短縮するために、右側の駆動装置13の短縮動作と共に、左側の駆動装置13を伸長動作することもできる。   When the expansion / contraction speed in the driving device 13 is not changed, the left driving device 13 can be extended together with the shortening operation of the right driving device 13 in order to shorten the time to reach a predetermined inclination angle.

このように駆動側部材3の支点位置に対応して設けられた複数の駆動装置13において、伸長又は短縮させる駆動装置13を選択することにより、適宜の方向に被駆動側部材2を傾斜させることができる。   In this way, among the plurality of driving devices 13 provided corresponding to the fulcrum positions of the driving side member 3, by selecting the driving device 13 to be extended or shortened, the driven side member 2 is inclined in an appropriate direction. Can do.

次に、図10(a)に示す状態において、駆動側部材3を構成する3つの駆動装置13の全てを同一方向に同角度θ1だけ回転させると、全ての弾性ワイヤー1が回転方向に捩られる。このように全ての弾性ワイヤー1が同一方向に捩られるため、被駆動側部材2は、全ての弾性ワイヤー1に駆動されて、(b)に示すように、軸方向の回りに、角度θ2だけ回転する。尚、(b)中には、2点鎖線の円で囲んだ個所の拡大図を示している。 Next, in the state shown in FIG. 10A, when all the three drive devices 13 constituting the drive side member 3 are rotated by the same angle θ 1 in the same direction, all the elastic wires 1 are twisted in the rotation direction. It is done. Since all the elastic wires 1 are twisted in the same direction as described above, the driven member 2 is driven by all the elastic wires 1 and has an angle θ 2 around the axial direction as shown in FIG. Only rotate. In addition, in (b), the enlarged view of the part enclosed with the circle of the dashed-two dotted line is shown.

この実施の形態においても、以上の各方向の動作は、組み合わせて行わせることができ、こうして、多自由度で柔軟な動きを行わせることができる。そして被駆動側部材2の位置及び姿勢の制御は、ティーチング等による制御方法により正確に行わせることができる。以下にこの制御方法の例を説明する。   Also in this embodiment, the operations in the above directions can be performed in combination, and thus a flexible motion with multiple degrees of freedom can be performed. The position and orientation of the driven member 2 can be accurately controlled by a control method such as teaching. An example of this control method will be described below.

図7の駆動装置13の駆動部材3は伸縮および軸回りの回転である捩りの機能を持ったアクチュエータの伸縮・回転ロッドに相当する。それらの駆動方法には電動方式、油圧方式、空気圧方式およびそれらを組合せたハイブリッド方式などがある。通常はロッドの伸縮量を検出するための位置検出器、ロッドの回転角度を検出するための角度検出器を取り付けてロッドの位置制御および角度制御を行なっている。   The drive member 3 of the drive device 13 shown in FIG. 7 corresponds to an expansion / contraction / rotation rod of an actuator having a function of torsion that is expansion / contraction and rotation around an axis. These driving methods include an electric method, a hydraulic method, a pneumatic method, and a hybrid method combining them. Usually, a position detector for detecting the amount of expansion and contraction of the rod and an angle detector for detecting the rotation angle of the rod are attached to control the position and angle of the rod.

また位置センサ、角度センサだけでなく、ロッドにかかる圧縮・引張り力を検出する荷重センサまたは歪みゲージ、ロッドにかかる捩りトルクを検出するトルク検出器を取り付けて、荷重およびトルクのモニタまたは荷重制御、トルク制御を行うこともできる。   In addition to the position sensor and angle sensor, a load sensor or strain gauge that detects compression / tensile force applied to the rod, and a torque detector that detects torsion torque applied to the rod are attached to monitor or control the load and torque. Torque control can also be performed.

