JP2012072045A - Device and method for heating glass bottle and method of manufacturing glass bottle - Google Patents

Device and method for heating glass bottle and method of manufacturing glass bottle Download PDF

Info

Publication number
JP2012072045A
JP2012072045A JP2010291735A JP2010291735A JP2012072045A JP 2012072045 A JP2012072045 A JP 2012072045A JP 2010291735 A JP2010291735 A JP 2010291735A JP 2010291735 A JP2010291735 A JP 2010291735A JP 2012072045 A JP2012072045 A JP 2012072045A
Authority
JP
Japan
Prior art keywords
glass
glass bottle
heating
bottle
induction heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010291735A
Other languages
Japanese (ja)
Other versions
JP5555155B2 (en
Inventor
Masaki Kataoka
征喜 片岡
Shintaro Ono
真太郎 大野
Yasuhiro Morimitsu
靖浩 森光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Yamamura Glass Co Ltd
Original Assignee
Nihon Yamamura Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Yamamura Glass Co Ltd filed Critical Nihon Yamamura Glass Co Ltd
Priority to JP2010291735A priority Critical patent/JP5555155B2/en
Publication of JP2012072045A publication Critical patent/JP2012072045A/en
Application granted granted Critical
Publication of JP5555155B2 publication Critical patent/JP5555155B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • General Induction Heating (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device and a method for heating a glass bottle which can reduce occurrence of rejects of glass bottles on switching the item of products and suppress the cost of production control and a method of manufacturing a glass bottle.SOLUTION: The heating device 1 for glass bottles is used to heat the bottle mouth 51 of a glass bottle 50 at a predetermined temperature and includes a high-frequency power source, an induction heating element 6 arranged in the vicinity of the bottle mouth 51, an induction heating coil 7 generating an induced magnetic field, when a high-frequency electric current is supplied by the high-frequency power source, so as for the induction heating element 6 to generate heat and a controller controlling the heating condition of the induction heating element 6. It heats the bottle mouth 51 of the glass bottle 50 by causing the induction heating element 6 to generate heat.

Description

本発明は、ガラスびんの被加熱部を所定温度で加熱するための加熱装置及びその加熱装置を用いた加熱方法、ならびにガラスびんの製造方法に関する。   The present invention relates to a heating device for heating a heated portion of a glass bottle at a predetermined temperature, a heating method using the heating device, and a method for manufacturing a glass bottle.

一般に、ガラスびんの製造プロセスにおいては、溶融状態のガラス素材を成形型で成形した後、成形品であるガラスびんの一部である例えばびん口部を加熱装置で再加熱して焼くことで、成形時に形成された微細な突起等を無くすことが行われている。その際、びん口部の焼け過ぎ、焼けむら、焼け残りや、ガラスびんの表面に存在する保護コーティングに起因する白化現象が生じる場合がある。びん口部を再加熱(口焼き)した際のそのような白化現象を抑えるために、例えば特許文献1では、バーナヘッドを有する加熱装置が用いられている。この加熱装置では、びん口部の上方にバーナヘッドが配置され、このバーナヘッドに設けられたバーナホルダから放射された炎が当該びん口部に当てられ、当該びん口部が加熱されて口焼きされる。そして、上記バーナホルダの炎の放射口が軸方向に沿って形成されていることで、放射された炎がびん口部で拡散されず、当該びん口部の一部に過度に当たらないようにされている。   In general, in the manufacturing process of a glass bottle, after forming a glass material in a molten state with a mold, for example, by reheating the bottle mouth part that is a part of the glass bottle that is a molded product with a heating device, Elimination of fine protrusions and the like formed during molding is performed. At that time, over-burning, uneven burning, unburned residue, and whitening due to a protective coating existing on the surface of the glass bottle may occur. In order to suppress such a whitening phenomenon when the bottle opening is reheated (mouth baking), for example, in Patent Document 1, a heating device having a burner head is used. In this heating device, a burner head is arranged above the bottle mouth part, flame radiated from a burner holder provided on the burner head is applied to the bottle mouth part, and the bottle mouth part is heated and baked. The And, since the flame outlet of the burner holder is formed along the axial direction, the radiated flame is not diffused at the bottle mouth portion, and it is prevented from excessively hitting a part of the bottle mouth portion. ing.

特開2002−115819号公報JP 2002-115819 A

特許文献1のバーナを用いた加熱装置では、ガラスびんの品種替えが行われ、成形型やその他機器が変更された場合、その都度、炎の強度調整が行われて、びん口部を再加熱する加熱強度が当該びん口部の形状に応じたものとなる。炎の強度調整が行われる際、加熱されたびん口部が冷却されてからでないと、口焼き程度を検査することができない。そのため、品種替えに伴う上記の調整作業が完了するまでには、ガラスびんの破棄品が多く発生する。   In the heating device using the burner of Patent Document 1, when the type of glass bottle is changed and the mold or other equipment is changed, the strength of the flame is adjusted each time and the bottle mouth is reheated. The heating strength to be used is in accordance with the shape of the bottle opening. When the strength of the flame is adjusted, it is not possible to inspect the baked degree until the heated mouth is cooled. For this reason, many discarded glass bottles are generated by the time the above-described adjustment work accompanying the product change is completed.

一方、炎の放射口に導入されるガスの混合比率が少しでも変わることや、当該放射口がつまること等が起きると、均一な炎が得られなくなって加熱状態が変動する。加熱状態が変動すると、加熱工程に通された複数のガラスびんの上記焼け過ぎ、焼けむら、焼け残りによる外観不良が起こり、ガラスびんの品質のばらつきが生じる。つまり、品質のばらつきを抑えるためには、ガスの混合比率や炎の放射口の汚れ等を常に監視することが必要とされ、その分、製造管理のコストが嵩むという問題がある。   On the other hand, if the mixing ratio of the gas introduced into the radiant port of the flame changes even slightly or the radiant port becomes clogged, a uniform flame cannot be obtained and the heating state changes. When the heating state fluctuates, appearance defects due to the above-mentioned over-burning, uneven burning, and unburned residue of the plurality of glass bottles passed through the heating process occur, and the quality of the glass bottles varies. In other words, in order to suppress the variation in quality, it is necessary to constantly monitor the gas mixture ratio, the contamination of the flame outlet, etc., and there is a problem that the manufacturing management cost increases accordingly.

そこで本発明は、上記従来技術の問題点に鑑み、品種替えに伴うガラスびんの破棄品の発生を減少させ、それと共に製造管理のコストを抑えることができるガラスびんの加熱装置及び加熱方法、ならびにガラスびんの製造方法を提供することを目的とする。   Therefore, in view of the problems of the prior art described above, the present invention reduces the occurrence of discarded glass bottles due to product change, and at the same time, suppresses manufacturing management costs, and a glass bottle heating apparatus and method, and It aims at providing the manufacturing method of a glass bottle.

上記目的を達成するため、次の技術的手段を講じた。
即ち、本発明のガラスびんの加熱装置は、ガラスびんの被加熱部を所定温度で加熱するためのガラスびんの加熱装置であって、高周波電源部と、前記ガラスびんの被加熱部の近傍に配置された誘導発熱体と、前記高周波電源部から高周波電流が供給されて誘導磁界を発生させ前記誘導発熱体を発熱させる誘導加熱コイルと、前記誘導発熱体の発熱状態を制御する制御部とを備え、前記誘導発熱体を発熱させることによって前記被加熱部を加熱することを特徴とするものである。
In order to achieve the above object, the following technical measures were taken.
That is, the glass bottle heating device of the present invention is a glass bottle heating device for heating the heated portion of the glass bottle at a predetermined temperature, and is provided in the vicinity of the high-frequency power source and the heated portion of the glass bottle. An induction heating element arranged; an induction heating coil for generating an induction magnetic field by supplying a high-frequency current from the high-frequency power supply unit to generate heat in the induction heating element; and a control unit for controlling a heating state of the induction heating element And the heated portion is heated by causing the induction heating element to generate heat.

