JP2012048366A - Vehicle sensor - Google Patents

Vehicle sensor Download PDF

Info

Publication number
JP2012048366A
JP2012048366A JP2010188213A JP2010188213A JP2012048366A JP 2012048366 A JP2012048366 A JP 2012048366A JP 2010188213 A JP2010188213 A JP 2010188213A JP 2010188213 A JP2010188213 A JP 2010188213A JP 2012048366 A JP2012048366 A JP 2012048366A
Authority
JP
Japan
Prior art keywords
distance
frequency
vehicle
wave
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010188213A
Other languages
Japanese (ja)
Other versions
JP5095788B2 (en
Inventor
Fukumi Ueda
福美 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyosan Electric Manufacturing Co Ltd
Original Assignee
Kyosan Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyosan Electric Manufacturing Co Ltd filed Critical Kyosan Electric Manufacturing Co Ltd
Priority to JP2010188213A priority Critical patent/JP5095788B2/en
Publication of JP2012048366A publication Critical patent/JP2012048366A/en
Application granted granted Critical
Publication of JP5095788B2 publication Critical patent/JP5095788B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle sensor preventing interference when juxtaposed and having a hardware constitution in common.SOLUTION: A vehicle sensor 100 incorporates a distance sensor 10 to be a light wave distance sensor of a phase difference system and decides the presence or absence of a vehicle based on a measurement distance L by the distance sensor 10. In the distance sensor 10, the frequency of a transmission wave can be changed by changing a frequency division ratio N of a frequency divider 14, and only a signal of a reflection wave having the same frequency as that of the transmission wave can be extracted from a reception signal by a two-phase lock-in amplifier 30.

Description

本発明は、車両感知器に関する。   The present invention relates to a vehicle sensor.

車両感知器の一種として、路面に向けて超音波や光を照射し、反射波の受信タイミングや受信レベルに基づいて、車両の有無を検出する感知器が知られている(例えば、特許文献1,2参照)。   As a kind of vehicle detector, there is known a detector that irradiates an ultrasonic wave or light toward a road surface and detects the presence or absence of a vehicle based on the reception timing and reception level of a reflected wave (for example, Patent Document 1). , 2).

特開平6−174832号公報Japanese Patent Laid-Open No. 6-174832 特開平10−222795号公報Japanese Patent Laid-Open No. 10-2222795

このような車両感知器を複数車線それぞれに設置(併設)する場合、他の車両感知器の反射波をも受信してしまい、干渉による誤感知が問題となっていた。これを防止するために、車両感知器を併設する場合には、車両感知器毎に送信周波数を異ならせる必要がある。そこで、メーカ側は、送信周波数別に複数種類の車両感知器を製造する必要があり、車両感知器の設置・利用者側(設置事業者や警察庁)は、感知器の設置・管理に留意する必要があった。   When such a vehicle detector is installed (adjacent) in each of a plurality of lanes, reflected waves from other vehicle detectors are also received, and erroneous detection due to interference has been a problem. In order to prevent this, when a vehicle detector is provided, it is necessary to change the transmission frequency for each vehicle detector. Therefore, manufacturers need to manufacture multiple types of vehicle detectors for each transmission frequency, and vehicle detector installation / users (installers and police agencies) pay attention to detector installation / management. There was a need.

本発明は、上記事情に鑑みてなされたものであり、併設時の干渉を防止する新たな車両感知器の実現を目的としている。   The present invention has been made in view of the above circumstances, and an object thereof is to realize a new vehicle sensor that prevents interference at the time of installation.

上記課題を解決するための第1の形態は、
互いの反射波の到達圏内に併設され、自感知器の反射波に基づいて対象車線における車両の有無を感知する車両感知器(例えば、図1の車両感知器100)であって、
所定周波数のクロック信号を分周する分周比を変更可能な分周器(例えば、図4の分周器14)と、
前記分周器による分周信号から送信波を生成し、前記対象車線に向けて送信する送信部(例えば、図4の発光部16)と、
前記分周器の分周比を変更設定することで、前記送信波の周波数を変化させる送信波周波数設定部(例えば、図4の周波数設定部52)と、
前記送信波の反射波を受信する受信部(例えば、図4の受光部18)と、
前記送信波と前記受信部で受信された反射波である受信波との位相差を検出する位相差検出部(例えば、図4の距離算出部22)と、
前記検出された位相差に基づいて、前記対象車線までの計測距離を算出する距離算出部(例えば、図4の距離算出部22)と、
前記計測距離に基づいて、前記対象車線の車両の有無を判定する判定部(車両有無判定部54)と、
を備えた車両感知器である。
The first form for solving the above problem is
A vehicle sensor (for example, the vehicle sensor 100 in FIG. 1) that is provided in the range where the reflected waves of each other reach and senses the presence or absence of a vehicle in the target lane based on the reflected wave of the own sensor,
A frequency divider (for example, frequency divider 14 in FIG. 4) capable of changing a frequency dividing ratio for dividing a clock signal having a predetermined frequency;
A transmission unit (for example, the light emitting unit 16 in FIG. 4) that generates a transmission wave from the frequency-divided signal by the frequency divider and transmits the transmission wave toward the target lane
A transmission wave frequency setting unit (for example, the frequency setting unit 52 in FIG. 4) that changes the frequency of the transmission wave by changing and setting the frequency division ratio of the frequency divider,
A receiving unit (for example, the light receiving unit 18 in FIG. 4) that receives a reflected wave of the transmission wave;
A phase difference detection unit (for example, a distance calculation unit 22 in FIG. 4) that detects a phase difference between the transmission wave and a reception wave that is a reflected wave received by the reception unit;
A distance calculation unit (for example, the distance calculation unit 22 in FIG. 4) that calculates a measurement distance to the target lane based on the detected phase difference;
A determination unit (vehicle presence determination unit 54) for determining the presence or absence of a vehicle in the target lane based on the measurement distance;
It is a vehicle sensor provided with.

この第1の形態によれば、送信波と受信波との位相差に基づいて対象車線までの計測距離を算出し、この計測距離に基づいて対象車線の車両の有無を判定する車両感知器において、所定の基準周波数のクロック信号を分周した分周信号から送信波が生成されるが、このクロック信号を分周する分周器の分周比が変更可能に構成されている。つまり、分周器の分周比を変更するだけで、送信波の周波数を変更できる。これにより、併設された車両感知器間の送信波及び反射波の干渉を防止できるとともに、併設する複数の車両感知器のハードウェア構成を共通とすることができる。   According to the first aspect, in the vehicle detector that calculates the measurement distance to the target lane based on the phase difference between the transmission wave and the reception wave and determines the presence or absence of the vehicle in the target lane based on the measurement distance. A transmission wave is generated from a frequency-divided signal obtained by frequency-dividing a clock signal having a predetermined reference frequency, and the frequency division ratio of the frequency divider that divides the clock signal can be changed. That is, the frequency of the transmission wave can be changed simply by changing the frequency division ratio of the frequency divider. As a result, it is possible to prevent interference between transmission waves and reflected waves between the vehicle detectors provided side by side, and to make the hardware configuration of a plurality of vehicle detectors provided side by side common.