以上の、位置・角度・荷重・トルクを検出する検出器を装備したアクチュエータで駆動装置13を構成し、位置制御および角度制御で、例えば、中立位置に静止させておく。次に、被駆動部材2が希望する位置・姿勢になるように駆動装置13の駆動部材3である各アクチュエータのロッド先端部を、手で押したり、引いたり、捩ることによって、押す方向や引く方向の力、そして捩りのトルクを加える。このとき各アクチュエータの荷重検出器およびトルク検出器は、手から加えられた荷重とトルクを検出すると同時に、この荷重信号とトルク信号を、それぞれ位置制御系および角度制御系への指令信号にする。するとアクチュエータのロッドは荷重およびトルク信号に応じて、伸縮および回転動作を行ない、手から加えられた力およびトルクに応じて伸縮動作・回転動作を行う。このとき人間の手はあたかもバネを介してロッドを動かしているように感じる。   The drive device 13 is configured by the actuator equipped with the above-described detector for detecting the position, angle, load, and torque, and is kept stationary, for example, at the neutral position by position control and angle control. Next, by pushing, pulling, or twisting the rod tip of each actuator, which is the driving member 3 of the driving device 13, by hand so that the driven member 2 is in the desired position / posture, the pushing direction or pulling Apply directional force and torsional torque. At this time, the load detector and the torque detector of each actuator detect the load and torque applied from the hand, and at the same time, use the load signal and the torque signal as command signals to the position control system and the angle control system, respectively. Then, the rod of the actuator performs expansion and contraction and rotation operations according to the load and torque signal, and performs the expansion and contraction operation and rotation operations according to the force and torque applied from the hand. At this time, the human hand feels as if moving the rod through the spring.

このときの各アクチュエータ伸縮ロッドの位置信号・角度信号を記憶装置に記憶しておく。そして、この位置信号・角度信号を位置指令信号・角度指令信号として再生し、位置制御系・角度制御系が構成された各アクチュエータを駆動すると、先に手動で動かした時の各駆動側部材3の動作を忠実かつ正確に再現させることができる。従って結果的に、被駆動側部材2の位置および姿勢の動きを正確かつ忠実に再現できる。以上によりプレイバック方式のティーチングが実現できる。   The position signal and angle signal of each actuator telescopic rod at this time are stored in the storage device. Then, when this position signal / angle signal is reproduced as a position command signal / angle command signal and each actuator comprising the position control system / angle control system is driven, each drive side member 3 when it is manually moved first. Can be reproduced faithfully and accurately. Therefore, as a result, the movement of the position and posture of the driven member 2 can be accurately and faithfully reproduced. Thus, playback-type teaching can be realized.

尚、以上に説明した第1、第2の実施の形態においては、被駆動側部材2と駆動側部材3は円環状プレートとして構成すると共に、中間支持部材4は、軸方向の貫通穴6を有するスリーブ状に構成しているが、このような構成においては、貫通穴6や円環状プレートの穴を通して、センサやモータ用のケーブル又は別の目的のワイヤー等を挿通する手段として利用することができる。   In the first and second embodiments described above, the driven side member 2 and the driving side member 3 are configured as an annular plate, and the intermediate support member 4 has an axial through hole 6. In such a configuration, it can be used as a means for inserting a cable for a sensor, a motor or another purpose through a hole in the through hole 6 or the annular plate. it can.

図11(a)、(b)及び図12(a)、(b)は、夫々本発明のパラレルメカニズムの第1の実施の形態及び第2の実施の形態を利用して構成した密閉室内作業機構を示すものであり、この密閉室内作業機構は、密閉室14の壁15に中間支持部材4を取り付けて、密閉室14内に被駆動側部材2を、そして密閉室14外に駆動側部材3を配置した構成である。この場合、中間支持部材4は気密を保持可能な構成とし、弾性ワイヤー1を支持する案内孔5も気密を保持可能な構成としている。   FIGS. 11 (a), 11 (b), 12 (a), and 12 (b) show work in a sealed room constructed by using the first and second embodiments of the parallel mechanism of the present invention, respectively. This mechanism shows a mechanism, and in this sealed chamber working mechanism, the intermediate support member 4 is attached to the wall 15 of the sealed chamber 14, the driven side member 2 is inside the sealed chamber 14, and the driving side member is outside the sealed chamber 14. 3 is arranged. In this case, the intermediate support member 4 is configured to be able to maintain airtightness, and the guide hole 5 that supports the elastic wire 1 is also configured to be able to maintain airtightness.

このような構成においては、密閉室14内を真空又は特殊環境に保持した状態で、例えば夫々の図の(b)に示すように、材料試験片16に対しての捩り試験を行うことができる。尚、図では捩り試験の場合を示したが、捩り試験だけでなく、図4、図5、図8及び図9に示す動きを利用して、引張・圧縮試験や曲げ試験を行うことができ、更に、これらを合成した試験を行うことができる。   In such a configuration, a torsion test can be performed on the material test piece 16 in a state where the inside of the sealed chamber 14 is maintained in a vacuum or a special environment, for example, as shown in FIG. . Although the figure shows the case of the torsion test, not only the torsion test but also the tension / compression test and the bending test can be performed by using the movements shown in FIGS. 4, 5, 8 and 9. Furthermore, a test in which these are synthesized can be performed.