上記本発明のガラスびんの加熱装置によれば、誘導発熱体を誘導加熱コイルで発熱させることによってガラスびんの被加熱部が加熱されるため、加熱中に当該被加熱部の加熱程度を確認し、その加熱程度に応じて電流量等を変えて加熱強度の調整を行うことができる。つまり、被加熱部が冷却されてからでなくても、加熱強度の調整を行うことができる。このように、加熱強度の調整を行い易く、そのため、品種替えに伴う加熱強度の調整作業を早期に完了させることができ、ガラスびんの破棄品の発生を抑えることができる。また、誘導発熱体を誘導加熱コイルで発熱させることによってガラスびんの被加熱部が加熱されるため、当該被加熱部での加熱状態が変動し難く、例えば、加熱工程に通された複数のガラスびんのびん口部の焼け過ぎ、焼けむら、焼け残りによる外観不良が起こり難い。そのため、ガラスびんの品質のばらつきを抑えるための管理作業が減り、製造管理のコストを抑えることができる。   According to the glass bottle heating device of the present invention, since the heated portion of the glass bottle is heated by causing the induction heating element to generate heat with the induction heating coil, the degree of heating of the heated portion is confirmed during heating. The heating intensity can be adjusted by changing the amount of current according to the degree of heating. That is, the heating intensity can be adjusted even after the heated part is not cooled. Thus, it is easy to adjust the heating intensity. Therefore, the adjustment work of the heating intensity accompanying the product change can be completed at an early stage, and the generation of discarded products of glass bottles can be suppressed. In addition, since the heated portion of the glass bottle is heated by causing the induction heating element to generate heat with the induction heating coil, the heating state in the heated portion is unlikely to fluctuate. For example, a plurality of glasses passed through the heating process Appearance defects due to over-burning, uneven burning, and unburned residue at the bottle mouth are unlikely to occur. Therefore, the management work for suppressing the dispersion | variation in the quality of a glass bottle reduces, and the cost of manufacturing management can be held down.

本発明のガラスびんの加熱装置は、ガラスびんのあらゆる部分への加熱に用いられ、例えば、被加熱部をガラスびんのびん口部とした口焼きに適用できる。口焼きに適用する場合、前記誘導発熱体が、前記被加熱部としての前記ガラスびんのびん口部と軸方向に所定間隔をあけた状態で配置されていれば、当該びん口部のみを加熱することができ、当該びん口部以外の部分が焼けてしまうのを防止できる。さらに、ガラスびんと誘導発熱体とが互いに位置決めされる際、当該ガラスびんと当該誘導発熱体とが干渉しない。そのため、移送されていくガラスびんを一旦、止める必要等がなく、生産効率を向上させることができる。   The glass bottle heating device of the present invention is used for heating all parts of a glass bottle, and can be applied to, for example, scalloping with a heated portion as a bottle mouth portion of a glass bottle. When the induction heating element is disposed in a state of being spaced apart from the bottle mouth portion of the glass bottle as the heated portion by a predetermined distance in the axial direction when applied to the mouth baking, only the bottle mouth portion is heated. It is possible to prevent the portions other than the bottle mouth from being burned. Furthermore, when the glass bottle and the induction heating element are positioned with respect to each other, the glass bottle and the induction heating element do not interfere with each other. Therefore, it is not necessary to stop the glass bottle being transferred, and the production efficiency can be improved.

複数の前記ガラスびんが製造ライン上で順次流される方向に沿って、前記誘導発熱体が配置されていることが好ましい。この場合、複数のガラスびんを移送しながら、誘導発熱体の発熱によって当該複数のガラスびんの被加熱部を加熱することができる。   It is preferable that the induction heating element is arranged along a direction in which the plurality of glass bottles are sequentially flowed on the production line. In this case, the heated parts of the plurality of glass bottles can be heated by the heat generated by the induction heating element while transferring the plurality of glass bottles.

本発明のガラスびんの加熱方法は、ガラスびんの被加熱部を所定温度で加熱するガラスびんの加熱方法であって、前記ガラスびんの被加熱部の近傍に配置された誘導発熱体を、高周波電流が供給されて誘導磁界を発生させる誘導加熱コイルで発熱させることによって、当該被加熱部を間接的に加熱することを特徴とするものである。   The glass bottle heating method of the present invention is a glass bottle heating method for heating a heated portion of the glass bottle at a predetermined temperature, and an induction heating element disposed in the vicinity of the heated portion of the glass bottle is provided with a high-frequency wave. The heated portion is indirectly heated by generating heat with an induction heating coil that generates an induction magnetic field when supplied with an electric current.

上記本発明のガラスびんの加熱方法によれば、ガラスびんの被加熱部の近傍に配置された誘導発熱体を誘導加熱コイルで発熱させることによって、当該被加熱部が間接的に加熱されるため、加熱中に当該被加熱部の加熱程度を確認し、その加熱程度に応じて電流量等を変えて加熱強度の調整を行うことができる。つまり、被加熱部が冷却されてからでなくても、加熱強度の調整を行うことができる。このように、加熱強度の調整を行い易く、そのため、品種替えに伴う加熱強度の調整作業を早期に完了させることができ、ガラスびんの破棄品の発生を抑えることができる。また、誘導発熱体を誘導加熱コイルで発熱させることによってガラスびんの被加熱部が間接的に加熱されるため、当該被加熱部での加熱状態が変動し難く、例えば、加熱工程に通された複数のガラスびんのびん口部の焼け過ぎ、焼けむら、焼け残りによる外観不良が起こり難い。そのため、ガラスびんの品質のばらつきを抑えるための管理作業が減り、製造管理のコストを抑えることができる。   According to the heating method of the glass bottle of the present invention, the heated portion is indirectly heated by causing the induction heating element arranged near the heated portion of the glass bottle to generate heat with the induction heating coil. The heating degree of the heated part can be confirmed during the heating, and the heating intensity can be adjusted by changing the amount of current or the like according to the heating degree. That is, the heating intensity can be adjusted even after the heated part is not cooled. Thus, it is easy to adjust the heating intensity. Therefore, the adjustment work of the heating intensity accompanying the product change can be completed at an early stage, and the generation of discarded products of glass bottles can be suppressed. Further, since the heated portion of the glass bottle is indirectly heated by causing the induction heating element to generate heat with the induction heating coil, the heating state in the heated portion is unlikely to fluctuate. Appearance defects due to over-burning, uneven burning, and unburned residue at the mouth of multiple glass bottles are unlikely to occur. Therefore, the management work for suppressing the dispersion | variation in the quality of a glass bottle reduces, and the cost of manufacturing management can be held down.

本発明のガラスびんの製造方法は、次の工程(a)〜(c)(ただし、工程(b)及び(c)はその順序を入れ替え可能とする。)を含むことを特徴とするガラスびんの製造方法である。(a)溶融ガラスを成形型で成形してびん形状のガラス成形品を得る成形工程(b)前記ガラス成形品の被加熱部の近傍に配置された誘導発熱体を、高周波電流が供給されて誘導磁界を発生させる誘導加熱コイルで発熱させることによって、当該被加熱部を加熱する加熱工程(c)前記ガラス成形品を徐冷する徐冷工程   The glass bottle manufacturing method of the present invention includes the following steps (a) to (c) (however, steps (b) and (c) are interchangeable in order). It is a manufacturing method. (A) Molding step for obtaining a glass product with a bottle shape by molding molten glass with a molding die (b) An induction heating element arranged in the vicinity of the heated part of the glass product is supplied with a high-frequency current. A heating step of heating the heated portion by generating heat with an induction heating coil that generates an induction magnetic field (c) A slow cooling step of gradually cooling the glass molded article

上記本発明のガラスびんの製造方法によれば、ガラス成形品の被加熱部の近傍に配置された誘導発熱体を誘導加熱コイルで発熱させることによって、当該被加熱部が加熱されるため、加熱中に当該被加熱部の加熱程度を確認し、その加熱程度に応じて電流量等を変えて加熱強度の調整を行うことができる。つまり、被加熱部が冷却されてからでなくても、加熱強度の調整を行うことができる。このように、加熱強度の調整を行い易く、そのため、品種替えに伴う加熱強度の調整作業を早期に完了させることができ、ガラスびんの破棄品の発生を抑えることができる。また、誘導発熱体を誘導加熱コイルで発熱させることによってガラス成形品の被加熱部が加熱されるため、当該被加熱部での加熱状態が変動し難く、例えば、加熱工程に通された複数のガラスびんのびん口部の焼け過ぎ、焼けむら、焼け残りによる外観不良が起こり難い。そのため、ガラスびんの品質のばらつきを抑えるための管理作業が減り、製造管理のコストを抑えることができる。   According to the method for manufacturing a glass bottle of the present invention, the heated portion is heated by causing the induction heating coil disposed near the heated portion of the glass molded product to generate heat with the induction heating coil. The heating degree of the heated part can be confirmed inside, and the heating intensity can be adjusted by changing the amount of current according to the heating degree. That is, the heating intensity can be adjusted even after the heated part is not cooled. Thus, it is easy to adjust the heating intensity. Therefore, the adjustment work of the heating intensity accompanying the product change can be completed at an early stage, and the generation of discarded products of glass bottles can be suppressed. In addition, since the heated part of the glass molded product is heated by causing the induction heating element to generate heat with the induction heating coil, the heating state in the heated part is unlikely to fluctuate. Appearance defects due to over-burning, uneven burning, and unburned residue at the mouth of glass bottles are unlikely to occur. Therefore, the management work for suppressing the dispersion | variation in the quality of a glass bottle reduces, and the cost of manufacturing management can be held down.

