JP2012046423A - Method for producing group iii nitride-based compound semiconductor - Google Patents

Method for producing group iii nitride-based compound semiconductor Download PDF

Info

Publication number
JP2012046423A
JP2012046423A JP2011243767A JP2011243767A JP2012046423A JP 2012046423 A JP2012046423 A JP 2012046423A JP 2011243767 A JP2011243767 A JP 2011243767A JP 2011243767 A JP2011243767 A JP 2011243767A JP 2012046423 A JP2012046423 A JP 2012046423A
Authority
JP
Japan
Prior art keywords
crystal
nitrogen
group iii
gan
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011243767A
Other languages
Japanese (ja)
Other versions
JP5123423B2 (en
Inventor
Shiro Yamazaki
史郎 山崎
Seiji Nagai
誠二 永井
Shinyuki Sato
峻之 佐藤
Makoto Iwai
真 岩井
Katsuhiro Imai
克宏 今井
Takatomo Sasaki
孝友 佐々木
Yusuke Mori
勇介 森
Shiro Kawamura
史朗 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2011243767A priority Critical patent/JP5123423B2/en
Publication of JP2012046423A publication Critical patent/JP2012046423A/en
Application granted granted Critical
Publication of JP5123423B2 publication Critical patent/JP5123423B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent deposition of miscellaneous crystals on the nitrogen-face of a GaN self-standing substrate and waste of raw materials in GaN production by the flux method.SOLUTION: Four arrangements of crucibles 26-1 to 26-4 and a GaN self-standing substrate are exemplified. In FIG. 1.A, the nitrogen-face of a self-standing substrate 10 comes into close contact with an obliquely upward facing flat inner wall of a crucible 26-1. In FIG. 1.B, the nitrogen-face of a self-standing substrate 10 comes into close contact with a horizontally facing flat inner wall of a crucible 26-2, and is fixed by means of a jig ST-2. In FIG. 1.C, a jig ST-3 is disposed on a flat bottom of a crucible 26-3, and self-standing substrates 10-1, 10-2 are fixed so that the nitrogen-faces of the substrates come into close contact with each other. In FIG. 1.D, a jig ST-4 is disposed on a flat bottom of a crucible 26-4, and a GaN self-standing substrate 10 is fixed. The nitrogen-face of the self-standing substrate 10 is covered with the jig ST-4. A flux mixture of molten gallium and sodium is filled in each crucible, and a GaN single crystal is grown on a gallium-face Fin pressurized nitrogen.

Description

本発明は、アルカリ金属を有する混合フラックスの中で、ガリウム(Ga)、アルミニウム(Al)又はインジウム(In)のIII族元素と窒素(N)とを反応させることによってIII族窒化物系化合物半導体を結晶成長させる、いわゆるフラックス法によるIII族窒化物系化合物半導体の製造方法に関する。本願においてIII族窒化物系化合物半導体とは、AlxGayIn1-x-yN(x、y、x+yはいずれも0以上1以下)で示される半導体、及び、n型化/p型化等のために任意の元素を添加したものを含む。更には、III族元素及びV族元素の組成の一部を、B、Tl;P、As、Sb、Biで置換したものをも含むものとする。 The present invention relates to a group III nitride compound semiconductor by reacting a group III element of gallium (Ga), aluminum (Al) or indium (In) with nitrogen (N) in a mixed flux having an alkali metal. The present invention relates to a method for producing a group III nitride compound semiconductor by a so-called flux method. In the present application, the group III nitride compound semiconductor is a semiconductor represented by Al x Ga y In 1-xy N (where x, y, and x + y are all 0 or more and 1 or less), n-type / p-type, etc. For which any element is added. Furthermore, it includes those in which a part of the composition of the group III element and the group V element is substituted with B, Tl; P, As, Sb, Bi.

ガリウム(Ga)とナトリウム(Na)の溶融物(混合フラックス)に、加圧下で窒素又はアンモニアを接触させて、窒化ガリウム(GaN)を析出させる技術が開発されている。この際、混合フラックス中に種結晶又は基板を配置させておくと、当該種結晶表面又は基板面に窒化ガリウム(GaN)が析出する。この技術により、数mm厚の窒化ガリウム(GaN)単結晶が得られる。   A technique for depositing gallium nitride (GaN) by bringing nitrogen or ammonia into contact with a melt (mixed flux) of gallium (Ga) and sodium (Na) under pressure has been developed. At this time, if a seed crystal or a substrate is placed in the mixed flux, gallium nitride (GaN) is deposited on the surface of the seed crystal or the substrate surface. By this technique, a gallium nitride (GaN) single crystal having a thickness of several mm is obtained.

混合フラックス中に配置させるものとしては、III族窒化物系化合物半導体とは異なる材料から成る基板(異種基板)を用いてその表面に窒化ガリウム(GaN)単結晶を成長させる技術や、異種基板に窒化ガリウム(GaN)膜をエピタキシャル成長させてテンプレートとし、当該窒化ガリウム(GaN)膜上に窒化ガリウム(GaN)単結晶を成長させる技術が報告されている。しかし、異種基板は、III族窒化物系化合物半導体と格子定数や膨張係数が相違するので、高温高圧でのフラックス内での成長の後室温まで温度を降下させる際に得られた単結晶にクラックが発生し易いという問題点がある。また、異種基板に窒化ガリウム(GaN)膜等を形成したテンプレートにおいては、当該テンプレートの作成の際に高温でのエピタキシャル成長から室温まで温度を降下させ、更に当該テンプレートを高温高圧のフラックス内に配置させて成長の後室温まで温度を降下させるのでクラックが生じる可能性が更に高くなる。この点を考慮すると、得るべきIII族窒化物系化合物半導体と同組成の自立基板を用いることが好ましい。
特開2005−187317号公報 特開2005−194146号公報
As a material to be placed in the mixed flux, a technology for growing a gallium nitride (GaN) single crystal on the surface of a substrate made of a material different from that of a group III nitride compound semiconductor (a heterogeneous substrate) or a heterogeneous substrate is used. A technique has been reported in which a gallium nitride (GaN) film is epitaxially grown as a template and a gallium nitride (GaN) single crystal is grown on the gallium nitride (GaN) film. However, since the dissimilar substrate has a lattice constant and expansion coefficient different from those of Group III nitride compound semiconductors, cracks occur in the single crystal obtained when the temperature is lowered to room temperature after growth in a flux at high temperature and pressure. Is likely to occur. In addition, in a template in which a gallium nitride (GaN) film or the like is formed on a different substrate, the temperature is lowered from high temperature epitaxial growth to room temperature when the template is created, and the template is placed in a high temperature and high pressure flux. Since the temperature is lowered to room temperature after the growth, the possibility of cracks is further increased. Considering this point, it is preferable to use a self-supporting substrate having the same composition as that of the group III nitride compound semiconductor to be obtained.
JP 2005-187317 A JP 2005-194146 A

種結晶として、c面を主面とするいわゆる自立GaN基板を用いた場合、表裏のガリウム(Ga)面にも窒素(N)面にも結晶が付着する。このうち、Ga面には単結晶が成長するが、N面には三次元成長し易く、平滑に結晶成長させることが難しい。即ち、N面に成長したGaN単結晶は、品質が悪いため、商品とはし難く、いわば、原料を浪費する面とも言える。   When a so-called self-supporting GaN substrate having a c-plane as a main surface is used as a seed crystal, the crystals adhere to both the front and back gallium (Ga) plane and the nitrogen (N) plane. Among these, a single crystal grows on the Ga surface, but it tends to grow three-dimensionally on the N surface, and it is difficult to grow the crystal smoothly. That is, the GaN single crystal grown on the N-face is difficult to be a commercial product because of its poor quality, so it can be said that the raw material is wasted.