次に、図13(a)、(b)は本発明のパラレルメカニズムを構成する基本構成要素の他の実施の形態を示すもので、この実施の形態では、被駆動側部材2と駆動側部材3の各支点位置における弾性ワイヤー1の接続の配置と、中間支持部材4における弾性ワイヤー1の支持の配置を相似位置として構成している。即ち、(a)では、駆動側部材3と中間支持部材4における配置は同一配置とすると共に、被駆動側部材2の配置はそれらの配置よりも大きい相似配置としたものであり、また(b)では、被駆動側部材2と駆動側部材3における配置は同一配置とすると共に、中間支持部材4における配置はそれらの配置よりも小さい相似配置としたものである。   Next, FIGS. 13A and 13B show another embodiment of the basic components constituting the parallel mechanism of the present invention. In this embodiment, the driven side member 2 and the driving side member are shown. The arrangement of the connection of the elastic wire 1 at each fulcrum position 3 and the arrangement of the support of the elastic wire 1 in the intermediate support member 4 are configured as similar positions. That is, in (a), the arrangement on the driving side member 3 and the intermediate support member 4 is the same arrangement, and the arrangement on the driven side member 2 is a similar arrangement larger than those arrangements, and (b) ), The arrangement of the driven side member 2 and the driving side member 3 is the same, and the arrangement of the intermediate support member 4 is a similar arrangement smaller than those arrangements.

これらの構成においては、中間支持部材4から被駆動側部材2又は駆動側部材3に至る弾性ワイヤー1が拡大又は縮小方向に曲がる部分が生じるため、それに起因して、例えば、軸方向の移動範囲が狭くなる等、動きが制限されることがあるが、これを許容する用途においては、適用可能である。   In these configurations, the elastic wire 1 extending from the intermediate support member 4 to the driven side member 2 or the driving side member 3 has a portion that bends in the enlargement or reduction direction. The movement may be limited, such as narrowing, but it is applicable to applications that allow this.

本発明のパラレルメカニズムは、上述したように剛性を有する複数の弾性ワイヤーを合理的に用いて構成することにより、従来のパラレルメカニズムでは不可能であった柔軟な動きを行えるようにした多自由度機構を提供するものであり、一般産業、試験機、航空宇宙、医療福祉、マイクロマシン、遊戯施設等に関する多分野において利用可能である。   As described above, the parallel mechanism of the present invention is configured by rationally using a plurality of rigid elastic wires, thereby enabling flexible movement that was impossible with the conventional parallel mechanism. The mechanism is provided and can be used in various fields related to general industries, testing machines, aerospace, medical welfare, micromachines, amusement facilities, and the like.

1 弾性ワイヤー
2 被駆動側部材
3 駆動側部材
4 中間支持部材
5 案内孔
6 貫通穴
7 支持部位
8 駆動機構(他のパラレルメカニズム)
9 駆動側部材
10 ジョイント
11 伸縮式アクチュエータ
12 ベース
13 駆動装置
14 密閉室
15 壁
16 材料試験片
DESCRIPTION OF SYMBOLS 1 Elastic wire 2 Driven side member 3 Drive side member 4 Intermediate support member 5 Guide hole 6 Through hole 7 Support part 8 Drive mechanism (other parallel mechanism)
9 Drive side member 10 Joint 11 Telescopic actuator 12 Base 13 Drive device 14 Sealed chamber 15 Wall 16 Material test piece

Claims (6)

