JP2012012974A - Wind power energy recovery floating ship - Google Patents

Wind power energy recovery floating ship Download PDF

Info

Publication number
JP2012012974A
JP2012012974A JP2010148813A JP2010148813A JP2012012974A JP 2012012974 A JP2012012974 A JP 2012012974A JP 2010148813 A JP2010148813 A JP 2010148813A JP 2010148813 A JP2010148813 A JP 2010148813A JP 2012012974 A JP2012012974 A JP 2012012974A
Authority
JP
Japan
Prior art keywords
wind
compressed air
ship
tower
windmill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010148813A
Other languages
Japanese (ja)
Inventor
Masataka Murahara
村原正隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hikari Energy Kaihatsu Kenkyusho Kk M
M Hikari and Energy Laboratory Co Ltd
Original Assignee
Hikari Energy Kaihatsu Kenkyusho Kk M
M Hikari and Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hikari Energy Kaihatsu Kenkyusho Kk M, M Hikari and Energy Laboratory Co Ltd filed Critical Hikari Energy Kaihatsu Kenkyusho Kk M
Priority to JP2010148813A priority Critical patent/JP2012012974A/en
Publication of JP2012012974A publication Critical patent/JP2012012974A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect

Landscapes

  • Wind Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a heavy load inside a nacelle, lower the center of gravity to below the water surface, lower a generator to near the water surface for making a floating ship with high resilience, convert rotational energy from wind power into compressed air and accumulate it as high pressure gas in a hollow part inside a tower, prevent a windmill facility from resisting a wind even during a strong wind, and make a windmill propeller spontaneously face windward so that the wind can be received with good efficiency even during a light wind.SOLUTION: The rotational energy from wind power obtained in one windmill facility is converted into pressure energy by an air compressor and a hydraulic pump. The obtained compressed air is stored inside the tower with pressure and is collected in one location to generate power. Further, so that the windmill propeller always faces windward, the vicinity of a draft line of a bow of the wind power energy recovery floating ship is made sharp, wave-making resistance is reduced by making a portion of the ship below the draft line in a stream line, and a longitudinal cross sectional area of a keel of the ship's bottom is made large in order to obtain a windmill facility with high resilience.

Description

風力エネルギー回収用浮体船が自然に風上に向く構造を有し、かつ圧搾空気に変換された風力エネルギーを浮体船のタワー内に貯蔵する洋上風力エネルギー回収浮体船に関する。 The present invention relates to an offshore wind energy recovery floating ship that has a structure in which a wind energy recovery floating ship is naturally oriented to the windward and stores wind energy converted into compressed air in a tower of the floating ship.

洋上などの風力発電で得られた電力を消費地に運ぶには送電ケーブルや海底ケーブルが一般的である。しかし、送電ケーブルが高価であること、送電ロスが大きいことなどから、風力エネルギーを電力以外のエネルギーに変換して貯蔵し、これを消費地に輸送する方法が検討されている。有限会社エヌティエイチ設計アンド解析計算の野澤は「エネルギー生産装置」において、メガフロート上の風力発電機や太陽電池パネルあるいは波力発電機により得た電力により海水を電気分解し、酸素ガスおよび水素ガスを液化して貯蔵容器に貯蔵する方法が特許文献1に開示している。谷口は船舶上に設備した垂直軸型風車より得た電力により洋上で海水の電気分解により水素を抽出し燃料電池用燃料に供することが特許文献2に開示している。他方、洋上風力発電から得られた電力で、真下の海水から金属ナトリウムを製造した後、消費地で水を加えて水素を発生させ、発電用燃料に供し、副産物の苛性ソーダはソーダ工業の原料にする、あるいはさらに苛性ソーダを熔融塩電気分解して金属ナトリウムのエネルギーサイクルを構築する方法については、本願発明者によって特許文献3の「海洋資源エネルギー抽出・生産海洋工場」および特許文献4「海洋電気分解工場」、非特許文献1の「“風力よ”エタノール化からトウモロコシを救え」に開示している。 Transmission cables and submarine cables are generally used to carry the power obtained by wind power generation offshore to the consumption area. However, due to the high cost of power transmission cables and large power transmission loss, a method of converting wind energy into energy other than electric power and storing it and transporting it to a consumer area is being studied. Nozawa, a company designed and analyzed by NTT H. Co., Ltd., uses an energy production system to electrolyze seawater with the power generated by wind power generators, solar panels or wave power generators on megafloats to produce oxygen and hydrogen gas. Patent Document 1 discloses a method of liquefying and storing in a storage container. Taniguchi discloses in Patent Document 2 that hydrogen is extracted from seawater by electrolysis of seawater using electric power obtained from a vertical axis windmill installed on a ship and used as fuel for a fuel cell. On the other hand, after producing metallic sodium from seawater just below with the power obtained from offshore wind power generation, water is added at the consumption area to generate hydrogen, which is used as fuel for power generation, and by-product caustic soda is a raw material for soda industry. For the method of constructing an energy cycle of metallic sodium by further electrolyzing caustic soda with molten salt, the inventors of the present application disclosed in “Marine Resources Energy Extraction / Production Ocean Factory” and Patent Literature 4 “Marine Electrolysis”. "Factory", Non-Patent Document 1, "Saving corn from ethanolization".

プロペラ型風力発電装置は、受風量を大きくするため、大型化の傾向にある。それに連れて、タワーが高くなり、その頂上のナセルの中には、発電機、高速回転ギア、方向変換ギアなどを格納するために、頭部が重くなり、タワーが重さに耐え切れず損傷する事故が陸上で報告されている。タワーが地盤に固定されている陸地や浅瀬の場合は、固定を強固にすれば良いが、海底が深い沖合や洋上あるいは湖などでは、それら大型風車を浮体上に建設することになる。そのためには、ナセル内部の重量物を水面近くに下ろし、重心を水面近くに下ろさねばならない。そこで、最も重量物である発電機、高速回転ギア、風車のプロペラを風上に動かすための方向変換ギアなどをナセルから外すことを考えねばならない。そこで、ナセル内で、プロペラの回転を直接発電機で発電する代わりに、この風力による回転エネルギーを圧搾空気に変換すれば貯蔵が楽になり、必要に応じて一定なエネルギーを取り出すことが可能になる。一般に気体は圧縮すれば体積は縮小され、それをさらに縮小すれば液体や固体になる。このため風力の貯蔵には大スペースを必要としない。京セラ株式会社の加藤らは「空気エネルギー装置」において、風車に連動した圧縮機により圧搾空気を作り、これを空気タンクに貯える方法を特許文献5に開示している。同様な手法を船井は「圧搾空気生成及び貯蔵装置並びに該圧搾空気生成及び貯蔵装置を使用した発電システム」を特許文献6に開示している。林は「圧力蓄積構造体」において風車の回転で空気室をシリンダーとするピストンを押し下げ、空気室内の空気を圧縮し、これを空気貯蔵槽に送る構想を特許文献7に開示している。佐藤は「風力発電装置」において、複数の風車支持の水平軸風車の回転軸にそれぞれエアコンプレッサーを配管で連結して圧搾空気をエアタンクに貯留し、この圧搾空気でエアモーターを回転させ発電機することが特許文献8に開示している。宮崎は「風力発電装置」において、風車の回転をギアで高速にして一方は発電機、他方は空気圧搾ピストンに繋ぎ、発電量が過剰時は圧搾空気を貯蔵し、不足時にはエアモーターを駆動して発電する方法を特許文献9に開示している。また圧搾空気を利用して水に圧力をかけて水車を回し発電する報告を株式会社間組の吉村が「揚水発電所」において、揚水された水を上部貯水池から下部貯水池に落とす際に落差水を圧搾空気で追加圧することにより有効落差が短くても所定の発電出力を得ることができる方法について特許文献10に開示している。風車の回転により圧搾空気を作り貯蔵し、それに水を満たした水槽タンクに送り、その水圧でタービンを回転させ発電させる方法について、篠崎は「水を高いところから落とさず、低いところの水を利用し風力、空気の圧力、水の圧力を組み合わせ利用した発電装置」を特許文献11に開示している。 Propeller type wind power generators tend to be larger in order to increase the amount of wind received. Along with that, the tower becomes taller, and in the nacelle at the top, the head becomes heavy to store the generator, high speed rotating gear, direction changing gear, etc., the tower can not bear the weight and damage Accidents have been reported on land. In the case of land and shallow water where the tower is fixed to the ground, it is sufficient to fix it firmly, but in the offshore where the sea floor is deep, offshore or lake, these large windmills will be built on the floating body. To do so, the heavy objects inside the nacelle must be lowered near the water surface, and the center of gravity must be lowered near the water surface. Therefore, it is necessary to consider removing the most heavy generators, high-speed rotating gears, and direction changing gears for moving the wind turbine propellers upwind. Therefore, instead of directly generating the propeller rotation with the generator in the nacelle, if this wind energy is converted into compressed air, storage becomes easier, and constant energy can be extracted as needed. . In general, when gas is compressed, its volume is reduced, and when it is further reduced, it becomes liquid or solid. For this reason, a large space is not required for storing wind power. Kato et al. Of Kyocera Corporation discloses a method of making compressed air by using a compressor linked to a windmill in an “air energy device” and storing the compressed air in an air tank. A similar technique is disclosed in Patent Document 6 by Funai “Pushed air generation and storage device and power generation system using the compressed air generation and storage device”. Hayashi discloses a concept in Patent Document 7 in which, in the “pressure accumulating structure”, a piston whose cylinder is an air chamber is pushed down by rotation of a windmill to compress air in the air chamber and send it to an air storage tank. Sato uses an air compressor connected to the rotating shafts of horizontal wind turbines supported by a plurality of wind turbines by pipes to store the compressed air in an air tank, and rotates the air motor with the compressed air to generate a power generator. This is disclosed in Patent Document 8. Miyazaki is a “wind power generator” that uses a gear to rotate the windmill at high speed, one is connected to a generator, the other is connected to a pneumatic piston, stores compressed air when power generation is excessive, and drives an air motor when power is insufficient. Patent Document 9 discloses a method of generating electricity. In addition, a report that uses compressed air to pressurize the water and rotate the turbine to generate electricity is generated by Yoshimura of Mazumi Co., Ltd. at the `` pumped storage power plant '', when dropping the pumped water from the upper reservoir to the lower reservoir. Patent Document 10 discloses a method capable of obtaining a predetermined power generation output even if the effective head is short by performing additional pressure with compressed air. Regarding the method of generating and storing compressed air by rotating the windmill, sending it to a tank tank filled with water, and rotating the turbine with that water pressure to generate electricity, Shinozaki said, “We do not drop water from high places, but use low water. Patent Document 11 discloses “a power generation apparatus using a combination of wind power, air pressure, and water pressure”.

プロペラで効率よく風力を得るためにはプロペラを風上に向ける必要がある。最も簡便な方法として、ナセル部に風見鳥のような垂直尾翼を取り付る方法が報告されている。独立行政法人国立高等専門学校の一色らは特許文献12の「風力発電装置」において、ナセル後方部分に垂直尾翼と水平尾翼とを設けた構造により、プロペラを自発的に風上に向けている。一方風車の発電機の先端を尖った形状にして風上を向くようにし、風下側にプロペラ備え、両者の回転軸に垂直尾翼を備えて自発的に風上からの風を効率よく捉える方法が、野原により特許文献13の「風力発電装置」に開示している。株式会社リポートサービス北海道の西田らは特許文献14の「ツインローター式風力発電装置」において、2基のプロペラ付き発電機をアームで固定し、そのアームの後方の2基の風車の対称面に垂直尾翼を備え、自発的に風車が風上を向くように工夫することを開示している。清水建設株式会社の宮川らは特許文献15の「浮体構造及び該浮体構造の位置制御方法」において洋上風車の浮体の中央部に風力発電施設を置き、浮体上に具備した風向検出器で測定した方向を複数の浮体に取り付けた舵を作動させて風上に向かせる機構が開示している。プロペラ型風車を自発的に風上に向ける機構について、市吉は「洋上風力発電システム」において、強風の中で船体の風向きに対する姿勢を確保するために、発電船を双胴船型として波浪とローリングの影響を小さくし、かつスポイラーとして水中翼を垂直にして発電船が強風に流されることを防止し、発電船の前後に4枚設置した垂直翼の角度を制御して、船体の姿勢を制御する方法が特許文献16に開示している。 In order to obtain wind power efficiently with a propeller, it is necessary to point the propeller upwind. As the simplest method, a method of attaching a vertical tail like a weathercock to the nacelle has been reported. In the “Wind Power Generator” of Patent Document 12, National Institute of Technology National Institute of Technology, for example, has a structure in which a vertical tail and a horizontal tail are provided at the rear portion of the nacelle, and the propeller is spontaneously directed upwind. On the other hand, the tip of the wind turbine generator has a pointed shape so that it faces the windward side, with a propeller on the leeward side, and a vertical tail on both rotating shafts, and a method for spontaneously capturing wind from the windward efficiently. Nobara discloses the “wind power generator” of Patent Document 13. Nishida et al. Of Report Service Co., Ltd. in Hokkaido, have two propeller-equipped generators fixed with arms in the “Twin-rotor wind power generator” of Patent Document 14, and perpendicular to the symmetry plane of the two wind turbines behind the arms. It is disclosed that a tail wing is provided and the windmill is devised so as to face the windward. Miyakawa et al. Of Shimizu Construction Co., Ltd. measured in a wind direction detector provided on the floating body in a floating body structure and a method for controlling the position of the floating body in Patent Document 15 where a wind power generation facility was placed at the center of the floating body of an offshore wind turbine. A mechanism for operating a rudder attached to a plurality of floating bodies so as to face the windward is disclosed. Regarding the mechanism that voluntarily directs the propeller-type windmill to the windward, Ichiyoshi in the “offshore wind power generation system”, in order to secure the attitude to the wind direction of the hull in strong winds, the power ship is a catamaran type and rolling with waves As a spoiler, the hydrofoil as a spoiler is kept vertical to prevent the power ship from being blown by strong winds, and the attitude of the hull is controlled by controlling the angle of four vertical wings installed before and after the power ship. This method is disclosed in Patent Document 16.

海上や湖上又は河川では陸上より風が強く、沖合ではさらに風速が速く、しかも障害物が無いため安定した風が吹いている。さらに陸上では大型風車の設置は運搬がネックであるが、洋上や湖上又は河川では港が利用できるため楽であり、しかも陸上に比べて騒音、電波障害など周辺環境への影響も少ない。しかし設置を考えると我が国と海外は考え方にかなりの隔たりが生じてくる。例えば、海外の洋上風車は浅瀬が多いため、その殆どが海底固定式やプラットホーム式であるが、我が国は水深が深いため浮体式を考える必要がある。と言っても、今後各国が排他的経済水域内あるいはその外側を開発することになれば浮体式風車の必要性は大きくなる。これら風力タービンの支持構造物については本願発明者による非特許文献1の「“風力よ”エタノール化からトウモロコシを救え」に固定式支持構造と浮体式支持構造の違いについて述べている。独立行政法人海上技術安全研究所の矢後らは「洋上風力発電設備」において、発電用の風車を支持するタワーを昇降可能にし、強風時には同タワーの下端部の浮力タンクに注水することにより、水中へ没入させて、待避を容易に行えるようにする方法について特許文献33に開示している。日立造船株式会社の村上は「洋上風力発電の浮体式基礎構造物」において、風車を立設支持する円筒状の主浮体の中心軸を鉛直に配置し、この主浮体を囲むようにトラスによって一体的に設けられた複数の従浮体を備え、主浮体の下方部分が海中に水没し、従浮体の上方部分は海上に位置し、主浮体の喫水線以下に、主浮体の横断面より大径の平板を水平となるように設置することによって、水深の影響を受けず、海洋地形にも関係せず、波浪外力や風外力等の影響を回避する方法が特許文献17、18、19に、「洋上風力発電装置」においては、平面正三角形状の枠組み構造物の各頂点位置に風力発電機を立設し、夫々3個の風力発電装置を結ぶ枠組み構造物の中心部の水面上に浮体を取り付ける方法が特許文献20に開示している。 Wind is stronger than on land at sea, lakes or rivers, and wind speed is higher offshore, and there are no obstacles. In addition, the installation of large windmills on land is a bottleneck, but it is easy because the port can be used on the ocean, on the lake, or on the river, and it has less impact on the surrounding environment such as noise and radio interference than on land. However, considering the installation, there is a considerable gap between Japan and overseas. For example, overseas offshore wind turbines have many shallow waters, and most of them are fixed to the seabed or platform, but in Japan, it is necessary to consider a floating type because the water is deep. However, the need for floating wind turbines will increase if each country develops within or outside of the exclusive economic zone. Regarding the support structure of these wind turbines, the difference between the fixed support structure and the floating support structure is described in Non-Patent Document 1 of the present inventor, “Saving Corn from Ethanolation”. Yago et al. Of the National Maritime Research Institute have made it possible to move up and down the tower that supports the wind turbine for power generation in the “offshore wind power generation facility”, and by pouring water into the buoyancy tank at the lower end of the tower during strong winds, Japanese Patent Application Laid-Open No. H11-228561 discloses a method for making it easy to evacuate and save. Murakami of Hitachi Zosen Co., Ltd. placed the central axis of the cylindrical main floating body upright to support the wind turbine in the “floating foundation structure for offshore wind power generation” vertically, and integrated with a truss to surround this main floating body The lower part of the main floating body is submerged in the sea, the upper part of the secondary floating body is located on the sea, and has a diameter larger than the main floating body below the waterline of the main floating body. Patent Documents 17, 18, and 19 disclose a method for avoiding the influence of wave external force, wind external force, and the like by installing a flat plate so as to be horizontal, without being affected by water depth and not related to ocean topography. In the “offshore wind power generator”, a wind power generator is installed at each apex position of a planar equilateral triangular structure, and a floating body is placed on the water surface at the center of the frame structure connecting three wind power generators. A method of attaching is disclosed in Patent Document 20.