前記成形工程後に複数の前記ガラス成形品を順次移送するための移送手段上で前記加熱工程を実施することによって、当該複数のガラス成形品を順次移送しながら前記被加熱部を加熱することが好ましい。複数のガラス成形品を順次移送しながら被加熱部を加熱することができれば、その分、製造ラインを縮めることができ生産コストを抑えることができる。   It is preferable to heat the heated portion while sequentially transferring the plurality of glass molded products by carrying out the heating step on a transfer means for sequentially transferring the plurality of glass molded products after the molding step. . If the heated part can be heated while sequentially transferring a plurality of glass molded products, the production line can be shortened and the production cost can be reduced.

前記誘導発熱体が、複数の前記被加熱部としての複数の前記ガラス成形品のびん口部と軸方向に所定間隔をあけた状態で配置されていることが好ましい。この場合、びん口部のみを加熱することができ、当該びん口部以外の部分が焼けてしまうのを防止できる。さらに、ガラス成形品と誘導発熱体とが互いに位置決めされる際、当該ガラス成形品と当該誘導発熱体とが干渉せず、例えば移送されていくガラス成形品を一旦、止める必要等がない。これにより、生産効率を向上させることができる。   It is preferable that the induction heating element is disposed in a state of being spaced apart from a plurality of glass molding product bottle openings as a plurality of the heated parts at a predetermined interval in the axial direction. In this case, only the bottle mouth part can be heated, and it can prevent that parts other than the said bottle mouth part burn. Further, when the glass molded product and the induction heating element are positioned relative to each other, the glass molded product and the induction heating element do not interfere with each other, and for example, there is no need to temporarily stop the glass molded product being transferred. Thereby, production efficiency can be improved.

前記ガラス成形品の表面にコーティングを施すコーティング工程をさらに含むガラスびんの製造方法とした場合、前記成形工程、前記コーティング工程、前記加熱工程、及び前記徐冷工程をこの順に実施することが好ましい。前記コーティング工程の後に前記加熱工程を実施することで、ガラス成形品の例えば被加熱部としてのびん口部のコーティングが除去され、コーティング成分と栓部材の金属成分との間に起こる反応による不具合を防ぐことができる。   When it is set as the manufacturing method of the glass bottle which further includes the coating process which coats the surface of the said glass molded article, it is preferable to implement the said formation process, the said coating process, the said heating process, and the said slow cooling process in this order. By performing the heating step after the coating step, for example, the coating of the bottle mouth portion as a heated portion of the glass molded product is removed, and there is a problem due to a reaction occurring between the coating component and the metal component of the plug member. Can be prevented.

上記の通り、本発明によれば、加熱強度の調整を行い易いため、品種替えに伴う加熱強度の調整作業を早期に完了でき、ガラスびんの破棄品の発生を抑えることができる。また、被加熱部での加熱状態が変動し難く、ガラスびんの品質のばらつきを抑えるための管理作業が減るので、製造管理のコストを抑えることができる。   As described above, according to the present invention, it is easy to adjust the heating intensity. Therefore, the adjustment of the heating intensity associated with the product change can be completed at an early stage, and the generation of discarded glass bottles can be suppressed. In addition, the heating state in the heated portion is unlikely to fluctuate, and the management work for suppressing the variation in the quality of the glass bottle is reduced, so that the manufacturing management cost can be reduced.

本発明の一実施形態に係るガラスびんの加熱装置の概要を表す配置図である。It is an arrangement drawing showing the outline of the heating device of the glass bottle concerning one embodiment of the present invention. ガラスびんの加熱装置の概要を表す正面図である。It is a front view showing the outline | summary of the heating apparatus of a glass bottle. ガラスびんの加熱装置の要部の断面図である。It is sectional drawing of the principal part of the heating apparatus of a glass bottle. 図3に表す要部を下方から見た斜視図である。It is the perspective view which looked at the principal part shown in FIG. 3 from the downward direction. 本発明の一実施形態に係るガラスびんの製造方法を説明するための製造ラインの概略図である。It is the schematic of the manufacturing line for demonstrating the manufacturing method of the glass bottle which concerns on one Embodiment of this invention. 製造ラインにおけるガラスびんの加熱装置とその周辺の概略斜視図である。It is a schematic perspective view of the heating apparatus of a glass bottle in a manufacturing line, and its periphery. ガラスびんの加熱装置で実施した口焼きの検査結果と、従来のガラスびんの加熱装置で実施した口焼きの検査結果とを比較したグラフである。It is the graph which compared the inspection result of the mouth-cooking implemented with the heating apparatus of the glass bottle, and the inspection result of the mouth-cooking implemented with the heating apparatus of the conventional glass bottle. びん口部の他の部位における、ガラスびんの加熱装置で実施した口焼きの検査結果と、従来のガラスびんの加熱装置で実施した口焼きの検査結果とを比較したグラフである。It is the graph which compared the inspection result of the mouth-cooking implemented with the heating apparatus of the glass bottle in the other site | part of a bottle mouth part, and the inspection result of the mouth-cooking implemented with the heating apparatus of the conventional glass bottle.

以下、本発明の実施形態について図面を参照して説明する。図1は、本発明の一実施形態に係るガラスびんの加熱装置1の概要を表す配置図であり、図2は、ガラスびんの加熱装置1の概要を表す正面図である。本実施形態のガラスびんの加熱装置1は、ガラスびん50の被加熱部であるびん口部51を、加熱して口焼きを行うために構成されたものであり、高周波電源部2と、この高周波電源部2の近傍に位置する加熱ユニット3と、加熱ユニット3に冷却水を導入する冷却部4と、加熱ユニット3の状態を制御する制御部5とで主に構成されている。このうち、加熱ユニット3は、ガラスびん50の近傍に配置された誘導発熱体6と、誘導磁界を発生させる誘導加熱コイル7と、これら誘導発熱体6や誘導加熱コイル7等を配置するための架台8とを備えている。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a layout view showing an outline of a glass bottle heating apparatus 1 according to an embodiment of the present invention, and FIG. 2 is a front view showing an outline of the glass bottle heating apparatus 1. The glass bottle heating device 1 of the present embodiment is configured to heat the bottle mouth part 51 which is a heated part of the glass bottle 50 to perform mouth-cooking. It is mainly composed of a heating unit 3 located in the vicinity of the high-frequency power supply unit 2, a cooling unit 4 that introduces cooling water into the heating unit 3, and a control unit 5 that controls the state of the heating unit 3. Among them, the heating unit 3 includes an induction heating element 6 disposed in the vicinity of the glass bottle 50, an induction heating coil 7 that generates an induction magnetic field, and the induction heating element 6, the induction heating coil 7, and the like. A gantry 8 is provided.

高周波電源部2は、電源盤9とこの電源盤9に電気的に接続された発振器10で構成されており、当該発振器10から加熱ユニット3の誘導加熱コイル7へ所定周波数の高周波電流が供給されるようになっている。制御部5は、電源盤9と一体に設けられており、発振器10から流す高周波電流を制御する。電源盤9には、制御状態を確認するための表示部11等が設けられており、図示しない電源が接続されている。冷却部4は、冷却水が溜められた水槽12と、この水槽12内の冷却水を循環させるポンプ13と、当該水槽12と加熱ユニット3間で冷却水を循環させるための配管14とで構成されている。   The high frequency power supply unit 2 includes a power board 9 and an oscillator 10 electrically connected to the power board 9, and a high frequency current having a predetermined frequency is supplied from the oscillator 10 to the induction heating coil 7 of the heating unit 3. It has become so. The control unit 5 is provided integrally with the power supply panel 9 and controls a high-frequency current flowing from the oscillator 10. The power supply panel 9 is provided with a display unit 11 and the like for confirming the control state, and is connected to a power supply (not shown). The cooling unit 4 includes a water tank 12 in which cooling water is stored, a pump 13 that circulates the cooling water in the water tank 12, and a pipe 14 that circulates the cooling water between the water tank 12 and the heating unit 3. Has been.