剛性を有し、円形断面で単線の弾性ワイヤーの複数本が、被駆動側部材と駆動側部材の各支点位置において、同一配置となるように接続されており、また前記被駆動側部材と前記駆動側部材間には、前記弾性ワイヤーを、横断面方向から見て前記配置を維持しつつ軸方向に移動及び軸方向の回りに回転可能に支持する中間支持部材が設けられていることを特徴とする剛性を有する複数の弾性ワイヤーを用いたパラレルメカニズム。 A plurality of single-wire elastic wires having rigidity and a circular cross section are connected so as to be in the same arrangement at each fulcrum position of the driven side member and the driving side member, and the driven side member and the An intermediate support member is provided between the drive-side members to support the elastic wire so that the elastic wire can be moved in the axial direction and rotated about the axial direction while maintaining the arrangement when viewed from the cross-sectional direction. A parallel mechanism using a plurality of elastic wires having rigidity. 剛性を有し、円形断面で単線の弾性ワイヤーの複数本が、被駆動側部材と駆動側部材の各支点位置において、相似配置となるように接続されており、また前記被駆動側部材と前記駆動側部材間には、前記弾性ワイヤーを、横断面方向から見て前記相似配置を維持しつつ軸方向に移動及び軸方向の回りに回転可能に支持する中間支持部材が設けられていることを特徴とする剛性を有する複数の弾性ワイヤーを用いたパラレルメカニズム。 A plurality of single-wire elastic wires having rigidity and a circular cross section are connected so as to be arranged in a similar manner at each fulcrum position of the driven side member and the driving side member, and the driven side member and the An intermediate support member is provided between the drive-side members to support the elastic wire so as to move in the axial direction and rotate around the axial direction while maintaining the similar arrangement when viewed from the cross-sectional direction. Parallel mechanism using multiple elastic wires with the characteristic rigidity. 駆動側部材は、他のパラレルメカニズムの被駆動側部材として構成したことを特徴とする請求項1又は2に記載の剛性を有する複数の弾性ワイヤーを用いたパラレルメカニズム。 3. The parallel mechanism using a plurality of elastic wires having rigidity according to claim 1, wherein the driving side member is configured as a driven side member of another parallel mechanism. 駆動側部材は、夫々の弾性ワイヤー毎に設け、弾性ワイヤーを進退及び捩り回転可能とした複数の駆動装置により構成したことを特徴とする請求項1又は2に記載の剛性を有する複数の弾性ワイヤーを用いたパラレルメカニズム。 3. The plurality of elastic wires having rigidity according to claim 1 or 2, wherein the driving side member is provided for each elastic wire, and is constituted by a plurality of driving devices capable of moving the elastic wire forward and backward and torsionally rotating. Parallel mechanism using 請求項1〜4のいずれかのパラレルメカニズムの中間支持部材を密閉室の壁に気密的に取り付けて、被駆動側部材を密閉室内に位置させると共に、駆動側部材を密閉室外に位置させたことを特徴とする密閉室内作業機構。 The intermediate support member of the parallel mechanism according to any one of claims 1 to 4 is hermetically attached to the wall of the sealed chamber, the driven side member is positioned in the sealed chamber, and the driving side member is positioned outside the sealed chamber. A sealed indoor working mechanism. 密閉室は真空又は特殊環境の材料試験室であることを特徴とする請求項5に記載の密閉室内作業機構。 The sealed chamber working mechanism according to claim 5, wherein the sealed chamber is a material test chamber in a vacuum or a special environment.
JP2010248098A 2010-11-05 2010-11-05 Parallel mechanism using a plurality of elastic wires having rigidity Pending JP2012096337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010248098A JP2012096337A (en) 2010-11-05 2010-11-05 Parallel mechanism using a plurality of elastic wires having rigidity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010248098A JP2012096337A (en) 2010-11-05 2010-11-05 Parallel mechanism using a plurality of elastic wires having rigidity

Publications (1)

Publication Number Publication Date
JP2012096337A true JP2012096337A (en) 2012-05-24

Family

ID=46388858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010248098A Pending JP2012096337A (en) 2010-11-05 2010-11-05 Parallel mechanism using a plurality of elastic wires having rigidity

Country Status (1)