特開2001−059472号公報JP 2001-059472 A 特開2006−070775号公報Japanese Patent Laid-Open No. 2006-070775 特開2007−331681号公報JP 2007-331681 A 特開2008−038673号公報JP 2008-038673 A 特開平06−185450号公報Japanese Patent Laid-Open No. 06-185450 特開2005−344701号公報JP 2005-344701 A 特開2005−226652号公報JP 20052266652 A 特開2005−180237号公報JP 2005-180237 A 特開2005−036769号公報JP 2005-036769 A 特開平10−068377号公報Japanese Patent Laid-Open No. 10-068377 特開平11−351118号公報JP 11-351118 A 特開2010−101263号公報JP 2010-101263 A 特開2010−071237号公報JP 2010-071237 A 特開2006−322383号公報JP 2006-322383 A 特開2007−331414号公報JP 2007-331414 A 特開2001−349272号公報JP 2001-349272 A 特開2003−252288号公報JP 2003-252288 A 特開2002−285952号公報JP 2002-285951 A 特開2002−285951号公報JP 2002-285951 A 特開2002−130113号公報JP 2002-130113 A 特開2005−225406号公報JP 2005-225406 A 特開2008−239059号公報JP 2008-239059 A 特開2008−201185号公報JP 2008-201185 A 特開2009−190717号公報JP 2009-190717 A 特開平08−040346号公報Japanese Patent Application Laid-Open No. 08-040346 特開2000−108983号公報JP 2000-108983 A 特開平10−119875号公報Japanese Patent Laid-Open No. 10-11985 特開平08−218679号公報Japanese Patent Laid-Open No. 08-218679 特公表2005−519253号公報Japanese Patent Publication No. 2005-519253 特開2008−095702号公報JP 2008-095702 A 特開2001−349272号公報JP 2001-349272 A 特開平06−185450号公報Japanese Patent Laid-Open No. 06-185450 特開2005−344701号公報JP 2005-344701 A 特開2005−226652号公報JP 20052266652 A 特開2007−263077号公報JP 2007-263077 A

村原正隆・関和市 「“風力よ”エタノール化からトウモロコシを救え」パワー社出版(2007年12月発行)Masataka Murahara / Kanwa City “Wind, save corn from ethanolization” published by Power Company (December 2007)

わが国の海岸線は33,900 kmと長く、地球一周、約4万kmの84.7%の長さを有する世界屈指の海洋国家である。さらに1994年発効した海洋法に関する国際連合条約によると、沿岸国は200海里(370 km)までの海底および海底下を大陸棚とすることが出来るほか、海底の地形・地質が一定条件を満たせば、200海里の外側に大陸棚を設定することができる。これら水深2,000メートル内外に存在する熱水鉱床は金、銀、銅、亜鉛、鉛などを含む泥状の硫化物で、海底において熱水作用に伴い形成された多金属硫化物鉱床であり、我が国の周辺では太平洋の伊豆、小笠原海域、沖縄海域などに存在する可能性が高く、次世代の鉱物資源として有望視されている。その他にも排他的経済水域内の比較的浅い海域に分布するマンガンクラストや5,000メートル内外に分布するマンガン団塊など海水に溶存している量とは比較できないほどの金属が埋蔵している。これら広大で深度が深い洋上に風力エネルギー回収装置建設の工期を短縮するには浮体構造が最適と考える。さらに建設工事の簡便さや台風や強風などを回避する風車の開発や改良が必要である。そこで本願発明では「風見型起き上がり小法師式圧搾空気製造用洋上プロペラ型風車」を提唱する。
近年、プロペラ型風力発電装置は、受風量を大きくするため、大型化の傾向にある。それに連れて、タワーが高くなり、その頂上のナセルの中には、発電機、高速回転ギア、方向変換ギアなどを格納するために、頭部が重くなり、タワーが重さに耐え切れず折れる事故が陸上で報告されている。タワーが地盤に固定されている陸地や浅瀬の場合は、固定を強固にすれば良いが、海底が深い沖合や洋上あるいは湖上では、それら大型風車を浮体上に建設することになる。そのためには、ナセル内部の重量物を水面近くに下ろし、重心を水面近くに下ろさねばならない。そのためには、最も重量物である発電機、高速回転ギアや風車のプロペラを風上に動かすための方向変換ギアなどをナセルから外すことを考える。そこで、ナセル内で、プロペラの回転を直接発電機で発電する代わりに、この風力による回転エネルギーを圧搾空気に変換し、高圧ガスの形で蓄圧する貯蔵庫としてタワー内部の空洞部を用いれば、大容量の圧搾空気を貯蔵でき、無風状態も気にせず必要に応じて一定なエネルギーを取り出すことが可能になる。さらに風車施設を浮体船上に建造すれば、浮体船の喫水線の形状を工夫すれば、自然に風上に風車を向け、かつ風車施設全体が風に逆らうことなく強風に向かって強い風力エネルギーを獲得することが可能になる。風車施設全体が軽く、内部が空洞構造にして、水面下の球形体又は楕円形状水タンクは海水や水を注入することによる錘として風車施設全体を起立させ、曳航や修理・建造・保守点検時には海水や水を抜き水面上に伏させ、台風などの強風を避ける場合には該タワー兼高圧ボンベにも水を注入して所望する任意の深さに垂直に水没させる構造を有することが本発明が解決しようとする課題である。
Japan's coastline is as long as 33,900 km, and it is one of the world's leading maritime nations. Furthermore, according to the United Nations Convention on the Law of the Sea, which came into effect in 1994, coastal countries can use continental shelves up to 200 nautical miles (370 km) of the seabed and below the seabed, as long as the topography and geology of the seabed meet certain conditions. Can set a continental shelf, outside of 200 nautical miles. These hydrothermal deposits in and out of 2,000 meters deep are mud sulfides containing gold, silver, copper, zinc, lead, etc., and are polymetallic sulfide deposits formed by hydrothermal action on the sea floor. It is highly probable that it exists in Izu, Ogasawara, Okinawa, and other areas in the Pacific Ocean, and is promising as a next-generation mineral resource. In addition, metals such as manganese crusts distributed in relatively shallow waters within the exclusive economic zone and manganese nodules distributed inside and outside 5,000 meters are buried in metal that cannot be compared with the amount dissolved in seawater. Floating structures are considered optimal for shortening the construction period of wind energy recovery equipment on these vast and deep oceans. Furthermore, it is necessary to develop and improve wind turbines that can simplify construction work and avoid typhoons and strong winds. In view of this, the present invention proposes a “wind-wind type rising offshore propeller-type windmill for manufacturing a compressed air method”.
In recent years, propeller-type wind power generators tend to be larger in order to increase the amount of received wind. Along with that, the tower becomes taller, and in the nacelle at the top, the head becomes heavier to store the generator, high-speed rotating gear, direction changing gear, etc., and the tower breaks without being able to bear the weight An accident has been reported on land. In the case of land and shallow water where the tower is fixed to the ground, it is sufficient to fix it firmly, but on the offshore or offshore or on the lake where the seabed is deep, these large windmills will be built on the floating body. To do so, the heavy objects inside the nacelle must be lowered near the water surface, and the center of gravity must be lowered near the water surface. To that end, it is considered to remove from the nacelle the most heavy generators, high-speed rotating gears, and direction changing gears for moving the wind turbine propellers to the windward. Therefore, instead of directly generating the propeller rotation with the generator in the nacelle, if the cavity inside the tower is used as a storage that converts this wind energy to compressed air and stores it in the form of high-pressure gas, A large volume of compressed air can be stored, and constant energy can be extracted as needed without worrying about windless conditions. Furthermore, if the windmill facility is built on a floating ship, the shape of the draft line of the floating ship will be devised, the windmill will be directed naturally to the windward, and the entire windmill facility will acquire strong wind energy toward the strong wind without resisting the wind It becomes possible to do. The entire windmill facility is light, the interior is hollow, and the spherical or elliptical water tank below the surface of the water raises the entire windmill facility as a weight by injecting seawater or water, and at the time of towing, repair, construction, maintenance inspection In the case where seawater or water is drawn down and laid on the surface of the water to avoid strong winds such as typhoons, the present invention has a structure in which water is also injected into the tower and high-pressure cylinder so as to be submerged vertically to a desired depth. Is a problem to be solved.

我が国の海岸線は、地球一周の84.7%と長い。しかも海底も深い。さらに排他的経済水域内の海底資源開発のための電力には洋上風力発電は不可欠で、その風力発電施設の構造は浮体式が望ましい。さらに風車が常に風上を向き、強風に抗せず、稼動時の風車施設の重心が水面下に位置し、設置・補修点検が容易で、台風時の緊急避難が容易で、しかも施設での作業が短期間で済む構造が必要である。一般には風車施設建設や修理のために大型クレーンを現場水域に配船するのが常である。しかし、故障が起き易いナセル内の発電機や増速ギアあるいは風向調整ギアを外し、ナセル内には圧搾空気ポンプ又は油圧ポンプのみにすれば、故障の確率は激減する。さらに、風車設備台座の水面下の円柱支持体内のタンクの中の錘としての水を抜き、水面に伏せさせれば、曳航や修理・建造・保守点検時には作業が楽である。 しかも、台風などの強風を避ける場合には該タワー兼高圧ボンベにも水を注入して所望する任意の深さに垂直に水没させることができる。
風車が横風や突風をかわす常套手段は風車のプロペラを風上に向けることである。一般的には、特許文献16に開示しているように、風向検出器で検知した後、浮体船の舵を作動させて間接的に風上を向かせている。しかし、それでは機敏な動作は期待できない。船舶が洋上で停泊する場合、船尾には投錨せず、船首のみに投錨すると自然に船首を風上に向いた位置で停泊する。これは、船が水の抵抗で船首を風上に向かすためである。この原理は、船は水面近傍で空気抵抗と水の抵抗を受けるが、水の流体抵抗は空気の800倍であるから、水から受ける流体抵抗は大きい。その流体抵抗成分は、摩擦抵抗、造波抵抗、粘性圧力抵抗である。摩擦抵抗は、船体表面と水とがこすれる時に生ずる。造波抵抗は、水流と船との界面での摩擦抵抗により水面に波を起こす。粘性圧力抵抗は、前進する物体周囲の流体が物体表面から離れて行き(流れ剥離)、その結果、物体の後方に渦を発生させる。この結果、物体後方の表面に働く圧力が低下し、前方に働く圧力との差が生じる。そこで浮体船における流体の剥離を最小限に抑え、粘性圧力抵抗を小さくするために、船の喫水線以下の部分の形状を流線形にする。また造波抵抗を極力抑えるためには、水を切る船首部分を鋭くする。このため、水面下は流線形に、水面に近い喫水線に極近い部分は先端の尖った形状にする。住友重機マリーンエンジニアリング株式会社の佐々木は特許文献21の「船舶」において船舶の前方に向かって尖った突起物を具備させて造波抵抗を抑制することを開示している。三井造船株式会社の山崎らは特許文献22の「船舶」において船首前半部の方形係数が0.88〜0.96という船型が大きい船舶に関しての船首の形状計算によって造波抵抗を減少する計算式を開示している。
さらに、造波抵抗を物理的に軽減する方法として、喫水線以下の船首部分を球状船首(バルバス・バウ)にする。この方法は、1940年8月8日進水した戦艦大和や1940年11月1日進水した戦艦武蔵に採用され、今日のタンカーや大型船に採用されている。この球状船首による造波抵抗減衰原理は、喫水線下の球状船首で発生した波の山と谷が、喫水線近傍の尖った船首部で発生した波の谷と山とが互いに干渉し、2つの波同士が打ち消されるため造波抵抗が軽減する。株式会社来島ドックの片岡は特許文献23の「自動運搬船の船首構造」において満喫水線下に球状船首を有する自動車運搬船を開示している。井本商運株式会社の井本は特許文献24の「コンテナー船」において球状船首の上方に窪みを付けることを開示している。川崎重工業株式会社の山野らは特許文献25(特開平8−040346)の「船首形状」において主船体との繋がり不連続性が生じないよう球状船首により喫水で造波抵抗と破波抵抗を減少させる形状を開示している。
本発明では圧搾空気を風車タワー内部に蓄圧するが、その圧搾空気の一部を浮体船底で発生させ、直径0.5mm内外の微細な気泡(マイクロバルブ)として船底を覆えば摩擦抵抗を軽減することができる。とくに海流や潮流の流れが速い場所での係留には効果大である。石川島播磨重工業株式会社の高橋は特許文献26(特開2000−108983)の「摩擦抵抗低減船」において球状船首部を前方に突出させ、その部分から気体(マイクロバルブ)を噴出す球状船首により摩擦抵抗を減ずることを開示し、かつ特許文献27(特開平10−119875)の「マイクロバルブ発生装置」で気泡生成装置を開示している。ただし潜水艦のように水中においては船体が空気との接触界面が無いから造波抵抗を考慮する必要が無いために流線形に近い涙滴型をしている。
ただし、風車タワーの背が高く、風の影響を無視できない場合には、風車タワーの形状を流線形として自然に風上に向くようにする。さらに補助手段として、釣り船に見られるように、船尾に比較的大きな1枚の帆(ミズン)又は2枚の帆(スパンカー)を付けることも効果的だと考える。
Japan's coastline is as long as 84.7% of the earth. Moreover, the sea floor is deep. Furthermore, offshore wind power generation is indispensable for power development for submarine resources in the exclusive economic zone, and the structure of the wind power generation facility is preferably floating. Furthermore, the windmill always faces upwind, does not resist strong winds, the center of gravity of the windmill facility during operation is located below the surface of the water, easy to install and repair, easy emergency evacuation during typhoons, and at the facility A structure that requires only a short period of work is required. In general, large cranes are usually dispatched to the site waters for the construction and repair of windmill facilities. However, if the generator, speed increasing gear, or wind direction adjusting gear in the nacelle where failure is likely to occur is removed and only the compressed air pump or hydraulic pump is used in the nacelle, the probability of failure is drastically reduced. Furthermore, if water as a weight in the tank in the cylindrical support body under the surface of the wind turbine equipment pedestal is drained and placed on the surface of the water, the work is easy at the time of towing, repair, construction and maintenance inspection. In addition, when strong winds such as typhoons are avoided, water can be poured into the tower / high pressure cylinder and submerged vertically at a desired depth.
The usual way for a windmill to dodge side winds and gusts is to direct the propeller of the windmill upwind. Generally, as disclosed in Patent Document 16, after detection by a wind direction detector, the rudder of a floating ship is operated to indirectly face the windward. However, you cannot expect agile behavior. When a ship is anchored offshore, it is not anchored at the stern, but anchored only at the bow, it will naturally anchor at the position where the bow is facing upwind. This is because the ship moves the bow to the windward by the resistance of water. According to this principle, the ship receives air resistance and water resistance near the water surface, but since the fluid resistance of water is 800 times that of air, the fluid resistance received from water is large. The fluid resistance component is frictional resistance, wave resistance, and viscous pressure resistance. Friction resistance occurs when the hull surface and water are rubbed. Wave resistance causes waves on the water surface due to frictional resistance at the interface between the water flow and the ship. The viscous pressure resistance causes the fluid around the moving object to move away from the object surface (flow separation), resulting in a vortex behind the object. As a result, the pressure acting on the surface behind the object is reduced, and a difference from the pressure acting on the front is generated. Therefore, in order to minimize fluid separation in the floating ship and reduce the viscous pressure resistance, the shape of the part below the waterline of the ship is made streamlined. In order to suppress the wave resistance as much as possible, the bow part that cuts the water is sharpened. For this reason, the water surface is streamlined, and the portion very close to the water line near the water surface is shaped to have a sharp tip. Sasaki of Sumitomo Heavy Industries Marine Engineering Co., Ltd. discloses that in the “ship” of Patent Document 21, a wave-shaped resistance is suppressed by providing a sharp protrusion toward the front of the ship. Yamazaki et al. Of Mitsui Engineering & Shipbuilding Co., Ltd. discloses a calculation formula for reducing wave resistance by calculating the shape of the bow of a large ship with a square factor of 0.88 to 0.96 in the first half of the bow in Patent Document 22 “Ship”. Yes.
In addition, as a method of physically reducing wave resistance, the bow portion below the waterline is made into a spherical bow (Barbus Bau). This method is used in the battleship Yamato launched on August 8, 1940 and the battleship Musashi launched on November 1, 1940, and is used in today's tankers and large ships. The wave-making resistance attenuation principle by this spherical bow is based on the fact that the wave peaks and valleys generated at the spherical bow under the waterline interfere with each other and the wave valleys and peaks generated at the sharp bow near the waterline interfere with each other. Wave resistance is reduced because they cancel each other. Kataoka of Kurushima Dock Co., Ltd. discloses an automobile carrier ship having a spherical bow under the waterline in “Automatic Carrier Ship Bow Structure” of Patent Document 23. Imoto of Imoto Shoko Co., Ltd. discloses that in the “container ship” of Patent Document 24, a depression is provided above the spherical bow. Yamano et al. Of Kawasaki Heavy Industries Co., Ltd. reduced wave-making resistance and breakage resistance by drafting with a spherical bow so that there is no discontinuity in connection with the main hull in the “bow shape” of Patent Document 25 (Japanese Patent Laid-Open No. Hei 8-040346). The shape to be made is disclosed.
In the present invention, the compressed air is accumulated inside the windmill tower, but a part of the compressed air is generated at the bottom of the floating body, and the friction resistance is reduced by covering the bottom of the ship as micro bubbles inside and outside the diameter of 0.5 mm. Can do. It is particularly effective for mooring in areas where the ocean currents and tidal currents are fast. Takahashi of Ishikawajima-Harima Heavy Industries Co., Ltd. rubs the spherical bow that projects the spherical bow from the part in the “friction resistance reduction ship” of Patent Document 26 (Japanese Patent Laid-Open No. 2000-108983) and spouts the gas (microvalve) from that part. It discloses that the resistance is reduced, and a bubble generating device is disclosed in “Microvalve generating device” of Japanese Patent Application Laid-Open No. 10-119875. However, underwater like a submarine, the hull has no contact interface with air, so there is no need to consider wave resistance.
However, when the windmill tower is tall and the influence of wind cannot be ignored, the shape of the windmill tower is streamlined so that it faces naturally upwind. In addition, as an auxiliary means, it is also effective to attach a relatively large sail (Mizun) or two sails (Spanker) to the stern, as seen on fishing boats.