図3は、ガラスびんの加熱装置1の要部である加熱ユニット3の断面図であり、図4は、加熱ユニット3を下方から見た斜視図である。図3の誘導加熱コイル7及びガラスびん50は全体図としている。なお、以下の説明において図3の手前、奥に対応する側をそれぞれ前、後、同図の上、下に対応する側をそれぞれ上、下とする。架台8は、横長の底部81とその前後端から下方へ延びる側壁82とで断面コの字状に構成されており、図示しない固定部材でガラスびん50の上部を囲む状態で固定されている。底部81の前後方向中央には、誘導発熱体6を下側へ露出させるための複数の開口部81aが形成されている。この開口部81aには、誘導発熱体6で発生させた熱を架台8へ逃げ難くするための環状の断熱材32が設けられている。断熱材32の上部は段差状となっており、誘導発熱体6を固定するための受け部32aが形成されている。底部81の内側における各開口部81aの周囲には、誘導加熱コイル7を位置決めするための環状の位置決め部材33が設けられている。そして、複数のガラスびん50が、コンベアシステム等の移送機構35上に載置され、誘導発熱体6を露出させた各開口部81aの直下に次々と移送されるようになっている。   FIG. 3 is a cross-sectional view of the heating unit 3, which is a main part of the glass bottle heating device 1, and FIG. 4 is a perspective view of the heating unit 3 as viewed from below. The induction heating coil 7 and the glass bottle 50 of FIG. In the following description, the sides corresponding to the front and back of FIG. 3 are front and back, respectively, and the sides corresponding to the top and bottom of FIG. The gantry 8 has a U-shaped cross section composed of a horizontally long bottom 81 and a side wall 82 extending downward from its front and rear ends, and is fixed in a state of surrounding the upper portion of the glass bottle 50 with a fixing member (not shown). A plurality of openings 81 a for exposing the induction heating element 6 to the lower side are formed at the center in the front-rear direction of the bottom 81. The opening 81a is provided with an annular heat insulating material 32 for making it difficult for the heat generated by the induction heating element 6 to escape to the gantry 8. The upper part of the heat insulating material 32 has a stepped shape, and a receiving portion 32a for fixing the induction heating element 6 is formed. An annular positioning member 33 for positioning the induction heating coil 7 is provided around each opening 81 a inside the bottom 81. A plurality of glass bottles 50 are placed on a transfer mechanism 35 such as a conveyor system, and are transferred one after another directly below each opening 81a where the induction heating element 6 is exposed.

誘導発熱体6には、誘導磁界によって発熱可能な導電素材で形成された公知の発熱体が適用でき、例えば、アルミニウム、ステンレス等の各種金属からなる発熱体や、金属、炭素等の導電性粉末、導電性繊維に炭化珪素や炭化硼素等のセラミックが配合されたセラミック系複合材からなる発熱体、溶射金属層が設けられた発熱体等が挙げられる。このうちセラミック系複合材は、導電性素材の導電性とセラミックの高い耐熱衝撃性等を併せ持ち、熱を素早く伝え、かつ高温下で形状変化を起こさない材料であるため、好適に用いられる。   As the induction heating element 6, a known heating element made of a conductive material that can generate heat by an induction magnetic field can be applied. For example, a heating element made of various metals such as aluminum and stainless steel, or conductive powder such as metal and carbon. And a heating element made of a ceramic composite material in which a ceramic such as silicon carbide or boron carbide is mixed with conductive fibers, a heating element provided with a sprayed metal layer, and the like. Among these, the ceramic composite material is preferably used because it has both the conductivity of the conductive material and the high thermal shock resistance of the ceramic, transmits heat quickly, and does not change its shape at high temperatures.

誘導発熱体6は、ガラスびん50のびん口部51よりも大きいφ50mmの径を有する円盤状に形成されている。誘導発熱体6は、びん口部51から上下方向(軸方向)に所定間隔をあけた状態で、開口部81aに設けられた断熱材32の受け部32aに固定されている。ガラスびん50は、移送時において底部81にびん口部51を干渉させないように、天面51aを誘導発熱体6の下面6aから下方に少し離間させた状態で置かれている。誘導発熱体6とびん口部51の天面51aとの距離は、当該誘導発熱体6で発生させた熱でびん口部51を十分に加熱し得る程度のものとなっている。誘導発熱体6には、温度を検知するための熱電対20が接続されている。   The induction heating element 6 is formed in a disk shape having a diameter of 50 mm larger than the bottle mouth part 51 of the glass bottle 50. The induction heating element 6 is fixed to the receiving portion 32a of the heat insulating material 32 provided in the opening 81a with a predetermined interval from the bottle mouth portion 51 in the vertical direction (axial direction). The glass bottle 50 is placed in a state where the top surface 51a is slightly spaced downward from the lower surface 6a of the induction heating element 6 so that the bottle mouth portion 51 does not interfere with the bottom portion 81 during transfer. The distance between the induction heating element 6 and the top surface 51 a of the bottle opening 51 is such that the bottle opening 51 can be sufficiently heated by the heat generated by the induction heating element 6. A thermocouple 20 for detecting temperature is connected to the induction heating element 6.

誘導加熱コイル7は、誘導発熱体6に被さるような状態で、底部81に設けられた位置決め部材33内で固定されている。誘導加熱コイル7は、金属製の管状材からなるソレノイドタイプのものであり、当該誘導加熱コイル7の両端が発振器10に電気的に接続されて、当該誘導加熱コイル7へ所定周波数の高周波電流が供給される。冷却部4の配管14は、誘導加熱コイル7に沿って当該誘導加熱コイル7を冷却するための水管21を有している。本実施形態の誘導加熱コイル7と水管21は、同一の管状カバー22で覆われて一体的にまとめられた状態となっている。   The induction heating coil 7 is fixed in the positioning member 33 provided on the bottom 81 in a state of covering the induction heating element 6. The induction heating coil 7 is a solenoid type made of a metal tubular material, and both ends of the induction heating coil 7 are electrically connected to an oscillator 10 so that a high frequency current having a predetermined frequency is supplied to the induction heating coil 7. Supplied. The piping 14 of the cooling unit 4 has a water pipe 21 for cooling the induction heating coil 7 along the induction heating coil 7. The induction heating coil 7 and the water pipe 21 of the present embodiment are covered with the same tubular cover 22 and are integrated together.

発振器10と誘導加熱コイル7との間には、当該誘導加熱コイル7に流れる電流を検知する図示しない電流検知部等が設けられており、制御部5は、上記の熱電対20で検知した誘導発熱体6の発熱温度や、電流検知部で検知した電流等に従って、高周波電源部2からの高周波電流を調整して誘導発熱体6の発熱状態を制御する。   Between the oscillator 10 and the induction heating coil 7, a current detection unit (not shown) that detects the current flowing through the induction heating coil 7 is provided, and the control unit 5 detects the induction detected by the thermocouple 20. The heat generation state of the induction heating element 6 is controlled by adjusting the high-frequency current from the high-frequency power supply unit 2 according to the heat generation temperature of the heating element 6, the current detected by the current detection unit, and the like.

予め設定された加熱温度に応じた高周波電流が、高周波電源部2から誘導加熱コイル7に供給されると,この誘導加熱コイル7において誘導磁界が発生する。この誘導磁界は、誘導発熱体6に誘導電流を発生させる。誘導発熱体6では、当該誘導発熱体6で発生した誘導電流と当該誘導発熱体6の電気的抵抗とによるジュール熱が発生させられ、このジュール熱が、ガラスびん50のびん口部51に伝わり、当該びん口部51が所定温度に加熱され、当該びん口部51の口焼きが行われる。   When a high frequency current corresponding to a preset heating temperature is supplied from the high frequency power supply unit 2 to the induction heating coil 7, an induction magnetic field is generated in the induction heating coil 7. This induction magnetic field generates an induction current in the induction heating element 6. In the induction heating element 6, Joule heat is generated by the induced current generated in the induction heating element 6 and the electrical resistance of the induction heating element 6, and this Joule heat is transmitted to the bottle mouth 51 of the glass bottle 50. The bottle mouth part 51 is heated to a predetermined temperature, and the bottle mouth part 51 is baked.

上記本実施形態のガラスびんの加熱装置1によれば、誘導発熱体6を誘導加熱コイル7で発熱させることによってガラスびん50のびん口部51(被加熱部)が加熱されるため、加熱中に当該びん口部51の加熱程度を確認し、その加熱程度に応じて電流量等を変えて加熱強度の調整を行うことができる。つまり、びん口部51が冷却されてからでなくても、加熱強度の調整を行うことができる。このように、加熱強度の調整を行い易く、そのため、品種替えに伴う加熱強度の調整作業を早期に完了させることができ、ガラスびん50の破棄品の発生を抑えることができる。また、誘導発熱体6を誘導加熱コイル7で発熱させることによってガラスびん50のびん口部51が加熱されるため、当該びん口部51への加熱状態が変動し難く、例えば、加熱工程に通された複数のガラスびんのびん口部の焼け過ぎ、焼けむら、焼け残りによる外観不良が起こり難い。そのため、ガラスびんの品質のばらつきを抑えるための管理作業が減り、製造管理のコストを抑えることができる。   According to the glass bottle heating device 1 of the present embodiment, the induction heating element 6 is heated by the induction heating coil 7 to heat the bottle mouth portion 51 (heated portion) of the glass bottle 50. In addition, the heating intensity of the bottle opening 51 can be confirmed, and the heating intensity can be adjusted by changing the amount of current or the like according to the heating degree. That is, the heating intensity can be adjusted even after the bottle opening 51 is not cooled. Thus, it is easy to adjust the heating intensity. Therefore, the adjustment work of the heating intensity accompanying the product change can be completed at an early stage, and generation of discarded products of the glass bottle 50 can be suppressed. Further, since the induction heating element 6 is heated by the induction heating coil 7, the bottle opening 51 of the glass bottle 50 is heated, so that the heating state of the bottle opening 51 is not easily changed. Appearance defects due to over-burning, uneven burning, and unburned portions of a plurality of glass bottles are hardly caused. Therefore, the management work for suppressing the dispersion | variation in the quality of a glass bottle reduces, and the cost of manufacturing management can be held down.