Country Link
JP (1) JP2012096337A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136648A1 (en) * 2014-03-12 2015-09-17 株式会社安川電機 Parallel link mechanism, robot and assembly device
WO2016063348A1 (en) * 2014-10-21 2016-04-28 オリンパス株式会社 Curving mechanism and flexible medical equipment
KR20190067780A (en) * 2016-08-31 2019-06-17 베이징 서제리 테크놀로지 씨오., 엘티디. Flexible continuum structure capable of implementing posture feedback
US10744639B2 (en) 2015-10-26 2020-08-18 Sony Corporation Parallel link robot and operation apparatus
CN113208736A (en) * 2021-05-31 2021-08-06 上海微创医疗机器人(集团)股份有限公司 Instrument driving device, instrument tail end assembly, surgical instrument and surgical robot
EP3822512A4 (en) * 2018-08-27 2021-08-18 Sony Group Corporation Parallel wire device, parallel wire system, medical robot operation device, mobile projection device, and mobile imaging device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62292385A (en) * 1986-06-10 1987-12-19 ロ−ド・コ−ポレ−シヨン Body manipulator
JPH02304366A (en) * 1989-05-18 1990-12-18 Tosoh Corp Manipulator for analyzing device
WO2007069667A1 (en) * 2005-12-15 2007-06-21 Tokyo Institute Of Technology Elastic joint device
US20080257096A1 (en) * 2005-04-01 2008-10-23 Zhenqi Zhu Flexible Parallel Manipulator For Nano-, Meso- or Macro-Positioning With Multi-Degrees of Freedom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62292385A (en) * 1986-06-10 1987-12-19 ロ−ド・コ−ポレ−シヨン Body manipulator
JPH02304366A (en) * 1989-05-18 1990-12-18 Tosoh Corp Manipulator for analyzing device
US20080257096A1 (en) * 2005-04-01 2008-10-23 Zhenqi Zhu Flexible Parallel Manipulator For Nano-, Meso- or Macro-Positioning With Multi-Degrees of Freedom
WO2007069667A1 (en) * 2005-12-15 2007-06-21 Tokyo Institute Of Technology Elastic joint device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136648A1 (en) * 2014-03-12 2015-09-17 株式会社安川電機 Parallel link mechanism, robot and assembly device
WO2016063348A1 (en) * 2014-10-21 2016-04-28 オリンパス株式会社 Curving mechanism and flexible medical equipment
JPWO2016063348A1 (en) * 2014-10-21 2017-09-28 オリンパス株式会社 Bending mechanism and flexible medical device
US11130244B2 (en) 2014-10-21 2021-09-28 Olympus Corporation Bending mechanism and flexible medical apparatus
US10744639B2 (en) 2015-10-26 2020-08-18 Sony Corporation Parallel link robot and operation apparatus
KR20190067780A (en) * 2016-08-31 2019-06-17 베이징 서제리 테크놀로지 씨오., 엘티디. Flexible continuum structure capable of implementing posture feedback
JP2019534167A (en) * 2016-08-31 2019-11-28 北京▲術▼▲鋭▼技▲術▼有限公司Beijing Surgerii Technology Co., Ltd. Flexible continuum structure capable of posture feedback
KR102171966B1 (en) * 2016-08-31 2020-11-02 베이징 서제리 테크놀로지 씨오., 엘티디. Flexible continuum structure that can implement posture feedback
EP3822512A4 (en) * 2018-08-27 2021-08-18 Sony Group Corporation Parallel wire device, parallel wire system, medical robot operation device, mobile projection device, and mobile imaging device
CN113208736A (en) * 2021-05-31 2021-08-06 上海微创医疗机器人(集团)股份有限公司 Instrument driving device, instrument tail end assembly, surgical instrument and surgical robot
CN113208736B (en) * 2021-05-31 2023-02-10 上海微创医疗机器人(集团)股份有限公司 Instrument driving device, instrument tail end assembly, surgical instrument and surgical robot

Similar Documents

Publication Publication Date Title
JP2012096337A (en) Parallel mechanism using a plurality of elastic wires having rigidity
US7407208B2 (en) Joint drive mechanism and robot hand
CA2176899C (en) Mechanism for control of position and orientation in three dimensions
US9895798B2 (en) Device for movement between an input member and an output member
US5673595A (en) Four degree-of-freedom manipulator
US8950286B2 (en) Robot or haptic interface structure with parallel arms
US11897122B2 (en) Robot hand
JP2022122889A (en) Surgical robot arms
JP2016168647A (en) Joint driving device, and robot device
JP2012056045A (en) Force-sensation-presentation manipulator having five axes
EP2101964A1 (en) Parallel kinematic structure
JP2009545459A (en) Jointed limbs for robots or haptic interfaces, and robots and haptic interfaces including such jointed limbs
TW201932256A (en) An industrial robot arm
KR20100019495A (en) Robotic manipulator using rotary drives
JP4442464B2 (en) Articulated arm mechanism
US11540890B2 (en) Haptic user interface for robotically controlled surgical instruments
JP5211287B2 (en) A haptic manipulator with a single center of rotation
JP2008194789A (en) Inner force sense presentation device, and power assist arm equipped therewith, and power assist device
JP2005305585A (en) Remote control system
JP5904744B2 (en) Armrest type remote control device
KR101649108B1 (en) A joint structure and a robot having the same
US11833671B2 (en) Joint structure for robot
Li et al. Design and analysis of a new 3-DOF compliant parallel positioning platform for nanomanipulation
JP2012024859A (en) Moving body with multi-degree of freedom
JP2010156352A (en) Actuator having small diameter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140929