一般に従来の風力発電施設では風車タワーの上端部のナセルの中では風車プロペラ軸が歯車を介してあるいは直接発電機に直結されていた。この発電機の重力バランスが崩れタワーが損傷する事故が報告されている。そこで海底や湖底や地盤に基礎を持たない浮体構造では重心を水面下に下ろして安定を図る。このために、ナセル上の発電機を廃止し、その代りに風車の回転を直接ロータリー空気コンプレッサー、又はクランクシャフトを介して空気コンプレッサーを稼動させ、得られた圧搾空気をタワー内部の圧搾空気貯蔵ボンベに貯える。あるいはナセル内の油圧ポンプ(歯車ポンプやベーンポンプ)でプロペラの回転軸から機械的エネルギーを受け取り、圧力エネルギーに変換された高圧油は、パイプや高圧ゴムホースなどを介して油圧制御弁(圧力制御弁:仕事の大きさを設定、流量制御弁:仕事の速さを設定、方向制御弁:仕事の方向を設定)で各仕事に分けられた後、パイプや高圧ゴムホースなどを介してタワー下部(水面近くの風車台座部)に設置した油圧アクチュエーター(油圧モーター:回転運動に変換、油圧シリンダー:直線運動に変換)に圧送し、再度運動エネルギーに変換されて目的の仕事を実行する。その後、役割を終えた油は夫々の制御弁に戻された後、油タンクで回収される。一般に仕事を終えた油は高温であるため、海水や湖水で冷却し、さらに不足分だけ油を補給し再度低圧油としてナセル内の油圧モーターに送る。風車の基本的な欠点の一つに起動トルクが小さいことである。このため外部からの始動が必要不可欠である。一般的には、プロペラ軸をモーターで始動させるが、その電力は大きい。とくに本発明では、プロペラの回転運動エネルギーを油圧ポンプの圧力エネルギーに変換しているので、始動時に油圧ポンプの低圧油入口から瞬時のみ超高圧油を送れば、油圧ポンプは油圧モーターの役割をして回転を開始する。一度回転が開始されれば、プロペラは風力によって回転を開始するので、その後は、油圧ポンプから高圧油が油圧アクチュエーターに圧送される。ここで使用する超高圧油は、油タンクから油圧ポンプに送られている低圧油の循環経路に、アキュムレーターを繋ぐだけでよい。アキュムレーターの原理は、液体は圧縮しても容積を小さくすることはできないが、気体は圧縮すると容積を小さくできるという性質を応用したものである。アキュムレーターの構造はシリンダーが油室と気体室とがピストンによって分離されている。先ず、気体室の気体出入り口弁を開き、気体(窒素ガス)を封入した後、弁を閉じる。続いて油室の弁を開け、高圧油を圧入すると、圧油はピストンを押し上げ、気体を圧縮して油圧力とガス圧力が平衡になるまで、油を油室に入れる。ここで油の出入り口の弁を閉れば超高圧油が蓄圧される。そこで静止状態にある風車のプロペラを起動したい時に、油室の弁を開放すると、瞬時にガスが膨張して圧油がナセル内の油圧ポンプに瞬間的に高圧油が流れるために、始動が行われ、アキュムレーターの仕事は終了する。このようにアキュムレーターは超高圧油を蓄え、必要時に、瞬発力を発揮して一回目の仕事を終える。しかし、気体と油圧の入力を繰り返せば何回も使えるため経済的である。アキュムレーターを風力発電装置に利用した報告としては、鹿島建設株式会社の羽生らは特許文献28の「能動型制震構造物」において、風力発電用風車の振動を制震するための駆動装置として使うことが開示している。アキュムレーターを風力発電のプロペラのブレーキとして用いることが、ハニング アンド カール ゲゼルシャフト ミット ベシュレンクルテ ハフツング アンド シーオー. カーゲ の アガーディー ゲイバー ヨセフ らによって特許文献29の「特に風力発電装置に用いられるブレーキ装置」で開示している。 In general, in a conventional wind power generation facility, the wind turbine propeller shaft is directly connected to the generator via a gear in the nacelle at the upper end of the wind turbine tower. There have been reports of accidents in which the generator's gravity balance is lost and the tower is damaged. Therefore, in a floating structure that does not have a foundation on the seabed, lake bottom, or ground, the center of gravity is lowered below the surface of the water to ensure stability. For this purpose, the generator on the nacelle is abolished, and instead, the rotation of the wind turbine is operated directly via a rotary air compressor or crankshaft, and the resulting compressed air is used as a compressed air storage cylinder inside the tower. To store. Alternatively, the high pressure oil that receives mechanical energy from the rotating shaft of the propeller by the hydraulic pump (gear pump or vane pump) in the nacelle and is converted into pressure energy is supplied to the hydraulic control valve (pressure control valve: Set work size, flow control valve: set work speed, directional control valve: set work direction), then divided into each work, then the lower part of the tower (near the water surface) via pipe or high pressure rubber hose It is pumped to a hydraulic actuator (hydraulic motor: converted into rotary motion, hydraulic cylinder: converted into linear motion) installed on the windmill base of the wind turbine, and converted into kinetic energy again to perform the desired work. After that, the oil that has finished its role is returned to the respective control valves and then collected in the oil tank. In general, the oil that has finished its work is hot, so it is cooled with seawater or lake water, replenished with a shortage, and sent again to the hydraulic motor in the nacelle as low-pressure oil. One of the basic drawbacks of windmills is that the starting torque is small. For this reason, starting from the outside is indispensable. Generally, the propeller shaft is started by a motor, but the power is large. In particular, in the present invention, the rotational kinetic energy of the propeller is converted into the pressure energy of the hydraulic pump. Therefore, if the ultrahigh pressure oil is sent instantaneously from the low pressure oil inlet of the hydraulic pump at the start, the hydraulic pump functions as a hydraulic motor. Start rotating. Once the rotation is started, the propeller starts rotating by wind power, and thereafter, the high pressure oil is pumped from the hydraulic pump to the hydraulic actuator. The ultra-high pressure oil used here only needs to connect the accumulator to the circulation path of the low-pressure oil sent from the oil tank to the hydraulic pump. The principle of the accumulator applies the property that the volume cannot be reduced even if the liquid is compressed, but the volume can be reduced if the gas is compressed. In the structure of the accumulator, an oil chamber and a gas chamber are separated from each other by a piston. First, the gas inlet / outlet valve of the gas chamber is opened, gas (nitrogen gas) is sealed, and then the valve is closed. Subsequently, when the valve of the oil chamber is opened and high-pressure oil is press-fitted, the pressure oil pushes up the piston, compresses the gas, and puts the oil into the oil chamber until the oil pressure and the gas pressure are in equilibrium. When the valve at the oil inlet / outlet is closed, the ultrahigh pressure oil is accumulated. Therefore, when the propeller of a wind turbine in a stationary state is to be started and the oil chamber valve is opened, the gas expands instantaneously and the high pressure oil flows instantaneously to the hydraulic pump in the nacelle. The accumulator work ends. In this way, the accumulator stores the ultra-high pressure oil and, when necessary, completes the first work with its instantaneous power. However, it is economical because it can be used many times if the input of gas and hydraulic pressure is repeated. As a report on the use of accumulators for wind power generators, Hanyu et al. Of Kashima Construction Co., Ltd., as a drive device for controlling the vibration of wind turbines for wind power generation in the “active vibration control structure” of Patent Document 28. It is disclosed to use. The use of an accumulator as a wind power propeller brake is disclosed by Hanning and Carl Gesellshaft Mit Beschlenkurte Huffung and Shio. Yes.

海底、湖底あるいは地盤に基礎(固定場所)を持たない浮体式風力エネルギー回収装置では、風車装置の安定性を確保するために、風車装置の中心線(風車タワーの中心軸)と浮力の作用線との交点M(メタセンター)が重心Gよりも高ければ、風車全体が傾いても復元力が働く。したがってGM(メタセンターから重心までの距離)が大きければ復元力は強くなる。したがってメタセンターを高くし、かつ重心から離すことが重要である。しかし、復元力が高すぎると、風車装置の揺れが早くなり、安定性が欠けるという弊害がある。そこで浮体式風車のメタセンターの高度を下げるためにタワーの底部に設備類を配置する提案が、オーシャン・ウインド・エナジー・システムズ・インコーポレイテッドのウイリアム・イー・ヘロニマスによって特許文献30の「沖合風力タービン、風タービン、および風力エネルギー変換システム」で開示している。本発明では、風車装置の重心を極端に下げ、さらに復元力を高めるために、浮体船の横幅を広くし、かつ、該浮体船の船底にはヨットのキール(センターボードと該センターボードの末端部に錘)に水を満たした流線形型空洞パイプと、錘として該センターボードの末端には球又はラグビーボール状の錘を備え、かつ該センターボードの両側面と垂直に揺れ止めと傾きを抑制するために大面積フィンを備える。揺れ止めと強風による流れ抑制については特許文献31にスポイラーとして水中翼を垂直にして設備することが開示しているが、これは海底下というよりも海上で台風に対向して発電すると言う主旨であって本願の水面下数十メーターの錘の脇にバランスを取るために設備するものとは大きく異なる。さらに、風車施設が自然に風上を向くように浮体船の船首をアンカーロープで海底や湖底に固定する。
本願発明の主旨はナセル中の発電機の代りに圧縮機を載せ替え、これにより圧搾空気を製造することである。風力エネルギーで圧搾空気を作り、空気タンクに貯える方法は特許文献32,33,34に開示している。また風車設置の据付や補修点検作業を容易にし、かつ台風時の緊急避難が容易なること、しかも施設作業が短期間で済む構造が必要である。このため、風車タワーを水面下に沈めることを可能にし、台風などの強風時にはタワー内の圧搾空気貯蔵ボンベに海水や湖水を注水することにより、目的深度まで没入させる。風車タワーを水没させる方法について特許文献35に開示しているが、本願発明における水面下に沈めるためにタワーに注水する方法は同じであるが、水面下に数十メートルにもおよぶ水タンクとその下端に錘と揺れ止め平面板を備えて風車設備が安定して起立させる方式とは異なる。さらに建設時あるいは保守点検や修理時には水面下の水タンクの水を抜き風車施設全体を水面に寝かした状態あるいは傾斜をつけて作業や港からの曳航ができる構造を有する風見型水注入起き上がり小法師式洋上プロペラ型風車設備である。
In a floating wind energy recovery system that does not have a foundation (fixed place) on the sea floor, lake bottom, or ground, in order to ensure the stability of the wind turbine device, the center line of the wind turbine device (central axis of the wind turbine tower) and the buoyancy action line If the intersection M (metacenter) with the center of gravity is higher than the center of gravity G, the restoring force will work even if the entire windmill is tilted. Therefore, the greater the GM (distance from the metacenter to the center of gravity), the stronger the restoring force. Therefore, it is important to make the metacenter high and away from the center of gravity. However, if the restoring force is too high, the wind turbine device will sway quickly, resulting in a problem of lack of stability. Therefore, a proposal to arrange equipment at the bottom of the tower in order to lower the altitude of the floating windmill metacenter was proposed by William E. Heronimus of Ocean Wind Energy Systems Inc. , Wind turbines, and wind energy conversion systems. In the present invention, in order to extremely lower the center of gravity of the windmill device and further increase the restoring force, the width of the floating ship is widened, and the keel of the yacht (the center board and the end of the center board) is placed on the bottom of the floating ship. A streamlined hollow pipe filled with water in the weight) and a weight of a sphere or rugby ball shape at the end of the center board as a weight, and with a rocking stopper and a tilt perpendicular to both sides of the center board Large area fins are provided for suppression. As for spoilers and flow control by strong winds, Patent Document 31 discloses that a hydrofoil is installed vertically as a spoiler, but this is because power generation is opposed to typhoons at sea rather than under the sea. Therefore, it is very different from what is installed to balance the weight of the tens of meters below the surface of water of the present application. In addition, the bow of the floating ship is fixed to the bottom of the sea or lake with an anchor rope so that the windmill facility will naturally face the windward.
The gist of the present invention is to replace the generator instead of the generator in the nacelle, thereby producing compressed air. Patent Documents 32, 33 and 34 disclose a method of creating compressed air with wind energy and storing it in an air tank. In addition, it is necessary to have a structure that facilitates installation and repair inspection work for wind turbine installation, facilitates emergency evacuation during a typhoon, and requires only a short period of facility work. For this reason, it is possible to sink the windmill tower below the surface of the water, and in the event of a strong wind such as a typhoon, seawater or lake water is poured into a compressed air storage cylinder in the tower to immerse it to the target depth. Patent Document 35 discloses a method for submerging a windmill tower, but the same method is used to inject water into the tower in order to sink it below the surface of the water. This is different from the system in which the wind turbine equipment is stably erected by providing a weight and an anti-sway flat plate at the lower end. Furthermore, at the time of construction or maintenance inspection or repair, the wind tank type water injection riser with a structure that can drain the water tank under the surface of the water and lay the entire wind turbine facility on the surface of the water or tilt it to work or tow from the port. This is an offshore propeller type windmill facility.