第2の形態として、第1の形態の車両感知器であって、
前記位相差検出部は、
前記分周信号を用いて前記受信波を同期検波し、当該同期検波した信号から直流成分を抽出する2位相ロックインアンプ回路(例えば、図4の2位相ロックインアンプ30)を有し、
前記抽出された2つの直流成分の正負の組合せと当該直流成分とを用いて、前記送信波と前記受信波との位相差を検出する、
車両感知器を構成しても良い。
As a second form, the vehicle detector of the first form,
The phase difference detector is
Having a two-phase lock-in amplifier circuit (for example, the two-phase lock-in amplifier 30 in FIG. 4) that synchronously detects the received wave using the divided signal and extracts a DC component from the synchronously detected signal;
A phase difference between the transmitted wave and the received wave is detected using a positive / negative combination of the extracted two DC components and the DC component.
A vehicle detector may be configured.

この第2の形態によれば、送信波と受信波の位相差の検出は、2位相ロックインアンプを用いて実現される。これにより、送信波と同じ周波数の反射波を容易に検出でき、雑音に強く且つ精確な位相差の検出が実現される。   According to the second embodiment, detection of the phase difference between the transmission wave and the reception wave is realized using the two-phase lock-in amplifier. As a result, a reflected wave having the same frequency as the transmitted wave can be easily detected, and a phase difference resistant to noise and accurate can be realized.

第3の形態として、第1又は第2の形態の車両感知器であって、
前記判定部は、前記計測距離が、当該車両感知器から路面までの距離とみなす路面距離に基づき定められる閾値距離条件を満たすか否かによって、前記対象車線の車両の有無を判定し、
前記路面距離を、前記判定部により車両無しと判定されているときの計測距離に追従させるように変更することで前記閾値距離条件を変更する閾値距離条件変更部(例えば、図4の車両有無判定部54)、
を更に備える、
車両感知器を構成しても良い。
As a third form, the vehicle detector of the first or second form,
The determination unit determines whether or not there is a vehicle in the target lane according to whether or not the measurement distance satisfies a threshold distance condition determined based on a road surface distance that is regarded as a distance from the vehicle sensor to the road surface,
A threshold distance condition changing unit that changes the threshold distance condition by changing the road surface distance so as to follow the measured distance when the determination unit determines that there is no vehicle (for example, vehicle presence determination in FIG. 4). Part 54),
Further comprising
A vehicle detector may be configured.

この第3の形態によれば、計測距離が、路面距離に基づき定められる閾値条件を満たすか否かによって、対象車線の車両の有無が判定される。ところで、実際の車両感知器から路面までの距離は、例えば積雪等によって変動し得る。このため、路面距離を、車両無しと判定されているときの計測距離に追従させるように変更することで、より精確な車両有無の判定が実現される。   According to the third aspect, the presence or absence of a vehicle in the target lane is determined based on whether or not the measurement distance satisfies a threshold condition determined based on the road surface distance. By the way, the actual distance from the vehicle detector to the road surface may vary due to, for example, snow. For this reason, the more accurate determination of the presence or absence of the vehicle is realized by changing the road surface distance so as to follow the measurement distance when it is determined that there is no vehicle.

車両感知器の設置例。Installation example of a vehicle detector. 光波距離センサによる距離計測の概要図。The schematic diagram of distance measurement by a light wave distance sensor. 送信周波数による検出精度の違いの説明図。Explanatory drawing of the difference in the detection accuracy by a transmission frequency. 車両感知器の構成図。The block diagram of a vehicle sensor. 算出される位相差と実際の位相差との対応関係。Correspondence between calculated phase difference and actual phase difference. 位相差補正テーブルのデータ構成例。The data structural example of a phase difference correction table. 分周比と計測可能な最大距離との対応関係例。The correspondence example of a frequency division ratio and the maximum measurable distance. 計測距離に基づく車両有無の判定原理の説明図。Explanatory drawing of the determination principle of the presence or absence of a vehicle based on measurement distance. 車両検知処理のフローチャート。The flowchart of a vehicle detection process.

以下、図面を参照して、本発明の実施形態を説明するが、本発明の適用可能な実施形態がこれに限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but embodiments to which the present invention can be applied are not limited thereto.

[設置例]
図1は、本実施形態における車両感知器100の設置例を示す図である。図1に示すように、複数車線でなる道路において、各車線を感知対象とした複数の車両感知器100が、道路上方に設置された柱に、感知対象の車線を俯瞰するように設置(併設)されている。
[Example of installation]
FIG. 1 is a diagram illustrating an installation example of the vehicle detector 100 according to the present embodiment. As shown in FIG. 1, in a road composed of multiple lanes, a plurality of vehicle detectors 100 for detecting each lane are installed on a pillar installed above the road so as to overlook the lane to be detected. )

車両感知器100は距離センサ10を内蔵し、この距離センサ10による計測距離によって、感知対象の車線における車両の有無を示す感知信号を生成する。車両感知器100から出力された感知信号は、例えば、柱の下方に設置され、有線/無線によって通信可能に接続された制御装置200に出力される。   The vehicle sensor 100 has a built-in distance sensor 10 and generates a sensing signal indicating the presence or absence of a vehicle in the sensing target lane based on the distance measured by the distance sensor 10. The sensing signal output from the vehicle sensor 100 is output to the control device 200 that is installed below the pillar and connected to be communicable by wire / wireless, for example.

[距離センサの原理]
車両感知器100に内蔵される距離センサ10は、赤外線やレーザ光等の光波を用いた光波距離センサであり、位相方式によって測定対象物までの距離Lを計測する。
[Principle of distance sensor]
The distance sensor 10 built in the vehicle detector 100 is a light wave distance sensor using light waves such as infrared rays and laser light, and measures the distance L to the measurement object by a phase method.