そこで本発明者らは、フラックス法によるIII族窒化物系化合物半導体の製造に際して、得られる単結晶にクラックが発生するのを避けるためにIII族窒化物系化合物半導体から成る自立基板を用いる場合に、窒素面への成長抑制と窒素面への成長による原料の浪費を抑制することを目的として本願発明を完成させた。   Therefore, the present inventors, when manufacturing a group III nitride compound semiconductor by the flux method, when using a free-standing substrate made of a group III nitride compound semiconductor in order to avoid the occurrence of cracks in the resulting single crystal. The present invention has been completed for the purpose of suppressing growth on the nitrogen surface and suppressing waste of raw materials due to growth on the nitrogen surface.

請求項1に係る発明は、アルカリ金属を有する混合フラックスの中で、ガリウム(Ga)、アルミニウム(Al)又はインジウム(In)のIII族元素と窒素(N)とを反応させることによって、III族窒化物系化合物半導体を結晶成長させる半導体結晶の製造方法において、III族窒化物系化合物半導体から成る+c面を主面とする板状の自立基板を種結晶として用い、板状の種結晶を2枚1組として、互いの窒素面を密着させて、種結晶の+c面の法線方向が水平方向を基準として±30度の範囲に入るように混合フラックス中に配置し、+c面を主面とする板状の種結晶のIII族元素面に混合フラックスを接触させ、且つ、窒素面に混合フラックスを実質的に接触させないようにして、種結晶のIII族元素面側に結晶成長させることを特徴とするIII族窒化物系化合物半導体結晶の製造方法である。ここで+c面を主面とするIII族窒化物系化合物半導体結晶基板が、その表裏がIII族元素面と窒素面であることは周知のとおりである。また、「窒素面に混合フラックスを実質的に接触させない」とは、結晶の析出が連続して生ずるような混合フラックスの対流等が生じないことを言い、必ずしも完全に流入を遮断するものを意味する訳ではない。   The invention according to claim 1 is a group III by reacting a group III element of gallium (Ga), aluminum (Al) or indium (In) with nitrogen (N) in a mixed flux having an alkali metal. In a method for producing a semiconductor crystal in which a nitride compound semiconductor is grown, a plate-like free-standing substrate made of a group III nitride compound semiconductor and having a + c plane as a main surface is used as a seed crystal, and two plate-like seed crystals are used. As a set of sheets, the nitrogen surfaces of each other are brought into close contact with each other and arranged in the mixed flux so that the normal direction of the + c surface of the seed crystal falls within a range of ± 30 degrees with respect to the horizontal direction. Crystal growth on the group III element side of the seed crystal so that the mixed flux is brought into contact with the group III element surface of the plate-like seed crystal and the mixed flux is not substantially brought into contact with the nitrogen surface. Characteristic II This is a method for producing a group I nitride compound semiconductor crystal. Here, as is well known, the group III nitride compound semiconductor crystal substrate having the + c plane as the main surface has a group III element surface and a nitrogen surface on the front and back. In addition, “does not substantially contact the mixed flux with the nitrogen surface” means that convection of the mixed flux that causes continuous precipitation of crystals does not occur, and does not necessarily completely block the inflow. Not to do.

請求項2に係る発明は、種結晶は、種結晶の+c面の法線方向が水平方向となるように支持されており、2枚1組とする種結晶の両側のガリウム面が、ともに、混合フラックスに露出していることを特徴とする。
また、上記発明とは別に、本明細書には、以下の構成も記載されている。
混合フラックスの容器壁に、板状の種結晶の窒素面を密着させて配置するようにしても良い。ここで「密着」とは、結晶の析出が連続して生ずるような混合フラックスの対流等が生じない程度の「密着」を言い、必ずしも完全に流入を遮断するもの、例えば「接着」を意味する訳ではない。これは以下でも同様である。
また、板状の種結晶の窒素面を、他の材料から成る部材で覆ってから混合フラックスの容器内に配置するようにしても良い。ここでの「覆う」も、結晶の析出が連続して生ずるような混合フラックスの対流等が生じない程度を言うものであって、必ずしも完全に流入を遮断する「被覆」を意味するものではない。また、他の材料からなる部材の大きさは、板状の種結晶の大きさよりも大きくしても良い。また、他の材料から成る部材は、混合フラックスに接触する面に、III族窒化物系化合物半導体が結晶成長しない部材としても良い。
In the invention according to claim 2, the seed crystal is supported so that the normal direction of the + c plane of the seed crystal is a horizontal direction. It is exposed to the mixed flux.
In addition to the above invention, the following configuration is also described in this specification.
The nitrogen surface of the plate-like seed crystal may be placed in close contact with the mixed flux container wall. Here, “adhesion” means “adhesion” to such an extent that convection of the mixed flux does not occur so that precipitation of crystals occurs continuously, and means that the flow is not completely blocked, for example, “adhesion”. Not a translation. The same applies to the following.
Further, the nitrogen surface of the plate-like seed crystal may be covered with a member made of another material and then placed in the mixed flux container. The term “covering” here refers to the extent to which convection of the mixed flux that causes crystal precipitation continuously occurs, and does not necessarily mean “covering” that completely blocks the inflow. . Further, the size of the member made of another material may be larger than the size of the plate-like seed crystal. In addition, the member made of another material may be a member in which the group III nitride compound semiconductor does not grow on the surface in contact with the mixed flux.

フラックスによる結晶成長で得られた単結晶にクラックが生じるのを防ぐためには、得るべき単結晶と同じ組成のIII族窒化物系化合物半導体から成る自立基板を用いることが好ましい。しかし、例えば+c面を主面とするIII族窒化物系化合物半導体の自立基板には、III族元素面にはフラックス法により単結晶が成長するが、窒素面には結晶が三次元成長し易く、平滑に結晶成長させることが難しい。そこで窒素面を封鎖するような手段を用いることで、原料の浪費を抑えることができる。これにより、単結晶成長量が増加し、原料を効率的に使用できる。結晶成長面は、法線方向を略水平方向とすることが望ましい。これにより、混合フラックス中に溶解しているIII族窒化物系化合物半導体が過飽和状態となって雑晶が析出しても、単結晶を得るべき種基板上に付着する可能性が小さくなる。また、本発明者らは、板状の種結晶の窒素面を、他の材料から成る部材で覆った場合に、その他の部材の大きさを、板状の種結晶の大きさよりも大きくすることにより、種結晶側面から成長した結晶が、窒素面へ回り込むことが防止できることを見い出した。   In order to prevent cracks from occurring in the single crystal obtained by crystal growth by flux, it is preferable to use a free-standing substrate made of a group III nitride compound semiconductor having the same composition as the single crystal to be obtained. However, for example, on a group III nitride compound semiconductor free-standing substrate having a + c plane as a main surface, a single crystal grows on the group III element surface by the flux method, but the crystal easily grows three-dimensionally on the nitrogen surface. It is difficult to grow crystals smoothly. Therefore, waste of raw materials can be suppressed by using a means for blocking the nitrogen surface. Thereby, the amount of single crystal growth increases and a raw material can be used efficiently. It is desirable that the normal direction of the crystal growth surface is a substantially horizontal direction. Thereby, even if the group III nitride compound semiconductor dissolved in the mixed flux becomes supersaturated and miscellaneous crystals are precipitated, the possibility of adhering to the seed substrate from which a single crystal is to be obtained is reduced. In addition, when the nitrogen surface of the plate-like seed crystal is covered with a member made of another material, the inventors make the size of the other member larger than the size of the plate-like seed crystal. Thus, it has been found that the crystal grown from the side surface of the seed crystal can be prevented from entering the nitrogen surface.