液体は圧縮しても容積を小さくすることはできないが、気体は圧縮すると容積を小さくすることができる。このため耐圧容器があれば、蓄圧ができ、必要な時に取り出すことができる。とくに風力発電は風速が一定しないため安定した電力が得られない。そのため、風車施設の高所にあるナセル内部で、回転エネルギーに変換した風力を、さらに圧力エネルギーに変換して製造した圧搾空気をタワー内部の圧搾空気ボンベに貯蔵し、その圧搾空気を水面近くで再度回転運動に変換して発電機を回せば、重さを気にせずに、大型発電機を駆動することができる。何回もエネルギー変換を行えば、変換効率は下がるが、発電機を軽くするために発電効率が低く、かつ設備費が高価な風車施設を複数基作るよりも、安価で、機械的メカニズムだけですむ風力圧搾空気製造・貯蔵施設を多数建造し、この圧搾空気を一箇所に集め海面や湖面上のように重心の低い位置で大型発電機を駆動した方が、発電効率、設備費、建設コスト、故障率、メンテナンス費用などを考えると、経済性大だと考える。さらに風車施設に油圧を用いれば、メンテナンス及び設備が簡便になると考える。ナセル内のプロペラ軸に直結して回転運動を直接圧力に変換する油圧ポンプ(歯車ポンプ、ベーンポンプ)で高圧油を作り、これをパイプでタワーの下部まで圧送し、制御弁を介して油圧アクチュエーター(油圧モーター:回転運動、油圧シリンダー:直線往復運動)を駆動する。
油圧モーターでは大きな回転トルクが得られるから、増速ギアを回して、大型発電機を駆動することができる。一方油圧シリンダーでは大きな圧縮力が得られるから大容量で、高圧縮率の圧搾空気を製造できる。さらに断熱膨張を誘起して液体空気を製造することもできる。これから、液体窒素や液体酸素ができる。
Even if the liquid is compressed, the volume cannot be reduced, but when the gas is compressed, the volume can be reduced. For this reason, if there is a pressure vessel, pressure can be accumulated and taken out when necessary. In particular, wind power generation cannot provide stable power because the wind speed is not constant. Therefore, compressed air produced by converting wind energy converted into rotational energy into pressure energy inside the nacelle at the height of the windmill facility is stored in a compressed air cylinder inside the tower, and the compressed air is stored near the water surface. If it is converted into rotational motion again and the generator is turned, the large generator can be driven without worrying about the weight. Many conversions reduce the conversion efficiency, but it is cheaper and only mechanical mechanisms than creating multiple windmill facilities with low power generation efficiency and high equipment costs to make the generator lighter It is more efficient to build a large number of wind-compressed air production and storage facilities, collect the compressed air in one place, and drive a large generator at a low center of gravity such as on the surface of the sea or lake. Considering the failure rate and maintenance cost, it is considered economically large. Furthermore, if oil pressure is used in the wind turbine facility, maintenance and equipment will be simplified. High pressure oil is made by a hydraulic pump (gear pump, vane pump) that is directly connected to the propeller shaft in the nacelle and converts rotational motion directly into pressure, and this is pumped to the bottom of the tower with a pipe, and a hydraulic actuator ( Drives the hydraulic motor: rotational movement, hydraulic cylinder: linear reciprocating movement).
Since a large rotational torque can be obtained with the hydraulic motor, the large generator can be driven by turning the speed increasing gear. On the other hand, since a large compression force can be obtained with a hydraulic cylinder, compressed air with a large capacity and a high compression rate can be produced. Further, adiabatic expansion can be induced to produce liquid air. From this, liquid nitrogen and liquid oxygen are produced.

請求項1に記載の発明は、強風時でも微風時でも風力エネルギーを効率よく回収可能で、かつ、風力エネルギー回収浮体船が強風に煽られたても、風に抗すること無く、しかも転覆することも無い強い復元力を得るための手段が講じられている。一般にヨットは強風に煽られても転覆しないのは、船底に付けられたキールが錘になって重心を水面下に位置させているからであり、小さなヨットでも1万トン級の貨物船に匹敵するほどの復元力を持っている。そこで本発明では、浮体船喫水面の下側の支持体として内部の空洞部には水を満たした外壁横断面が流線形状又は円形状あるいは楕円状キールを設け、その末端部には錘を付けて、このキールと錘を総称してキールと呼ぶことにする。ここでキールの外壁横断面の形状は円形、楕円形あるいは流線形状の筒状又は錐状のいずれでも良いが、浮体船底部の断面積が広く、末端部の錘側の断面積が小さい錐状が望ましい。とくに、キール内部の空洞部は水タンク構造であり、この空洞部に必要に応じて適量の水を満たすことにより、風車エネルギー回収浮体船を起立させたり、寝かしたりすることが可能である。風車エネルギー回収浮体船を寝かせるためには、水タンクの水を抜くと、その排水量が増すにつれて徐々に横に傾き始め、最終的には横に寝た状態になる。とくに風車本体を港から曳航する場合や建造時あるいは保守点検や修理時には水を抜いて水面に倒し、水を入れれば立ち上がる。このように寝かせたり、起立させたりできる構造は、大型クレーンの必要も無く、工期の短縮、保守点検や修理を経済的に行うことができる。さらに台風接近時など強風時には、浮体船上側の風車タワー内の圧搾空気貯蔵庫に水を注入すれば徐々に水面下に沈めることが可能である。
さらに、重心を下げ、風力エネルギー回収浮体船の安定性を向上させ、転倒防止のために、従来ナセル内の設備物であった発電機や増速ギアあるいは風向調整ギアなどを取り去り、その代りに、空気コンプレッサーや油圧ポンプを設備し、風車プロペラの回転軸に連動した回転エネルギーから圧力エネルギーへの変換装置が、空気コンプレッサーの場合は得られた圧搾空気は、タワー内部の圧搾空気貯蔵庫に貯え、油圧ポンプの場合は得られた高圧油はパイプによってタワー下部又は該浮体船甲板に備えた油圧制御装置に送られ、制御弁を作動させて、圧力制御弁では仕事の大きさ、流量制御弁では仕事の速さ、方向制御弁では仕事の方向を決め、それら制御弁で分岐された高圧油は油圧アクチュエーターに圧送される。
流体が液体でも気体でも抗力を受ける。この抗力は摩擦抵抗や圧力抵抗であり、摩擦抵抗は気体では小さいが、水などの液体では約800倍と大きい。空気や液体において最も強く影響を受けるのが圧力抵抗である。流体が構造物の背後に回った時に、流れが剥離して、物体を前進させる力が減衰する。このため構造物の形状を流線形状にしてスムーズな流れをつくれば、後ろに回った流れが流線形構造物を押し戻す作用が働き、かつ摩擦抵抗も軽減するため風力エネルギー回収効率が上昇する。たとえ、風が弱い時でも風からのエネルギーを効率よく受風するためには風車プロペラを風上に向ける必要があり、風車設備が風上を向く一翼をタワーやナセルの流線形状が担っている。最も風車設備が風上方向を自然に向く原理は、浮体船の喫水線近傍での風による空気抵抗と水との流体抵抗である。
船舶が沖合で停泊する場合、船首のみに投錨すると自然に船首を風上に向ける位置に安定する。これは、船が水の抵抗で船首を風上に向かすためである。このように、常時風力エネルギー回収浮体船が風上を向いていれば、風に抗することは無い。
そこで本発明では、復元力が強く、常に風上を向く浮体船を建造する目的で、浮体船上部の空気流に配慮して風車タワーやナセルの外壁形状を流線形に、浮体船下部のキールや錘も流線形形状にすることが望ましい。しかし、建造費や加工性あるいは材料強度などからタワーやキールを円筒形にし、キール末端部の錘を球にすることも可能である。さらに、風力エネルギー回収浮体船が左右や前後の揺れや傾きを抑制するために、キールの下部で錘の上側部分に複数枚のフィンを等角度に取り付けてある。このフィの設置は、横揺れ防止の観点からキールが円筒形の場合は必要である。一方、キールに対して鉛直に設備されたフィンは、風車施設の縦揺れを防止する働きがあるため必要不可欠である。とくにプロペラの前傾を抑える効果があり、大面積のフィンは欠かせない。
According to the first aspect of the present invention, wind energy can be efficiently recovered even in strong winds and light winds, and even if the wind energy recovery floating ship is blown by strong winds, it rolls over without resisting the wind. Measures are taken to obtain a strong resilience that never happens. In general, yachts are not overturned even if they are hit by a strong wind because the keel attached to the bottom of the ship serves as a weight and the center of gravity is located below the surface of the water. Even a small yacht is comparable to a 10,000-ton class cargo ship. Has enough resilience to do. Therefore, in the present invention, the outer cavity cross section filled with water is provided with a streamline shape, a circular shape, or an elliptical keel as a support below the floating ship draft surface, and a weight is provided at the end thereof. In addition, the keel and the weight are collectively referred to as a keel. Here, the shape of the cross section of the outer wall of the keel may be circular, elliptical, streamlined cylindrical or conical, but the cone has a large cross-sectional area at the bottom of the floating body and a small cross-sectional area at the weight side at the end. The shape is desirable. In particular, the cavity inside the keel has a water tank structure, and by filling the cavity with an appropriate amount of water as required, the windmill energy recovery floating ship can be erected or laid down. In order to lay down the windmill energy recovery floating ship, when the water in the water tank is drained, it gradually begins to tilt sideways as the amount of drainage increases, and eventually falls to the side. Especially when the wind turbine body is towed from the port, at the time of construction, maintenance inspection or repair, the water is drained and brought down to the surface of the water. Such a structure that can be laid down or erected does not require a large crane, and the construction period can be shortened, and maintenance and inspection can be economically performed. Furthermore, during strong winds such as when a typhoon is approaching, water can be gradually submerged by injecting water into the compressed air storage in the windmill tower above the floating ship.
In addition, in order to lower the center of gravity, improve the stability of the wind energy recovery floating ship, and prevent the tipping over, the generator, speed increasing gear or wind direction adjusting gear, etc. which were the equipment in the conventional nacelle are removed, instead. In the case of an air compressor equipped with an air compressor and a hydraulic pump, and the conversion device from rotational energy to pressure energy linked to the rotating shaft of the wind turbine propeller, the compressed air obtained is stored in the compressed air storage inside the tower, In the case of a hydraulic pump, the high-pressure oil obtained is sent by pipe to the hydraulic control device provided at the bottom of the tower or on the floating ship deck, and the control valve is operated. The work speed and direction control valve determine the work direction, and the high-pressure oil branched by these control valves is pumped to the hydraulic actuator.
Regardless of whether the fluid is liquid or gas, it will be dragged. This drag is a frictional resistance or a pressure resistance. The frictional resistance is small for gas, but is about 800 times larger for liquids such as water. Pressure resistance is most strongly affected in air and liquid. As the fluid moves behind the structure, the flow separates and the force that advances the object is attenuated. For this reason, if the structure is made into a streamline shape and a smooth flow is created, the flow that moves backward acts to push back the streamline structure, and the frictional resistance is also reduced, so that the wind energy recovery efficiency is increased. Even if the wind is weak, it is necessary to point the windmill propeller to the windward in order to efficiently receive the energy from the wind, and the streamline shape of the tower and nacelle is responsible for the one wing facing the windward. Yes. The principle that wind turbine equipment naturally faces the windward direction is the air resistance due to the wind and the fluid resistance of water near the waterline of the floating ship.
When a ship is anchored offshore, if it is thrown only at the bow, it will naturally stabilize at a position where the bow is directed upwind. This is because the ship moves the bow to the windward by the resistance of water. Thus, if the wind energy recovery floating ship is always facing upwind, there is no resistance against the wind.
Therefore, in the present invention, for the purpose of constructing a floating ship that has a strong restoring force and always faces upwind, the outer wall shape of the windmill tower and nacelle is streamlined in consideration of the air flow at the upper part of the floating ship, and the keel at the lower part of the floating ship. It is desirable that the weight and the weight also have a streamline shape. However, it is also possible to make the tower and keel into a cylindrical shape and the weight at the end of the keel into a sphere from the viewpoint of construction cost, workability or material strength. Furthermore, in order for the wind energy recovery floating ship to suppress left-right and back-and-forth shaking and tilting, a plurality of fins are attached to the upper part of the weight at an equal angle below the keel. Installation of this fillet is necessary when the keel is cylindrical from the viewpoint of preventing rolling. On the other hand, fins installed vertically with respect to the keel are indispensable because they have a function to prevent pitching of the wind turbine facility. In particular, it has the effect of suppressing the forward tilt of the propeller, and large fins are indispensable.

請求項2に記載の発明は、前記プロペラ型風車が常時風上を向く構造体として、台風接近時に大型貨物船が港を避けて沖合に避難する。これは船が、船首のみに投錨すれば自然に船首を風上に向ける位置に安定するからである。この原理は、船が水の抵抗で船首を風上に向かすためである。一般に潜水艦は水の中だけで行動するから、造波抵抗は関係なく風車頭部のナセルのように回転流線形状の涙滴型形状でよい。しかし、空気と接触する船体においては水面近傍で空気抵抗と水の抵抗を受ける。ところが、水の流体抵抗は空気の800倍であるから、水から受ける流体抵抗は大きい。その流体抵抗成分は、摩擦抵抗、造波抵抗、粘性圧力抵抗である。摩擦抵抗は、船体表面が水とこすれる時に生ずる。造波抵抗は、水流と船との界面での摩擦抵抗により水面に波を起こす。粘性圧力抵抗は前進する物体周囲の流体はやがて物体表面から離れて行き(流れ剥離)物体の後方に渦が発生する。この結果、物体後方の表面に働く圧力が低下し、前方に働く圧力との差が生じる。そこで浮体船における流体の剥離を最小限に抑え、粘性圧力抵抗を最も小さくするために、船の喫水線以下の部分の形状を流線形とし、造波抵抗を極力抑えるためには、水を切る船首部分を鋭くする。さらに、造波抵抗を物理的に軽減するために、喫水線以下の船首部分を球状船首にする。この球状船首による造波抵抗減衰原理は、喫水線下の球状船首で発生した波の山と谷が、喫水線近傍の尖った船首部で発生した波の谷と山とが互いに干渉し、2つの波同士が打ち消されるため造波抵抗が軽減する。本発明では浮体船のタワー内部に圧搾空気貯蔵庫があるから、この圧搾空気の一部を、該浮体船の船底に備えた小孔から噴出させると、小さな気泡が船底を覆い、摩擦抵抗を激減させる。原油タンカーなどの広底船で低速な船では抵抗の約80%が摩擦抵抗であるため、摩擦抵抗減には有効な手段である。この船底から圧搾空気を噴出させる方法は、浮体船のように静止した構造物には、如実の効果は期待できないが、水の流速が早い場所では有効である。勿論、運搬船を兼ねて航海する船については有効な手段である。船尾の水面下の舵は、物理的に船体の方向を変える以外は風上と風下を結ぶ線上で直線上に固定する。一般に、釣り船などに見られる、船尾甲板上の1枚帆のミズンや2枚帆のスパンカーなどの整流翼は、浮体船を風上に向けるためには有効であるが、本発明のようにタワーを流線形状の場合は必ずしも必要ではないので、脱着可能としてある。この風上を常時向かせるためには、風力エネルギー回収浮体船の船首をアンカーロープやアンカーチェーンなどで固定投錨することが必要不可欠である。 According to a second aspect of the present invention, as the structure in which the propeller type windmill is always directed to the windward side, a large cargo ship evacuates offshore avoiding a port when approaching a typhoon. This is because if a boat is thrown only at the bow, it will stabilize in a position where the bow will naturally face the windward. This principle is for the ship to move the bow to the windward due to the resistance of water. In general, since a submarine operates only in water, the wave resistance may be a teardrop-shaped shape with a rotating streamline shape like a nacelle on a windmill head regardless of wave resistance. However, the hull in contact with air receives air resistance and water resistance near the water surface. However, since the fluid resistance of water is 800 times that of air, the fluid resistance received from water is large. The fluid resistance component is frictional resistance, wave resistance, and viscous pressure resistance. Friction resistance occurs when the hull surface is rubbed with water. Wave resistance causes waves on the water surface due to frictional resistance at the interface between the water flow and the ship. In the viscous pressure resistance, the fluid around the moving object eventually moves away from the object surface (flow separation), and a vortex is generated behind the object. As a result, the pressure acting on the surface behind the object is reduced, and a difference from the pressure acting on the front is generated. Therefore, in order to minimize the fluid separation in the floating ship and minimize the viscous pressure resistance, the shape below the waterline of the ship should be streamlined, and in order to minimize the wave resistance, the bow that cuts the water Sharpen the part. Furthermore, in order to reduce wave resistance physically, the bow part below the waterline is made a spherical bow. The wave-making resistance attenuation principle by this spherical bow is based on the fact that the wave peaks and valleys generated at the spherical bow under the waterline interfere with each other and the wave valleys and peaks generated at the sharp bow near the waterline interfere with each other. Wave resistance is reduced because they cancel each other. In the present invention, since there is a compressed air storage inside the tower of the floating ship, when a part of this compressed air is ejected from a small hole provided on the bottom of the floating ship, a small bubble covers the ship bottom and drastically reduces frictional resistance. Let In a wide-bottom ship such as a crude oil tanker and a low-speed ship, about 80% of the resistance is frictional resistance, so it is an effective means for reducing frictional resistance. This method of ejecting the compressed air from the bottom of the ship cannot be expected for a stationary structure such as a floating ship, but is effective in a place where the flow rate of water is high. Of course, it is an effective means for a ship that also serves as a transport ship. The rudder under the stern is fixed on a straight line on the line connecting the windward and leeward except for physically changing the direction of the hull. In general, rectifying wings such as a single-sail mizzle on a stern deck and a two-sail spanker, which are found in fishing boats, are effective for directing a floating ship to the windward. In the case of a streamline shape, it is not always necessary, so that it can be removed. In order to keep this windward facing at all times, it is essential to anchor the bow of the wind energy recovery floating ship with an anchor rope or anchor chain.