図2は、距離センサ10による距離計測の概要図である。図2(a)に示すように、距離センサ10は、光波である送信波を測定対象物90に向けて射出し、測定対象物90で反射された反射波を受信する。そして、図2(b)に示すように、この送信波と受信した反射波(以下、「受信波」という)との位相差φから、測定対象物90までの距離Lを算出する。測定対象物90までの距離Lは、L=(C・φ/2πf)/2、と算出される。ここで、「C」は光速であり、C≒3×10m/s、である。 FIG. 2 is a schematic diagram of distance measurement by the distance sensor 10. As shown in FIG. 2A, the distance sensor 10 emits a transmission wave, which is a light wave, toward the measurement object 90 and receives a reflected wave reflected by the measurement object 90. Then, as shown in FIG. 2B, the distance L to the measurement object 90 is calculated from the phase difference φ between this transmitted wave and the received reflected wave (hereinafter referred to as “received wave”). The distance L to the measurement object 90 is calculated as L = (C · φ / 2πf) / 2. Here, “C” is the speed of light, and C≈3 × 10 8 m / s.

また、送信波と受信波との位相差φから距離Lを算出するため、1つの送信周波数のみで距離Lを算出する場合には、位相差φは、送信周波数の1周期以内となる。このため、測定可能な最大距離Lm(いわゆる「距離レンジ」)は、理論的には、送信波の周波数fによって決まり、Lm=λ/2=C/(2・f)、となる。例えば、送信波の周波数を「25MHz」とすると、波長λは「12m」であり、測定可能な最大距離Lmは「6m」となる。   Further, in order to calculate the distance L from the phase difference φ between the transmission wave and the reception wave, when the distance L is calculated using only one transmission frequency, the phase difference φ is within one cycle of the transmission frequency. For this reason, the maximum measurable distance Lm (so-called “distance range”) is theoretically determined by the frequency f of the transmission wave and is Lm = λ / 2 = C / (2 · f). For example, when the frequency of the transmission wave is “25 MHz”, the wavelength λ is “12 m” and the maximum measurable distance Lm is “6 m”.

また、位相方式の距離センサによる測定距離Lの算出精度は、送信波の周波数によって異なり、具体的には、送信波の周波数が高いほど、算出精度が良い。   The calculation accuracy of the measurement distance L by the phase-type distance sensor differs depending on the frequency of the transmission wave. Specifically, the calculation accuracy is better as the frequency of the transmission wave is higher.

図3は、送信波の周波数の違いによる測定距離Lの算出精度の違いを説明するための図である。図中、上側は、周波数faの送信波及び受信波を示し、下側は、周波数faより高い周波数fb(=3・fa)の送信波及び受信波を示している。   FIG. 3 is a diagram for explaining a difference in calculation accuracy of the measurement distance L due to a difference in frequency of the transmission wave. In the drawing, the upper side shows a transmission wave and a reception wave having a frequency fa, and the lower side shows a transmission wave and a reception wave having a frequency fb (= 3 · fa) higher than the frequency fa.

同じ距離Lを測定する場合、周波数fが異なると波長λが異なることにより、送信波と受信波との位相差φは異なる。具体的には、高周波であるほど、位相差φが大きくなる。図3では、周波数fbの場合の位相差φbのほうが、周波数faの場合の位相差φaよりも大きく、φb=3・φa、となっている。   When the same distance L is measured, the phase difference φ between the transmission wave and the reception wave differs due to the difference in the wavelength λ when the frequency f is different. Specifically, the higher the frequency, the larger the phase difference φ. In FIG. 3, the phase difference φb at the frequency fb is larger than the phase difference φa at the frequency fa, and φb = 3 · φa.

二つの信号の位相差φを検出する場合、その位相差φが小さいほど、その検出誤差が発生し易い。つまり、送信波の周波数fが低周波であるほど、位相差φの検出誤差が発生し易く、測定距離Lの算出精度が低下する。逆に言えば、送信波の周波数fが高周波であるほど、位相差φの検出誤差が発生しにくく、測定距離Lの算出精度が向上する。   When detecting the phase difference φ between two signals, the smaller the phase difference φ, the easier the detection error. That is, as the frequency f of the transmission wave is lower, a detection error of the phase difference φ is more likely to occur, and the calculation accuracy of the measurement distance L is reduced. In other words, as the frequency f of the transmission wave is higher, the detection error of the phase difference φ is less likely to occur and the calculation accuracy of the measurement distance L is improved.

ところで、光波等の電磁波を距離計測用信号として用いた距離センサを内蔵する車両感知器100を、複数車線それぞれに設置(併設)する場合、距離計測用の信号の干渉、つまり、他の車両感知器100が送信した送信波やその反射波も受信してしまうという事態が起こり得る。これを解決するため、本実施形態の車両感知器100は、距離計測用信号(送信波)の周波数を変更可能に構成されている。これにより、隣接する車線に配置(併設)された複数の車両感知器100それぞれの送信波の周波数を異なるように設定し、車両感知器100間の干渉の影響を防止することができる。   By the way, when the vehicle detector 100 including a distance sensor using an electromagnetic wave such as a light wave as a distance measurement signal is installed (adjacent) in each of a plurality of lanes, interference of a distance measurement signal, that is, other vehicle detection A situation may occur in which the transmitted wave transmitted by the device 100 and its reflected wave are also received. In order to solve this, the vehicle sensor 100 of the present embodiment is configured to be able to change the frequency of the distance measurement signal (transmission wave). Thereby, the frequency of the transmission wave of each of the plurality of vehicle detectors 100 arranged (adjacent) in adjacent lanes can be set to be different, and the influence of interference between the vehicle detectors 100 can be prevented.

[構成]
図4は、車両感知器100の構成図である。図4に示すように、車両感知器100は、距離センサ10と、周波数設定部52と、車両有無判定部54とを備えて構成される。
[Constitution]
FIG. 4 is a configuration diagram of the vehicle sensor 100. As shown in FIG. 4, the vehicle detector 100 includes a distance sensor 10, a frequency setting unit 52, and a vehicle presence / absence determination unit 54.

距離センサ10は、2位相ロックインアンプを用いて送信波と受信波との位相差φを検出するものであり、発振器12と、分周器14と、発光部16と、受光部18と、BPF20と、2位相ロックインアンプ30とを備えて構成される。   The distance sensor 10 detects a phase difference φ between the transmission wave and the reception wave using a two-phase lock-in amplifier, and includes an oscillator 12, a frequency divider 14, a light emitting unit 16, a light receiving unit 18, A BPF 20 and a two-phase lock-in amplifier 30 are provided.

発振器12は、例えば、水晶振動子を有して構成され、基準周波数fの基準信号Fを生成する。この基準周波数fは、例えば「25MHz」とされる。   For example, the oscillator 12 includes a crystal resonator and generates a reference signal F having a reference frequency f. The reference frequency f is, for example, “25 MHz”.

分周器14は、発振器12から出力された基準信号Fの周波数fを1/Nに分周し、送信信号Vとして出力する。この分周器14の分周比Nは、「N=2(nは正数)」であり、周波数設定部52によって変更制御される。 The frequency divider 14 divides the frequency f of the reference signal F output from the oscillator 12 by 1 / N and outputs it as a transmission signal V T. The frequency division ratio N of the frequency divider 14 is “N = 2 n (n is a positive number)”, and is changed and controlled by the frequency setting unit 52.

発光部16は、例えば、レーザダイオード等の発光素子を有して構成され、分周器14から出力された送信信号Vの周波数で強度変調された光信号を、送信波として射出する。つまり、周波数が「f/N」の送信波が射出される。 Emitting unit 16 is composed of, for example, a light-emitting element such as a laser diode, an optical signal whose intensity is modulated at a frequency of the transmitted signal V T output from the frequency divider 14, and emitted as transmitted waves. That is, a transmission wave having a frequency “f / N” is emitted.

受光部18は、例えば、フォトダイオード等の受光素子を有して構成され、受光した光波を電気信号に変換し、受信信号Vとして出力する。 The light receiving unit 18 is configured, for example, a light receiving element such as a photodiode converts the light waves received into an electrical signal, and outputs as a reception signal V R.

BPF20は、受信信号Vに対して、所定帯域の信号を通過させ、帯域外の周波数成分を遮断する。このBPF20の中心周波数foは、受信信号Vから、送信波と同じ周波数である反射波の信号のみを抽出するため、周波数設定部52によって、fo=f/N、に設定される。 BPF20 is the received signal V R, is passed through a signal of a predetermined band, for blocking an out-of-band frequency components. The center frequency fo of this BPF20 from the received signal V R, for extracting only the signal of the reflected wave at the same frequency as the transmission wave, the frequency setting unit 52, fo = f / N, is set to.

2位相ロックインアンプ30は、分周器14から出力される送信信号Vを「参照信号」とし、受信信号Vを「計測信号」として、受信信号Vを送信信号Vで同期検波(位相検波)し、直交する二つの交流信号X,Yを出力する。この2位相ロックインアンプ30は、原理的には、遅延回路32と、ミキサ34,36と、LPF38,40とを有して構成される。 2 phase lock-in amplifier 30, a transmission signal V T which is output from the frequency divider 14 as a "reference signal", the received signal V R as "measurement signal", the synchronous detection in the transmit signal V T the received signal V R (Phase detection) and output two alternating signals X and Y orthogonal to each other. In principle, the two-phase lock-in amplifier 30 includes a delay circuit 32, mixers 34 and 36, and LPFs 38 and 40.

遅延回路32は、送信信号V(参照信号)の位相を「π/2(90°)」だけ遅らせる。 The delay circuit 32 delays the phase of the transmission signal V T (reference signal) by “π / 2 (90 °)”.

ミキサ34は、BPF20から出力された信号と、送信信号V(参照信号)とを乗算(合成)して出力する。ミキサ36は、BPF20から出力された信号と、遅延回路32から出力された信号とを乗算する。 The mixer 34 multiplies (synthesizes) the signal output from the BPF 20 and the transmission signal V T (reference signal) and outputs the result. The mixer 36 multiplies the signal output from the BPF 20 and the signal output from the delay circuit 32.

LPF38は、ミキサ34の出力信号に対して、所定の低帯域の信号を通過させ、帯域外の周波数成分を遮断する。このLPF38のカットオフ周波数fcは、周波数設定部52によって、fc=f/2N、に設定される。   The LPF 38 passes a predetermined low-band signal with respect to the output signal of the mixer 34 and blocks out-of-band frequency components. The cut-off frequency fc of the LPF 38 is set to fc = f / 2N by the frequency setting unit 52.

LPF40は、ミキサ36の出力信号に対して、所定の低帯域の信号を通過させ、帯域外の周波数成分を遮断する。このLPF40のカットオフ周波数fcは、周波数設定部52によって、fc=f/2N、に設定される。   The LPF 40 passes a predetermined low-band signal with respect to the output signal of the mixer 36 and blocks out-of-band frequency components. The cut-off frequency fc of the LPF 40 is set by the frequency setting unit 52 to fc = f / 2N.

この距離センサ10において、発振器12が生成する基準信号Fを、F1=sin(ωt)、とすると、分周器14の出力信号、すなわち送信信号V(参照信号)は、V=sin(ωt/N)、となる。そして、遅延回路32の出力信号Dは、D=sin(ωt/N−π/2)=cos(ωt/N)、となる。 In this distance sensor 10, if the reference signal F generated by the oscillator 12 is F1 = sin (ωt), the output signal of the frequency divider 14, that is, the transmission signal V T (reference signal) is V T = sin ( ωt / N). The output signal D of the delay circuit 32 is D = sin (ωt / N−π / 2) = cos (ωt / N).

また、送信信号Vと受信信号Vとの位相差を「φ」とすると、受信信号Vは、V=sin(ωt/N−φ)、となる。この受信信号Vは、そのまま、BPF20を通過する。 Further, when the phase difference between the transmitted signal V T and the received signal V R and "phi", the received signal V R is, V R = sin (ωt / N-φ), and becomes. The received signal V R is directly passed through the BPF 20.

そして、ミキサ34の出力信号MIX1は、次式(1)となる。
MIX1=sin(ωt/N)×sin(ωt/N−φ)
=−(cos(2ωt−φ)−cosφ)/2 ・・(1)
この信号MIX1は、LPF38を通過することで高周波成分が遮断される。そして、LPF38の出力信号Xは、X=(cosφ)/2、となる。
The output signal MIX1 of the mixer 34 is expressed by the following equation (1).
MIX1 = sin (ωt / N) × sin (ωt / N−φ)
= − (Cos (2ωt−φ) −cosφ) / 2 (1)
The signal MIX1 passes through the LPF 38, and the high frequency component is cut off. The output signal X of the LPF 38 is X = (cosφ) / 2.

また、ミキサ36の出力信号MIX2は、次式(2)となる。
MIX2=cos(ωt/N)×sin(ωt/N−φ)
=(sin(2ωt−φ)+sinφ)/2 ・・(2)
この信号MIX2は、LPF40を通過することで高周波成分が遮断される。そして、LPF40の出力信号Yは、Y=(sinφ)/2、となる。
Further, the output signal MIX2 of the mixer 36 is expressed by the following equation (2).
MIX2 = cos (ωt / N) × sin (ωt / N−φ)
= (Sin (2ωt−φ) + sinφ) / 2 (2)
This signal MIX2 is blocked from high-frequency components by passing through the LPF 40. The output signal Y of the LPF 40 is Y = (sin φ) / 2.

従って、これらの信号X,Yから、送信信号Vと受信信号Vとの位相差φは、式(3)となる。
φ=tan−1(Y/X) ・・(3)
Thus, these signals X, the Y, the phase difference φ between the transmitted signal V T and the received signal V R, the equation (3).
φ = tan −1 (Y / X) (3)

ところで、送信信号Vと受信信号Vとの実際の位相差φrは、「0≦φr<2π(360°)」である。しかし、上式(3)によって算出される位相差φは、「−π/2(−90°)≦φ≦π/2(90°)」の値である。このため、算出した位相差φを、実際の位相差φrとなるように補正する必要がある。具体的には、信号X,Yの正負の組み合わせによって、算出した位相差φを補正する。 However, the actual phase difference [phi] r of the transmission signal V T and the received signal V R is "0 ≦ φr <2π (360 ° ) ". However, the phase difference φ calculated by the above equation (3) is a value of “−π / 2 (−90 °) ≦ φ ≦ π / 2 (90 °)”. For this reason, it is necessary to correct the calculated phase difference φ so as to be the actual phase difference φr. Specifically, the calculated phase difference φ is corrected by a positive / negative combination of the signals X and Y.

図5は、実際の位相差φrと信号X,Yの正負との関係を示す図である。図5では、横軸を送信信号Vと受信信号Vとの実際の位相差φrとして、信号X,Yそれぞれと、この信号X,Yから算出される位相差φと、実際の位相差φrとを示している。 FIG. 5 is a diagram showing the relationship between the actual phase difference φr and the positive and negative of the signals X and Y. In Figure 5, the actual phase difference φr of the horizontal axis and the transmission signal V T and the received signal V R, the signal X, and Y, respectively, the signal X, a phase difference φ being calculated from the Y, the actual phase difference φr.

図5に示すように、「0≦φr<π/2(90°)」では、φ=φr、であるが、「π/2(90°)≦φr<2π(360°)」では、φ≠φr、となっている。具体的には、「π/2(90°)≦φr<3π/2(270°)」では、φ=φr−π(180°)、であり、「3π/2≦φr<2π」では、φ=φr−2π、となっている。このため、実際の位相差φrとなるよう、算出した位相差φを補正する必要がある。信号X,Yそれぞれの値の正負の組合せは象限毎に異なるので、この信号X,Yの値の正負の組合せから、必要な補正量Δφを判断する。   As shown in FIG. 5, when “0 ≦ φr <π / 2 (90 °)”, φ = φr, but when “π / 2 (90 °) ≦ φr <2π (360 °)”, φ ≠ φr. Specifically, in “π / 2 (90 °) ≦ φr <3π / 2 (270 °)”, φ = φr−π (180 °), and in “3π / 2 ≦ φr <2π”, φ = φr−2π. For this reason, it is necessary to correct the calculated phase difference φ so that the actual phase difference φr is obtained. Since the positive and negative combinations of the values of the signals X and Y differ for each quadrant, the necessary correction amount Δφ is determined from the positive and negative combinations of the values of the signals X and Y.

距離算出部22は、DSP(Digital Signal Processor)等の演算装置(プロセッサ)を有して構成され、測定対象物までの距離Lを算出する。すなわち、LPF38,40から出力される信号X,Yをもとに、上式(3)に従って、送信信号Vと受信信号Vとの位相差φを算出する。続いて、信号X,Yの正負の組合せをもとに、位相差補正テーブル60に従って、算出した位相差φを補正する。 The distance calculation unit 22 includes an arithmetic device (processor) such as a DSP (Digital Signal Processor), and calculates the distance L to the measurement object. That is, the signal X outputted from LPF38,40, based on the Y, according to the above equation (3), calculates the phase difference φ between the transmitted signal V T and the received signal V R. Subsequently, the calculated phase difference φ is corrected according to the phase difference correction table 60 based on the positive / negative combination of the signals X and Y.

図6は、位相差補正テーブル60のデータ構成の一例を示す図である。図6によれば、位相差補正テーブル60は、信号Xの値の正負61と、信号Yの値の正負62との組合せそれぞれに、位相差φの補正量63を対応付けて格納している。この位相差補正テーブル60は、距離算出部22内に記憶されている。そして、この位相差φから計測距離Lを算出する。計測距離Lは、L=(C・φ・N)/(2・ω)、で与えられる。   FIG. 6 is a diagram illustrating an example of a data configuration of the phase difference correction table 60. According to FIG. 6, the phase difference correction table 60 stores the correction amount 63 of the phase difference φ in association with each combination of the positive / negative 61 of the value of the signal X and the positive / negative 62 of the value of the signal Y. . The phase difference correction table 60 is stored in the distance calculation unit 22. Then, the measurement distance L is calculated from this phase difference φ. The measurement distance L is given by L = (C · φ · N) / (2 · ω).

周波数設定部52は、DSP(Digital Signal Processor)等の演算装置(プロセッサ)を有して構成され、例えば、管理者の操作入力や制御装置200からの制御信号等の外部入力に従って、距離センサ10の送信波の周波数を設定する。具体的には、分周器14の分周比Nを、指定された値に設定する。また、設定した分周比Nに合わせて、BPF20の中心周波数foを設定するとともに、LPF38,40のカットオフ周波数fcを設定する。中心周波数foは、fo=f/N、で与えられ、カットオフ周波数fcは、fc=f/2N、で与えられる。   The frequency setting unit 52 is configured to include an arithmetic device (processor) such as a DSP (Digital Signal Processor). For example, the frequency setting unit 52 is operated according to an operation input by an administrator or an external input such as a control signal from the control device 200. Set the frequency of the transmitted wave. Specifically, the frequency division ratio N of the frequency divider 14 is set to a designated value. Further, the center frequency fo of the BPF 20 is set in accordance with the set frequency division ratio N, and the cutoff frequency fc of the LPFs 38 and 40 is set. The center frequency fo is given by fo = f / N, and the cutoff frequency fc is given by fc = f / 2N.

図7は、分周比Nの具体的な設定例を示す図であり、分周比Nと、計測可能な最大距離Lmとの対応関係を示している。但し、本実施形態において設定可能な分周比Nは、2のべき乗である「N=1,2,4・・・」であり、基準周波数fは「f=25MHz」であるとする。   FIG. 7 is a diagram illustrating a specific setting example of the frequency division ratio N, and shows a correspondence relationship between the frequency division ratio N and the maximum measurable distance Lm. However, it is assumed that the division ratio N that can be set in the present embodiment is “N = 1, 2, 4,...” That is a power of 2, and the reference frequency f is “f = 25 MHz”.