上記実施形態のガラスびんの加熱装置1によって、次のガラスびんの加熱方法が実現できる。即ち、ガラスびん50のびん口部51(被加熱部)を所定温度で加熱するガラスびんの加熱方法であって、びん口部51の近傍に配置された誘導発熱体6を、高周波電流が供給されて誘導磁界を発生させる誘導加熱コイル7で発熱させることによって、ガラスびん50のびん口部51を間接的に加熱するものである。   With the glass bottle heating device 1 of the above embodiment, the following glass bottle heating method can be realized. That is, a heating method of a glass bottle that heats the bottle mouth part 51 (heated part) of the glass bottle 50 at a predetermined temperature, and the induction heating element 6 arranged in the vicinity of the bottle mouth part 51 is supplied with high-frequency current. The bottle opening 51 of the glass bottle 50 is indirectly heated by generating heat with the induction heating coil 7 that generates an induction magnetic field.

上記のガラスびんの加熱方法によれば、びん口部51(被加熱部)の近傍に配置された誘導発熱体6を誘導加熱コイル7で発熱させることによって、当該びん口部51が間接的に加熱されるため、加熱中に当該びん口部51の加熱程度を確認し、その加熱程度に応じて電流量等を変えて加熱強度の調整を行うことができる。つまり、びん口部51が冷却されてからでなくても、加熱強度の調整を行うことができる。このように、加熱強度の調整を行い易く、そのため、品種替えに伴う加熱強度の調整作業を早期に完了させることができ、ガラスびんの破棄品の発生を抑えることができる。また、誘導発熱体6を誘導加熱コイル7で発熱させることによってガラスびん50のびん口部51が間接的に加熱されるため、当該びん口部51への加熱状態が変動し難く、例えば、加熱工程に通された複数のガラスびんのびん口部の焼け過ぎ、焼けむら、焼け残りによる外観不良が起こり難い。そのため、ガラスびんの品質のばらつきを抑えるための管理作業が減り、製造管理のコストを抑えることができる。   According to the heating method of the glass bottle, the induction heating element 6 disposed in the vicinity of the bottle opening 51 (heated part) is caused to generate heat by the induction heating coil 7 so that the bottle opening 51 is indirectly connected. Since it is heated, the heating degree of the bottle opening 51 can be confirmed during heating, and the heating intensity can be adjusted by changing the amount of current according to the heating degree. That is, the heating intensity can be adjusted even after the bottle opening 51 is not cooled. Thus, it is easy to adjust the heating intensity. Therefore, the adjustment work of the heating intensity accompanying the product change can be completed at an early stage, and the generation of discarded products of glass bottles can be suppressed. In addition, since the heating part 6 of the glass bottle 50 is indirectly heated by causing the induction heating element 6 to generate heat with the induction heating coil 7, the heating state of the bottle opening part 51 is not easily changed. Appearance defects due to over-burning, uneven burning, and unburned portions of the mouth portions of a plurality of glass bottles that have been passed through the process are unlikely to occur. Therefore, the management work for suppressing the dispersion | variation in the quality of a glass bottle reduces, and the cost of manufacturing management can be held down.

図5は、本発明の一実施形態に係るガラスびんの製造方法を説明するための製造ライン40の概略図であり、図6は、その製造ライン40におけるガラスびんの加熱装置1とその周辺の概略斜視図である。この製造ライン40には、上記実施形態のガラスびんの加熱装置1が組み込まれている。本実施形態のガラスびんの製造方法は、溶融ガラスを図示しない成形型で成形してびん形状のガラス成形品(ガラスびん)50を得る成形工程と、ガラス成形品50の表面に保護コーティングを施すコーティング工程と、ガラス成形品50の被加熱部としてのびん口部51の近傍に配置された複数の誘導発熱体6を、高周波電流が供給されて誘導磁界を発生させる複数の誘導加熱コイル7で発熱させることによって、当該びん口部51を加熱する加熱工程と、ガラス成形品50を徐冷する徐冷工程とをこの順に実施するものである。   FIG. 5 is a schematic view of a production line 40 for explaining a method for producing a glass bottle according to an embodiment of the present invention, and FIG. 6 shows the glass bottle heating device 1 and its surroundings in the production line 40. It is a schematic perspective view. In the production line 40, the glass bottle heating device 1 of the above-described embodiment is incorporated. The glass bottle manufacturing method according to the present embodiment includes a molding step of forming molten glass with a molding die (not shown) to obtain a bottle-shaped glass molded product (glass bottle) 50, and a protective coating is applied to the surface of the glass molded product 50. A plurality of induction heating elements 6 disposed in the vicinity of the bottle mouth part 51 as a heated part of the glass molded product 50 and the coating process are supplied with a plurality of induction heating coils 7 that are supplied with a high-frequency current and generate an induction magnetic field. By generating heat, a heating process for heating the bottle opening 51 and a slow cooling process for gradually cooling the glass molded product 50 are performed in this order.

製造ライン40には、成形工程を実施するための成形装置43が設置されていると共に、この成形装置43には、複数のガラス成形品50を連続的に移送するための移送機構としてのコンベアシステム35が繋げられている。また、コンベアシステム35による複数のガラス成形品50の移送方向に沿って、コーティング工程を実施するためのコーティング装置45、加熱工程を実施するためのガラスびん加熱装置1、及び徐冷工程を実施するための徐冷装置46がこの順に設置されている。これにより、複数のガラス成形品50が連続的に移送されながら、当該複数のガラス成形品50に各工程における処理が施されるようになっている。   The production line 40 is provided with a molding device 43 for performing a molding process, and the molding device 43 has a conveyor system as a transfer mechanism for continuously transferring a plurality of glass molded products 50. 35 are connected. Moreover, the coating apparatus 45 for implementing a coating process, the glass bottle heating apparatus 1 for implementing a heating process, and a slow cooling process are implemented along the transfer direction of the several glass molded product 50 by the conveyor system 35. A slow cooling device 46 is installed in this order. Thereby, the process in each process is given to the said several glass molded product 50, transferring the several glass molded product 50 continuously.

びん形状のガラス成形品50を得る成形工程では、溶融ガラスを図示しない粗型でプレス成形してパリソンとし、これを図示しない仕上型でブロー成形するプレスアンドブロー方式や、溶融ガラスを図示しない粗型でブロー成形してパリソンとし、これを図示しない仕上型で再びブロー成形するブローアンドブロー方式による成形が成形装置43によって行われ、複数のガラス成形品50が連続的に成形される。   In the molding process of obtaining the bottle-shaped glass molded product 50, the molten glass is press-molded with a rough mold (not shown) to form a parison, and this is blown with a finishing mold (not shown), or the molten glass is not shown. Blow-and-blow molding is performed by a mold to form a parison, which is then blow-molded again by a finishing mold (not shown) by the molding apparatus 43, and a plurality of glass molded products 50 are continuously molded.

上記の成形装置43で成形されたガラス成形品50は、コンベアシステム35に乗って次のコーティング工程へと移送され、コーティング装置45によって当該ガラス成形品50の表面へ保護コーティングが蒸着される。保護コーティングを蒸着することによって、製品であるガラスびんの表面に保護膜を形成して擦り傷等をつき難くし、擦り傷等を起因とする強度低下を抑える。   The glass molded product 50 molded by the molding device 43 is transferred to the next coating process on the conveyor system 35, and a protective coating is deposited on the surface of the glass molded product 50 by the coating device 45. By depositing a protective coating, a protective film is formed on the surface of the glass bottle, which is a product, to prevent scratches and the like, and to suppress the strength reduction caused by the scratches.