請求項3に記載の発明は、風が吹いても回らない風車を始動させるための手段である。一般に、風車には始動のために、風車の羽が微風でも回転するように発電機の後方にモーターを連結する場合が多い。しかし、始動時のみで稼働率の低い施設を付けることは非経済的である。そこで本発明ではプロペラの回転軸に連動した回転エネルギーから圧力エネルギーへの変換装置が、空気コンプレッサーの場合には、風車ナセルの大気吸入口を閉め、外付けボンベから高圧ガス(空気)を瞬間的に、短時間送り、回転始動したらガスの供給を止め、大気吸入口を開け圧搾空気製造を開始する。他方、油圧ポンプの場合は、気体圧縮式の油圧アキュムレーターを使用する。油圧アキュムレーターにはブラダ型、ダイヤフラム型、ピストン型、インライン型があるが、破壊に対する信頼性の高い、ピストン型を採用する。ピストン型はシリンダーの内壁側がピストンによって気体室と油室にわかれ、夫々の部屋には吸気弁と油出し入れ弁があり、先ず吸気弁及び油出し入れ弁を開放して気体室に窒素ガスで満たした後、吸気弁を閉る。この状態で、油室に油を注ぎ、加圧を行い、気体を圧縮し、均衡状態になったら、油出し入れ弁を閉じる。次に、起動時に、油出し入れ弁を開放して、圧油圧ポンプの油吸込み側を加圧すると、瞬時加圧により得られた超高圧で風車回転軸に直結した該油圧ポンプを回転起動させ、風車プロペラを始動させる。起動後は該プロペラ型風車の回転運動を該油圧ポンプで高圧油に増圧させた油を前記プロペラ型風車タワーの下部又は浮体船甲板に具備した油圧装置又は該油圧アクチュエーターに圧送し風車は仕事を開始する。ここで、油圧アクチュエーターが油圧モーターの場合には直結した増速ギアを介して発電機を回転させて電力を得る。このばあい、増速ギアを重心の低い位置に置くため、作業性が良く、かつ油圧により高いエネルギーが得られるため、速度比の高いギアを回転させることができ発電機を高速回転させて電力を得ることもできる。ここで発電機を回す理由は1艘の風力エネルギー回収浮体船で発電を行うものである。しかし、本発明の主旨は、油圧アクチュエーターが油圧シリンダーの場合であり、油圧シリンダーに直結した空気コンプレッサーと連動させて圧搾空気を作り、風力エネルギー回収浮体船に貯蔵した後、複数艘の圧搾空気を母船に集め、大型発電機を作動させることである。 The invention according to claim 3 is means for starting a windmill which does not turn even if wind blows. In general, in order to start a windmill, a motor is often connected to the rear of the generator so that the wings of the windmill can rotate even in light winds. However, it is uneconomical to install a facility with a low operation rate only at the start. Therefore, in the present invention, in the case of an air compressor that is a device for converting rotational energy into pressure energy linked to the rotation shaft of the propeller, the air inlet of the windmill nacelle is closed, and high-pressure gas (air) is instantaneously supplied from an external cylinder. When the rotation is started, the gas supply is stopped, the air inlet is opened, and the production of compressed air is started. On the other hand, in the case of a hydraulic pump, a gas compression type hydraulic accumulator is used. Hydraulic accumulators include bladder type, diaphragm type, piston type, and in-line type, but adopt piston type with high reliability against destruction. In the piston type, the inner wall side of the cylinder is divided into a gas chamber and an oil chamber by a piston, and each chamber has an intake valve and an oil intake / exhaust valve. First, the intake valve and the oil intake / exhaust valve are opened and the gas chamber is filled with nitrogen gas. Then close the intake valve. In this state, oil is poured into the oil chamber, pressure is applied, the gas is compressed, and when an equilibrium state is reached, the oil take-out valve is closed. Next, at the time of start-up, when the oil take-out valve is opened and the oil suction side of the pressure hydraulic pump is pressurized, the hydraulic pump directly connected to the wind turbine rotating shaft is rotated and started at the ultrahigh pressure obtained by instantaneous pressurization, Start the windmill propeller. After the start-up, the wind turbine is pumped by supplying the oil obtained by increasing the rotational movement of the propeller type wind turbine to high pressure oil by the hydraulic pump to the lower part of the propeller type wind turbine tower or the floating ship deck or the hydraulic actuator. To start. Here, when the hydraulic actuator is a hydraulic motor, electric power is obtained by rotating the generator via a speed-up gear directly connected. In this case, since the speed increasing gear is placed at a position with a low center of gravity, workability is good and high energy is obtained by hydraulic pressure, so the gear with a high speed ratio can be rotated and the generator can be rotated at high speed to generate power. You can also get The reason for turning the generator here is to generate electricity with a wind power recovery floating ship of 1km. However, the gist of the present invention is the case where the hydraulic actuator is a hydraulic cylinder, which creates compressed air in conjunction with an air compressor directly connected to the hydraulic cylinder, stores it in a wind energy recovery floating ship, and then stores a plurality of compressed air. It is to collect in the mother ship and operate a large generator.

請求項4に記載の発明は、複数基の風力施設からの風力エネルギーを、水面近くや地上の一箇所に集めて一つの大型発電機で発電するものである。従来の風力発電施設の基本が、一基の風車施設に一基の発電機が載せられ、これが複数基群をなし、風力発電地帯が構成されていたため、これら風車設備のナセル部を頭軽にするために軽い発電機を搭載しなければ成らなかった。さらに風況が一定しないため、得られた電力の一時貯蔵が不可欠であった。そこで、本発明では、風力エネルギーを電力に変換する前に、風力で空気を圧縮し、圧搾空気の形で風車タワー内部に蓄圧保存しておき、必要時に、常に一定風速の風を発電機に送風する方式を採用した。さらに、発電機を船上や地面などの低い位置に設備すれば、大型発電機を駆動でき、大電力を得ることができる。このため、各風車施設に蓄えられた圧搾空気を高圧ホースで発電所に集める方式を採用した。本発明の請求項全てが水面に浮かぶ風力エネルギー回収浮体船と記載してあるが、自然現象を用いて風車プロペラ装置を風上方向の向けるシステムを除けば、陸上風力地域でも利用できるシステムである。陸上風車施設群では、夫々の風車で得られた圧搾空気を高圧ホースや配管で一箇所に集め、そこで発電すればよい。陸上において、プロペラ型風車を自然に風上方向に向かすためには、ナセルあるいは台座部にベアリングを使用するのではなく、磁気浮上させて、摩擦抵抗を無くせば良いが、最も経済的で簡便な方法は、人工池または沼地に風力エネルギー回収浮体船を浮かせ、貯水池として利用できる。さらに人工池に満たす液体は水でも油でも良い。
洋上や湖水あるいは河川の場合には、風力エネルギー回収浮体船を1艘又は複数艘集め、望ましくは複数艘集める。風車タワー内部に貯蔵された圧搾空気は高圧ホースを介してメガフロート機能を有する母船若しくは水上工場又はオンサイト工場あるいは陸上工場に集積させ、集積された該圧搾空気はメガフロート又はオンサイト工場あるいは陸上工場において、発電用タービンの回転源、産業用圧搾空気、又は繰り返し圧縮をして液体空気や液体酸素、液体窒素の製造用に供される。各風力エネルギー回収浮体船から高圧ホースで圧送される圧搾空気を陸地の工場で利用することもできる。また単艘の場合には浮体船の甲板部や船室内に発電機を具備することもできる。一般に油圧装置は駆動部が高温になるが、海水や湖水あるいは河川の水を冷却水として用いることができる。また圧搾空気製造工程で断熱圧縮により発熱する。これらも海水や湖水あるいは河川の水を冷却水として用いることができる。
The invention according to claim 4 collects wind energy from a plurality of wind power facilities near the surface of the water or at one place on the ground and generates power with one large generator. The basics of conventional wind power generation facilities are that one generator is mounted on one windmill facility, and this constitutes a plurality of groups, and a wind power generation zone is configured, so the nacelle part of these windmill facilities can be easily accessed. In order to do so, it was necessary to install a light generator. Furthermore, since the wind conditions are not constant, temporary storage of the obtained power was indispensable. Therefore, in the present invention, before the wind energy is converted into electric power, the air is compressed with the wind force and stored in the wind turbine tower in the form of compressed air, and the wind at a constant wind speed is always supplied to the generator when necessary. A method of blowing air was adopted. Furthermore, if the generator is installed at a low position such as on the ship or on the ground, the large generator can be driven and high power can be obtained. For this reason, a system was adopted in which the compressed air stored in each windmill facility was collected at the power plant by a high-pressure hose. Although all claims of the present invention are described as a wind energy recovery floating ship that floats on the surface of the water, it is a system that can also be used in onshore wind power areas except for a system that directs the windmill propeller device upwind using natural phenomena . In the onshore wind turbine facility group, the compressed air obtained by each wind turbine can be collected in one place with a high-pressure hose or piping, and power can be generated there. In order to make the propeller type wind turbine naturally windward on land, it is better to use magnetic levitation and eliminate frictional resistance instead of using bearings in the nacelle or pedestal. Can be used as a reservoir by floating a wind energy recovery floating ship in an artificial pond or swamp. Furthermore, the liquid filling the artificial pond may be water or oil.
In the case of offshore, lake water or rivers, collect one or more wind energy recovery floats, preferably a plurality. The compressed air stored inside the windmill tower is accumulated in a mother ship, a water factory, an on-site factory or an on-site factory having a mega-float function through a high-pressure hose, and the accumulated compressed air is accumulated in the mega-float, on-site factory or on-shore In a factory, it is used for the production of liquid air, liquid oxygen, and liquid nitrogen after being repeatedly compressed by a rotating source of a power generation turbine, industrial compressed air, or compressed air. The compressed air pumped from each wind energy recovery floating ship with a high-pressure hose can also be used in a land factory. In the case of a single boat, a generator can be provided in the deck of the floating ship or in the cabin. In general, a hydraulic device has a high temperature driving unit, but seawater, lake water, or river water can be used as cooling water. Moreover, it generates heat by adiabatic compression in the compressed air manufacturing process. These can also use seawater, lake water, or river water as cooling water.

本発明による洋上風力エネルギーの回収は、直接電力を得るのでは無く、風車タワー内部に圧搾空気として蓄圧保管し、常時等速度の風により発電を行うものである。さらに、風車施設が強風時でも風に抗することは無く、微風時でも効率良く受風ができるように、浮体船の喫水線近傍で起きる造波抵抗を軽減して、船首が何時も風上を向くようにし、かつ喫水面下のキールと水との摩擦抵抗を軽減させるための横断面の形状と浮力となる外壁の容積あるいは重量となる内部空洞の容積及び錘を調整して、重心位置を下げ、復元力を大きくした。さらに従来ナセル内で起きた増速ギアや発電機の故障はそれらの装置を水面近傍まで下ろすことにより、修理点検が楽になり、さらに各風力施設からの圧搾空気を母船で集め、発電するため、大型発電機1個で大電力が得ることが可能になり、経済効果大である。 The recovery of offshore wind energy according to the present invention does not directly obtain electric power, but stores pressure-accumulated air as compressed air inside the windmill tower and generates electric power with constant wind speed. In addition, the wind turbine facility will not resist wind even in strong winds, and the bow will always face upwind by reducing wave resistance near the draft line of the floating ship so that wind can be received efficiently even in light winds. The center of gravity position is lowered by adjusting the shape of the cross section to reduce the frictional resistance between the keel and water below the draft surface, the volume of the outer wall that becomes buoyancy or the volume of the internal cavity that becomes the weight, and the weight. Increased resilience. Furthermore, the failure of the speed increasing gears and generators that occurred in the nacelle in the past makes it easier to repair and check by lowering those devices to the vicinity of the surface of the water.In addition, the compressed air from each wind power facility is collected by the mother ship and generated, Large electric power can be obtained with a single large generator, which is highly economical.

以下、本発明の効果的な実施の形態を図1〜9に基づいて詳細に説明する。 Hereinafter, an effective embodiment of the present invention will be described in detail with reference to FIGS.

図1は風力エネルギー回収浮体船の概観図である。水面上に浮かぶ風力エネルギー回収浮体船が復元力を高くするために、風車タワーの台座である浮体船1の重心2を水面下に位置させ、重心2を通り静止水面に垂直な直線を中心軸として、流線形状又は円形状の錐台構造体であるタワー3を起立固定させる。ここでタワー3の外壁は円形状でも良いが、プロペラ型風車6を自然に風上に向かせるためには、風の整流効果のある流線形状が望ましい。従来タワー内部は利用価値がほとんどなかった。本発明ではこのタワーの内部を圧搾空気貯蔵庫4として利用する。空気は圧縮すると体積が小さくなり大容量を貯蔵でき、圧搾空気を開放すると大出力放出する。正に風力電池(蓄圧)である。空気の取出し口はタワー上部が望ましく、ただし風には水分を含み、かつ海洋では塩分を含む。このため、脱水及び脱塩のためのフィルターが必要である。本発明ではプロペラ型風車6を自然に風上に向かせることが特徴であるため、浮体船1の喫水線が重要である。タワー3の台座としての浮体船1は喫水面を境として上側のタワー頂部はナセル5とプロペラ型風車6とを一体化させた構造体とする。ナセル内部にはプロペラ型風車6の風力による回転エネルギーを圧力エネルギーに変換するために、プロペラ型風車6の回転軸7に連動した空気コンプレッサー8を取り付けて、ナセル内で圧搾空気を製造し、タワー内部の圧搾空気貯蔵庫4に貯蔵する。空気コンプレッサー8の取り付け場所は、回転式の場合はナセル内が望ましいが、ピストン式の場合はプロペラ型風車6の回転軸7にクランクシャフトを介して直線運動に変換してタワー内の上部にピストン式コンプレッサーを付けることもできる。ピストン式コンプレッサーをプロペラ型風車6の回転軸7に鉛直面上に放射線状に配置することによりナセル内に配置することもできる。油圧の利点は比較的細管で遠方まで高圧を送ることができることである。さらに海洋においては塩害による腐食が問題になる。その点油圧装置は腐食に強く、耐久性、操作性などの点で望ましい。そこでプロペラ型風車6の回転軸7に回転式油圧ポンプ9のみを取り付け、油圧制御装置11や油圧アクチュエーター10あるいは発電機や大型油圧装置など重量物は全て喫水面上のタワー下部又は該浮体船甲板に取り付ければ、作業性、安全性、保守点検などの点で望ましい。さらに、頭でっかちの風力エネルギー回収浮体船が転倒せず、かつ復元力を高くするために、重心2を下げた。そこで、浮体船1の喫水面の下側の支持体(台座底面)にはキール(センターボード)13を取り付け、その末端部には錘(バラスト)14を取り付けた。この錘14の形状はキール13が幅広の場合はラクビーボウルのような楕円面体であり、円柱構造の場合は球とする。本発明では、復元力を向上させる他にも、プロペラ型風車6が横揺れや縦揺れに強くし、かつ保守点検や港から設置場所までの装置の輸送などを考えて、キール13の内部は空洞部12を作り、あるときは空気を満たし浮力体の役割をし、風力エネルギー回収時には空洞部12に水を満たして、安定よく起立する構造をとっている。キール13の外壁は流線形状又は円形状あるいは楕円状をなす筒形または錐形とするが、風車構造体内部の空洞に注入する空気や水などの量を勘案し、風車構造体が横ぶれや縦ぶれが少なく、かつ起立を維持する構造を優先的に考え、さらに横に寝かせる場合と沈める場合を想定し、キールの形状や外壁の容積あるいは内部空洞の容積を特定する。とくに、水の流れが強いときは整流効果がある流線形形状が望ましい。さらにキール13の下方部には縦揺れを抑制するために、キール13に対して鉛直方向の両側面にフィン15を付けている。キール13が円筒の場合はフィンを等角度に取り付けることが必要であるが、キールが幅広(縦断面積が大)の場合にはキール13の水平方向にフィン15を取り付ける必要は無い。タワー内部の圧搾空気貯蔵庫4はタワー上部と下部に別々に圧搾空気貯蔵庫を備え、タワー下部は台風時の緊急避難のために水を満たし、水面下に没する場合に使用することもできる。また圧搾空気の圧入口はタワー上部でも下部でも良い。圧搾空気の取り出し口はタワー下部が望ましく、水面下でマイクロバルブを発生させるための場合も同様であるが、下部に限定するものではない。
本発明では請求項2において、プロペラ型風車が常時風上を向く機構16としてタワー3の台座としての浮体船1の喫水線近傍の風と水による抵抗及び流線について、浮体船の船首部位の喫水線近傍は尖形状17にして造波抵抗を軽減させ、船首部位の水面下を球状船首構造18にして喫水線下の球状船首で発生した波の山と谷が、喫水線近傍の尖った船首部で発生した波の谷と山とが互いに干渉して2つの波同士が打ち消されるため造波抵抗が軽減する。さらに喫水面下の浮体船の両舷が流線形状をして摩擦抵抗を減らし、かつ浮体船の船首部や船底に小さな孔を開け、タワー内部の圧搾空気貯蔵庫4から圧搾空気を噴出させてマイクロバブル23を発生させると、小さな気泡が船底を覆い、摩擦抵抗を激減させる。この船底から圧搾空気を噴出させる方法は、浮体船のように静止した構造物には、如実の効果は期待できないが、水の流速が早い場所では有効である。船尾の水面下の舵21は、物理的に船体の方向を変える以外は風上と風下を結ぶ線上で直線上に固定する。一般に、釣り船などに見られる、船尾甲板上の1枚帆のミズンや2枚帆のスパンカーなどの整流翼22は、浮体船を風上に向けるためには有効であるが、本発明のようにタワーを流線形状の場合は必ずしも必要ではないので、脱着可能とする。この風上に浮体船1を常に向けるに最も重要なことは浮体船1の船首部喫水線より上の部分に取り付けてあるフックにアンカーロープやアンカーチェーンをつなぎ、 船首をアンカーロープで固定(投錨)20することである。このアンカーロープが外れたら何の効果も無い。
FIG. 1 is a schematic view of a wind energy recovery floating ship. In order to increase the resilience of the wind energy recovery floating ship floating on the water surface, the center of gravity 2 of the floating ship 1 that is the base of the windmill tower is positioned below the surface of the water, and a straight line passing through the center of gravity 2 and perpendicular to the still water surface is the central axis. The tower 3 that is a streamlined or circular frustum structure is fixed upright. Here, the outer wall of the tower 3 may be circular, but a streamline shape having a wind rectifying effect is desirable in order to make the propeller type wind turbine 6 naturally go upwind. Traditionally, the inside of the tower has little value. In the present invention, the inside of the tower is used as the compressed air storage 4. When the air is compressed, the volume becomes small and a large capacity can be stored. When the compressed air is released, a large output is released. It is a wind battery (accumulated pressure). The air outlet is preferably at the top of the tower, except that the wind contains moisture and the ocean contains salt. For this reason, a filter for dehydration and desalting is necessary. In the present invention, since the propeller-type windmill 6 is naturally directed to the windward, the draft line of the floating ship 1 is important. The floating ship 1 as a pedestal of the tower 3 has a structure in which the nacelle 5 and the propeller type windmill 6 are integrated at the upper tower top portion with the draft surface as a boundary. In order to convert the rotational energy generated by the wind power of the propeller-type windmill 6 into pressure energy, an air compressor 8 linked to the rotation shaft 7 of the propeller-type windmill 6 is installed inside the nacelle, and compressed air is produced in the nacelle. Store in the internal compressed air storage 4. The installation location of the air compressor 8 is preferably in the nacelle in the case of the rotary type, but in the case of the piston type, it is converted into a linear motion via the crankshaft on the rotary shaft 7 of the propeller type windmill 6 and the piston is arranged at the upper part in the tower. A type compressor can also be attached. A piston type compressor can also be arranged in the nacelle by arranging it radially on the vertical axis of the rotating shaft 7 of the propeller type windmill 6. The advantage of hydraulic pressure is that it can send high pressure far away with a relatively narrow tube. Furthermore, corrosion due to salt damage becomes a problem in the ocean. In this respect, the hydraulic device is resistant to corrosion and is desirable in terms of durability and operability. Therefore, only the rotary hydraulic pump 9 is attached to the rotary shaft 7 of the propeller-type windmill 6, and all heavy objects such as the hydraulic control device 11, the hydraulic actuator 10, the generator and the large hydraulic device are below the tower on the draft surface or the floating ship deck. If it is attached, it is desirable in terms of workability, safety, maintenance and inspection. Furthermore, the center of gravity 2 was lowered so that the wind power recovery floating ship at the head would not fall down and the resilience was increased. Therefore, a keel (center board) 13 was attached to the lower support (pedestal bottom) of the draft surface of the floating ship 1, and a weight (ballast) 14 was attached to the end thereof. The shape of the weight 14 is an ellipsoidal body such as a rugby bowl when the keel 13 is wide, and is a sphere when the structure is cylindrical. In the present invention, in addition to improving the restoring force, the propeller type windmill 6 is resistant to rolling and vertical shaking, and considering the maintenance and inspection and transportation of the device from the port to the installation location, the inside of the keel 13 is The cavity 12 is formed, and in some cases fills air to act as a buoyant body, and at the time of wind energy recovery, the cavity 12 is filled with water to stand up stably. The outer wall of the keel 13 has a streamline shape, a circular shape, or an elliptical cylindrical shape or conical shape, but the amount of air or water injected into the cavity inside the windmill structure is taken into account, and the windmill structure is laid sideways. Considering the structure that keeps standing up and with little vertical shake, the shape of the keel, the volume of the outer wall, or the volume of the internal cavity is specified by assuming the case of lying down or sinking. In particular, a streamlined shape with a rectifying effect is desirable when the flow of water is strong. Further, fins 15 are attached to both sides in the vertical direction with respect to the keel 13 in order to suppress pitching in the lower part of the keel 13. When the keel 13 is a cylinder, it is necessary to attach the fins at an equal angle. However, when the keel is wide (the longitudinal sectional area is large), it is not necessary to attach the fins 15 in the horizontal direction of the keel 13. The compressed air storage 4 inside the tower is provided with a compressed air storage separately at the upper part and the lower part of the tower, and the lower part of the tower can be used when the water is filled for emergency evacuation during a typhoon and submerged under the surface of the water. The compressed air inlet may be at the top or bottom of the tower. The outlet of the compressed air is desirably the lower part of the tower, and the same applies to the case of generating the microvalve below the water surface, but is not limited to the lower part.
In the present invention, in claim 2, as a mechanism 16 in which the propeller type windmill always faces upwind, the draft and the draft of the floating portion of the floating ship 1 with respect to the wind and water resistance and streamline in the vicinity of the draft line of the floating ship 1 as the pedestal of the tower 3 The vicinity has a pointed shape 17 to reduce wave resistance, and a wave-shaped peak and valley generated at the spherical bow under the waterline are generated at the pointed bow near the waterline. The wave valley and the mountain interfere with each other and the two waves cancel each other, so that the wave-making resistance is reduced. Furthermore, both sides of the floating ship below the draft surface are streamlined to reduce frictional resistance, and a small hole is made in the bow and bottom of the floating ship, and compressed air is ejected from the compressed air storage 4 inside the tower. When the microbubbles 23 are generated, small bubbles cover the ship bottom and drastically reduce the frictional resistance. This method of ejecting the compressed air from the bottom of the ship cannot be expected for a stationary structure such as a floating ship, but is effective in a place where the flow rate of water is high. The rudder 21 below the stern surface is fixed on a straight line on the line connecting the windward and leeward except that the direction of the hull is physically changed. In general, the rectifying wings 22 such as a single-sail mizun or a two-span spanker on a stern deck, which are found in fishing boats, are effective for directing a floating ship to the windward. Since the tower is not necessarily required in the case of a streamline shape, it can be detached. The most important thing to keep the floating ship 1 facing upwind is to connect the anchor rope or anchor chain to the hook attached to the part above the waterline of the bow part of the floating ship 1 and fix the bow with the anchor rope (throwing). 20 to do. If this anchor rope comes off, it has no effect.

図2はプロペラ型風車をガス圧で始動するための概略図である。プロペラ型風車6は風が吹き出しても回らない。このため始動が必要である。本発明では回転軸7に空気コンプレッサー8が連動した場合には、風車ナセルの大気吸入口の空気入気弁24を閉め、外付けボンベから高圧ガスを瞬間的(パルス的)に、短時間送り、始動したらガスの供給を止め、大気吸入口をあければ、その状態で圧搾空気製造を開始する。 FIG. 2 is a schematic view for starting the propeller type wind turbine with gas pressure. The propeller type windmill 6 does not rotate even if the wind blows. For this reason, starting is necessary. In the present invention, when the air compressor 8 is interlocked with the rotary shaft 7, the air inlet valve 24 of the air inlet of the windmill nacelle is closed, and high pressure gas is instantaneously (pulsed) sent from the external cylinder for a short time. When the engine is started, the gas supply is stopped, and if the air inlet is opened, the production of compressed air is started in that state.

図3はプロペラ型風車を油圧アキュムレーターで始動し、始動後の油圧を回転運動に変換するための概略図である。回転運動で得られた油圧を、ここで、油圧ポンプ9を始動するために、気体圧縮式の油圧アキュムレーター26を使用する。油圧アキュムレーター26にはピストン型を採用する。ピストン型はシリンダーの内壁側がピストンによって気体室と油室に分かれ、夫々の部屋には吸気弁と油出し入れ弁がある。これらの弁を油圧アキュムレーター制御弁27で制御し、起動時に、油出し入れ弁を開放して、油圧ポンプの油吸込み側を加圧すると、瞬時加圧により得られた超高圧で風車回転軸7に直結した該油圧ポンプ9を回転起動させ、プロペラ型風車6を回転始動させる。起動後はプロペラ型風車6の回転運動を該油圧ポンプ9で高圧油に増圧させ、この油をタワー3の下部又は浮体船甲板に備えた油圧制御装置11を介して該油圧アクチュエーター28に圧送しプロペラ型風車6は仕事を開始する。ここで、油圧アクチュエーター28が油圧モーター29の場合には直結した増速ギア30を介して発電機31を回転させて電力を得る。 FIG. 3 is a schematic diagram for starting a propeller-type wind turbine with a hydraulic accumulator and converting the hydraulic pressure after the start into a rotational motion. In order to start the hydraulic pump 9 with the hydraulic pressure obtained by the rotary motion, a gas compression type hydraulic accumulator 26 is used. The hydraulic accumulator 26 is a piston type. In the piston type, the inner wall side of the cylinder is divided into a gas chamber and an oil chamber by the piston, and each chamber has an intake valve and an oil take-out valve. When these valves are controlled by the hydraulic accumulator control valve 27 and the oil intake / outlet valve is opened and the oil suction side of the hydraulic pump is pressurized at the start-up, the wind turbine rotating shaft 7 is at a super high pressure obtained by instantaneous pressurization. The hydraulic pump 9 directly connected to is started to rotate, and the propeller type windmill 6 is started to rotate. After startup, the rotary motion of the propeller type windmill 6 is increased to high pressure oil by the hydraulic pump 9 and this oil is pumped to the hydraulic actuator 28 via the hydraulic control device 11 provided at the lower part of the tower 3 or on the floating ship deck. The propeller type windmill 6 starts work. Here, when the hydraulic actuator 28 is a hydraulic motor 29, the generator 31 is rotated via the directly connected speed increasing gear 30 to obtain electric power.

図4はプロペラ型風車を油圧アキュムレーターで始動し、始動後の油圧を往復運動に変換するための概略図である。油圧ポンプ9の回転運動で得られた高圧油をタワー3の下部又は浮体船甲板に備えた油圧制御装置11を介して油圧アクチュエーター28に圧送し、ここで油圧の往復運動に変換するために、油圧シリンダー32を使用する。ここで、油圧シリンダー32に直結した空気コンプレッサー33により圧搾空気を作り、風力エネルギー回収浮体船の圧搾空気貯蔵庫4に貯蔵した後、複数艘の圧搾空気を母船に集め、大型発電機を作動させるために使われる。 FIG. 4 is a schematic diagram for starting a propeller type wind turbine with a hydraulic accumulator and converting the hydraulic pressure after the start to a reciprocating motion. In order to pump the high pressure oil obtained by the rotational movement of the hydraulic pump 9 to the hydraulic actuator 28 via the hydraulic control device 11 provided in the lower part of the tower 3 or on the floating ship deck, A hydraulic cylinder 32 is used. Here, compressed air is made by the air compressor 33 directly connected to the hydraulic cylinder 32 and stored in the compressed air storage 4 of the wind energy recovery floating ship, and then a plurality of compressed air is collected in the mother ship to operate the large generator. Used for.

図5は複数艘のプロペラ型風車で蓄圧された圧搾空気をメガフロートに集めるためのシステム図である。夫々のプロペラ型風車6の圧搾空気貯蔵庫4に蓄圧された圧搾空気は、高圧ホース24で母船やメガフロー34に集められ、発電用タービン35で高速回転させ、大型発電機31を回転させて電力を得る。この母船やメガフロー34には水上工場、オンサイト工場、液化ガス工場、電気分解工場などが設置されている。これら工場の廃熱又はメガフロート34に設備した太陽熱集光施設で加熱されることにより、圧搾空気は熱膨張して、さらに増圧されて発電タービン35を回転させる。この母船やメガフロー34に集められた圧搾空気は発電の他にも、圧搾空気をさらに圧縮して、断熱圧縮して得られる廃熱は熱源として、さらに圧縮された圧搾空気は断熱膨張現象を利用して液体空気を製造し、これから液体窒素や液体酸素を製造する。あるいは、各工場の機械類の駆動源として使用される。とくに、油圧装置は駆動部が高温になるが、海水や湖水の水を冷却水として用いることができる。 FIG. 5 is a system diagram for collecting compressed air accumulated in a plurality of propeller type windmills into a mega float. The compressed air accumulated in the compressed air storage 4 of each propeller-type windmill 6 is collected by the high-pressure hose 24 into the mother ship and the megaflow 34, rotated at a high speed by the power generation turbine 35, and rotated by the large generator 31 to generate electric power. obtain. The mother ship and Megaflow 34 are equipped with a water factory, an on-site factory, a liquefied gas factory, an electrolysis factory, and the like. By being heated in the waste heat of these factories or the solar heat concentrating facility installed in the mega float 34, the compressed air is thermally expanded and further increased in pressure to rotate the power generation turbine 35. In addition to power generation, the compressed air collected in the mother ship and the Megaflow 34 further compresses the compressed air, and waste heat obtained by adiabatic compression is used as a heat source, and the compressed air further uses the adiabatic expansion phenomenon. Thus, liquid air is produced, and liquid nitrogen and liquid oxygen are produced therefrom. Alternatively, it is used as a drive source for machinery in each factory. In particular, although the drive unit of the hydraulic device is hot, seawater or lake water can be used as cooling water.

図6は風力エネルギー回収浮体船の台座部を球状または楕円面体にした浮体船概観図である。図1の風力エネルギー回収浮体船との違いは台座を球または楕円面体とし、喫水線部分に船の船首部を球や楕円面体を変形させ、喫水線近傍は尖形状17にして造波抵抗を軽減させ、船首部位の水面下を球状船首構造18にして喫水線下の球状船首で発生した波の山と谷が、喫水線近傍の尖った船首部で発生した波の谷と山とが互いに干渉して2つの波同士が打ち消されるため造波抵抗が軽減する。この構造は浮上した潜水艦を高速で水面上を走らせることを想定し、喫水線近傍の船首部を尖らせ、喫水面下の球または楕円面体形台座の両舷が流線形状をして摩擦抵抗を減らし、かつ浮体船の船首部や船底に小さな孔を開け、タワー内部の圧搾空気貯蔵庫4から圧搾空気を噴出させてマイクロバブル23を発生させると、小さな気泡が船底を覆い、摩擦抵抗を激減させる。この船底から圧搾空気を噴出させる方法は、浮体船のように静止した構造物には、如実の効果は期待できないが、水の流速が早い場所では有効である。さらに、強風にも揺れが少なく、しかも建設、修理点検が楽で台風などの強風時の避難が容易な風車であるために、風車の構造は台座部36が球状又は楕円面体台座(浮体船)であり、台座36の底から下方に伸びたキール11の末端には球状又は楕円面体の錘14備え、キール11下端部には揺れ防止と傾き防止のために風上側に対して鉛直と平行をなすようにフィン15を取り付ける。そして、風車が常に風上を向くようにするために、台座の上部にタワー3を載せ、このタワーの最上部にはナセル5を備え、このナセル内には風車の回転軸に取り付けたクランクを介して風車タワー頭部に設備した多段コンプレッサーで空気を圧搾し、あるいは風車回転軸に取り付けたロータリー式コンプレッサーで空気を圧搾して風車タワー兼圧力ボンベに充填し、この圧搾空気を高圧ホース24を介して母船の液体空気製造工場に送り、かつ該風車装置を曳航や建造あるいは修理・保守点検の場合には水を抜き水上に寝かせ、あるいは台風などの強風を避ける場合には該タワー兼高圧ボンベにも水を注入して水面下まで垂直に水没させることができる。この水没を利用してナセル部やコンプレッサーの修理点検を行うこともできる。また常時風車を風上に向けるために台座36の船首には船首をアンカーロープ固定(投錨)20のためのフックを取り付け、サルカンを介してアンカーロープ21を連結する。また台座36の風下側に風の流れと同方向になるように平面状の舵21を固定する。 FIG. 6 is a schematic view of a floating ship in which the pedestal of the wind energy recovery floating ship has a spherical or ellipsoidal shape. The difference from the wind energy recovery floating ship shown in Fig. 1 is that the base is a sphere or ellipsoid, the ship's bow is deformed to a sphere or ellipsoid, and the vicinity of the waterline is pointed 17 to reduce wave resistance. The crest and valley of the wave generated at the spherical bow under the water line with the spherical bow structure 18 under the water surface of the bow part interfered with each other by the trough and crest of the wave generated at the sharp bow near the water line. Wave resistance is reduced because two waves cancel each other. This structure assumes that a submarine that has surfaced will run at high speed on the surface of the water, sharpens the bow near the waterline, and both the spheres or ellipsoidal pedestals below the waterline form a streamline shape and friction resistance When a small hole is made in the bow and bottom of the floating ship, and compressed air is ejected from the compressed air storage 4 inside the tower to generate the microbubble 23, the small bubble covers the bottom of the ship and drastically reduces frictional resistance. Let This method of ejecting the compressed air from the bottom of the ship cannot be expected for a stationary structure such as a floating ship, but is effective in a place where the flow rate of water is high. Furthermore, since the windmill is less susceptible to shaking, construction, repair and inspection are easy, and it is easy to evacuate during strong winds such as typhoons, the structure of the windmill is a spherical or elliptical base (floating ship) The end of the keel 11 extending downward from the bottom of the pedestal 36 is provided with a spherical or ellipsoidal weight 14, and the lower end of the keel 11 is parallel to the windward side to prevent shaking and tilt. The fins 15 are attached so as to form. In order to keep the windmill always facing upwind, a tower 3 is placed on the top of the pedestal, and a nacelle 5 is provided at the top of the tower, and a crank attached to the rotating shaft of the windmill is placed in the nacelle. The air is compressed with a multistage compressor installed at the head of the wind turbine tower, or the air is compressed with a rotary compressor attached to the wind turbine rotating shaft and filled into the wind turbine tower / pressure cylinder. When the wind turbine device is towed, constructed, repaired or maintained, the tower is used as a tower / high-pressure cylinder. Water can also be injected to submerge vertically below the surface of the water. This submergence can also be used to repair and inspect the nacelle and compressor. Further, in order to keep the windmill always upwind, a hook for anchor rope fixing (throwing) 20 is attached to the bow of the pedestal 36, and the anchor rope 21 is connected via a sarkan. A planar rudder 21 is fixed on the leeward side of the pedestal 36 so as to be in the same direction as the wind flow.

図7は風力エネルギー回収浮体船の台座部を球状または楕円面体にした浮体船の正立した状態を示す概念図である。(A)は外観図、(B)は内部構造図である。この風車施設を正立させるために、台座内部38、円柱パイプ内部40にバラストとして海水や水を注入し、球上台座36のネック部まで水没させる。そしてプロペラ型風車6の回転をナセル5の内部にあるクランクシャフトで垂直運動に変え、圧搾空気製造所2で圧搾空気を製造し、これを流線形型柱状タワー内部(圧搾空気ボンベ室)40に貯蔵する。
図8は風力エネルギー回収浮体船を保守点検や緊急避難するための概略図である。(A)は水面に寝かせた状態図、(B)は水面下に沈めた状態図である。(A)のように風車装置を水面に寝かせるためには、台座内部38、キール内部39の水を抜くと、その排水量が増すにつれて徐々に横に傾き始め、最終的には横に寝た状態になる。とくに風車本体を港から牽引する場合や建造時あるいは保守点検や修理時には水を抜いて水面に倒し、水を入れれば立ち上がる。大型クレーンの必要も無く、後期の短縮、保守点検や修理を経済的に行うことができる。さらに台風接近時など強風でどうにもならなかったらば、流線形型柱状タワー内部40の圧搾空気を排出し、そこに水を注入すれば徐々に水面下に沈む。プロペラは建造が容易な2枚翼とする。
FIG. 7 is a conceptual diagram showing an upright state of a floating ship in which a pedestal portion of the wind energy recovery floating ship has a spherical or ellipsoidal shape. (A) is an external view, (B) is an internal structure diagram. In order to erect this windmill facility, seawater or water is injected as ballast into the pedestal interior 38 and the cylindrical pipe interior 40 and submerged to the neck of the ball pedestal 36. Then, the rotation of the propeller type wind turbine 6 is changed to a vertical motion by the crankshaft inside the nacelle 5, and the compressed air is produced at the compressed air manufacturing plant 2, and this is converted into the streamlined columnar tower inside (compressed air cylinder chamber) 40. Store.
FIG. 8 is a schematic diagram for maintenance inspection and emergency evacuation of the wind energy recovery floating ship. (A) is a state diagram laid on the water surface, (B) is a state diagram submerged under the water surface. In order to lay the windmill device on the water surface as in (A), when the water inside the pedestal 38 and the keel 39 is drained, it gradually begins to tilt sideways as the amount of drainage increases, and finally lies on the side. become. In particular, when the windmill body is pulled from the port, at the time of construction, maintenance inspection or repair, the water is drained and brought down to the surface of the water. There is no need for a large crane, and it is possible to economically carry out shortening of the latter period, maintenance inspection and repair. In addition, if there is no action due to strong winds such as when a typhoon is approaching, the compressed air inside the streamlined column tower 40 is discharged, and if water is injected there, it gradually sinks below the surface of the water. Propellers have two wings that are easy to build.

図9は多段式圧搾空気製造ピストンの概略図である。風車の転倒を防ぐためには、風車装置の頭部すなわちナセル5を軽く、しかもナセル部の風受け面積を小さくする必要がある。このために発電機を載せる代わりにコンプレッサーを載せることにした。これまでの風車はプロペラを風上に向けるためにナセルに歯車を搭載していた。しかし本発明ではタワー自身を風上に向ける構造であるためナセル部をタワーと固定することができる。そこで、ここではナセル5内の風車回転軸7に取り付けた風車プーリー41の外周部に、回転運動を上下運動に変換するための横スライド式クランクシャフト42を介して風車タワー上部の多段圧搾機(コンプレッサー)43で空気吸入口44から吸い込んだ空気を圧縮する。シリンダー45内の複数個のピストン46にはクランクシャフト42で変換された上下運動を、上下伝達棒47を介して伝え、同時に上下伝達棒47に連動して開閉を行う各シリンダーの入気逆止弁48および各シリンダーの排気逆止弁49が働き、圧搾空気出口50から圧搾空気が排出される。歯車を用い風車の回転を助長することもできるが、ここでは、シリンダー45内のピストン46において夫々空気吸引室と圧搾室を逆向きに配置して力の均衡を図っている。ここでできた圧搾空気は風車の流線形型柱状タワー内部の圧搾空気ボンベ室に一時的に貯蔵され、高圧ホースを介して母船の液体空気製造工場に送られる。この多段圧搾機43を使い、水を電気分解して生成した水素を圧搾し、液体水素を製造することもできる。 FIG. 9 is a schematic view of a multistage compressed air manufacturing piston. In order to prevent the windmill from overturning, it is necessary to lighten the head of the windmill device, that is, the nacelle 5, and to reduce the wind receiving area of the nacelle portion. For this purpose, we decided to put a compressor instead of a generator. Previous windmills had a gear mounted on the nacelle to direct the propellers upwind. However, in the present invention, the nacelle portion can be fixed to the tower because the tower itself is directed to the windward side. Therefore, in this case, a multistage squeezer on the upper part of the wind turbine tower (on the outer peripheral portion of the wind turbine pulley 41 attached to the wind turbine rotating shaft 7 in the nacelle 5 via a lateral slide type crankshaft 42 for converting rotational motion into vertical motion ( Compressor 43 compresses the air sucked from air inlet 44. Up and down movement converted by the crankshaft 42 is transmitted to the plurality of pistons 46 in the cylinder 45 via the vertical transmission rod 47, and at the same time, the intake check of each cylinder that opens and closes in conjunction with the vertical transmission rod 47 The valve 48 and the exhaust check valve 49 of each cylinder work, and the compressed air is discharged from the compressed air outlet 50. The rotation of the windmill can be promoted using gears, but here, the air suction chamber and the compression chamber are arranged in opposite directions in the piston 46 in the cylinder 45 to balance the force. The compressed air produced here is temporarily stored in the compressed air cylinder chamber inside the streamlined columnar tower of the windmill, and sent to the liquid air manufacturing factory of the mother ship via the high-pressure hose. By using this multistage press 43, hydrogen produced by electrolyzing water can be squeezed to produce liquid hydrogen.

本発明によれば、風力による回転エネルギーを圧搾空気として圧力エネルギーに変換して風車構造体の一部であるタワー内部に貯蔵し、蓄圧された圧搾空気を一箇所に集めて発電するため、発電機が大型化でき大電力が得られる。しかも、設備費が高価な風車施設を複数基設置するよりも、安価で、機械的メカニズムだけから構成される風力圧搾空気製造・貯蔵機能も有する風車構造体を複数基建造した方が、発電効率、設備費、建設コスト、故障率、メンテナンス費用などを考えると、経済的に有利となる。これら、ヨーロッパや中国などの浅瀬で実施されていた、洋上風車施設の建造技術を日本近海に適応するよりは、海洋の深度が深く海岸線が地球の赤道の約80%を有する海洋国日本の地の利を生かし、海洋の深度に関係なく、気象状況にもあまり影響されない、復元力に強く、圧搾空気駆動の発電を行ことができる、浮体船構造方式を打ち出した方が、大電力が得られるため、産業の活性化に繋がるのみならず、世界的資源の枯渇と資源高騰あるいはこれに伴う資源供給国の新規台頭や国際社会に影響力を拡大させている現況を沈静化させる意味においても、無尽蔵にあるクリーンで再生可能な海洋資源及び自然エネルギーに活路を求め、化石燃料の代替エネルギー源として確保する事は、四面を海に囲まれた我が国の産業にとっても地球環境上、更には経済的にも重要な手段になり得ると考える。 According to the present invention, rotational energy from wind power is converted into pressure energy as compressed air, stored in a tower that is a part of the wind turbine structure, and the accumulated compressed air is collected in one place for power generation. The machine can be enlarged and high power can be obtained. In addition, it is more efficient to construct multiple wind turbine structures that are cheaper and have a function of producing and storing wind-compressed air consisting of only mechanical mechanisms, rather than installing multiple wind turbine facilities with high equipment costs. Considering equipment cost, construction cost, failure rate, maintenance cost, etc., it is economically advantageous. Rather than adapting the construction technology of offshore wind turbine facilities, which had been implemented in shallow waters such as Europe and China, to the sea near Japan, the land of Japan, which has a deep ocean depth and the coastline has about 80% of the equator of the earth, is useful. Because it is possible to generate a large amount of power by launching a floating ship structure system that can generate compressed air-driven power generation that is not affected by the weather conditions and is not greatly affected by weather conditions, regardless of the depth of the ocean. As well as leading to industrial revitalization, it is inexhaustible not only in terms of calming down the current situation of global resources depletion and resource soaring, or the emergence of new resource suppliers and associated influences on the international community. It is important for Japan's industry surrounded by the sea to seek a path to clean and renewable marine resources and natural energy and secure it as an alternative energy source for fossil fuels. Sakaikami, even considered can be a important means economically.

風力エネルギー回収浮体船の概観図である。It is a general-view figure of a wind energy recovery floating ship. プロペラ型風車をガス圧で始動するための概略図である。It is the schematic for starting a propeller type windmill with gas pressure. プロペラ型風車を油圧アキュムレーターで始動し、始動後の油圧を回転運動に変換するための概略図である。It is the schematic for starting a propeller type | mold windmill with a hydraulic accumulator, and converting the hydraulic pressure after a start into rotational motion. プロペラ型風車を油圧アキュムレーターで始動し、始動後の油圧を往復運動に変換するための概略図である。It is the schematic for starting a propeller type | mold windmill with a hydraulic accumulator, and converting the hydraulic pressure after a start into a reciprocating motion. 複数艘のプロペラ型風車で蓄圧された圧搾空気をメガフロートに集めるためのシステム図である。It is a system diagram for collecting the compressed air accumulated in a plurality of propeller type windmills into a mega float. 風力エネルギー回収浮体船の台座部を球状または楕円面体にした浮体船概観図である。It is a floating-type ship general-view figure which made the base part of the wind energy recovery floating body ship spherical or an ellipsoid. 風力エネルギー回収浮体船の台座部を球状または楕円面体にした浮体船の正立した状態を示す概念図である。(A)は外観図、(B)は内部構造図である。It is a conceptual diagram which shows the upright state of the floating ship which made the base part of the wind energy recovery floating ship the spherical shape or the ellipsoid. (A) is an external view, (B) is an internal structure diagram. 風力エネルギー回収浮体船を保守点検や緊急避難するための概略図である。(A)は水面に寝かせた状態図、(B)は水面下に沈めた状態図である。It is a schematic diagram for maintenance inspection and emergency evacuation of a wind energy recovery floating ship. (A) is a state diagram laid on the water surface, (B) is a state diagram submerged under the water surface. 多段式圧搾空気製造ピストンの概略図である。It is the schematic of a multistage type compressed air manufacture piston.

1 浮体船
2 重心
3 タワー
4 圧搾空気貯蔵庫
5 ナセル
6 プロペラ型風車
7 回転軸
8 空気コンプレッサー
9 油圧ポンプ
10 油圧アクチュエーター
11 油圧制御装置
12 空洞部 (水タンク)
13 キール (センターボード)
14 錘(おもり、バラスト)
15 フィン
16 常時風上を向く機構
17 船首部位の喫水線(尖形状)
18 喫水線下 (球状船首構造)
19 喫水面下(流線型状)
20 船首をアンカーロープで固定(投錨)
21 舵
22 整流翼(ミズン、スパンカー)
23 マイクロバブル(圧搾空気で)
24 空気入気弁
25 超高圧気体(窒素ガス)
26 油圧アキュムレーター
27 油圧アキュムレーター制御弁
28 油圧アクチュエーター
29 油圧モーター
30 増速ギア
31 発電機
32 油圧シリンダー
33 空気コンプレッサー
34 メガフロート(母船、水上工場、オンサイト工場)、陸上工場
35 発電用タービン
36 球または楕円面体台座(浮体船)
37 圧搾空気製造所
38 台座内部(水:バラスト)
39 キール内部(水:バラスト)
40 流線形型柱状タワー内部(圧搾空気ボンベ室)
41 風車プーリー
42 横スライド式クランクシャフト(回転運動⇒上下運動に変換)
43 多段圧搾機(コンプレッサー)
44 空気吸入口
45 シリンダー
46 ピストン
47 上下伝達棒
48 各シリンダーの入気逆止弁
49 各シリンダーの排気逆止弁
50 圧搾空気出口

1 Floating ship 2 Center of gravity
3 Tower 4 Compressed air storage 5 Nacelle 6 Propeller type windmill 7 Rotating shaft 8 Air compressor 9 Hydraulic pump 10 Hydraulic actuator 11 Hydraulic control device 12 Cavity (water tank)
13 Kiel (center board)
14 weights (weight, ballast)
15 Fin 16 A mechanism that always faces the windward 17 Water line at the bow (pointed shape)
18 Under the waterline (spherical bow structure)
19 Below the draft (streamline shape)
20 Anchor the bow with anchor rope (throwing)
21 Rudder 22 Rectifier blade (Mizun, Spanker)
23 Microbubble (with compressed air)
24 Air inlet valve 25 Super high pressure gas (nitrogen gas)
26 Hydraulic accumulator 27 Hydraulic accumulator control valve 28 Hydraulic actuator 29 Hydraulic motor 30 Speed increasing gear 31 Generator 32 Hydraulic cylinder 33 Air compressor 34 Mega float (mother ship, water factory, on-site factory), land factory 35 Turbine for power generation 36 Sphere or ellipsoid pedestal (floating ship)
37 Compressed air factory 38 Inside of pedestal (water: ballast)
39 Inside the keel (water: ballast)
40 Streamlined columnar tower interior (compressed air cylinder chamber)
41 Windmill pulley 42 Side-sliding crankshaft (Rotary motion → Converted to vertical motion)
43 Multi-stage press (compressor)
44 Air inlet 45 Cylinder
46 Piston 47 Vertical transmission rod 48 Inlet check valve 49 of each cylinder Exhaust check valve 50 of each cylinder Compressed air outlet

Claims (4)

風車タワーの台座が水面上に浮かぶ浮体船であり、該浮体船の重心に垂直方向に支持体として流線形状又は円形状の錐台構造体であるタワーを起立させ、該タワー内部が圧搾空気貯蔵庫であり、該浮体船の喫水面の上側のタワー頂部はナセルとプロペラ型風車とを一体化させた構造体とし、該ナセル内部には該プロペラ型風車の回転軸に連動した空気コンプレッサー及び/又は油圧ポンプなどの回転エネルギー及び/又は圧力エネルギー変換装置を取り付け、該タワー下部又は該浮体船甲板には油圧アクチュエーターと該油圧アクチュエーターに連動した油圧制御装置を具備させ、該浮体船喫水面の下側の支持体であるキール部の空洞部には水を満たし、該キールの外壁横断面が流線形状又は円形状あるいは楕円形状であり、該キールの末端部には楕円体又は球状の錘と該錘上側には複数枚のフィンを等角度に取り付け、該浮体船の喫水面近傍では該プロペラ型風車が常時風上を向く機構を具備させ、該支持体となる該タワー内部には該プロペラ型風車の回転力で得られた圧搾空気を蓄圧させる容器を備え付ける構造体とすることを特徴とする風力エネルギー回収浮体船。 A windmill tower base is a floating ship that floats on the surface of the water, and a tower that is a streamlined or circular frustum structure as a support perpendicular to the center of gravity of the floating ship is erected, and the inside of the tower is compressed air The top of the tower above the draft surface of the floating ship is a structure in which a nacelle and a propeller-type windmill are integrated, and an air compressor linked to the rotation shaft of the propeller-type windmill and / Alternatively, a rotational energy and / or pressure energy conversion device such as a hydraulic pump is attached, and the lower part of the tower or the floating ship deck is provided with a hydraulic actuator and a hydraulic control device linked to the hydraulic actuator, and below the floating ship draft surface. The keel portion, which is the side support, is filled with water, and the outer wall cross section of the keel is streamlined, circular, or elliptical, The ellipsoidal or spherical weight and a plurality of fins are attached to the upper side of the weight at equal angles, and the propeller type windmill is provided in the vicinity of the draft surface of the floating ship so that the propeller type windmill always faces upwind, A wind energy recovery floating ship characterized in that the tower is provided with a container for accumulating compressed air obtained by the rotational force of the propeller type windmill. 前記プロペラ型風車が常時風上を向く構造体として、該浮体船の船首部位の喫水線近傍は造波抵抗を軽減させる尖形状にし、該船首部位の水面下では球状船首構造にし、該浮体船の船首をアンカーロープで固定投錨させる構造にし、該浮体船の船尾の水面下には方向舵を設け、船尾甲板部には必要に応じて着脱自在とする整流翼を具備させ、該浮体船の船底に備えた小孔からは必要に応じて該圧搾空気を噴出させることを特徴とする請求項1記載の風力エネルギー回収浮体船。 As a structure in which the propeller-type windmill always faces upwind, the vicinity of the draft line at the bow part of the floating ship has a pointed shape that reduces wave resistance, and has a spherical bow structure under the water surface of the bow part. A structure in which the bow is fixedly anchored with an anchor rope, a rudder is provided under the surface of the stern of the floating ship, and a rectifying wing is provided on the stern deck so that the stern deck can be detached as required. 2. The wind energy recovery floating ship according to claim 1, wherein the compressed air is ejected from the provided small hole as necessary. 前記プロペラ型風車を始動させるに、回転エネルギーから圧力エネルギーへの変換装置が該空気コンプレッサーの場合は空気入気弁を閉じて超高圧気体を圧入し、始動後は該空気入気弁を開き、該圧搾空気製造用に供し、回転エネルギーから圧力エネルギーへの変換装置が該油圧ポンプの場合は、油圧アキュムレーターで瞬時加圧し、得られた超高圧で風車回転軸に直結した該油圧ポンプを回転起動させ、始動後は該プロペラ型風車の回転運動を該油圧ポンプで増圧させた油を前記プロペラ型風車タワーの下部又は該浮体船甲板に具備した該油圧装置及び該油圧アクチュエーターに圧送し、該油圧アクチュエーターが油圧モーターの場合には直結した増速ギアを介して発電機を回転させて電力を得る手段と、該油圧アクチュエーターが油圧シリンダーの場合には直結した空気コンプレッサーと連動させて圧搾空気を得る手段とを有することを特徴とする請求項1及び請求項2記載の風力エネルギー回収浮体船。 In order to start the propeller type wind turbine, when the conversion device from rotational energy to pressure energy is the air compressor, the air inlet valve is closed and the high pressure gas is injected, and after the start, the air inlet valve is opened. When the hydraulic pump is used for producing the compressed air and the conversion device from rotational energy to pressure energy is the hydraulic pump, the hydraulic pump that is directly connected to the wind turbine rotating shaft is rotated with the hydraulic accumulator obtained, and rotated. After starting, the oil obtained by increasing the rotational movement of the propeller-type windmill with the hydraulic pump is pumped to the hydraulic device and the hydraulic actuator provided in the lower part of the propeller-type windmill tower or the floating deck. When the hydraulic actuator is a hydraulic motor, means for obtaining electric power by rotating a generator via a speed-up gear directly connected, and the hydraulic actuator It claims 1 and 2 wind energy recovery floating ship, wherein it has a means for obtaining a compressed air in conjunction with the air compressor directly connected in the case of Nda. 単艘若しくは複数艘からなる風力エネルギー回収浮体船において、プロペラ型風車を一体化させた流線形状又は円形状の錐台構造体であるタワー内部が圧搾空気貯蔵庫であり、該浮体船の喫水面の上タワー内部に貯蔵された圧搾空気は高圧ホースを介してメガフロート機能を有する母船若しくは水上工場又はオンサイト工場あるいは陸上工場に集積させ、集積された該圧搾空気はメガフロート又はオンサイト工場あるいは陸上工場において、発電用タービンの回転源、産業用圧搾空気、又は液体空気、液体酸素、液体窒素の製造用に供されることを特徴とする請求項1記載の風力エネルギー回収浮体船。
In a single or multiple wind energy recovery floating ship, the inside of the tower, which is a streamlined or circular frustum structure integrated with a propeller type windmill, is a compressed air storage, and the draft surface of the floating ship The compressed air stored inside the upper tower is accumulated in a mother ship having a mega float function, a water factory, an on-site factory, or an on-site factory through a high-pressure hose, and the accumulated compressed air is stored in the mega float or on-site factory. 2. The wind energy recovery floating ship according to claim 1, wherein the wind energy recovery floating ship is used for producing a rotation source of a power generation turbine, compressed air for industrial use, or liquid air, liquid oxygen, or liquid nitrogen in an onshore factory.
JP2010148813A 2010-06-30 2010-06-30 Wind power energy recovery floating ship Pending JP2012012974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010148813A JP2012012974A (en) 2010-06-30 2010-06-30 Wind power energy recovery floating ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010148813A JP2012012974A (en) 2010-06-30 2010-06-30 Wind power energy recovery floating ship

Publications (1)

Publication Number Publication Date
JP2012012974A true JP2012012974A (en) 2012-01-19

Family

ID=45599706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010148813A Pending JP2012012974A (en) 2010-06-30 2010-06-30 Wind power energy recovery floating ship

Country Status (1)

Country Link
JP (1) JP2012012974A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097429A1 (en) * 2012-12-19 2014-06-26 三菱重工業株式会社 Windmill and method for operating same
JP2014515446A (en) * 2011-05-20 2014-06-30 カルロス ウォン, Floating wind power generation facility with energy storage equipment
WO2014141911A1 (en) * 2013-03-13 2014-09-18 戸田建設株式会社 Floating offshore wind power generation facility
WO2015129015A1 (en) * 2014-02-28 2015-09-03 株式会社日立製作所 Wind farm
JP2015222024A (en) * 2014-05-22 2015-12-10 新日鉄住金エンジニアリング株式会社 Floating power generation device and floating wind power generation device
JP2020041497A (en) * 2018-09-12 2020-03-19 秋夫 湯田 Hydraulic pump and application device thereof
WO2023178504A1 (en) * 2022-03-22 2023-09-28 简国良 Wind power air-compression electric generator

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014515446A (en) * 2011-05-20 2014-06-30 カルロス ウォン, Floating wind power generation facility with energy storage equipment
WO2014097429A1 (en) * 2012-12-19 2014-06-26 三菱重工業株式会社 Windmill and method for operating same
JP6025869B2 (en) * 2012-12-19 2016-11-16 三菱重工業株式会社 Windmill and its driving method
TWI661125B (en) * 2013-03-13 2019-06-01 日商戶田建設股份有限公司 Floating body offshore wind power generation equipment
WO2014141911A1 (en) * 2013-03-13 2014-09-18 戸田建設株式会社 Floating offshore wind power generation facility
JP2014173586A (en) * 2013-03-13 2014-09-22 Toda Constr Co Ltd Floating body offshore wind turbine generator facility
KR20150131080A (en) * 2013-03-13 2015-11-24 토다켄세츠 가부시키카이샤 Floating offshore wind power generation facility
KR102155394B1 (en) * 2013-03-13 2020-09-11 토다켄세츠 가부시키카이샤 Floating offshore wind power generation facility
US20160025074A1 (en) * 2013-03-13 2016-01-28 Toda Corporation Floating offshore wind power generation facility
AU2014232004B2 (en) * 2013-03-13 2017-06-08 Hitachi, Ltd. Floating offshore wind power generation facility
US9777713B2 (en) 2013-03-13 2017-10-03 Toda Corporation Floating offshore wind power generation facility
WO2015129015A1 (en) * 2014-02-28 2015-09-03 株式会社日立製作所 Wind farm
JP2015222024A (en) * 2014-05-22 2015-12-10 新日鉄住金エンジニアリング株式会社 Floating power generation device and floating wind power generation device
JP2020041497A (en) * 2018-09-12 2020-03-19 秋夫 湯田 Hydraulic pump and application device thereof
JP7013095B2 (en) 2018-09-12 2022-01-31 秋夫 湯田 Hydraulic pumps and their application devices.
WO2023178504A1 (en) * 2022-03-22 2023-09-28 简国良 Wind power air-compression electric generator

Similar Documents

Publication Publication Date Title
US7228812B2 (en) Sea-based hydrogen-oxygen generation system
US11660572B2 (en) Wind and wave desalination vessel
CA2750850C (en) System for producing energy through the action of waves
JP2012012974A (en) Wind power energy recovery floating ship
EP2604501B1 (en) System of anchoring and mooring of floating wind turbine towers and corresponding methods for towing and erecting thereof
CN101611226B (en) Energy extraction method and apparatus
US20120187693A1 (en) Hydrokinetic energy transfer device and method
US20180258904A1 (en) Floating moon pool hydraulic pump
WO2013170496A1 (en) New floating hawknose wave-energy generating apparatus having features of semi-submerged boat
KR20160067967A (en) Floating wind power plant
CN102278291B (en) Construction method and special transport and installation ship for marine transport and installation of wind-driven generator
CN101506519A (en) Method and apparatus for converting marine wave energy by means of a difference in flow resistance form factors into electricity
US20180087487A1 (en) Offshore energy storage device
JP7130896B2 (en) floating platform
US20120317970A1 (en) Wave power plant
JP2005520088A (en) Offshore wind turbines, wind turbines, and wind energy conversion systems
JP2010180528A (en) Deep sea resource mining and recovery integrated ocean factory
CN102042174A (en) Water-float wind-water wheel sail wind driven generator
CN102900592B (en) Floating platform wave energy storage system and wave energy power generation system
CN102187087B (en) Platform for capturing wave energy
CN111483564A (en) Multi-floating-body platform of offshore floating type wind turbine
CN106382180A (en) Floating type buoyancy pendulum wave power generation device
CN114148462A (en) Semi-submersible floating platform and eccentric fan system based on single point mooring
JP2013002399A (en) Ocean wind power generation wind turbine unflowing by wind even without mooring to sea bottom, by using a part of wind power for windward propulsion
CN107792307B (en) Floating wind power tower convenient to installation