車両感知器100は、通常、路面からの高さが「5〜6m」程度の位置に設置される。つまり、計測可能な距離Lmが「5〜6m」以上、すなわち、分周比Nを「N=1」以上に設定すればよい。また、送信波の周波数が高いほど、計測精度が高い。このため、複数の車両感知器100を併設する場合には、各車両感知器100分周器14の分周比Nを、「N=1,2,4・・・」の順に割り当てる。具体的には、例えば、2台の車両感知器100a,100bを併設する場合には、一方の車両感知器100aの分周比Nを「N=1」とし、他方の車両感知器100bの分周比Nを「N=2」とする。また、3台の車両感知器100a〜100cを併設する場合には、1台目の車両感知器100aの分周比Nを「N=1」とし、2台目の車両感知器100bの分周比Nを「N=2」とし、3台目の車両感知器100cの分周比Nを「N=4」とする。   The vehicle detector 100 is usually installed at a position where the height from the road surface is about “5 to 6 m”. That is, the measurable distance Lm may be set to “5 to 6 m” or more, that is, the frequency division ratio N may be set to “N = 1” or more. Moreover, the higher the frequency of the transmission wave, the higher the measurement accuracy. Therefore, when a plurality of vehicle detectors 100 are provided, the frequency division ratio N of each vehicle detector 100 frequency divider 14 is assigned in the order of “N = 1, 2, 4,...”. Specifically, for example, when two vehicle detectors 100a and 100b are provided side by side, the division ratio N of one vehicle detector 100a is set to “N = 1”, and the division of the other vehicle detector 100b is set. Let the circumferential ratio N be “N = 2”. When three vehicle detectors 100a to 100c are also provided, the division ratio N of the first vehicle detector 100a is set to “N = 1”, and the frequency division of the second vehicle detector 100b is performed. The ratio N is “N = 2”, and the frequency division ratio N of the third vehicle detector 100c is “N = 4”.

車両有無判定部54は、DSP(Digital Signal Processor)等の演算装置(プロセッサ)を有して構成され、距離算出部22によって算出された計測距離Lに基づいて対象車線における車両の有無を判定し、判定結果である感知信号を出力する。   The vehicle presence / absence determination unit 54 includes an arithmetic device (processor) such as a DSP (Digital Signal Processor), and determines the presence / absence of a vehicle in the target lane based on the measurement distance L calculated by the distance calculation unit 22. , A sensing signal as a determination result is output.

図8は、計測距離Lに基づく車両の有無の判定原理を説明する図である。図8に示すように、車両感知器100から路面までの距離である「路面レベル」を基準とした「閾値レベル」を定める。具体的には、路面レベルから、車両の高さを想定して定められる所定距離(例えば、30cm程度)だけ高い位置までの距離を、閾値レベルとして定める。そして、計測距離Lが、閾値距離条件である「閾値レベルに達しないこと」を満たす場合には「車両有り」と判定し、閾値距離条件を満たさない(すなわち、計測距離Lが閾値レベルに達した)場合には「車両無し」と判定する。   FIG. 8 is a diagram for explaining the principle of determining the presence or absence of a vehicle based on the measurement distance L. As shown in FIG. 8, a “threshold level” is defined based on a “road surface level” that is a distance from the vehicle detector 100 to the road surface. Specifically, the distance from the road surface level to a position that is higher by a predetermined distance (for example, about 30 cm) determined assuming the height of the vehicle is determined as the threshold level. If the measured distance L satisfies the threshold distance condition “does not reach the threshold level”, it is determined that the vehicle is present, and the threshold distance condition is not satisfied (that is, the measured distance L reaches the threshold level). In the case of "No vehicle".

なお、実際の路面の高さは常に一定ではなく、例えば積雪などによって変動する。このため、計測距離Lに基づき、路面レベルを、実際の路面の高さの変動に追従させる。   Note that the actual height of the road surface is not always constant and varies depending on, for example, snow accumulation. For this reason, based on the measurement distance L, the road surface level is made to follow the fluctuation | variation of the actual road surface height.

具体的には、現在の路面レベルが実際の路面にほぼ一致している場合、車両が存在するならば、計測距離Lは閾値レベルに達しておらず、車両が存在しないならば、計測距離Lは路面レベルにほぼ一致するはずである。このため、判定結果が「車両無し」の場合に、計測距離Lに近づけるように、路面レベルを徐々に変更する。すなわち、計測距離Lが路面レベルを超える場合には、路面レベルを徐々に増加させ、計測距離Lが閾値レベルと路面レベルとの間である場合には、路面レベルを徐々に減少させる。このとき、路面レベルの変更量は、増加量のほうが減少量よりも大きくする。そして、この路面レベルの変動に応じて、閾値レベルも変動することになる。   Specifically, when the current road surface level substantially matches the actual road surface, if a vehicle exists, the measurement distance L does not reach the threshold level, and if there is no vehicle, the measurement distance L Should almost match the road level. For this reason, when the determination result is “no vehicle”, the road surface level is gradually changed so as to approach the measurement distance L. That is, when the measured distance L exceeds the road surface level, the road surface level is gradually increased, and when the measured distance L is between the threshold level and the road surface level, the road surface level is gradually decreased. At this time, the amount of change in the road surface level is larger for the increase amount than for the decrease amount. The threshold level also varies according to the variation in the road surface level.

なお、距離算出部22、周波数設定部52及び車両有無判定部54のうち、2つ或いは全部が、同一の制御部によって構成されることにしても良い。   Two or all of the distance calculation unit 22, the frequency setting unit 52, and the vehicle presence / absence determination unit 54 may be configured by the same control unit.

[処理の流れ]
図9は、車両有無判定部54が実行する車両検知処理の流れを説明するフローチャートである。図9によれば、車両有無判定部54は、先ず、距離算出部22による計測距離Lの算出が正常に行われたか否かを判定する。ここで、計測距離Lの算出が正常に行われない場合としては、例えば、送信波を送出したが反射波が受信されない場合などである。
[Process flow]
FIG. 9 is a flowchart for explaining the flow of the vehicle detection process executed by the vehicle presence / absence determination unit 54. According to FIG. 9, the vehicle presence / absence determination unit 54 first determines whether or not the measurement distance L is normally calculated by the distance calculation unit 22. Here, the case where the measurement distance L is not normally calculated is, for example, a case where a transmission wave is transmitted but a reflected wave is not received.

計測距離Lの算出が正常に行われていない場合(ステップA1:NO)、ここまでの感知結果が所定時間(例えば、5分)以上連続して「異常」であるならば(ステップA3:YES)、引き続いて感知結果を「異常」とし(ステップA5)、そうでないならば(ステップA3:NO)、感知結果を「有り」とする(ステップA7)。   If the calculation of the measurement distance L is not performed normally (step A1: NO), if the sensing result up to this point is “abnormal” continuously for a predetermined time (for example, 5 minutes) (step A3: YES) Then, the sensing result is set to “abnormal” (step A5), and if not (step A3: NO), the sensing result is set to “present” (step A7).

一方、計測距離Lの算出が正常に行われたならば(ステップA1:YES)、算出された計測距離Lと路面レベルとを比較する。そして、計測距離Lが路面レベルを超えるならば(ステップA9:YES)、路面レベルを所定の増加量だけ上昇させ(ステップA11)、上昇後の路面レベルに合わせて、閾値レベルを変更する(ステップA13)。   On the other hand, if the measurement distance L is normally calculated (step A1: YES), the calculated measurement distance L is compared with the road surface level. If the measured distance L exceeds the road surface level (step A9: YES), the road surface level is increased by a predetermined increase amount (step A11), and the threshold level is changed in accordance with the road surface level after the increase (step A11). A13).

また、計測距離Lが路面レベルに一致するならば(ステップA15:YES)、感知結果を「無し」とする(ステップA17)。   If the measured distance L matches the road surface level (step A15: YES), the sensing result is “none” (step A17).

また、計測距離Lが路面レベルに達しないならば(ステップA15:NO)、続いて、
計測距離とLと閾値レベルとを比較する。計測距離Lが閾値レベルに達しないならば(ステップA19:YES)、感知結果を「有り」とする(ステップA21)。
If the measured distance L does not reach the road surface level (step A15: NO), then
The measurement distance, L, and threshold level are compared. If the measurement distance L does not reach the threshold level (step A19: YES), the sensing result is “present” (step A21).

一方、計測距離Lが閾値レベルに達するならば(ステップA19:NO)、路面レベルを所定の減少量だけ減少させ(ステップA23)、減少後の路面レベルに合わせて、閾値レベルを変更する(ステップA25)。そして、感知結果を「無し」とする(ステップA27)。   On the other hand, if the measured distance L reaches the threshold level (step A19: NO), the road surface level is decreased by a predetermined decrease amount (step A23), and the threshold level is changed in accordance with the road surface level after the decrease (step A23). A25). Then, the detection result is set to “none” (step A27).

その後、車両感知を終了するか否かを判断し、終了しないならば(ステップA29:NO)、ステップA1に戻り、終了するならば(ステップA29:YES)、車両感知処理を終了する。   Thereafter, it is determined whether or not to end the vehicle sensing. If not (step A29: NO), the process returns to step A1, and if finished (step A29: YES), the vehicle sensing process is terminated.

[作用・効果]
このように、本実施形態の車両感知器100は、位相差方式の光波距離センサである距離センサ10を内蔵し、この距離センサ10による計測距離Lに基づいて、車両の有無を判定する。距離センサ10では、分周器14の分周比Nを変更することで、送信波の周波数を変更できるとともに、2位相ロックインアンプ30によって、受信信号から、送信波の周波数と同じ反射波の信号のみを抽出することができる。
[Action / Effect]
As described above, the vehicle sensor 100 according to the present embodiment incorporates the distance sensor 10 that is a phase difference type light wave distance sensor, and determines the presence or absence of the vehicle based on the distance L measured by the distance sensor 10. In the distance sensor 10, the frequency of the transmission wave can be changed by changing the frequency division ratio N of the frequency divider 14, and the reflected wave having the same frequency as the frequency of the transmission wave is received from the received signal by the two-phase lock-in amplifier 30. Only the signal can be extracted.

これにより、隣接する車線を対象として設置(併設)する複数の車両感知器100のハードウェアを共通とすることができる。そして、各車両感知器100における分周器14の分周比Nを、異なる分周比Nに設定して送信波の周波数を異ならせることで、併設された車両感知器100間の反射波の干渉を防止することができる。   Thereby, the hardware of the several vehicle detector 100 installed (adjacent) for the adjacent lane can be made common. Then, by setting the frequency division ratio N of the frequency divider 14 in each vehicle detector 100 to a different frequency division ratio N and changing the frequency of the transmission wave, the reflected wave between the vehicle sensors 100 provided in the vehicle detector 100 is different. Interference can be prevented.

[変形例]
なお、本発明の適用可能な実施形態は、上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能なのは勿論である。
[Modification]
It should be noted that embodiments to which the present invention can be applied are not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit of the present invention.

(A)閾値距離条件
例えば、上述の実施形態では、車両有無の判定基準となる閾値距離条件を「計測距離Lが閾値レベルを満たさない」ことにしたが、これ以外の条件としても良い。具体的には、例えば、閾値距離条件を「計測距離と路面レベルとの差が所定距離以上」とし、計測距離Lと路面レベルとの差が、車両の高さを想定して定められる所定距離(例えば、30cm程度)以上ならば「車両有り」と判定し、所定距離以下ならば「車両無し」と判定する。
(A) Threshold distance condition For example, in the above-described embodiment, the threshold distance condition serving as the vehicle presence / absence determination criterion is “the measurement distance L does not satisfy the threshold level”, but other conditions may be used. Specifically, for example, the threshold distance condition is “the difference between the measured distance and the road surface level is equal to or greater than a predetermined distance”, and the difference between the measured distance L and the road surface level is determined based on the height of the vehicle. If it is equal to or greater than (for example, about 30 cm), it is determined that there is a vehicle, and if it is equal to or less than a predetermined distance, it is determined that there is no vehicle.

(B)距離センサ10
また、上述に実施形態では、車両感知器100が内蔵する距離センサ10を光波距離センサとしたが、電磁波や超音波を用いた距離センサであっても、同様に本発明を適用可能である。
(B) Distance sensor 10
In the above-described embodiment, the distance sensor 10 incorporated in the vehicle detector 100 is a light wave distance sensor. However, the present invention can be similarly applied to a distance sensor using electromagnetic waves or ultrasonic waves.

100 車両感知器
10 距離センサ
12 発振器、14 分周器、16 発光部、18 受光部、20 BPF
30 2位相ロックインアンプ
32 遅延回路、34,36 ミキサ、38,40 LPF、22 距離算出部
52 周波数設定部、54 車両有無判定部
DESCRIPTION OF SYMBOLS 100 Vehicle detector 10 Distance sensor 12 Oscillator, 14 Frequency divider, 16 Light emission part, 18 Light reception part, 20 BPF
30 Two-phase lock-in amplifier 32 Delay circuit, 34, 36 Mixer, 38, 40 LPF, 22 Distance calculation unit 52 Frequency setting unit, 54 Vehicle presence / absence determination unit

Claims (3)

互いの反射波の到達圏内に併設され、自感知器の反射波に基づいて対象車線における車両の有無を感知する車両感知器であって、
所定周波数のクロック信号を分周する分周比を変更可能な分周器と、
前記分周器による分周信号から送信波を生成し、前記対象車線に向けて送信する送信部と、
前記分周器の分周比を変更設定することで、前記送信波の周波数を変化させる送信波周波数設定部と、
前記送信波の反射波を受信する受信部と、
前記送信波と前記受信部で受信された反射波である受信波との位相差を検出する位相差検出部と、
前記検出された位相差に基づいて、前記対象車線までの計測距離を算出する距離算出部と、
前記計測距離に基づいて、前記対象車線の車両の有無を判定する判定部と、
を備えた車両感知器。
It is a vehicle detector that is installed in the reach of each other's reflected waves and detects the presence or absence of a vehicle in the target lane based on the reflected waves of its own detector,
A frequency divider capable of changing a frequency dividing ratio for dividing a clock signal of a predetermined frequency;
A transmission unit that generates a transmission wave from the frequency-divided signal by the frequency divider and transmits the signal toward the target lane;
A transmission wave frequency setting unit that changes the frequency of the transmission wave by changing and setting the frequency division ratio of the frequency divider,
A receiver for receiving a reflected wave of the transmission wave;
A phase difference detection unit that detects a phase difference between the transmission wave and a reception wave that is a reflected wave received by the reception unit;
A distance calculation unit that calculates a measurement distance to the target lane based on the detected phase difference; and
A determination unit for determining the presence or absence of a vehicle in the target lane based on the measurement distance;
Vehicle sensor equipped with.
前記位相差検出部は、
前記分周信号を用いて前記受信波を同期検波し、当該同期検波した信号から直流成分を抽出する2位相ロックインアンプ回路を有し、
前記抽出された2つの直流成分の正負の組合せと当該直流成分とを用いて、前記送信波と前記受信波との位相差を検出する、
請求項1に記載の車両感知器。
The phase difference detector is
A two-phase lock-in amplifier circuit that synchronously detects the received wave using the divided signal and extracts a DC component from the synchronously detected signal;
A phase difference between the transmitted wave and the received wave is detected using a positive / negative combination of the extracted two DC components and the DC component.
The vehicle detector according to claim 1.
前記判定部は、前記計測距離が、当該車両感知器から路面までの距離とみなす路面距離に基づき定められる閾値距離条件を満たすか否かによって、前記対象車線の車両の有無を判定し、
前記路面距離を、前記判定部により車両無しと判定されているときの計測距離に追従させるように変更することで前記閾値距離条件を変更する閾値距離条件変更部、
を更に備える、
請求項1又は2に記載の車両感知器。
The determination unit determines whether or not there is a vehicle in the target lane according to whether or not the measurement distance satisfies a threshold distance condition determined based on a road surface distance that is regarded as a distance from the vehicle sensor to the road surface,
A threshold distance condition changing unit that changes the threshold distance condition by changing the road surface distance so as to follow the measured distance when the determination unit determines that there is no vehicle;
Further comprising
The vehicle detector according to claim 1 or 2.
JP2010188213A 2010-08-25 2010-08-25 Vehicle detector Active JP5095788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010188213A JP5095788B2 (en) 2010-08-25 2010-08-25 Vehicle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010188213A JP5095788B2 (en) 2010-08-25 2010-08-25 Vehicle detector

Publications (2)

Publication Number Publication Date
JP2012048366A true JP2012048366A (en) 2012-03-08
JP5095788B2 JP5095788B2 (en) 2012-12-12

Family

ID=45903189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010188213A Active JP5095788B2 (en) 2010-08-25 2010-08-25 Vehicle detector

Country Status (1)

Country Link
JP (1) JP5095788B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020027034A (en) * 2018-08-10 2020-02-20 パイオニア株式会社 Signal processor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101995A (en) * 1994-09-30 1996-04-16 Matsushita Electric Ind Co Ltd Ultrasonic vehicle sensor
JPH0944786A (en) * 1995-07-28 1997-02-14 Nippon Signal Co Ltd:The Method for sensing optical phase difference type vehicle
JP2006300753A (en) * 2005-04-21 2006-11-02 National Institute Of Advanced Industrial & Technology Distance measuring equipment
JP2009243683A (en) * 2008-03-12 2009-10-22 Honda Motor Co Ltd Slip detector for friction transmission device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101995A (en) * 1994-09-30 1996-04-16 Matsushita Electric Ind Co Ltd Ultrasonic vehicle sensor
JPH0944786A (en) * 1995-07-28 1997-02-14 Nippon Signal Co Ltd:The Method for sensing optical phase difference type vehicle
JP2006300753A (en) * 2005-04-21 2006-11-02 National Institute Of Advanced Industrial & Technology Distance measuring equipment
JP2009243683A (en) * 2008-03-12 2009-10-22 Honda Motor Co Ltd Slip detector for friction transmission device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020027034A (en) * 2018-08-10 2020-02-20 パイオニア株式会社 Signal processor

Also Published As

Publication number Publication date
JP5095788B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
US7990313B2 (en) Radar arrangement
KR102488038B1 (en) Radar apparatus for vehicle and method for determining target of the same
US20150212205A1 (en) Dual differential doppler motion detection
EP3184040B1 (en) A method for detecting at least one of a heart rate and a respiratory rate of a subject
WO2017014097A1 (en) Gas detection device and gas detection method
US10027517B2 (en) Measuring device and method
JP2002214369A (en) Time measuring device and distance measuring device
JP2012194036A (en) Radar system
US20150124240A1 (en) Time of flight camera system
US7167008B2 (en) Microwave sensor for object detection based on reflected microwaves
FR2868543A1 (en) HYPERFREQUENCY SENSOR
JP5095788B2 (en) Vehicle detector
JP5697504B2 (en) FMCW radar equipment
US10634786B2 (en) Distance measuring device, distance measuring method, and program therefor
JP2008032495A (en) Radar device
JP2007170990A (en) Minute movement detector
JP5350331B2 (en) Distance sensor
US10520585B2 (en) Radar device and signal processing method
WO2020079776A1 (en) Distance measurement device and distance measurement method
JP5350328B2 (en) Distance sensor and control method
JP5730094B2 (en) Light wave distance meter
JP2020106432A (en) Distance measuring device
JP2004198306A (en) Ranging device
JPH09178839A (en) Distance detecting device
JP2014202602A (en) Transmitter-receiver and transmitting/receiving method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120919

R150 Certificate of patent or registration of utility model

Ref document number: 5095788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250