コーティング装置45を出た複数のガラス成形品50は、コンベアシステム35に乗って次の加熱工程へと移送され、ガラスびん加熱装置1によって当該複数のガラス成形品50のびん口部51の口焼きが行われる。ガラスびんの加熱装置1は、加熱ユニット3、この加熱ユニット3の近傍に設置された図示しない高周波電源部、冷却部、及び制御部を備えており、このうち加熱ユニット3には、上記実施形態のとおり、複数のガラス成形品50の被加熱部としてのびん口部51の近傍に配置された複数の誘導発熱体6、高周波電源部から高周波電流が供給されて誘導磁界を発生させ複数の誘導発熱体6を発熱させる複数の誘導加熱コイル7等が設けられている。このようなガラスびん加熱装置1によって、複数の誘導発熱体6が複数の誘導加熱コイル7で発熱され、これにより、複数のガラス成形品50のびん口部51が同時に加熱される。また、加熱ユニット3に入ってきたガラス成形品50のびん口部51は、当該加熱ユニット3を出るまで加熱され続ける。   The plurality of glass molded products 50 exiting the coating device 45 are transferred to the next heating step on the conveyor system 35, and the glass bottle heating device 1 baked the bottle mouth portions 51 of the plurality of glass molded products 50. Is done. The glass bottle heating apparatus 1 includes a heating unit 3, a high-frequency power supply unit (not shown), a cooling unit, and a control unit that are installed in the vicinity of the heating unit 3. As described above, a plurality of induction heating elements 6 disposed in the vicinity of the bottle mouth portion 51 as a heated portion of the plurality of glass molded products 50, a high-frequency current is supplied from a high-frequency power supply unit, and an induction magnetic field is generated to generate a plurality of inductions. A plurality of induction heating coils 7 for generating heat from the heating element 6 are provided. With such a glass bottle heating device 1, the plurality of induction heating elements 6 are heated by the plurality of induction heating coils 7, whereby the bottle mouth portions 51 of the plurality of glass molded products 50 are simultaneously heated. The bottle mouth 51 of the glass molded product 50 that has entered the heating unit 3 continues to be heated until it exits the heating unit 3.

ガラスびん加熱装置1に備えられた複数の誘導発熱体6は、ガラス成形品50がコンベアシステム35によって順次流される方向に沿って配置されている。そのため、複数のガラス成形品50を順次移送しながら、複数の誘導発熱体6の発熱によって当該複数のガラス成形品50のびん口部51を加熱し、口焼きを行うことができる。また、複数の誘導発熱体6は、複数のガラス成形品50のびん口部51と上下方向に所定間隔をあけた状態で配置されている。これにより、複数のびん口部51のみを加熱することができ、当該複数のびん口部51以外の部分が焼けてしまうのを防止できる。さらに、ガラス成形品50と誘導発熱体6とが互いに所定の位置で位置決めされる際、当該ガラス成形品50と当該誘導発熱体6とが干渉しない。換言すると、コンベアシステム35で次々に移送されていく複数のガラス成形品50が、複数の誘導発熱体6に干渉しない。そのため、移送されていく複数のガラス成形品50を一旦、止める必要等がなく、生産効率を向上させることができる。また、成形工程後に複数のガラス成形品50を順次移送するためのコンベアシステム35上で加熱工程を実施することによって、当該複数のガラス成形品50が順次移送されながら口焼きされるため、その分、製造ラインが縮まり、生産コストを抑えることができる。   The plurality of induction heating elements 6 provided in the glass bottle heating device 1 are arranged along the direction in which the glass molded products 50 are sequentially flowed by the conveyor system 35. Therefore, while sequentially transferring the plurality of glass molded products 50, the bottle mouth portions 51 of the plurality of glass molded products 50 can be heated by the heat generated by the plurality of induction heating elements 6, thereby performing the mouth baking. Further, the plurality of induction heating elements 6 are arranged in a state of being spaced apart from the bottle mouth portions 51 of the plurality of glass molded products 50 in the vertical direction. Thereby, only the some bottle opening part 51 can be heated, and it can prevent that parts other than the said some bottle opening part 51 burn. Furthermore, when the glass molded product 50 and the induction heating element 6 are positioned at a predetermined position, the glass molded article 50 and the induction heating element 6 do not interfere with each other. In other words, the plurality of glass molded products 50 that are successively transferred by the conveyor system 35 do not interfere with the plurality of induction heating elements 6. Therefore, there is no need to temporarily stop the plurality of glass molded products 50 being transferred, and the production efficiency can be improved. Further, by performing the heating process on the conveyor system 35 for sequentially transferring the plurality of glass molded products 50 after the molding process, the plurality of glass molded products 50 are baked while being sequentially transferred. The production line is shortened and the production cost can be reduced.

ガラスびん加熱装置1を出たガラス成形品50は、コンベアシステム35に乗って次の徐冷工程へと移送され、徐冷装置46によって徐冷される。成形工程、コーティング工程、加熱工程、及び徐冷工程をこの順に実施することで、ガラス成形品50に保護コーティングが施された後に口焼きが行われ、当該ガラス成形品50のびん口部51の保護コーティングが除去される。これにより、保護コーティングのコーティング成分とびん口部51に装着される図示しない栓部材の金属成分との間に起こる反応による不具合を防ぐことができる。   The glass molded product 50 exiting the glass bottle heating device 1 is transferred to the next slow cooling process on the conveyor system 35 and is slowly cooled by the slow cooling device 46. By carrying out the molding process, the coating process, the heating process, and the slow cooling process in this order, the glass mold product 50 is subjected to protective coating, and then the mouth-opening 51 of the glass mold product 50 is performed. The protective coating is removed. Thereby, the malfunction by the reaction which arises between the coating component of a protective coating and the metal component of the stopper member which is not shown attached to the bottle mouth part 51 can be prevented.

上記本実施形態のガラスびんの製造方法によれば、ガラス成形品50のびん口部51(被加熱部)の近傍に配置された誘導発熱体6を誘導加熱コイル7で発熱させることによって、当該びん口部51が加熱されるため、加熱中に当該びん口部51の加熱程度を確認し、その加熱程度に応じて電流量等を変えて加熱強度の調整を行うことができる。つまり、びん口部51が冷却されてからでなくても、加熱強度の調整を行うことができる。このように、加熱強度の調整を行い易く、そのため、品種替えに伴う加熱強度の調整作業を早期に完了させることができ、ガラスびんの破棄品の発生を抑えることができる。また、誘導発熱体6を誘導加熱コイル7で発熱させることによってガラス成形品50のびん口部51が加熱されるため、当該びん口部51での加熱状態が変動し難く、加熱工程に通された複数のガラス成形品50のびん口部51の焼け過ぎ、焼けむら、焼け残りによる外観不良が起こり難い。そのため、ガラスびんの品質のばらつきを抑えるための管理作業が減り、製造管理のコストを抑えることができる。   According to the glass bottle manufacturing method of the present embodiment, the induction heating element 6 disposed in the vicinity of the bottle mouth portion 51 (heated portion) of the glass molded product 50 is caused to generate heat by the induction heating coil 7. Since the bottle opening 51 is heated, the heating degree of the bottle opening 51 can be confirmed during heating, and the heating intensity can be adjusted by changing the amount of current or the like according to the heating degree. That is, the heating intensity can be adjusted even after the bottle opening 51 is not cooled. Thus, it is easy to adjust the heating intensity. Therefore, the adjustment work of the heating intensity accompanying the product change can be completed at an early stage, and the generation of discarded products of glass bottles can be suppressed. In addition, since the heating part 6 of the glass molded product 50 is heated by causing the induction heating element 6 to generate heat with the induction heating coil 7, the heating state in the bottle opening part 51 is unlikely to fluctuate and is passed through the heating process. Further, poor appearance due to over-burning, uneven burning, and unburned portions of the bottle mouth portions 51 of the plurality of glass molded products 50 is unlikely to occur. Therefore, the management work for suppressing the dispersion | variation in the quality of a glass bottle reduces, and the cost of manufacturing management can be held down.