板状の種結晶の結晶成長面が縦または斜め方向に配置されるので、坩堝内における種結晶の収容効率が効果的に向上する。また、この配置方法によれば、坩堝内のフラックスの熱対流が各結晶成長面に沿って流れるため、各結晶成長面の各部にフラックスが十分かつ均等に供給される。
このため、本発明によれば、結晶成長速度が向上すると共に、半導体結晶の結晶性及びその均一性を従来よりも効果的に向上させることができる。
したがって、本発明によれば、半導体結晶の品質、収率及び製造効率を従来よりも格段に向上させることができる。
Since the crystal growth surface of the plate-like seed crystal is arranged in the vertical or oblique direction, the accommodation efficiency of the seed crystal in the crucible is effectively improved. Further, according to this arrangement method, since the heat convection of the flux in the crucible flows along each crystal growth surface, the flux is sufficiently and evenly supplied to each part of each crystal growth surface.
Therefore, according to the present invention, the crystal growth rate can be improved, and the crystallinity and uniformity of the semiconductor crystal can be improved more effectively than before.
Therefore, according to the present invention, the quality, yield, and production efficiency of the semiconductor crystal can be significantly improved as compared with the conventional case.

図1は、本発明の具体例である、混合フラックス容器(坩堝)26−1〜4とc面を主面とするIII族窒化物系化合物半導体自立基板(種結晶)10の配置方法を4例示す、概念的断面図である。以下では記載の簡略化のため、自立基板(種結晶)10としてc面を主面とするGaN自立基板を、混合フラックスとしてガリウムとナトリウムとが溶融した混合フラックスを、窒素源として窒素ガスを用いる場合を示すが、本発明は、任意組成のc面を主面とするIII族窒化物系化合物半導体自立基板10を用い、混合フラックスとして所望のIII族元素と所望の金属とが溶融した混合フラックスを用い、窒素源として任意の窒素化合物或いは窒素プラズマを用いる、フラックスによるIII族窒化物系化合物半導体の結晶成長に適用できる。また、混合フラックス容器(坩堝)の形状や治具の形状等は、以下を参考に公知の任意の形状等の坩堝や治具を用いて良い。   FIG. 1 shows a specific example of the present invention, in which four mixed flux containers (crucibles) 26-1 to 26-4 and a group III nitride compound semiconductor free-standing substrate (seed crystal) 10 having a c-plane as a main surface are arranged. It is a conceptual sectional view showing an example. In the following, for simplicity of description, a GaN free-standing substrate having a c-plane as a main surface as a free-standing substrate (seed crystal) 10, a mixed flux in which gallium and sodium are melted as a mixed flux, and nitrogen gas as a nitrogen source are used. In the present invention, the present invention uses a group III nitride compound semiconductor free-standing substrate 10 having a c-plane of an arbitrary composition as a main surface, and a mixed flux in which a desired group III element and a desired metal are melted as a mixed flux Can be applied to the crystal growth of a group III nitride compound semiconductor by flux using any nitrogen compound or nitrogen plasma as a nitrogen source. In addition, the shape of the mixed flux container (crucible), the shape of the jig, and the like may be a crucible or jig having any known shape with reference to the following.

第1の例は、図1.Aのように、斜め上を向いた平面状の内壁を有する坩堝26−1を用意し、当該平面状の内壁にc面を主面とするGaN自立基板10の窒素面を密着させ、ガリウム面FGaを露出させる。GaN自立基板10は、図示しない留め具を用いて、坩堝26−1の底と斜め上を向いた平面状の内壁とに支持され、動くことは無い。こうして、坩堝26−1の、図1.Aで長い破線で示した位置までガリウムとナトリウムとが溶融した混合フラックスを満たし、加圧窒素下に置いて、c面を主面とするGaN自立基板10のガリウム面FGaにGaN単結晶を析出させ、単結晶成長させる。 The first example is shown in FIG. As shown in A, a crucible 26-1 having a planar inner wall facing diagonally upward is prepared, and the nitrogen surface of the GaN free-standing substrate 10 whose principal surface is the c-plane is brought into close contact with the planar inner wall, and the gallium surface F Ga is exposed. The GaN free-standing substrate 10 is supported by the bottom of the crucible 26-1 and the planar inner wall facing obliquely upward using a fastener (not shown), and does not move. Thus, FIG. A mixed flux in which gallium and sodium are melted up to the position indicated by the long broken line A is placed under pressurized nitrogen, and a GaN single crystal is formed on the gallium surface F Ga of the GaN free-standing substrate 10 whose principal surface is the c-plane. Precipitate and grow single crystal.

第2の例は、図1.Bのように、水平方向を向いた平面状の内壁を有する坩堝26−2を用意し、当該平面状の内壁にc面を主面とするGaN自立基板10の窒素面を密着させ、ガリウム面FGaを露出させる。この際、治具ST−2を用いて、GaN自立基板10が坩堝26−2の平面状の内壁から離れないように固定する。こうして、坩堝26−2の、図1.Bで長い破線で示した位置までガリウムとナトリウムとが溶融した混合フラックスを満たし、加圧窒素下に置いて、c面を主面とするGaN自立基板10のガリウム面FGaにGaN単結晶を析出させ、単結晶成長させる。 A second example is shown in FIG. As shown in B, a crucible 26-2 having a planar inner wall facing in the horizontal direction is prepared, and the nitrogen surface of the GaN free-standing substrate 10 whose principal surface is the c-plane is adhered to the planar inner wall, and the gallium surface F Ga is exposed. At this time, using the jig ST-2, the GaN free-standing substrate 10 is fixed so as not to be separated from the planar inner wall of the crucible 26-2. Thus, FIG. Filled with a mixed flux in which gallium and sodium are melted up to the position indicated by the long broken line in B, and placed under pressurized nitrogen, a GaN single crystal is formed on the gallium surface F Ga of the GaN free-standing substrate 10 having the c-plane as the main surface. Precipitate and grow single crystal.

