JP2012021938A - Cyclic saturated hydrocarbon compound detection element and optical detection device using the same - Google Patents

Cyclic saturated hydrocarbon compound detection element and optical detection device using the same Download PDF

Info

Publication number
JP2012021938A
JP2012021938A JP2010161642A JP2010161642A JP2012021938A JP 2012021938 A JP2012021938 A JP 2012021938A JP 2010161642 A JP2010161642 A JP 2010161642A JP 2010161642 A JP2010161642 A JP 2010161642A JP 2012021938 A JP2012021938 A JP 2012021938A
Authority
JP
Japan
Prior art keywords
saturated hydrocarbon
hydrocarbon compound
cyclic saturated
tungsten trioxide
sensing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010161642A
Other languages
Japanese (ja)
Other versions
JP2012021938A5 (en
Inventor
Kimio Yoshimura
公男 吉村
Teruyuki Hakoda
照幸 箱田
Haruya Yamamoto
春也 山本
Atsumi Miyashita
敦巳 宮下
Masaki Sugimoto
雅樹 杉本
Masato Yoshikawa
正人 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2010161642A priority Critical patent/JP2012021938A/en
Priority to US13/180,579 priority patent/US20120039767A1/en
Publication of JP2012021938A publication Critical patent/JP2012021938A/en
Publication of JP2012021938A5 publication Critical patent/JP2012021938A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7783Transmission, loss
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N2021/786Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour with auxiliary heating for reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/783Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour for analysing gases

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cyclic saturated hydrocarbon compound detection element which operates at relatively low temperature of 200°C or less and a detection device using the same and having a simple structure.SOLUTION: A detection element has a transparent substrate made from quartz, a tungsten trioxide thin film having a columnar crystal structure on the transparent substrate, and a platinum layer deposited and formed on the thin film surface to have a thickness of 15 nm or less. A detection device has a heater for heating the detection element to the temperature of 150°C to 200°C and is constructed such that when gas containing cyclic saturated hydrocarbon compound comes into contact with the platinum layer of the detection element, the change of the light transmittance due to the reaction of hydrogen made free by the platinum with tungsten trioxide is measured.

Description

本発明は、環状飽和炭化水素化合物を含んだ雰囲気に曝した時に光透過率が変化する、 環状飽和炭化水素化合物の検知素子、及びそれを用いて環状飽和炭化水素化合物を検知するための光学式検知装置に関する。   The present invention relates to a sensing element for a cyclic saturated hydrocarbon compound that changes its light transmittance when exposed to an atmosphere containing the cyclic saturated hydrocarbon compound, and an optical system for detecting the cyclic saturated hydrocarbon compound using the same. The present invention relates to a detection device.

本発明に係る検知素子や検知装置は、大量の環状飽和炭化水素化合物を使用する水素の貯蔵プラントや輸送装置で利用できるばかりでなく、家庭用燃料電池に水素を供給する定置型脱水素装置や、燃料電池自動車用の車載型脱水素装置内の漏洩検知にも利用できる。他にも、船舶、路面電車、ボイラーなど水素を利用する全ての機械における脱水素装置の安全を確保する漏洩検出センサーとしても利用可能である。   The sensing element and the sensing device according to the present invention can be used not only in hydrogen storage plants and transport devices that use a large amount of cyclic saturated hydrocarbon compounds, but also in stationary dehydrogenation devices that supply hydrogen to household fuel cells, It can also be used to detect leakage in an on-vehicle dehydrogenation device for a fuel cell vehicle. In addition, it can also be used as a leak detection sensor that ensures the safety of the dehydrogenation device in all machines that use hydrogen, such as ships, trams, and boilers.

上述のような水素社会の実現に向けて、燃料となる水素の貯蔵や輸送を安全に行う手段として、白金触媒を介して可逆的に水素の吸蔵・放出を行う有機ハイドライド(シクロヘキサン、デカリンなどの環状飽和炭化水素化合物)の研究開発が行われている。   As a means to safely store and transport hydrogen as a fuel for the realization of the hydrogen society as described above, organic hydrides that reversibly store and release hydrogen via platinum catalysts (such as cyclohexane and decalin) Cyclic saturated hydrocarbon compounds) are being researched and developed.

従来、定常的に可燃性ガスを検出するセンサーは、特許文献1に開示されているように、接触燃焼式または熱伝導式のものがほとんどで、センサーには着火源となる電源回路が必要である。このため、センサー設置箇所においては、引火、爆発の危険を回避するための防爆型構造が必要で、センサーの構造が複雑な重量物となり高価であつた。   Conventionally, as disclosed in Patent Document 1, most of the sensors that constantly detect flammable gas are of catalytic combustion type or heat conduction type, and the sensor requires a power circuit as an ignition source. It is. For this reason, an explosion-proof structure for avoiding the danger of ignition and explosion is required at the sensor installation location, and the sensor structure is complicated and heavy and expensive.

また、本発明の環状飽和炭化水素化合物の検知素子と類似の構造を持つ、水素ガスの検知素子が特許文献2に開示されている。ここには、セラミックス製の透明基板と、その透明基板上にスパッタリングで形成された三酸化タングステン薄膜と、その薄膜表面に30nmから50nmの厚さに堆積形成された白金などの触媒金属層から成る光学式水素ガス検知素子が示されている。この特許文献2には、分子状の水素ガスが触媒金属によって吸着され、水素原子を解離し、解離された水素原子が下地層の三酸化タングステン薄膜層に拡散させられる。これによって、薄膜層が着色し、光の透過率が変化するため、受光素子によって、光の透過強度を測定することによって、水素ガス濃度を測定できることが示されている。   Further, Patent Document 2 discloses a hydrogen gas sensing element having a structure similar to that of the cyclic saturated hydrocarbon compound sensing element of the present invention. This consists of a ceramic transparent substrate, a tungsten trioxide thin film formed by sputtering on the transparent substrate, and a catalytic metal layer such as platinum deposited on the thin film surface to a thickness of 30 to 50 nm. An optical hydrogen gas sensing element is shown. In Patent Document 2, molecular hydrogen gas is adsorbed by a catalytic metal, dissociates hydrogen atoms, and the dissociated hydrogen atoms are diffused into a tungsten trioxide thin film layer as an underlayer. As a result, the thin film layer is colored and the light transmittance is changed. Therefore, it is shown that the hydrogen gas concentration can be measured by measuring the light transmission intensity with the light receiving element.

特開2005−207879JP 2005-207879 特開2007−121013JP2007-121013

水素の輸送・貯蔵媒体として期待されている環状飽和炭化水素化合物は揮発性かつ可燃性であるため、漏洩や滞留した揮発成分をいち早く検知して安全性を担保する検知方法の開発が不可欠である。   Since cyclic saturated hydrocarbon compounds that are expected as a hydrogen transport and storage medium are volatile and flammable, it is essential to develop a detection method that ensures the safety by quickly detecting leaked and retained volatile components. .

したがって、本発明の目的は、比較的低い素子温度で、揮発した有機ハイドライドを光学的に短時間に検知することができる環状飽和炭化水素化合物の検知素子、及びそれを用いた検知装置を提供することにある。   Accordingly, an object of the present invention is to provide a cyclic saturated hydrocarbon compound detection element capable of optically detecting a volatile organic hydride in a short time at a relatively low element temperature, and a detection apparatus using the same. There is.

本発明の1つの観点にかかる環状飽和炭化水素化合物の検知素子は、石英などのセラミックス製の透明基板と、該透明基板上に柱状結晶構造を有する例えば、三酸化タングステン薄膜と、該薄膜表面に15nm以下の厚さに堆積形成された白金層から成る。   A sensing element for a cyclic saturated hydrocarbon compound according to one aspect of the present invention includes a transparent substrate made of ceramics such as quartz, a tungsten trioxide thin film having a columnar crystal structure on the transparent substrate, and a surface of the thin film. It consists of a platinum layer deposited to a thickness of 15 nm or less.

本発明の他の観点にかかる環状飽和炭化水素化合物の検知装置は、石英などのセラミックス製の透明基板と、該透明基板上に柱状結晶構造を有する三酸化タングステン薄膜と、該薄膜表面に15nm以下の厚さに堆積形成された白金層から成る環状飽和炭化水素化合物の検知素子と、該検知素子を150℃から200℃の間の温度に加熱するためのヒータであって、該ヒータの内部を前記検知素子を透過した光が通過する中空構造の当該ヒータと、該ヒータと前記検知素子を収容するハウジングであって、ガス流入口とガス流出口を有し、当該ハウジングを構成する互いに対抗する面の一部が光透過部材から構成されている当該ハウジングと、光源と、該光源から与えられる光を受光する受光素子を備えた光計測器を備えて成る環状飽和炭化水素化合物の検知装置であって、該ガス流入口から流入する環状飽和炭化水素化合物含有ガスが前記検知素子の前記白金層に接触しながら、該ガス流出口から排出されるときに、白金によって解離された水素が三酸化タングステンと反応することによって生ずる光透過率の変化を、前記光計測器で計測するように構成されている。   An apparatus for detecting a cyclic saturated hydrocarbon compound according to another aspect of the present invention includes a transparent substrate made of ceramics such as quartz, a tungsten trioxide thin film having a columnar crystal structure on the transparent substrate, and a surface of the thin film of 15 nm or less. And a heater for heating the sensing element to a temperature between 150 ° C. and 200 ° C., comprising a sensing element of a cyclic saturated hydrocarbon compound comprising a platinum layer deposited to a thickness of A hollow heater through which light transmitted through the sensing element passes, and a housing that accommodates the heater and the sensing element, each having a gas inlet and a gas outlet and opposing each other constituting the housing Detection of a cyclic saturated hydrocarbon compound comprising a housing having a part of a surface made of a light transmitting member, a light source, and an optical measuring instrument including a light receiving element that receives light from the light source. The hydrogen gas dissociated by platinum when the gas containing the cyclic saturated hydrocarbon compound flowing in from the gas inlet is exhausted from the gas outlet while being in contact with the platinum layer of the sensing element. Is configured to measure a change in light transmittance caused by reacting with tungsten trioxide with the optical measuring instrument.

後で詳述されるように、白金の堆積層の厚さが、従来の半分以下と薄いことから、光の透過強度が増加でき、ノイズレベルに対する信号強度比(S/N)を向上し、この結果、低濃度の環状飽和炭化水素化合物を含むガスが漏洩した後短時間にそのガスを検出することができる。   As will be described in detail later, since the thickness of the platinum deposition layer is less than half of the conventional thickness, the light transmission intensity can be increased, and the signal intensity ratio (S / N) to the noise level can be improved. As a result, the gas containing the low-concentration cyclic saturated hydrocarbon compound can be detected in a short time after leakage.

本発明に係る検知素子の一例を示す図である。It is a figure which shows an example of the detection element which concerns on this invention. 本発明に係る検知装置の一例を示す図である。It is a figure which shows an example of the detection apparatus which concerns on this invention. 本発明に係る検知素子の基本原理を示す模式図である。It is a schematic diagram which shows the basic principle of the detection element which concerns on this invention. 本発明に係る検知素子の白金の柱状結晶を示す電子顕微鏡写真である。It is an electron micrograph which shows the columnar crystal of platinum of the detection element which concerns on this invention. 本発明に係る検知装置のガス濃度別の性能試験の結果を示す図である。It is a figure which shows the result of the performance test according to gas concentration of the detection apparatus which concerns on this invention. 本発明に係る検知装置の動作温度別の性能試験の結果を示す図である。It is a figure which shows the result of the performance test according to operating temperature of the detection apparatus which concerns on this invention.

本発明は、セラミックス製の透明基板上に柱状結晶構造を有する三酸化タングステン薄膜とその薄膜上に堆積させた白金から構成される環状飽和炭化水素化合物の検知素子とそれを用いた検知装置を提供するものである。本発明の検知素子は、より詳細には、可視光から赤外の範囲の光を透過する透明基板に蒸着した三酸化タングステン層の表面に白金層が堆積したものを加熱条件下で用いるように構成されている。   The present invention provides a sensing element for a cyclic saturated hydrocarbon compound composed of a tungsten trioxide thin film having a columnar crystal structure on a ceramic transparent substrate and platinum deposited on the thin film, and a sensing device using the same. To do. More specifically, the sensing element of the present invention is such that a platinum layer deposited on the surface of a tungsten trioxide layer deposited on a transparent substrate that transmits light in the visible to infrared range is used under heating conditions. It is configured.

本発明の検知素子の構造を図1に示す。この検知素子は、図1に示される断面図のように、紙面に向かって上から下の方向に、白金堆積層1、三酸化タングステン層2、透明基板3の順で配置された構造を持つ。白金堆積層側が環状飽和炭化水素化合物検知面となる。次に、発明者らが実施した本発明の検知素子の製造方法の一例を説明する。   The structure of the sensing element of the present invention is shown in FIG. As shown in the sectional view shown in FIG. 1, this sensing element has a structure in which a platinum deposition layer 1, a tungsten trioxide layer 2, and a transparent substrate 3 are arranged in this order from the top to the bottom of the drawing. . The platinum deposition layer side becomes the cyclic saturated hydrocarbon compound detection surface. Next, an example of the manufacturing method of the sensing element of the present invention implemented by the inventors will be described.

高周波スパッタリング法を用いて、厚さ1 mmの石英基板表面上に三酸化タングステン薄膜を作製した。成膜に際しては、金属タングステンをターゲットに使用し、アルゴンガス分圧135 mPa、酸素分圧20 mPa雰囲気中で、金属タングステンターゲットを50 Wの電力にて1時間スパッタリングして、基板温度を400〜600 ℃で石英基板上に三酸化タングステンの成膜を行った。膜厚は、約300 nmであった。その後、この三酸化タングステン薄膜上に高周波スパッタリング法を用いて白金を約15 nm堆積した。白金のスパッタリングは、白金金属をターゲットに使用し、電力50 W、アルゴンガス圧135 mPaの条件の下で40秒間スパッタリングした。   Using a high frequency sputtering method, a tungsten trioxide thin film was formed on the surface of a quartz substrate having a thickness of 1 mm. During film formation, metal tungsten was used as a target, and a tungsten metal target was sputtered at 50 W power for 1 hour in an argon gas partial pressure of 135 mPa and an oxygen partial pressure of 20 mPa. Tungsten trioxide was deposited on a quartz substrate at 600 ° C. The film thickness was about 300 nm. Thereafter, about 15 nm of platinum was deposited on the tungsten trioxide thin film using a high frequency sputtering method. Sputtering of platinum was performed by using platinum metal as a target, and sputtering for 40 seconds under the conditions of power 50 W and argon gas pressure 135 mPa.

本発明の検知素子の測定対象となる環状飽和炭化水素化合物は、シクロブタン、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、或いはデカリンなどに代表される。   The cyclic saturated hydrocarbon compound to be measured by the sensing element of the present invention is typified by cyclobutane, cyclopentane, cyclohexane, methylcyclohexane, or decalin.

次に図2を参照して、本発明にかかる環状飽和炭化水素化合物の検知装置について説明する。10は、図1において説明した環状飽和炭化水素化合物の検知素子、21は、該検知素子10を150℃から200℃の間の温度に加熱するためのヒータであって、該ヒータの内部を前記検知素子10を透過した光が通過する中空構造になっている。31は、ヒータ21と前記検知素子10を収容するハウジングである。このハウジング31は、ガス流入口32とガス流出口33を有し、当該ハウジングを構成する互いに対抗する面の一部が光透過部材である石英窓から構成されている。41は赤色光源、42は該光源41から与えられる赤色光を受光する受光素子を備えた光計測器である。これらは通常市販されているものを使用できる。なお、ここでは、試験のため、検出対象ガスとして、シクロヘキサン含有の窒素ガスを用いた。   Next, with reference to FIG. 2, the detection apparatus of the cyclic | annular saturated hydrocarbon compound concerning this invention is demonstrated. 10 is a sensing element of the cyclic saturated hydrocarbon compound described in FIG. 1, and 21 is a heater for heating the sensing element 10 to a temperature between 150 ° C. and 200 ° C. It has a hollow structure through which light transmitted through the sensing element 10 passes. A housing 31 accommodates the heater 21 and the detection element 10. The housing 31 has a gas inflow port 32 and a gas outflow port 33, and a part of mutually opposing surfaces constituting the housing is composed of a quartz window which is a light transmitting member. Reference numeral 41 denotes a red light source, and reference numeral 42 denotes an optical measuring instrument including a light receiving element that receives red light from the light source 41. These can use what is marketed normally. Here, for the test, nitrogen gas containing cyclohexane was used as the detection target gas.

該ガス流入口32から流入する環状飽和炭化水素化合物含有ガスが前記検知素子の前記白金層1(図1参照)に接触しながら、該ガス流出口33から排出されるときに、白金によって環状飽和炭化水素化合物から解離された水素が三酸化タングステンと反応することによって生ずる光透過率の変化を、前記光計測器42で計測する。この水素と三酸化タングステンの反応の様子を図3に模式的に示す。この反応の様子はあくまで推測であって、実験的に確かめた訳ではない。また、本発明の理解を助けるために、三酸化タングステン膜の結晶配向(柱状構造)の様子を示す電子顕微鏡写真を図4として示す。   When the saturated saturated hydrocarbon compound-containing gas flowing in from the gas inlet 32 is exhausted from the gas outlet 33 while being in contact with the platinum layer 1 (see FIG. 1) of the sensing element, the ring is saturated with platinum. A change in light transmittance caused by the reaction of hydrogen dissociated from the hydrocarbon compound with tungsten trioxide is measured by the optical measuring instrument. FIG. 3 schematically shows the reaction between hydrogen and tungsten trioxide. This reaction is speculative and not experimentally confirmed. In order to help understanding of the present invention, an electron micrograph showing the crystal orientation (columnar structure) of the tungsten trioxide film is shown in FIG.

本発明によれば、三酸化タングステンと白金から構成される基板を加熱することで環状飽和炭化水素化合物の検知が可能であることを見出している。加熱方法は、セラミックヒーターにより行うが、赤外線やパルスレーザーなどの光源を熱源とすることもできる。上記三酸化タングステンを主成分とした検知材料は、基板表面に積層させるだけで形成することができるため、簡便に製造することが可能となる。   According to the present invention, it has been found that cyclic saturated hydrocarbon compounds can be detected by heating a substrate composed of tungsten trioxide and platinum. The heating method is performed by a ceramic heater, but a light source such as an infrared ray or a pulse laser can be used as a heat source. Since the detection material containing tungsten trioxide as a main component can be formed by simply laminating it on the substrate surface, it can be easily manufactured.

三酸化タングステン薄膜は、主成分が三酸化タングステン(W03)である、その厚さは、透明基板から剥離が生じないlμm以下が望ましい。三酸化タングステン薄膜は、石英などの透明基板に酸素雰囲気下で金属タングステンを蒸着することで、三酸化タングステンを形成する。本発明においては、高周波スパッタリング法により三酸化タングステン膜の蒸着を行ったが、直流スパッタリング法、レーザーアブレーション法、真空蒸着法、ゾルゲル法等を採用してもかまわない。また、三酸化タングステン薄膜の表面上に、高周波スパッタリング法を使用して白金を堆積させるが、直流スパッタリング法、レーザーアブレーション法、真空蒸着法、ゾルゲル法等を採用してもかまわない。 The main component of the tungsten trioxide thin film is tungsten trioxide (W0 3 ), and the thickness is desirably 1 μm or less so that peeling does not occur from the transparent substrate. The tungsten trioxide thin film forms tungsten trioxide by depositing metallic tungsten on a transparent substrate such as quartz in an oxygen atmosphere. In the present invention, the tungsten trioxide film is deposited by the high frequency sputtering method, but a direct current sputtering method, a laser ablation method, a vacuum deposition method, a sol-gel method, or the like may be adopted. Further, platinum is deposited on the surface of the tungsten trioxide thin film using a high frequency sputtering method, but a direct current sputtering method, a laser ablation method, a vacuum deposition method, a sol-gel method, or the like may be employed.

以下、試験例を示し、環状飽和炭化水素化合物を含んだ雰囲気に触れることにより光学特性が変化する三酸化タングステンを主成分とする検知素子とそれを用いた検出方法について詳しく説明する。   Hereinafter, a test example will be shown, and a detection element mainly composed of tungsten trioxide whose optical characteristics change when exposed to an atmosphere containing a cyclic saturated hydrocarbon compound and a detection method using the same will be described in detail.

本実施例に係る検知素子の特性試験を幾つか行い、その性能を確かめた。
<試験例1>
Several characteristics tests of the sensing element according to this example were performed to confirm the performance.
<Test Example 1>

環状飽和炭化水素化合物を含むガスに対する光学特性の変化は、図2に示す測定装置を用いて200℃で評価した。評価に用いる環状飽和炭化水素化合物はシクロヘキサンを用い、窒素ガスで希釈した濃度4.6%のシクロヘキサンを用いた。雰囲気及び温度を制御可能なセル中の試料に波長645 nmの赤色光を照射し、分光計測器を用いて、以下の手順で測定を行った。   Changes in the optical characteristics with respect to the gas containing the cyclic saturated hydrocarbon compound were evaluated at 200 ° C. using the measuring apparatus shown in FIG. Cyclohexane was used as the cyclic saturated hydrocarbon compound used for the evaluation, and cyclohexane having a concentration of 4.6% diluted with nitrogen gas was used. The sample in the cell in which the atmosphere and temperature can be controlled was irradiated with red light having a wavelength of 645 nm, and measurement was performed using a spectroscopic instrument in the following procedure.

(1)試料セルを5分間窒素置換した後、試料を200℃に加熱する。
(2)シクロヘキサンに曝す前の試料の透過光強度I0を測定する。
(3)窒素ガスで希釈した濃度4.6%のシクロヘキサンを50 ml/minの流速で、試料セル内に通じる。
(4)シクロヘキサンガスを通じた後の試料の透過光強度Iを計測する。
(5)I/I0によってシクロヘキサンによる光の透過率の変化を評価した。
(1) After the sample cell is purged with nitrogen for 5 minutes, the sample is heated to 200 ° C.
(2) The transmitted light intensity I 0 of the sample before being exposed to cyclohexane is measured.
(3) A cyclohexane having a concentration of 4.6% diluted with nitrogen gas is passed through the sample cell at a flow rate of 50 ml / min.
(4) The transmitted light intensity I of the sample after passing through cyclohexane gas is measured.
(5) Change in light transmittance by cyclohexane was evaluated by I / I 0 .

図5の(a)にシクロヘキサンによる光の透過率の時間変化を示す。シクロヘキサンガスに対する暴露時間の増加と伴に光の透過率が低下し、つまり三酸化タングステン層の着色が起こっていることがわかる。この結果から透過率の変化を観測することで十分に環状飽和炭化水素化合物が検知できることがわかる。
<試験例2>
FIG. 5 (a) shows the time change of light transmittance by cyclohexane. It can be seen that the light transmittance decreases with increasing exposure time to cyclohexane gas, that is, the tungsten trioxide layer is colored. From this result, it can be seen that the cyclic saturated hydrocarbon compound can be sufficiently detected by observing the change in transmittance.
<Test Example 2>

本発明では、シクロヘキサンが空気中での爆発限界下限(1.8%)以下でも検出可能であることが重要である。本実施例に係る検知素子について、200℃、50 ml/minの流速での濃度1.1%のシクロヘキサンガスによる光の透過率の時間変化を<試験例1>のように測定した。その測定結果を図5(b)に示す。シクロヘキサンガスの暴露時間の増加と伴に、光の透過率が低下していることが確認できる。その変化量はシクロヘキサンの濃度が4.6%の場合に比べ減少しているものの観測は可能であつた。この結果から、シクロヘキサンの濃度が1.1%であっても検知が可能であることがわかる。
<試験例3>
In the present invention, it is important that cyclohexane can be detected even if it is below the lower explosion limit in air (1.8%). With respect to the sensing element according to this example, the time change of light transmittance with cyclohexane gas having a concentration of 1.1% at a flow rate of 200 ° C. and 50 ml / min was measured as in <Test Example 1>. The measurement result is shown in FIG. 5 (b). It can be confirmed that the light transmittance decreases as the exposure time of cyclohexane gas increases. Although the amount of change decreased compared with the case where the concentration of cyclohexane was 4.6%, it was possible to observe. From this result, it can be seen that detection is possible even when the concentration of cyclohexane is 1.1%.
<Test Example 3>

本発明では、基板の加熱温度が重要である。そこで本実施例に係る検知素子の150℃、50 ml/minの流速での濃度4.6%のシクロヘキサンガスによる光の透過率の時間変化を<試験例1>のように測定した。   In the present invention, the heating temperature of the substrate is important. Therefore, the change over time of the light transmittance of the sensing element according to the present embodiment with a cyclohexane gas having a concentration of 4.6% at a flow rate of 150 ° C. and a flow rate of 50 ml / min was measured as shown in <Test Example 1>.

測定結果を図6の(b)に示す。シクロヘキサンガスの暴露時間の増加と伴に、光の透過率が低下していることが確認できるが、その変化量は基板温度が200℃ (図6(a))に比べ著しく小さいことがわかる。この結果から、検知材料の温度が検出感度に対して重要であることがわかる。
[比較例1]
The measurement results are shown in FIG. It can be confirmed that the light transmittance decreases as the exposure time of cyclohexane gas increases, but the amount of change is significantly smaller than that at 200 ° C (Fig. 6 (a)). From this result, it can be seen that the temperature of the detection material is important for the detection sensitivity.
[Comparative Example 1]

本発明では、三酸化タングステン膜上の白金が重要である。そこで上述の実施例1の比較例として、白金を堆積していない三酸化タングステン薄膜試料を作成した。比較例1の検知素子の構造(図示せず)は、白金堆積層1を形成していない点を除いて、上述の実施例1と同一とした。   In the present invention, platinum on the tungsten trioxide film is important. Therefore, as a comparative example of Example 1 described above, a tungsten trioxide thin film sample in which platinum was not deposited was prepared. The structure (not shown) of the detection element of Comparative Example 1 was the same as that of Example 1 described above except that the platinum deposition layer 1 was not formed.

比較例1についても、実施例1と同一条件で光の透過率の時間変化を評価した。その結果は特に図示しないが、白金を堆積していない三酸化タングステンではシクロヘキサンによる透過率はほとんど変化せず、シクロヘキサンを検知することはできなかった。つまり、三酸化タングステン膜を用いてシクロヘキサンを検知する場合には、三酸化タングステン膜上に白金を堆積させることが重要な項目となる。   For Comparative Example 1 as well, the temporal change in light transmittance was evaluated under the same conditions as in Example 1. Although the results are not particularly shown, the transmittance by cyclohexane hardly changed in tungsten trioxide on which platinum was not deposited, and cyclohexane could not be detected. That is, when cyclohexane is detected using a tungsten trioxide film, it is an important item to deposit platinum on the tungsten trioxide film.

以上のことから、三酸化タングステン膜を用いて環状飽和炭化水素化合物を検知する場合には、三酸化タングステン膜上に白金を堆積させて使用することであり、基板温度を150℃〜200℃、最も好ましくは200℃に設定することである。   From the above, when detecting a cyclic saturated hydrocarbon compound using a tungsten trioxide film, platinum is deposited on the tungsten trioxide film and used, and the substrate temperature is 150 ° C. to 200 ° C., Most preferably, it is set to 200 ° C.

本発明により、検知部に着火源となる電源回路や防爆構造等を伴わない検知が可能となる。よって、携帯可能な環状飽和炭化水素化合物センサー、光ファイバーを用いた漏洩検知システムなどに利用できる。本発明は、次世代の水素エネルギーの実用化技術に欠くことのできない安全性を確保した光学式の環状飽和炭化水素化合物の検知素子と検知装置を提供できる。   According to the present invention, it is possible to perform detection without involving a power supply circuit or an explosion-proof structure as an ignition source in the detection unit. Therefore, it can be used for a portable cyclic saturated hydrocarbon compound sensor, a leak detection system using an optical fiber, and the like. INDUSTRIAL APPLICABILITY The present invention can provide an optical cyclic saturated hydrocarbon compound detection element and detection device that ensure the safety that is indispensable for the next-generation hydrogen energy practical application technology.

1…白金堆積層
2…三酸化タングステン層
3…透明基板
1 ... Platinum deposit
2 ... Tungsten trioxide layer
3 ... Transparent substrate

Claims (5)

セラミックス製の透明基板と、該透明基板上に柱状結晶構造を有する三酸化タングステン薄膜と、該薄膜表面に15nm以下の厚さに堆積形成された白金層から成る環状飽和炭化水素化合物の検知素子。   A sensing element for a cyclic saturated hydrocarbon compound comprising a transparent substrate made of ceramic, a tungsten trioxide thin film having a columnar crystal structure on the transparent substrate, and a platinum layer deposited to a thickness of 15 nm or less on the thin film surface. セラミックス製の透明基板と、該透明基板上に柱状結晶構造を有する三酸化タングステン薄膜と、該薄膜表面に15nm以下の厚さに堆積形成された白金層から成る環状飽和炭化水素化合物の検知素子と、
該検知素子を150℃から200℃の間の温度に加熱するためのヒータであって、該ヒータの内部を前記検知素子を透過した光が通過する中空構造の当該ヒータと、
該ヒータと前記検知素子を収容するハウジングであって、ガス流入口とガス流出口を有し、当該ハウジングを構成する互いに対抗する面の一部が光透過部材から構成されている当該ハウジングと、
光源と、該光源から与えられる光を受光する受光素子を備えた光計測器、
を備えて成る環状飽和炭化水素化合物の検知装置であって、
該ガス流入口から流入する環状飽和炭化水素化合物含有ガスが前記検知素子の前記白金層に接触しながら、該ガス流出口から排出されるときに、白金によって環状飽和炭化水素化合物から解離された水素が三酸化タングステンと反応によって生ずる光透過率の変化を、前記光計測器で計測することを特徴とする環状飽和炭化水素化合物の検知装置。
A transparent substrate made of ceramic, a tungsten trioxide thin film having a columnar crystal structure on the transparent substrate, and a cyclic saturated hydrocarbon compound sensing element comprising a platinum layer deposited to a thickness of 15 nm or less on the thin film surface; ,
A heater for heating the sensing element to a temperature between 150 ° C. and 200 ° C., the heater having a hollow structure through which light transmitted through the sensing element passes through the heater,
A housing for housing the heater and the detection element, the housing having a gas inlet and a gas outlet, and a part of the opposing surfaces constituting the housing are formed of a light transmitting member;
An optical measuring instrument comprising a light source and a light receiving element that receives light from the light source;
An apparatus for detecting a cyclic saturated hydrocarbon compound comprising:
Hydrogen released from the cyclic saturated hydrocarbon compound by platinum when the gas containing the cyclic saturated hydrocarbon compound flowing in from the gas inlet is exhausted from the gas outlet while contacting the platinum layer of the sensing element. An apparatus for detecting a cyclic saturated hydrocarbon compound, wherein a change in light transmittance caused by reaction with tungsten trioxide is measured by the optical measuring instrument.
請求項2に記載の環状飽和炭化水素化合物の検知装置において、前記三酸化タングステン膜の厚さが1μm以下であることを特徴とする環状飽和炭化水素化合物の検知装置。   3. The cyclic saturated hydrocarbon compound detection device according to claim 2, wherein the tungsten trioxide film has a thickness of 1 μm or less. 石英製の透明基板と、該透明基板上に柱状結晶構造を有する三酸化タングステン薄膜と、該薄膜表面に15nm以下の厚さに堆積形成された白金層から成る環状飽和炭化水素化合物の検知素子。   A sensing element for a cyclic saturated hydrocarbon compound comprising a transparent substrate made of quartz, a tungsten trioxide thin film having a columnar crystal structure on the transparent substrate, and a platinum layer deposited to a thickness of 15 nm or less on the surface of the thin film. 請求項4に記載の環状飽和炭化水素化合物の検知素子において、前記三酸化タングステン膜の厚さが1μm以下であることを特徴とする環状飽和炭化水素化合物の検知素子。   5. The sensing element for a cyclic saturated hydrocarbon compound according to claim 4, wherein the tungsten trioxide film has a thickness of 1 μm or less.
JP2010161642A 2010-07-16 2010-07-16 Cyclic saturated hydrocarbon compound detection element and optical detection device using the same Pending JP2012021938A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010161642A JP2012021938A (en) 2010-07-16 2010-07-16 Cyclic saturated hydrocarbon compound detection element and optical detection device using the same
US13/180,579 US20120039767A1 (en) 2010-07-16 2011-07-12 Sensing element for cyclic saturated hydrocarbons optical detector which uses the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010161642A JP2012021938A (en) 2010-07-16 2010-07-16 Cyclic saturated hydrocarbon compound detection element and optical detection device using the same

Publications (2)

Publication Number Publication Date
JP2012021938A true JP2012021938A (en) 2012-02-02
JP2012021938A5 JP2012021938A5 (en) 2013-08-29

Family

ID=45564946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010161642A Pending JP2012021938A (en) 2010-07-16 2010-07-16 Cyclic saturated hydrocarbon compound detection element and optical detection device using the same

Country Status (2)

Country Link
US (1) US20120039767A1 (en)
JP (1) JP2012021938A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016161507A (en) * 2015-03-04 2016-09-05 国立研究開発法人産業技術総合研究所 Hydrogen gas sensitive film and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170363594A1 (en) * 2014-12-04 2017-12-21 Carrier Corporation Film based carbon dioxide sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039536A (en) * 1983-08-12 1985-03-01 Hochiki Corp Gas sensor
JP2007121013A (en) * 2005-10-26 2007-05-17 Japan Atomic Energy Agency Optical hydrogen gas detection element, its manufacturing method, and optical hydrogen gas detection device and method using element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2507428C (en) * 2004-02-19 2015-09-08 Niigata Tlo Corporation Hydrogen gas sensor
US20050186117A1 (en) * 2004-02-19 2005-08-25 Hiroyuki Uchiyama Gas detecting method and gas sensors
JP2007248367A (en) * 2006-03-17 2007-09-27 Atsumi Tec:Kk Hydrogen gas sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039536A (en) * 1983-08-12 1985-03-01 Hochiki Corp Gas sensor
JP2007121013A (en) * 2005-10-26 2007-05-17 Japan Atomic Energy Agency Optical hydrogen gas detection element, its manufacturing method, and optical hydrogen gas detection device and method using element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016161507A (en) * 2015-03-04 2016-09-05 国立研究開発法人産業技術総合研究所 Hydrogen gas sensitive film and method for manufacturing the same

Also Published As

Publication number Publication date
US20120039767A1 (en) 2012-02-16

Similar Documents

Publication Publication Date Title
Hübert et al. Hydrogen sensors–a review
Dai et al. Optical hydrogen sensor based on etched fiber Bragg grating sputtered with Pd/Ag composite film
Yang et al. Hydrogen sensing performance comparison of Pd layer and Pd/WO3 composite thin film coated on side-polished single-and multimode fibers
Westerwaal et al. Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures
US20170261485A1 (en) Hydrogen sensor having a protection layer
US8491766B2 (en) Gas sensor for determining hydrogen or hydrogen compounds
JP4919228B2 (en) Hydrogen gas detection membrane
Slaman et al. Optimization of Mg-based fiber optic hydrogen detectors by alloying the catalyst
JP2004271525A (en) Rugged hydrogen sensor, and method for preventing contamination by contaminant of rugged hydrogen sensor utilizing palladium device
Javahiraly Review on hydrogen leak detection: comparison between fiber optic sensors based on different designs with palladium
Liu et al. Characteristics of an optical fiber hydrogen gas sensor based on a palladium and yttrium alloy thin film
Westerwaal et al. Fiber optic hydrogen sensor for a continuously monitoring of the partial hydrogen pressure in the natural gas grid
Radeva et al. Highly sensitive and selective visual hydrogen detectors based on YxMg1− x thin films
JP2012021938A (en) Cyclic saturated hydrocarbon compound detection element and optical detection device using the same
JP4639344B2 (en) Hydrogen detection material and manufacturing method thereof
US20100045997A1 (en) Oxygen sensor using principle of surface plasmon resonance and oxygen transmission rate measurement system including the same
Dai et al. Ultra-high sensitive fiber optic hydrogen sensor in air
Butler et al. Kinetics of the micromirror chemical sensor
JP4644869B2 (en) OPTICAL HYDROGEN GAS DETECTING ELEMENT AND ITS MANUFACTURING METHOD, AND OPTICAL HYDROGEN GAS DETECTING DEVICE AND METHOD USING THE ELEMENT
Yang et al. High-sensitivity fiber optic hydrogen sensor in air by optimizing a self-referenced demodulating method
Morjan et al. Contributions to a reliable hydrogen sensor based on surface plasmon surface resonance spectroscopy
Korotcenkov et al. Thin metal films
Debliquy et al. Review of the use of the optical fibers for safety applications in tunnels and car parks: pollution monitoring, fire and explosive gas detection
JP2012225863A (en) Organic hydride detection component and method for detecting presence of organic hydride
Pitts et al. Interfacial stability of thin film hydrogen sensors

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140729