以下、本発明を具体的に説明するが、本発明はこれらの具体例によって限定されるものではない。ビールびんの口焼きを、4回の品種替え毎に数日間に渡って実施した。びん口部の焼け過ぎ、焼けむら、焼け残りによる外観不良を抑えるための加熱強度の調整は随時行い、白化現象の発生は、市販の外観検査機で検査した。実施例1〜実施例4では、図5に示す製造ライン40のガラスびんの加熱装置1を使用して設定温度1150℃で口焼きを行い、比較例1〜4では、従来のバーナを用いたガラスびんの加熱装置を使用して設定温度1150℃で口焼きを行った。各品種替え時の成形型及びその他機器は実施例1と比較例1、実施例2と比較例2、実施例3と比較例3、実施例4と比較例4で同じものを使用し、各回の品種替えとそれに伴う口焼きは、実施例1と比較例1、実施例2と比較例2、実施例3と比較例3、実施例4と比較例4で同日程に行った。   Hereinafter, the present invention will be specifically described, but the present invention is not limited to these specific examples. The beer bottle was baked for several days every 4 varieties. The heating intensity was adjusted at any time to suppress the appearance defects due to over-burning, burning unevenness, and unburned residue at the bottle mouth, and the occurrence of whitening was inspected with a commercially available appearance inspection machine. In Examples 1 to 4, the glass bottle heating device 1 of the production line 40 shown in FIG. 5 was used to perform baked at a set temperature of 1150 ° C., and in Comparative Examples 1 to 4, a conventional burner was used. Using a glass bottle heating device, baked at a set temperature of 1150 ° C. The molds and other equipment at the time of each type change were the same in Example 1 and Comparative Example 1, Example 2 and Comparative Example 2, Example 3 and Comparative Example 3, Example 4 and Comparative Example 4, and each time The varietal change and the accompanying baked rice were performed in Example 1 and Comparative Example 1, Example 2 and Comparative Example 2, Example 3 and Comparative Example 3, Example 4 and Comparative Example 4 on the same schedule.

実施例1:第1回目の品種替えで、1日100本の口焼きを12日間行った。実施例2:第2回目の品種替えで、1日100本の口焼きを15日間行った。実施例3:第3回目の品種替えで、1日100本の口焼きを15日間行った。実施例4:第4回目の品種替えで、1日100本の口焼きを18日間行った。   Example 1: In the first variety change, 100 pieces of baked rice were performed for 12 days a day. Example 2: In the second variety change, 100 pieces of baked rice were performed for 15 days a day. Example 3 In the third variety change, 100 pieces of baked rice were performed for 15 days a day. Example 4 In the fourth variety change, 100 pieces of mouth-cooked per day were performed for 18 days.

比較例1:第1回目の品種替えで、1日100本の口焼きを12日間行った。実施例2:第2回目の品種替えで、1日100本の口焼きを15日間行った。実施例3:第3回目の品種替えで、1日100本の口焼きを15日間行った。実施例4:第4回目の品種替えで、1日100本の口焼きを18日間行った。   Comparative Example 1: In the first variety change, 100 pieces of mouth-cooked per day were performed for 12 days. Example 2: In the second variety change, 100 pieces of baked rice were performed for 15 days a day. Example 3 In the third variety change, 100 pieces of baked rice were performed for 15 days a day. Example 4 In the fourth variety change, 100 pieces of mouth-cooked per day were performed for 18 days.

表1に、実施例1〜4及び比較例1〜4における、品種替え当日と全ての日で算出したビールびんの白化除去率(加熱強度の調整が完了するまでの破棄品の発生率)を示す。   Table 1 shows the whitening removal rate of beer bottles calculated on the day of changing varieties and all the days in Examples 1 to 4 and Comparative Examples 1 to 4 (occurrence rate of discarded products until the adjustment of the heating intensity is completed). Show.

Figure 2012072045
Figure 2012072045

表1から、上記実施形態のガラスびんの加熱装置1で口焼きした各実施例は、従来のバーナを用いたガラスびんの加熱装置で口焼きを行った各比較例よりも品種替え当日及び全ての日における白化除去率が低いことが認められる。   From Table 1, each example baked by the glass bottle heating device 1 of the above embodiment is the same as that of each comparative example and all the comparative examples that were baked by the glass bottle heating device using a conventional burner. It can be seen that the whitening removal rate on the day is low.

図7に、実施例1〜4及び比較例1〜4における、口焼き後のびん口部の内径(小径部上側)の計測結果を表し、図8に、実施例1〜4及び比較例1〜4における、口焼き後のびん口部の内径(小径部下側)の計測結果を表す。図7及び図8の中の縦軸上の四角マークは、規格の中央値である。図7及び図8から、上記実施形態のガラスびんの加熱装置1で口焼きした各実施例は、従来のバーナを用いたガラスびんの加熱装置で口焼きした各比較例よりも規格値に近く、品質のばらつきが減少していることが認められる。   In FIG. 7, the measurement result of the internal diameter (small diameter part upper side) of the bottle mouth part after mouth baking in Examples 1-4 and Comparative Examples 1-4 is represented, FIG. 8 shows Examples 1-4 and Comparative Example 1. The measurement result of the inner diameter (bottom side of a small diameter part) of the bottle mouth part after baked in -4 is represented. The square mark on the vertical axis in FIGS. 7 and 8 is the median value of the standard. 7 and 8, each of the examples baked by the glass bottle heating device 1 of the above embodiment is closer to the standard value than each comparative example baked by the glass bottle heating device using a conventional burner. It can be seen that the variation in quality has decreased.

上記で開示した実施形態及び実施例のガラスびんの加熱装置及び加熱方法、ならびにガラスびんの製造方法は、本発明に係るガラスびんの加熱装置及び加熱方法、ならびにガラスびんの製造方法の一例を示したものであり、ガラスびんの被加熱部を誘導発熱体で介して間接的に加熱することができれば、誘導発熱体の素材や形状、高周波電源部の構成、誘導加熱コイルの素材、形状等は適宜変更できる。また、加熱対象物であるガラスびんはどのような形態のものでもよく、ガラスびんの被加熱部はどのような部分でもよい。ガラスびんの製造方法の各工程を入れ替えてもよく、ガラスびんをコンベアシステムで数列に並べた状態で被加熱部を加熱してもよい。ガラスびんの加熱装置に設ける誘導発熱体及び誘導加熱コイル等の数や配置、設置間隔は、加熱条件に応じて適宜変更できる。ガラスびんのびん口部の周りに断熱体を設けて、誘導発熱体で発生させた熱を当該びん口部に効率良く伝えるようにしてもよい。例えば、製造ラインに設置する本発明のガラスびんの加熱装置に、このような断熱材を設ける場合、ガラスびんの移送を妨げないように設置すればよい。その他、製造ラインに応じて各部材や各機器の構成や配置を変更すればよい。ガラスびん又は加熱ユニットを昇降させることで、びん口部と誘導発熱体とを互いに近づけ及び離間させる昇降機構を設けてもよい。本発明の範囲は特許請求の範囲によって示されるものであり、当該発明の範囲には特許請求の範囲と均等の意味及び範囲内の全ての変更が含まれる。   The glass bottle heating apparatus and heating method and the glass bottle manufacturing method according to the embodiments and examples disclosed above show an example of the glass bottle heating apparatus and heating method and the glass bottle manufacturing method according to the present invention. If the heated part of the glass bottle can be heated indirectly via an induction heating element, the material and shape of the induction heating element, the configuration of the high frequency power supply, the material and shape of the induction heating coil, etc. It can be changed as appropriate. Further, the glass bottle that is the object to be heated may have any form, and the heated portion of the glass bottle may be any part. Each process of the manufacturing method of a glass bottle may be replaced, and a to-be-heated part may be heated in the state which arranged the glass bottle in several rows with the conveyor system. The number, arrangement, and installation interval of the induction heating elements and induction heating coils provided in the glass bottle heating device can be appropriately changed according to the heating conditions. A heat insulator may be provided around the mouth portion of the glass bottle so that the heat generated by the induction heating element can be efficiently transmitted to the mouth portion. For example, in the case where such a heat insulating material is provided in the glass bottle heating device of the present invention installed in the production line, it may be installed so as not to disturb the transfer of the glass bottle. In addition, the configuration and arrangement of each member and each device may be changed according to the production line. You may provide the raising / lowering mechanism which raises / lowers a glass bottle or a heating unit, and makes a bottle opening part and an induction heating body approach and separate mutually. The scope of the present invention is defined by the terms of the claims, and the scope of the invention includes all modifications within the scope and meaning equivalent to the terms of the claims.