第3の例は、図1.Cのように、坩堝26−3は平らな底部を有するほかは形状が例えば円筒状等の任意であり、当該平らな底部に治具ST−3を配置し、治具ST−3に2枚のc面を主面とするGaN自立基板10−1、10−2を配置させるものである。ここで、当該2枚のc面を主面とするGaN自立基板10−1、10−2は、互いの窒素面を密着させて、c軸が水平方向となるように治具ST−3に固定される。即ち、当該2枚のc面を主面とするGaN自立基板10−1、10−2は、いずれもがガリウム面FGa−1、FGa−2を露出した状態となる。こうして、坩堝26−3の、図1.Cで長い破線で示した位置までガリウムとナトリウムとが溶融した混合フラックスを満たし、加圧窒素下に置いて、c面を主面とするGaN自立基板10−1、10−2のそれぞれのガリウム面FGa−1、FGa−2にGaN単結晶を析出させ、単結晶成長させる。 A third example is shown in FIG. Like C, the crucible 26-3 has a flat bottom, and the shape is arbitrary, for example, a cylindrical shape. A jig ST-3 is arranged on the flat bottom, and two pieces are placed on the jig ST-3. GaN free-standing substrates 10-1 and 10-2 having a c-plane as a main surface are disposed. Here, the GaN free-standing substrates 10-1 and 10-2 having the two c-planes as the main surfaces are attached to the jig ST-3 so that their nitrogen surfaces are in close contact and the c-axis is in the horizontal direction. Fixed. That is, the GaN free-standing substrates 10-1 and 10-2 each having the two c-planes as the main surfaces are in a state in which the gallium surfaces FGa- 1 and FGa- 2 are exposed. Thus, FIG. Each gallium of the GaN free-standing substrates 10-1 and 10-2 having a mixed flux in which gallium and sodium are melted up to a position indicated by a long broken line C and placed under pressurized nitrogen and having a c-plane as a main surface A GaN single crystal is deposited on the planes F Ga −1 and F Ga −2 to grow a single crystal.

第4の例は、図1.Dのように、坩堝26−4は平らな底部を有するほかは形状が例えば円筒状等の任意であり、当該平らな底部に治具ST−4を配置し、治具ST−4にc面を主面とするGaN自立基板10を固定するものである。ここで、当該c面を主面とするGaN自立基板10は、窒素面が治具ST−4により覆われて、c軸が水平方向となるように治具ST−4に固定される。即ち、当該c面を主面とするGaN自立基板10は、ガリウム面FGaを露出した状態となる。こうして、坩堝26−4の、図1.Dで長い破線で示した位置までガリウムとナトリウムとが溶融した混合フラックスを満たし、加圧窒素下に置いて、c面を主面とするGaN自立基板10のガリウム面FGaにGaN単結晶を析出させ、単結晶成長させる。ここで、治具ST−4の大きさはGaN自立基板10の大きさよりも一回り大きいことが好ましい。一回り大きいことで、側面に成長した結晶が、GaN自立基板10の窒素面に回り込むおそれが少なくなる。大きすぎると溶液の対流を阻害する可能性が高くなる。 A fourth example is shown in FIG. Like D, the crucible 26-4 has a flat bottom, and the shape is arbitrary, for example, a cylindrical shape. A jig ST-4 is arranged on the flat bottom, and the c-plane is placed on the jig ST-4. The GaN free-standing substrate 10 having a main surface of is fixed. Here, the GaN free-standing substrate 10 having the c-plane as a main surface is fixed to the jig ST-4 so that the nitrogen surface is covered with the jig ST-4 and the c-axis is in the horizontal direction. That is, the GaN free-standing substrate 10 having the c-plane as the main surface is in a state where the gallium surface F Ga is exposed. Thus, the crucible 26-4, FIG. Filled with a mixed flux in which gallium and sodium are melted up to the position indicated by the long broken line in D, and placed under pressurized nitrogen, a GaN single crystal is formed on the gallium surface F Ga of the GaN free-standing substrate 10 having the c-plane as the main surface. Precipitate and grow single crystal. Here, the size of the jig ST-4 is preferably slightly larger than the size of the GaN free-standing substrate 10. By being slightly larger, there is less possibility that the crystal grown on the side surface will wrap around the nitrogen surface of the GaN free-standing substrate 10. If it is too large, the possibility of inhibiting the convection of the solution increases.

本発明を実施するためのその他の条件等について述べる。
フラックス中におけるIII族元素と窒素との反応温度は、500℃以上1100℃以下がより望ましく、更に望ましくは、850℃〜900℃程度がよい。また、窒素含有ガスの雰囲気圧力は、0.1MPa以上6MPa以下が望ましく、更に望ましくは、3.5MPa〜4.5MPa程度がよい。また、アンモニアガス(NH3)を使用すると、雰囲気圧力を低減できる場合がある。また、用いる窒素ガスは、プラズマ状態のものでも良い。
Other conditions for carrying out the present invention will be described.
The reaction temperature between the group III element and nitrogen in the flux is more preferably 500 ° C. or more and 1100 ° C. or less, and more preferably about 850 ° C. to 900 ° C. The atmospheric pressure of the nitrogen-containing gas is preferably 0.1 MPa or more and 6 MPa or less, and more preferably about 3.5 MPa to 4.5 MPa. Further, when ammonia gas (NH 3 ) is used, the atmospheric pressure may be reduced. The nitrogen gas used may be in a plasma state.

また、所望のIII族窒化物系化合物半導体結晶の中に添加する不純物として、当該混合フラックス中に、ボロン(B)、タリウム(Tl)、カルシウム(Ca)、カルシウム(Ca)を含む化合物、珪素(Si)、硫黄(S)、セレン(Se)、テルル(Te)、炭素(C)、酸素(O)、アルミニウム(Al)、インジウム(In)、アルミナ(Al23)、窒化インジウム(InN)、窒化珪素(Si34)、酸化珪素(SiO2)、酸化インジウム(In23)、亜鉛(Zn)、マグネシウム(Mg)、ストロンチウム(Sr)、バリウム(Ba)、酸化亜鉛(ZnO)、酸化マグネシウム(MgO)、またはゲルマニウム(Ge)などを含有させてもよい。これらの不純物は、1種類だけを含有させても良いし、同時に複数種類を含有させても良いし、また、必ずしも含有させなくてもよい。即ち、これらの選択や組み合わせは任意で良い。これらの不純物の添加によって、目的の半導体結晶のバンドギャップや電気伝導性や格子定数や優先成長方位などを所望の特性値に調整することができる。 Further, as an impurity added to a desired group III nitride compound semiconductor crystal, boron (B), thallium (Tl), calcium (Ca), a compound containing calcium (Ca), silicon, and the like in the mixed flux (Si), sulfur (S), selenium (Se), tellurium (Te), carbon (C), oxygen (O), aluminum (Al), indium (In), alumina (Al 2 O 3 ), indium nitride ( InN), silicon nitride (Si 3 N 4 ), silicon oxide (SiO 2 ), indium oxide (In 2 O 3 ), zinc (Zn), magnesium (Mg), strontium (Sr), barium (Ba), zinc oxide (ZnO), magnesium oxide (MgO), germanium (Ge), or the like may be included. These impurities may contain only one type, may contain a plurality of types at the same time, or may not necessarily contain them. That is, these selections and combinations may be arbitrary. By adding these impurities, the band gap, electrical conductivity, lattice constant, preferential growth orientation, and the like of the target semiconductor crystal can be adjusted to desired characteristic values.

また、フラックス法に基づく目的の結晶成長の開始以前に、下地基板の一部である種結晶(III族窒化物系化合物半導体結晶)が、フラックス中に溶融することを緩和したり防止したりするために、例えばCa32,Li3N,NaN3,BN,Si34,InNなどの窒化物を予めフラックス中に含有させておいてもよい。これらの窒化物をフラックス中に含有させておくことによって、フラックス中の窒素濃度が上昇するため、目的の結晶成長開始以前の種結晶のフラックス中への融解を未然に防止したり緩和したりすることが可能となる。 Also, before the start of the target crystal growth based on the flux method, the seed crystal (group III nitride compound semiconductor crystal) that is a part of the base substrate is eased or prevented from melting in the flux. Therefore, for example, nitrides such as Ca 3 N 2 , Li 3 N, NaN 3 , BN, Si 3 N 4 , and InN may be included in the flux in advance. By containing these nitrides in the flux, the concentration of nitrogen in the flux increases, so the melting of the seed crystal into the flux before the start of the desired crystal growth is prevented or alleviated. It becomes possible.

また、用いる結晶成長装置としては、フラックス法が実施可能なものであれば任意でよく、例えば、上記の特許文献に記載されているもの等を適用又は応用することができる。ただし、フラックス法に従って結晶成長を実施する際の結晶成長装置の反応室の温度は、1000℃程度にまで任意に昇降温制御できることが望ましい。また、反応室の気圧は、約100気圧(約1.0×107Pa)程度にまで任意に昇降圧制御できることが望ましい。また、これらの結晶成長装置の電気炉、ステンレス容器(反応容器)、原料ガスタンク、及び配管などは、例えば、ステンレス系(SUS系)材料やアルミナ系材料等の耐熱性及び耐圧性の高い材料によって形成することが望ましい。
また、同様の理由から、坩堝は、高耐熱性および耐アルカリ性が要求される。例えばタンタル(Ta)、タングステン(W)、モリブデン(Mo)、アルミナ、サファイア、または熱分解(パイロリティック)窒化ホウ素(PBN)などの金属やセラミックス等から形成することが望ましい。
Moreover, as a crystal growth apparatus to be used, any apparatus can be used as long as the flux method can be performed. For example, the apparatus described in the above-mentioned patent document can be applied or applied. However, it is desirable that the temperature of the reaction chamber of the crystal growth apparatus when performing crystal growth according to the flux method can be arbitrarily controlled to rise and fall to about 1000 ° C. Further, it is desirable that the pressure in the reaction chamber can be arbitrarily controlled to increase or decrease to about 100 atm (about 1.0 × 10 7 Pa). In addition, the electric furnace, stainless steel container (reaction container), raw material gas tank, and piping of these crystal growth apparatuses are made of a material having high heat resistance and high pressure resistance such as stainless steel (SUS) material or alumina material. It is desirable to form.
For the same reason, the crucible is required to have high heat resistance and alkali resistance. For example, it is desirable to form from metal such as tantalum (Ta), tungsten (W), molybdenum (Mo), alumina, sapphire, or pyrolytic boron nitride (PBN), ceramics, or the like.

また、用いる結晶成長装置としては、フラックス及び種結晶を揺動させる手段を有するものを用いてもよい。この様な揺動手段によって、フラックスに対する攪拌作用が得られるので、結晶成長面上にフラックスをより均一に供給できる場合もある。また、その揺動回数は、揺動角度にもよるが、例えば10回/分程度で十分である。   Further, as a crystal growth apparatus to be used, an apparatus having means for swinging a flux and a seed crystal may be used. Such a rocking means provides an agitation action on the flux, so that the flux may be supplied more uniformly on the crystal growth surface. Further, the number of swings depends on the swing angle, but for example, about 10 times / minute is sufficient.

なお、種結晶の大きさや厚さは任意で良いが、工業的な実用性を考慮すると、直径約45mm程度の円形のものや、約27mm四方の角形や約13mm四方の角形などがより望ましい。また、種結晶の結晶成長面の曲率半径は大きいほど、即ち平坦であればあるほど望ましい。
また、上記の種基板の法線の方向は、水平に近い程望ましい。また、坩堝を揺動させる場合には、結晶成長面の法線の平均的な方向が、揺動方向に対して、直角または、直角に近い方向に維持されていれば効果が高い。
The size and thickness of the seed crystal may be arbitrary, but considering industrial practicality, a circular shape with a diameter of about 45 mm, a square with about 27 mm square, a square with about 13 mm square, etc. are more desirable. Further, the larger the radius of curvature of the crystal growth surface of the seed crystal, that is, the flatter the surface, the better.
The direction of the normal line of the seed substrate is preferably closer to the horizontal. Further, when the crucible is swung, the effect is high if the average direction of the normal line of the crystal growth surface is maintained at a right angle or a direction close to the right angle with respect to the swing direction.

以下、本発明を具体的な実施例に基づいて説明する。
ただし、本発明の実施形態は、以下に示す個々の実施例に限定されるものではない。
Hereinafter, the present invention will be described based on specific examples.
However, the embodiments of the present invention are not limited to the following examples.

まず、直径は50mm、厚さは0.5mmのGaN自立基板10を用意した。GaN自立基板10は、所望の半導体結晶のフラックス法による成長が開始されるまでの間に、幾らかはフラックスに溶け出す場合がある。その際に消失されない厚さの自立基板が必要である。
なお、この様な消失(種結晶の溶解)を防止または緩和するためのその他の方法としては、例えば後述の結晶成長処理ではその実施前に、混合フラックスの中にCa32,Li3N,NaN3,BN,Si34またはInNなどの窒化物を予め添加しておいてもよい。
First, a GaN free-standing substrate 10 having a diameter of 50 mm and a thickness of 0.5 mm was prepared. The GaN free-standing substrate 10 may be dissolved into the flux until the desired semiconductor crystal is grown by the flux method. In this case, a self-supporting substrate having a thickness that does not disappear is required.
In addition, as another method for preventing or mitigating such disappearance (dissolution of seed crystals), for example, in the crystal growth treatment described later, before the implementation, Ca 3 N 2 , Li 3 N is contained in the mixed flux. , NaN 3 , BN, Si 3 N 4 or InN may be added in advance.

図2に、本実施例で用いる結晶成長装置20の構成を示す。この結晶成長装置20は、フラックス法に基づく結晶成長処理を実行するためのものであり、高温、高圧の窒素ガス(N2)を供給するための給気管21と、窒素ガスを排気するための排気管22とを有する電気炉(外部容器)25の中には、ヒーターHと、断熱材23と、ステンレス容器(内部容器)24が具備されている。電気炉(外部容器)25、給気管21、排気管22等は、耐熱性、耐圧性、反応性などを考慮し、ステンレス系(SUS系)またはアルミナ系の材料から形成されている。 FIG. 2 shows the configuration of the crystal growth apparatus 20 used in this embodiment. This crystal growth apparatus 20 is for performing crystal growth processing based on the flux method, and is provided with a supply pipe 21 for supplying high-temperature and high-pressure nitrogen gas (N 2 ), and exhausting the nitrogen gas. In an electric furnace (external container) 25 having an exhaust pipe 22, a heater H, a heat insulating material 23, and a stainless steel container (internal container) 24 are provided. The electric furnace (external container) 25, the air supply pipe 21, the exhaust pipe 22, and the like are made of a stainless steel (SUS) or alumina material in consideration of heat resistance, pressure resistance, reactivity, and the like.

そして、ステンレス容器24の中には、坩堝26(反応容器)がセットされている。この坩堝26は、例えば、タングステン(W)、モリブデン(Mo)、窒化ボロン(BN)、熱分解(パイロリティック)窒化ボロン(PBN)、またはアルミナ(Al23)などから形成することができる。
また、電気炉25内の温度は、1000℃以下の範囲内で任意に昇降温制御することができる。また、ステンレス容器24の中の結晶雰囲気圧力は、1.0×107Pa以下の範囲内で任意に昇降圧制御することができる。
尚、図2では記載を省略したが、上述したGaN自立基板10は、図1.Dの治具ST−4を用い、ガリウム面FGaを露出した状態として坩堝26(反応容器)内に配置した。ここで、治具ST−4の大きさは、用いたGaN自立基板10よりも約2. 5mmだけ直径を大きくした。すなわち、治具ST−4の直径を55mmとした。
A crucible 26 (reaction container) is set in the stainless steel container 24. The crucible 26 can be formed from, for example, tungsten (W), molybdenum (Mo), boron nitride (BN), pyrolytic boron nitride (PBN), or alumina (Al 2 O 3 ). .
The temperature in the electric furnace 25 can be arbitrarily controlled to rise and fall within a range of 1000 ° C. or less. Further, the pressure of the crystal atmosphere in the stainless steel container 24 can be arbitrarily controlled within the range of 1.0 × 10 7 Pa or less.
Although not shown in FIG. 2, the above-described GaN free-standing substrate 10 has the structure shown in FIG. Using the jig ST-4 of D, the gallium surface FGa was exposed and placed in the crucible 26 (reaction vessel). Here, the size of the jig ST-4 was made larger by about 2.5 mm than the GaN free-standing substrate 10 used. That is, the diameter of the jig ST-4 was 55 mm.

以下、上記の結晶成長装置を用いた本実施例1の結晶成長工程について説明する。
まず、GaN自立基板10を配置した反応容器(坩堝26)の中に、15gのナトリウム(Na)と20gのガリウム(Ga)を入れ、その反応容器(坩堝26)を結晶成長装置の反応室(ステンレス容器24)の中に配置してから、該反応室の中のガスを排気する。
ただし、これらの作業を空気中で行うとNaがすぐに酸化してしまうため、基板や原材料を反応容器にセットする作業は、Arガスなどの不活性ガスで満たされたグローブボックス内で実施する。また、この坩堝中には必要に応じて、例えばアルカリ土類金属等の前述の任意の添加物を予め投入しておいても良い。
Hereinafter, the crystal growth process of Example 1 using the crystal growth apparatus will be described.
First, 15 g of sodium (Na) and 20 g of gallium (Ga) are placed in a reaction vessel (crucible 26) in which a GaN free-standing substrate 10 is placed, and the reaction vessel (crucible 26) is placed in a reaction chamber (crystal growth apparatus). After being placed in the stainless steel container 24), the gas in the reaction chamber is exhausted.
However, when these operations are performed in the air, Na is immediately oxidized. Therefore, the operation of setting the substrate and raw materials in the reaction vessel is performed in a glove box filled with an inert gas such as Ar gas. . In addition, if necessary, any of the above-mentioned additives such as alkaline earth metals may be introduced into the crucible in advance.

次に、この坩堝の温度を約880℃に調整しつつ、この温度調整工程と並行して、結晶成長装置の反応室には、新たに窒素ガス(N2)を送り込み、これによって、この反応室の窒素ガス(N2)のガス圧を約3.7MPaに維持する。この時、上記のGaN自立基板10は、上記の昇温の結果生成される融液(混合フラックス)中に浸され、坩堝26内で保持された。 Next, while adjusting the temperature of the crucible to about 880 ° C., in parallel with the temperature adjustment step, nitrogen gas (N 2 ) is newly fed into the reaction chamber of the crystal growth apparatus, and this reaction is thereby performed. The gas pressure of nitrogen gas (N 2 ) in the chamber is maintained at about 3.7 MPa. At this time, the GaN free-standing substrate 10 was immersed in the melt (mixed flux) generated as a result of the temperature rise and held in the crucible 26.

この時、結晶成長面であるガリウム面FGaは、混合フラックスに常時浸されていることが望ましく、また、その融液は、ヒータHの加熱作用に基づく熱対流などによって、雰囲気中の窒素成分(N2またはN)が常時十分に取り込まれていることが望ましい。混合フラックスの熱対流により、所望の半導体結晶の成長速度を向上させることができる。 At this time, it is desirable that the gallium surface F Ga which is the crystal growth surface is always immersed in the mixed flux, and the melt is a nitrogen component in the atmosphere by heat convection based on the heating action of the heater H. It is desirable that (N 2 or N) is always sufficiently taken in. The growth rate of the desired semiconductor crystal can be improved by the thermal convection of the mixed flux.

その後、混合フラックスの熱対流を継続的に発生させ、これによって混合フラックスを攪拌混合しつつ、上記(2)の結晶成長条件を約200時間維持して、結晶成長を継続させた。   Thereafter, thermal convection of the mixed flux was continuously generated, and while the mixed flux was stirred and mixed, the crystal growth condition of (2) was maintained for about 200 hours to continue the crystal growth.

以上の様な条件設定により、種結晶の結晶成長面付近は、継続的にIII族窒化物系化合物半導体の材料原子(GaとN)の過飽和状態となるので、所望の半導体結晶(GaN単結晶)をGaN自立基板10の結晶成長面であるガリウム面FGa上に順調に成長させることができる。 By setting the conditions as described above, the vicinity of the crystal growth surface of the seed crystal is continuously supersaturated with the material atoms (Ga and N) of the group III nitride compound semiconductor, so that the desired semiconductor crystal (GaN single crystal) ) On the gallium surface F Ga which is the crystal growth surface of the GaN free-standing substrate 10.

次に、結晶成長装置の反応室を室温近傍にまで降温してから、成長したGaN単結晶(所望の半導体結晶)を取り出し、その周辺も30℃以下に維持して、そのGaN単結晶の周りに付着したフラックス(Na)をエタノールを用いて除去する。
以上の各工程を順次実行することによって、高品質の半導体単結晶(成長したGaN単結晶)を低コストで製造することができる。この半導体単結晶は、種結晶であるGaN自立基板10と略同等の面積で、c軸方向の厚さは約2mmであり、従来よりも大幅にクラックが少なかった(図3.A)。
Next, after the temperature of the reaction chamber of the crystal growth apparatus is lowered to near room temperature, the grown GaN single crystal (desired semiconductor crystal) is taken out, and its periphery is also maintained at 30 ° C. or less to surround the GaN single crystal. The flux (Na) adhering to is removed with ethanol.
By sequentially executing the above steps, a high-quality semiconductor single crystal (grown GaN single crystal) can be manufactured at a low cost. This semiconductor single crystal has substantially the same area as the seed crystal GaN free-standing substrate 10 and has a thickness in the c-axis direction of about 2 mm, and has significantly fewer cracks than in the past (FIG. 3.A).

実施例1と同様に結晶育成を行ったが、治具ST−4の大きさを、種結晶としてのGaN自立基板10の大きさと同じ大きさとした。材質はサファイアとした。室温まで冷却し、フラックスから成長した結晶を回収したところ、図3.Bに示すように、GaN自立基板10の側面から成長した結晶が、GaN自立基板10と治具ST−4との接合面側である種結晶の窒素面にまで回り込みんでいた。回り込んだ結晶は、治具ST- 4に食い込んでおり、成長した結晶の一部にはクラック30が発生していた。このことから、治具ST−4の大きさは、種結晶であるGaN自立基板10の大きさよりも大きいことが望ましいことが分かる。   Crystal growth was performed in the same manner as in Example 1, but the size of the jig ST-4 was the same as the size of the GaN free-standing substrate 10 as a seed crystal. The material was sapphire. When the crystals grown from the flux were recovered by cooling to room temperature, FIG. As shown in B, the crystal grown from the side surface of the GaN free-standing substrate 10 wraps around the nitrogen surface of the seed crystal on the bonding surface side between the GaN free-standing substrate 10 and the jig ST-4. The wraparound crystal bites into the jig ST-4, and a crack 30 is generated in a part of the grown crystal. From this, it can be seen that the size of the jig ST-4 is preferably larger than the size of the GaN free-standing substrate 10 which is a seed crystal.

〔上記実施形態の変形例〕
本発明の実施形態は、上記の形態に限定されるものではなく、その他にも以下に例示される様な変形を行っても良い。この様な変形や応用によっても、本発明の作用に基づいて本発明の効果を得ることができる。
例えば、所望の半導体結晶を構成するIII族窒化物系化合物半導体の組成式においては、III族元素(Al,Ga,In)の内の少なくとも一部をボロン(B)またはタリウム(Tl)等で置換したり、或いは、窒素(N)の少なくとも一部をリン(P)、砒素(As)、アンチモン(Sb)、ビスマス(Bi)などで置換したりすることもできる。
[Modification of the above embodiment]
The embodiment of the present invention is not limited to the above-described embodiment, and other modifications as exemplified below may be made. Even with such modifications and applications, the effects of the present invention can be obtained based on the functions of the present invention.
For example, in the composition formula of a group III nitride compound semiconductor constituting a desired semiconductor crystal, at least a part of group III elements (Al, Ga, In) is made of boron (B) or thallium (Tl). Alternatively, at least part of nitrogen (N) can be replaced with phosphorus (P), arsenic (As), antimony (Sb), bismuth (Bi), or the like.

また、p形の不純物(アクセプター)としては、例えばアルカリ土類金属(例:マグネシウム(Mg)やカルシウム(Ca)等)などを添加することができる。また、n形の不純物(ドナー)としては、例えば、シリコン(Si)や、硫黄(S)、セレン(Se)、テルル(Te)、或いはゲルマニウム(Ge)等のn形不純物を添加することができる。また、これらの不純物(アクセプター又はドナー)は、同時に2元素以上を添加しても良いし、同時に両形(p形とn形)を添加しても良い。即ち、これらの不純物は、例えばフラックス中に予め溶融させておくこと等により、所望の半導体結晶中に添加することができる。   In addition, as the p-type impurity (acceptor), for example, an alkaline earth metal (eg, magnesium (Mg), calcium (Ca), or the like) can be added. As the n-type impurity (donor), for example, an n-type impurity such as silicon (Si), sulfur (S), selenium (Se), tellurium (Te), or germanium (Ge) may be added. it can. Moreover, two or more elements may be added simultaneously to these impurities (acceptor or donor), or both types (p-type and n-type) may be added simultaneously. That is, these impurities can be added to a desired semiconductor crystal, for example, by being previously melted in a flux.

本発明は、III族窒化物系化合物半導体からなる半導体結晶を用いた半導体デバイスの製造になど有用である。また、これらの半導体デバイスとしては、例えばLEDやLDなどの発光素子や受光素子等以外にも、例えばFETなどのその他一般の半導体デバイスを挙げることができる。   The present invention is useful for manufacturing a semiconductor device using a semiconductor crystal made of a Group III nitride compound semiconductor. Moreover, as these semiconductor devices, other general semiconductor devices, such as FET, can be mentioned besides light emitting elements, such as LED and LD, a light receiving element, etc., for example.

本発明の混合フラックス容器(坩堝)26−1〜4の形状とc面を主面とするIII族窒化物系化合物半導体自立基板(種結晶)10の配置方法を示す4例の概念的断面図。4 conceptual cross-sectional views showing a method for arranging a group III nitride compound semiconductor free-standing substrate (seed crystal) 10 having a main surface of the shape and c-plane of mixed flux containers (crucibles) 26-1 to 26-4 of the present invention. . 実施例で用いた結晶成長装置20の構成図。The block diagram of the crystal growth apparatus 20 used in the Example. 実施例の製造方法によって得られた結晶を示した説明図。Explanatory drawing which showed the crystal | crystallization obtained by the manufacturing method of the Example.

10、10−1、10−2:c面を主面とするIII族窒化物系化合物半導体から成る自立基板
Ga:c面のうち、ガリウム面
23:断熱材
H:ヒーター(加熱装置)
24:ステンレス容器(内部容器)
25:電気炉(外部容器)
26、26−1、26−2、26−3、26−4:混合フラックスの容器(坩堝)
ST−2、ST−3、ST−4:自立基板を支持するための治具

10, 10-1, 10-2: Free-standing substrate made of a group III nitride compound semiconductor having a c-plane as a main surface F Ga : Gallium surface of c-plane 23: Insulating material H: Heater (heating device)
24: Stainless steel container (inner container)
25: Electric furnace (outer container)
26, 26-1, 26-2, 26-3, 26-4: Mixed flux container (crucible)
ST-2, ST-3, ST-4: Jig for supporting a self-supporting substrate

Claims (2)

アルカリ金属を有する混合フラックスの中で、ガリウム(Ga)、アルミニウム(Al)又はインジウム(In)のIII族元素と窒素(N)とを反応させることによって、III族窒化物系化合物半導体を結晶成長させる半導体結晶の製造方法において、
III族窒化物系化合物半導体から成る+c面を主面とする板状の自立基板を種結晶として用い、前記板状の種結晶を2枚1組として、互いの窒素面を密着させて、前記種結晶の+c面の法線方向が水平方向を基準として±30度の範囲に入るように前記混合フラックス中に配置し、
前記+c面を主面とする板状の種結晶のIII族元素面に前記混合フラックスを接触させ、且つ、窒素面に前記混合フラックスを実質的に接触させないようにして、前記種結晶のIII族元素面側に結晶成長させることを特徴とするIII族窒化物系化合物半導体結晶の製造方法。
Crystal growth of group III nitride compound semiconductors by reacting group III elements of gallium (Ga), aluminum (Al) or indium (In) with nitrogen (N) in a mixed flux containing alkali metals In the manufacturing method of the semiconductor crystal to be made,
A plate-like self-supporting substrate made of a group III nitride compound semiconductor and having a + c plane as a main surface is used as a seed crystal, two plate-like seed crystals are used as one set, and the nitrogen surfaces of the two plates are brought into close contact with each other. It is arranged in the mixed flux so that the normal direction of the + c plane of the seed crystal falls within a range of ± 30 degrees with respect to the horizontal direction,
The mixed flux is brought into contact with the group III element surface of the plate-like seed crystal having the + c plane as a main surface, and the mixed flux is not substantially brought into contact with the nitrogen surface, so that the group III of the seed crystal A method for producing a group III nitride compound semiconductor crystal, comprising crystal growth on the element surface side.
前記種結晶は、前記種結晶の+c面の法線方向が水平方向となるように支持されており、2枚1組とする前記種結晶の両側のガリウム面が、ともに、前記混合フラックスに露出していることを特徴とする請求項1に記載のIII族窒化物系化合物半導体結晶の製造方法。   The seed crystal is supported so that the normal direction of the + c plane of the seed crystal is a horizontal direction, and both gallium surfaces of the seed crystal in one set are exposed to the mixed flux. The method for producing a group III nitride compound semiconductor crystal according to claim 1, wherein:
JP2011243767A 2007-04-24 2011-11-07 Method for producing group III nitride compound semiconductor Active JP5123423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011243767A JP5123423B2 (en) 2007-04-24 2011-11-07 Method for producing group III nitride compound semiconductor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007114663 2007-04-24
JP2007114663 2007-04-24
JP2011243767A JP5123423B2 (en) 2007-04-24 2011-11-07 Method for producing group III nitride compound semiconductor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008038980A Division JP4881496B2 (en) 2007-04-24 2008-02-20 Method for producing group III nitride compound semiconductor

Publications (2)

Publication Number Publication Date
JP2012046423A true JP2012046423A (en) 2012-03-08
JP5123423B2 JP5123423B2 (en) 2013-01-23

Family

ID=40166053

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2008038980A Active JP4881496B2 (en) 2007-04-24 2008-02-20 Method for producing group III nitride compound semiconductor
JP2011243767A Active JP5123423B2 (en) 2007-04-24 2011-11-07 Method for producing group III nitride compound semiconductor
JP2011243766A Active JP5347010B2 (en) 2007-04-24 2011-11-07 Method for producing group III nitride compound semiconductor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008038980A Active JP4881496B2 (en) 2007-04-24 2008-02-20 Method for producing group III nitride compound semiconductor

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2011243766A Active JP5347010B2 (en) 2007-04-24 2011-11-07 Method for producing group III nitride compound semiconductor

Country Status (1)

Country Link
JP (3) JP4881496B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5147092B2 (en) * 2009-03-30 2013-02-20 豊田合成株式会社 Method for producing group III nitride semiconductor
JP5205630B2 (en) * 2009-05-21 2013-06-05 株式会社リコー Crystal manufacturing method and crystal manufacturing apparatus
JP6337526B2 (en) * 2014-03-10 2018-06-06 株式会社リコー Method for producing group 13 nitride crystal
CN113215654B (en) * 2021-04-30 2022-04-12 山东天岳先进科技股份有限公司 Reactor assembly for preparing crystal by PVT method and use method and application thereof
CN115637496B (en) * 2022-09-21 2023-10-27 聚勒微电子科技(太仓)有限公司 Dual-container material growth device and material growth method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0930891A (en) * 1995-07-21 1997-02-04 Sharp Corp Semiconductor liquid crystal epitaxial device
JP2005154254A (en) * 2003-10-31 2005-06-16 Sumitomo Electric Ind Ltd Group iii nitride crystal, its manufacturing method, and manufacturing device of group iii nitride crystal
JP2005175275A (en) * 2003-12-12 2005-06-30 Matsushita Electric Works Ltd Semiconductor light emitting element employing group iii metal nitride crystal and process for producing group iii metal nitride crystal
JP2007238343A (en) * 2006-03-06 2007-09-20 Ngk Insulators Ltd Method of growing group iii nitride single crystal
JP2008214126A (en) * 2007-03-02 2008-09-18 Toyoda Gosei Co Ltd Method for manufacturing semiconductor crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0930891A (en) * 1995-07-21 1997-02-04 Sharp Corp Semiconductor liquid crystal epitaxial device
JP2005154254A (en) * 2003-10-31 2005-06-16 Sumitomo Electric Ind Ltd Group iii nitride crystal, its manufacturing method, and manufacturing device of group iii nitride crystal
JP2005175275A (en) * 2003-12-12 2005-06-30 Matsushita Electric Works Ltd Semiconductor light emitting element employing group iii metal nitride crystal and process for producing group iii metal nitride crystal
JP2007238343A (en) * 2006-03-06 2007-09-20 Ngk Insulators Ltd Method of growing group iii nitride single crystal
JP2008214126A (en) * 2007-03-02 2008-09-18 Toyoda Gosei Co Ltd Method for manufacturing semiconductor crystal

Also Published As

Publication number Publication date
JP5347010B2 (en) 2013-11-20
JP2012025662A (en) 2012-02-09
JP5123423B2 (en) 2013-01-23
JP4881496B2 (en) 2012-02-22
JP2008290929A (en) 2008-12-04

Similar Documents

Publication Publication Date Title
JP5170571B2 (en) Method for producing n-type group III nitride compound semiconductor
JP4558502B2 (en) Template type substrate manufacturing method
JP4647525B2 (en) Method for producing group III nitride crystal
JP4757029B2 (en) Method for producing group III nitride crystal
JP4433317B2 (en) Method for producing group III nitride compound semiconductor crystal
JP5123423B2 (en) Method for producing group III nitride compound semiconductor
US8361222B2 (en) Method for producing group III nitride-based compound semiconductor
JP2006509707A (en) An improved process for obtaining bulk single crystals of gallium-containing nitrides
JP4739255B2 (en) Manufacturing method of semiconductor crystal
CN107190324A (en) Group III-nitride crystallization manufacture method and containing RAMO4Substrate
CN107230737A (en) Group III-nitride substrate and the manufacture method of group III-nitride crystallization
JP7147644B2 (en) Method for manufacturing group III nitride semiconductor
JP5012750B2 (en) Method for producing group III nitride compound semiconductor
US10329687B2 (en) Method for producing Group III nitride semiconductor including growing Group III nitride semiconductor through flux method
JP4908467B2 (en) Method for producing group III nitride compound semiconductor crystal
JP4248276B2 (en) Group III nitride crystal manufacturing method
JP5640427B2 (en) Group III nitride semiconductor crystal manufacturing method
CN1723302A (en) A substrate for epitaxy and a method of preparing the same
JP7125246B2 (en) Method for producing group III nitride semiconductor
JP2018016499A (en) Method for manufacturing group iii nitride semiconductor
JP6720888B2 (en) Method for manufacturing group III nitride semiconductor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5123423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150