1 ガラスびんの加熱装置
2 高周波電源部
3 加熱ユニット
4 冷却部
5 制御部
6 誘導発熱体
7 誘導加熱コイル
8 架台
81 底部
81a 開口部
9 電源盤
10 発振器
35 移送機構、コンベアシステム
40 製造ライン
43 成形装置
45 コーティング装置
46 徐冷装置
50 ガラスびん、ガラス成形品
51 びん口部
DESCRIPTION OF SYMBOLS 1 Glass bottle heating apparatus 2 High frequency power supply part 3 Heating unit 4 Cooling part 5 Control part 6 Induction heating element 7 Induction heating coil 8 Mounting frame 81 Bottom part 81a Opening part 9 Power supply panel 10 Oscillator 35 Transfer mechanism, conveyor system 40 Production line 43 Molding Equipment 45 Coating equipment 46 Slow cooling equipment 50 Glass bottles and glass molded parts 51 Bottle mouths

Claims (8)

ガラスびんの被加熱部を所定温度で加熱するためのガラスびんの加熱装置であって、
高周波電源部と、前記ガラスびんの被加熱部の近傍に配置された誘導発熱体と、前記高周波電源部から高周波電流が供給されて誘導磁界を発生させ前記誘導発熱体を発熱させる誘導加熱コイルと、前記誘導発熱体の発熱状態を制御する制御部とを備え、
前記誘導発熱体を発熱させることによって前記被加熱部を加熱することを特徴とするガラスびんの加熱装置。
A glass bottle heating device for heating a heated portion of a glass bottle at a predetermined temperature,
A high-frequency power supply unit; an induction heating element disposed in the vicinity of the heated portion of the glass bottle; and an induction heating coil that generates a induction magnetic field by supplying a high-frequency current from the high-frequency power supply unit to generate heat from the induction heating element. A control unit for controlling the heat generation state of the induction heating element,
An apparatus for heating a glass bottle, wherein the heated portion is heated by causing the induction heating element to generate heat.
前記誘導発熱体が、前記被加熱部としての前記ガラスびんのびん口部と軸方向に所定間隔をあけた状態で配置されていることを特徴とする請求項1に記載のガラスびんの加熱装置。   The glass bottle heating device according to claim 1, wherein the induction heating element is arranged in a state of being spaced apart from a bottle mouth portion of the glass bottle as the heated portion in the axial direction. . 複数の前記ガラスびんが製造ライン上で順次流される方向に沿って、前記誘導発熱体が配置されていることを特徴とする請求項1又は2に記載のガラスびんの加熱装置。   The glass bottle heating device according to claim 1 or 2, wherein the induction heating element is arranged along a direction in which a plurality of the glass bottles are sequentially flowed on a production line. ガラスびんの被加熱部を所定温度で加熱するガラスびんの加熱方法であって、
前記ガラスびんの被加熱部の近傍に配置された誘導発熱体を、高周波電流が供給されて誘導磁界を発生させる誘導加熱コイルで発熱させることによって、当該被加熱部を間接的に加熱することを特徴とするガラスびんの加熱方法。
A glass bottle heating method for heating a heated portion of a glass bottle at a predetermined temperature,
The induction heating element disposed in the vicinity of the heated part of the glass bottle is heated by an induction heating coil that is supplied with a high-frequency current and generates an induction magnetic field, thereby indirectly heating the heated part. The heating method of the glass bottle characterized.
次の工程(a)〜(c)(ただし、工程(b)及び(c)はその順序を入れ替え可能とする。)を含むことを特徴とするガラスびんの製造方法。
(a)溶融ガラスを成形型で成形してびん形状のガラス成形品を得る成形工程
(b)前記ガラス成形品の被加熱部の近傍に配置された誘導発熱体を、高周波電流が供給されて誘導磁界を発生させる誘導加熱コイルで発熱させることによって、当該被加熱部を加熱する加熱工程
(c)前記ガラス成形品を徐冷する徐冷工程
The manufacturing method of the glass bottle characterized by including the following process (a)-(c) (however, the order of process (b) and (c) is interchangeable).
(A) Molding step for obtaining a glass product with a bottle shape by molding molten glass with a molding die (b) An induction heating element arranged in the vicinity of the heated part of the glass product is supplied with a high-frequency current. A heating step of heating the heated portion by generating heat with an induction heating coil that generates an induction magnetic field (c) A slow cooling step of gradually cooling the glass molded article
前記成形工程後に複数の前記ガラス成形品を順次移送するための移送手段上で前記加熱工程を実施することによって、当該複数のガラス成形品を順次移送しながら前記被加熱部を加熱することを特徴とする請求項5に記載のガラスびんの製造方法。   The heated portion is heated while sequentially transferring the plurality of glass molded products by carrying out the heating step on a transfer means for sequentially transferring the plurality of glass molded products after the molding step. The manufacturing method of the glass bottle of Claim 5. 前記誘導発熱体が、複数の前記被加熱部としての複数の前記ガラス成形品のびん口部と軸方向に所定間隔をあけた状態で配置されていることを特徴とする請求項5又は6に記載のガラスびんの製造方法。   The said induction heating element is arrange | positioned in the state which left the predetermined | prescribed space | interval in the axial direction with the several opening part of the said glass molded product as said several to-be-heated part. The manufacturing method of the glass bottle of description. 前記ガラス成形品の表面にコーティングを施すコーティング工程がさらに含まれており、前記成形工程、前記コーティング工程、前記加熱工程、及び前記徐冷工程をこの順に実施することを特徴とする請求項5〜7のいずれかに記載のガラスびんの製造方法。   6. A coating process for coating the surface of the glass molded article is further included, and the molding process, the coating process, the heating process, and the slow cooling process are performed in this order. 8. A method for producing a glass bottle according to any one of 7 above.
JP2010291735A 2010-09-01 2010-12-28 Glass bottle heating apparatus and method, and glass bottle manufacturing method Expired - Fee Related JP5555155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010291735A JP5555155B2 (en) 2010-09-01 2010-12-28 Glass bottle heating apparatus and method, and glass bottle manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010195276 2010-09-01
JP2010195276 2010-09-01
JP2010291735A JP5555155B2 (en) 2010-09-01 2010-12-28 Glass bottle heating apparatus and method, and glass bottle manufacturing method

Publications (2)

Publication Number Publication Date
JP2012072045A true JP2012072045A (en) 2012-04-12
JP5555155B2 JP5555155B2 (en) 2014-07-23

Family

ID=46168669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010291735A Expired - Fee Related JP5555155B2 (en) 2010-09-01 2010-12-28 Glass bottle heating apparatus and method, and glass bottle manufacturing method

Country Status (1)

Country Link
JP (1) JP5555155B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582242A (en) * 1981-06-24 1983-01-07 Ishizuka Glass Ltd Treatment of glass product
JPS62216942A (en) * 1986-03-15 1987-09-24 Ishizuka Glass Ltd Method for removing coating in mouth part of glass bottle
JPH0419989A (en) * 1990-05-11 1992-01-23 Shimada Phys & Chem Ind Co Ltd Induction heating furnace
JP2002115819A (en) * 2000-10-12 2002-04-19 Toyo Glass Co Ltd Burner tip for shaping bottle-mouth

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582242A (en) * 1981-06-24 1983-01-07 Ishizuka Glass Ltd Treatment of glass product
JPS62216942A (en) * 1986-03-15 1987-09-24 Ishizuka Glass Ltd Method for removing coating in mouth part of glass bottle
JPH0419989A (en) * 1990-05-11 1992-01-23 Shimada Phys & Chem Ind Co Ltd Induction heating furnace
JP2002115819A (en) * 2000-10-12 2002-04-19 Toyo Glass Co Ltd Burner tip for shaping bottle-mouth

Also Published As

Publication number Publication date
JP5555155B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
US10245681B2 (en) Generating a three-dimensional component by selective laser melting
CN105855544B (en) A kind of selective laser fusing electromagnetic induction three-dimensional heating system
US9242887B2 (en) Method and apparatus for drawing a quartz glass strand
CN102953046B (en) CVD (chemical vapor deposition) reaction cavity and CVD equipment
CN106903311A (en) A kind of electromagnetic induction selective laser fusing powder bed on-line heating system and method
CN105834382A (en) Molten steel feeding system used for preparing amorphous strips
KR20190022013A (en) Apparatus for Forming the 3D Glass using a Brown Gas
JP5555155B2 (en) Glass bottle heating apparatus and method, and glass bottle manufacturing method
CN110118486A (en) The thin plate heating multi-functional and infrared composite box-type heating furnace of miniaturization and method
US7743628B2 (en) Method and device for non-contact moulding of fused glass gobs
US3326655A (en) Gob temperature control
CN108698902A (en) Method for sheet glass separation
US9181123B2 (en) Thermal imaging to optimize flame polishing
US2252756A (en) Apparatus for glass manufacture
KR100747351B1 (en) Heater having multi hot-zone, furnace for drawing down optical fiber preform into optical fiber and method for optical fiber drawing using the same
TW200619155A (en) Process and apparatus for producing flat glass by the float process
US11760677B2 (en) Apparatus and process for producing fiber from igneous rock
CN104193169A (en) Glass tube for LED (light-emitting diode) energy-saving lamps, and manufacturing method and device thereof
CN210048879U (en) Silicon ingot casting thermal field structure
JP2005119958A (en) Glass molten body refining apparatus
KR20140052272A (en) Heat treatment device for annealing process
CN105502898B (en) The cvd furnace of quartz glass is melted
CN106542721A (en) Drift intermediate frequency induction heating device
CN101307377B (en) Steel rapid-heating device and steel rapid-heating method
JP2011178581A (en) Apparatus and method for manufacturing glass rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140530

R150 Certificate of patent or registration of utility model

Ref document number: 5555155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees