JP2011525860A - Partial pump-around of carbon dioxide absorbent for cooling semi-physical physical solvents - Google Patents

Partial pump-around of carbon dioxide absorbent for cooling semi-physical physical solvents Download PDF

Info

Publication number
JP2011525860A
JP2011525860A JP2011516360A JP2011516360A JP2011525860A JP 2011525860 A JP2011525860 A JP 2011525860A JP 2011516360 A JP2011516360 A JP 2011516360A JP 2011516360 A JP2011516360 A JP 2011516360A JP 2011525860 A JP2011525860 A JP 2011525860A
Authority
JP
Japan
Prior art keywords
stream
carbon dioxide
solvent
solvent stream
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011516360A
Other languages
Japanese (ja)
Inventor
デーヴィス,ラマー・エイ
Original Assignee
ユーオーピー エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユーオーピー エルエルシー filed Critical ユーオーピー エルエルシー
Publication of JP2011525860A publication Critical patent/JP2011525860A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1462Removing mixtures of hydrogen sulfide and carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8612Hydrogen sulfide
    • B01D53/8618Mixtures of hydrogen sulfide and carbon dioxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/202Alcohols or their derivatives
    • B01D2252/2021Methanol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/202Alcohols or their derivatives
    • B01D2252/2023Glycols, diols or their derivatives
    • B01D2252/2025Ethers or esters of alkylene glycols, e.g. ethylene or propylene carbonate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/202Alcohols or their derivatives
    • B01D2252/2023Glycols, diols or their derivatives
    • B01D2252/2026Polyethylene glycol, ethers or esters thereof, e.g. Selexol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/202Alcohols or their derivatives
    • B01D2252/2023Glycols, diols or their derivatives
    • B01D2252/2028Polypropylene glycol, ethers or esters thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20436Cyclic amines
    • B01D2252/20457Cyclic amines containing a pyridine-ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/205Other organic compounds not covered by B01D2252/00 - B01D2252/20494
    • B01D2252/2053Other nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/205Other organic compounds not covered by B01D2252/00 - B01D2252/20494
    • B01D2252/2056Sulfur compounds, e.g. Sulfolane, thiols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Gas Separation By Absorption (AREA)
  • Industrial Gases (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本発明は、合成ガス流からの、二酸化炭素および硫化水素の除去を提供する。部分的ポンプアラウンド(部分的ポンプ循環)を実施することによって、二酸化炭素吸収装置の底部から出る溶媒の一部分を冷却する。これによって溶媒循環割合および関連機器サイズを低減することが可能になる。
【選択図】図1
The present invention provides for the removal of carbon dioxide and hydrogen sulfide from a synthesis gas stream. By performing a partial pump around, a portion of the solvent exiting the bottom of the carbon dioxide absorber is cooled. This makes it possible to reduce the solvent circulation rate and related equipment size.
[Selection] Figure 1

Description

本発明は、ポリエチレングリコールのジメチルエーテル(DMPEG;dimethyl ether of polyethylene glycol)などの物理溶媒を使用することによって、エネルギーおよび資本必要量を低減して、汚染天然ガスまたはガス化により生じる合成ガスなどの汚染ガスを処理し、二酸化炭素および硫化水素を濃縮して除去する方法に関する。   The present invention reduces the energy and capital requirements by using a physical solvent such as dimethyl ether of polyethylene glycol (DMPEG), and pollutes such as polluted natural gas or syngas resulting from gasification. The present invention relates to a method for treating gas and concentrating and removing carbon dioxide and hydrogen sulfide.

合成ガス流から硫化水素および二酸化炭素を別々に除去するための従来技術による設計では、フラッシュ再生したセミリーン溶媒(semi−lean solvent)を、二酸化炭素吸収装置の底部と1つまたは複数の低圧フラッシュドラムとの間に循環することによって、二酸化炭素吸収装置内を流れる合成ガスから二酸化炭素を除去する。こうしたセミリーン溶媒(これは比較的少量の二酸化炭素を含む)は、このような種類の設計においては、極めて大きな流量になり得る。−30℃(−22°F)から15℃(59°F)の間の温度まで溶媒を冷却すると、溶媒容量が増加し、必要な溶媒流量が低下するが、こうした流れを低温まで直接的に冷却することは、冷却負荷が大きく、大きな機器サイズを伴うので、経済的に魅力がない。   In prior art designs for the separate removal of hydrogen sulfide and carbon dioxide from a synthesis gas stream, a flash-recycled semi-lean solvent is applied to the bottom of the carbon dioxide absorber and one or more low pressure flash drums. Is removed from the synthesis gas flowing in the carbon dioxide absorber. Such a semi-lean solvent (which contains a relatively small amount of carbon dioxide) can result in very high flow rates in this type of design. Cooling the solvent to a temperature between −30 ° C. (−22 ° F.) and 15 ° C. (59 ° F.) increases the solvent volume and reduces the required solvent flow rate, but directly reduces the flow to lower temperatures. Cooling is economically unattractive because of the large cooling load and large equipment size.

操業されている商用ユニットにおける現状のやり方では、二酸化炭素吸収装置の底部近くで全排出トレイ(全ドローオフトレー)が利用され、ここで、カラムを流下する装填溶媒(loaded solvent)は、すべてカラムから排出されて、冷却交換器内にポンプ輸送され、そこで、上流の硫化水素吸収装置から出るガスと混合され、冷却された後に、二酸化炭素吸収装置の底部サンプ部分(底部排液溜め部分)に入る。こうした全排出のやり方は、二酸化炭素吸収装置の底部サンプ部分内の、装填溶媒の温度を効果的に低下させ、また、この溶媒は一連のフラッシュドラムを介してフラッシュ再生されるので、このセミリーン溶媒の温度は、溶媒からフラッシュアウトする二酸化炭素の冷却効果によってさらに低下する。こうしたセミリーン溶媒の温度が低くなることによって溶媒の二酸化炭素吸収容量が増加するので、かかる溶媒の流量を低減することができる。続く二酸化炭素のフラッシュの前に、冷却によって溶媒を冷却すると、最終のフラッシュドラムでの温度を、典型的な冷却交換器でこうした操作をしない場合に普通にみられる温度よりも低くすることが可能になる。こうした設計の欠点は、全排出トレイのために、二酸化炭素吸収装置の接線長が顕著に増加し、カラム内部のコストが増加し、専用ポンプを必要とすることによりユニット用の機器を追加させ、そして、ユニットの溶媒保有量を顕著に増加させることである。従来技術による設計では、ミキサー/交換器もやはり非常に大きく、予測可能で満足な性能を出すように設計するのが困難である。こうした従来のミキサー/交換器の運転に対する懸念も存在する。   The current practice in commercial units in operation uses a full discharge tray (full draw-off tray) near the bottom of the carbon dioxide absorber, where all the loaded solvent flowing down the column is And is pumped into a cooling exchanger where it is mixed with the gas exiting the upstream hydrogen sulfide absorber and cooled before it enters the bottom sump portion (bottom drainage reservoir portion) of the carbon dioxide absorber. enter. This total exhaust mode effectively lowers the temperature of the loading solvent in the bottom sump portion of the carbon dioxide absorber, and the solvent is flash regenerated through a series of flash drums, so the semi-lean solvent The temperature is further reduced by the cooling effect of carbon dioxide flashing out of the solvent. Since the carbon dioxide absorption capacity of the solvent is increased by lowering the temperature of the semi-lean solvent, the flow rate of the solvent can be reduced. Cooling the solvent by cooling prior to the subsequent carbon dioxide flush can reduce the temperature at the final flash drum below that normally seen without this operation on a typical cooling exchanger. become. The disadvantages of such a design are that for the entire discharge tray, the tangential length of the carbon dioxide absorber is significantly increased, the cost inside the column is increased, and the equipment for the unit is added by requiring a dedicated pump, And it is to increase the solvent holding amount of the unit remarkably. In the prior art design, the mixer / exchanger is still very large and difficult to design for predictable and satisfactory performance. There are also concerns about the operation of such conventional mixers / exchangers.

本発明は、溶媒の部分的ポンプアラウンド(partial pumparound)に関する。   The present invention relates to a partial pumparound of the solvent.

本発明では、ポンプアラウンド(ポンプ循環)用の溶媒は、排出トレイ(ドローオフトレイ)から排出されるのではなく、カラムの底部サンプ部分(底部排液溜め部分)を出る主たる流れの支流から分割される。この装填溶媒(loaded solvent)は、装填溶媒を硫化水素吸収装置へ送達するのに使用される既存のポンプを用いて、二酸化炭素吸収装置の底部からポンプ輸送され、硫化水素吸収装置に供給するのに使用される装填溶媒と共用される交換器内で冷却される。約5℃(40°F)まで冷却された直後に、溶媒のポンプアラウンド(ポンプ循環)部分が切り離され、静的ミキサーまで送られ、ここで、硫化水素吸収装置の頂部から来るガスと混合された後に、二酸化炭素吸収装置の底部サンプ部分に輸送される。このポンプアラウンドにおける溶媒の流量は、フラッシュ再生部分の最終フラッシュドラムで所望される温度によって決定される。ポンプアラウンドの流量を増加させると、二酸化炭素吸収装置の底部温度および最終フラッシュ温度が低下することになる。−30℃(−22°F)もの低い温度が、ユニットで使用する冷媒の所要温度を低下させることなく、またはいかなる追加のポンプ、交換器も追加することなく、または二酸化炭素吸収装置の接線長を実質的に増加させることなく、達成することが可能である。   In the present invention, the solvent for the pump-around (pump circulation) is not discharged from the discharge tray (draw-off tray) but is divided from the main flow tributary exiting the bottom sump portion (bottom drainage reservoir portion) of the column. Is done. This loaded solvent is pumped from the bottom of the carbon dioxide absorber using the existing pump used to deliver the loaded solvent to the hydrogen sulfide absorber and is supplied to the hydrogen sulfide absorber. It is cooled in the exchanger shared with the loading solvent used in the process. Immediately after cooling to about 5 ° C. (40 ° F.), the pump-around portion of the solvent is disconnected and sent to a static mixer where it is mixed with the gas coming from the top of the hydrogen sulfide absorber. And then transported to the bottom sump portion of the carbon dioxide absorber. The solvent flow rate in this pumparound is determined by the temperature desired in the final flash drum of the flash regeneration section. Increasing the pump-around flow rate will lower the bottom temperature and the final flush temperature of the carbon dioxide absorber. Temperatures as low as −30 ° C. (−22 ° F.) do not reduce the required temperature of the refrigerant used in the unit, or add any additional pumps, exchangers, or the tangential length of the carbon dioxide absorber Can be achieved without substantially increasing.

図1は、物理溶媒を使用することによって合成ガスまたは他のガス流を処理し、二酸化炭素および硫化水素を除去し、濃縮するための流れ図を示す。   FIG. 1 shows a flow diagram for treating a synthesis gas or other gas stream by using a physical solvent to remove and concentrate carbon dioxide and hydrogen sulfide.

本発明は、物理溶媒を用いることによって、ガス流から硫化水素および二酸化炭素などの不純物を除去するものである。本発明で使用するための代表的な物理溶媒には、N−メチルピロリドン、ポリエチレングリコールのジアルキルエーテル、リン酸トリブチル、テトラメチレンスルホン、プロピレンカーボネート、メタノール、アルカノールピリジン、およびスルホラン(テトラヒドロチオフェン−1,1−ジオキシド)が含まれる。ポリプロピレングリコールのジメチルエーテルが好ましい溶媒である。   The present invention removes impurities such as hydrogen sulfide and carbon dioxide from a gas stream by using a physical solvent. Representative physical solvents for use in the present invention include N-methylpyrrolidone, dialkyl ethers of polyethylene glycol, tributyl phosphate, tetramethylene sulfone, propylene carbonate, methanol, alkanol pyridine, and sulfolane (tetrahydrothiophene-1, 1-dioxide). The preferred solvent is dimethyl ether of polypropylene glycol.

図1は、本発明の実施形態を示す。シフト反応器を通ってきた合成ガス1の流れが示され、それは、供給原料/生成物交換器4を介してライン8まで進み、次いで、溶媒を格納する硫化水素吸収装置10の底部に入り、この溶媒は、合成ガスの流れと接触することによって硫化水素および他のイオウ化合物を除去する。流れ12は、硫化水素吸収装置10から出て、この流れ12は硫化水素の濃度が増加している。次いで、流れ12は、イオウ再生区画14に進み、その流れから硫化水素が除去され、流れ16として示されるように系(システム)から回収される。第2の流れ28が示され、これは硫化水素吸収装置10の頂部を出て、次いで、静的ミキサー30まで進み、冷却装填溶媒流78と混合され、次いで、合わさった流れは、ライン32を介して二酸化炭素吸収装置34の底部に入る。二酸化炭素が装填された溶媒流38は、二酸化炭素吸収装置34の底部を出て、一連のフラッシュドラム(40、46、52)に続く流れ39と、部分的ポンプアラウンド(部分的ポンプ循環)の一部分としての流れ68とに分割される。流れ68が示され、これは装填溶媒ポンプ70によってライン72へポンプ輸送され、次いで、装填溶媒冷却器74までポンプ輸送されてライン76に入る。流れ76は、硫化水素吸収装置10の頂部に入る流れ79と、静的ミキサー30まで行って第2の流れ28と合わせられる流れ78とに分割される。流れ39が示され、これは高圧フラッシュCOフラッシュドラム40まで進み、ライン42は、二酸化炭素が出るところを示し、溶媒は、ライン44を介して中圧フラッシュCOフラッシュドラム46まで進み、二酸化炭素はライン48から出て行く、溶媒はライン50内を進み続けて低圧フラッシュCOフラッシュドラム52に至り、二酸化炭素は、ライン54に示すように出て行く。生成したセミリーン溶媒(semi−lean solvent)は、ライン56を介してセミリーン溶媒ポンプ58を通ってライン60に進み、次いで、図に示したように二酸化炭素吸収装置34まで戻る。精製された合成ガスは、二酸化炭素吸収装置34の頂部を出て、ライン36を介して供給原料/生成物交換器4まで進みライン6に至り、次いで、さらに所望の通りに加工される。流れ62も示されているが、これは、イオウ再生区画14からリーン溶媒冷却器64を介してライン66まで進み、次いで、二酸化炭素吸収装置34まで進む。ライン18は、イオウ再生区画14からリサイクル圧縮機20まで進み、さらにライン22、リサイクルガス冷却器24およびライン26まで進み、硫化水素吸収装置10に至る。 FIG. 1 shows an embodiment of the present invention. Shown is the flow of synthesis gas 1 through the shift reactor, which proceeds via feed / product exchanger 4 to line 8 and then enters the bottom of the hydrogen sulfide absorber 10 containing the solvent, This solvent removes hydrogen sulfide and other sulfur compounds by contact with the synthesis gas stream. Stream 12 exits hydrogen sulfide absorber 10, and this stream 12 has an increased concentration of hydrogen sulfide. Stream 12 then proceeds to sulfur regeneration section 14 where hydrogen sulfide is removed from the stream and recovered from the system as shown as stream 16. A second stream 28 is shown, which exits the top of the hydrogen sulfide absorber 10 and then proceeds to the static mixer 30 where it is mixed with the cooled charge solvent stream 78 and the combined stream is then passed through line 32. And enters the bottom of the carbon dioxide absorber 34. A solvent stream 38 loaded with carbon dioxide exits the bottom of the carbon dioxide absorber 34 and flows 39 following a series of flash drums (40, 46, 52) and a partial pump around (partial pump circulation). Divided into a stream 68 as part. A flow 68 is shown, which is pumped by line solvent pump 70 to line 72 and then pumped to line solvent cooler 74 and enters line 76. Stream 76 is divided into a stream 79 that enters the top of hydrogen sulfide absorber 10 and a stream 78 that goes to static mixer 30 and is combined with second stream 28. Stream 39 is shown, which goes to high pressure flash CO 2 flash drum 40, line 42 shows where carbon dioxide exits, and solvent goes to medium pressure flash CO 2 flash drum 46 via line 44, Carbon exits from line 48, solvent continues through line 50 to low pressure flash CO 2 flash drum 52, and carbon dioxide exits as shown in line 54. The produced semi-lean solvent proceeds through line 56 through semi-lean solvent pump 58 to line 60 and then returns to carbon dioxide absorber 34 as shown. The purified synthesis gas exits the top of the carbon dioxide absorber 34 and proceeds via line 36 to the feed / product exchanger 4 to line 6 where it is further processed as desired. A flow 62 is also shown, which proceeds from the sulfur regeneration section 14 via the lean solvent cooler 64 to the line 66 and then to the carbon dioxide absorber 34. The line 18 proceeds from the sulfur regeneration section 14 to the recycle compressor 20, further proceeds to the line 22, the recycle gas cooler 24, and the line 26, and reaches the hydrogen sulfide absorber 10.

本発明の部分的ポンプアラウンド(部分的ポンプ循環)を使用すると、このような部分的ポンプアラウンドを全く使用しない場合と比較して、セミリーン溶媒流量および関連の機器サイズを10〜15%低減させることが可能になる。本発明は、追加のポンプまたは問題の多い追加の交換器を必要とせずに、必要な溶媒流量が低くてもより低い温度を提供し、あるいは流量が同じ場合にはより大きい容量を提供する。   Using the partial pump around of the present invention reduces the semi-lean solvent flow rate and associated equipment size by 10-15% compared to not using such partial pump around at all. Is possible. The present invention provides a lower temperature with a lower solvent flow rate required, or a larger capacity at the same flow rate, without the need for additional pumps or problematic additional exchangers.

Claims (7)

(a)二酸化炭素吸収装置ユニット中にガス流を送る工程であって、ここで前記ガス流を溶媒と接触させることによって二酸化炭素を除去し、二酸化炭素含量が低下した処理ガス流および二酸化炭素含量が増加した装填溶媒流を生成させる工程;
(b)前記装填溶媒流を、前記装填溶媒流の第1の部分および前記装填溶媒流の第2の部分に分割する工程;
(c)前記装填溶媒流の前記第1の部分を少なくとも1つのフラッシュドラムに送ることによって、前記装填溶媒流をフラッシュ再生してセミリーン溶媒流を生成させ、次いで前記セミリーン溶媒流を、前記二酸化炭素吸収装置ユニットに戻す工程;
(d)前記装填溶媒流の第2の部分を冷却することによって、冷却装填溶媒流を生成させる工程;
(e)前記冷却装填溶媒流の第1の部分を、前記二酸化炭素吸収装置ユニットに戻す工程;および
(f)前記冷却装填溶媒流の第2の部分を、硫化水素吸収器ユニットに送る工程;
を含む、前記ガス流を精製する方法。
(A) a process of sending a gas stream into the carbon dioxide absorber unit, wherein the gas stream is contacted with a solvent to remove carbon dioxide and reduce the carbon dioxide content and the carbon dioxide content Producing an increased charge solvent stream;
(B) dividing the charged solvent stream into a first part of the charged solvent stream and a second part of the charged solvent stream;
(C) flushing the charge solvent stream to produce a semi-lean solvent stream by sending the first portion of the charge solvent stream to at least one flash drum, and then converting the semi-lean solvent stream to the carbon dioxide Returning to the absorber unit;
(D) generating a cooled charge solvent stream by cooling a second portion of the charge solvent stream;
(E) returning a first portion of the cooled charge solvent stream to the carbon dioxide absorber unit; and (f) sending a second portion of the cool charge solvent stream to a hydrogen sulfide absorber unit;
A method for purifying the gas stream.
前記装填溶媒流の前記部分を冷却した後、前記硫化水素吸収装置ユニットからの生成物流と混合する、請求項1に記載の方法。   The method of claim 1, wherein the portion of the charge solvent stream is cooled and then mixed with the product stream from the hydrogen sulfide absorber unit. 前記セミリーン溶媒流が、冷却器または熱交換器を通過せずに前記二酸化炭素吸収装置に戻る、請求項1に記載の方法。   The method of claim 1, wherein the semi-lean solvent stream returns to the carbon dioxide absorber without passing through a cooler or heat exchanger. 前記ガス流が、合成ガス流である、請求項1に記載の方法。   The method of claim 1, wherein the gas stream is a synthesis gas stream. 前記ガス流が、天然ガス流である、請求項1に記載の方法。   The method of claim 1, wherein the gas stream is a natural gas stream. 前記装填溶媒流が、N−メチルピロリドン、ポリエチレングリコールのジアルキルエーテル、リン酸トリブチル、テトラメチレンスルホン、プロピレンカーボネート、メタノール、アルカノールピリジン、およびテトラヒドロチオフェン−1,1−ジオキシドからなる群から選択される物理溶媒を含む、請求項1に記載の方法。   The loading solvent stream is selected from the group consisting of N-methylpyrrolidone, dialkyl ether of polyethylene glycol, tributyl phosphate, tetramethylene sulfone, propylene carbonate, methanol, alkanol pyridine, and tetrahydrothiophene-1,1-dioxide. The method of claim 1 comprising a solvent. 前記装填溶媒流が、ポリプロピレングリコールのジメチルエーテルを含む、請求項6に記載の方法。   The method of claim 6, wherein the charge solvent stream comprises dimethyl ether of polypropylene glycol.
JP2011516360A 2008-06-26 2009-04-29 Partial pump-around of carbon dioxide absorbent for cooling semi-physical physical solvents Pending JP2011525860A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US7583908P 2008-06-26 2008-06-26
US61/075,839 2008-06-26
PCT/US2009/042093 WO2009158064A2 (en) 2008-06-26 2009-04-29 Carbon dioxide absorber partial pumparound for cooling semi-lean physical solvent

Publications (1)

Publication Number Publication Date
JP2011525860A true JP2011525860A (en) 2011-09-29

Family

ID=41445159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011516360A Pending JP2011525860A (en) 2008-06-26 2009-04-29 Partial pump-around of carbon dioxide absorbent for cooling semi-physical physical solvents

Country Status (7)

Country Link
EP (1) EP2291229A4 (en)
JP (1) JP2011525860A (en)
KR (1) KR20110016945A (en)
CN (1) CN102065976A (en)
AU (1) AU2009262906A1 (en)
CA (1) CA2726640A1 (en)
WO (1) WO2009158064A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014500221A (en) * 2010-12-15 2014-01-09 ユーオーピー エルエルシー Production of carbon dioxide from synthesis gas
JP2014523802A (en) * 2011-07-01 2014-09-18 リンデ アクチエンゲゼルシャフト Method and apparatus for obtaining a gas product
JP2018501947A (en) * 2014-11-21 2018-01-25 ガス テクノロジー インスティテュート Energy efficient solvent regeneration process for carbon dioxide recovery

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2477724A4 (en) * 2009-09-18 2013-12-18 Fluor Tech Corp High pressure high co2 removal configurations and methods
CN102905772A (en) 2010-02-17 2013-01-30 氟石科技公司 Configurations and methods of high pressure acid gas removal in the production of ultra-low sulfur gas
US20120227440A1 (en) * 2011-03-10 2012-09-13 Alstom Technology Ltd. System And Process For The Physical Absorption of Carbon Dioxide From a Flue Gas Stream
WO2014066539A1 (en) 2012-10-24 2014-05-01 Fluor Technologies Corporation Integration methods of gas processing plant and nitrogen rejection unit for high nitrogen feed gases
US9334455B2 (en) * 2013-06-28 2016-05-10 Uop Llc Methods and apparatuses for enhanced absorption of acid gas components from sour feed gas
WO2015089446A1 (en) 2013-12-12 2015-06-18 Fluor Technologies Corporation Configurations and methods of flexible co2 removal
EP3501622B1 (en) 2017-12-22 2023-08-30 L'air Liquide, Société Anonyme Pour L'Étude Et L'exploitation Des Procédés Georges Claude Absorber column and method for purifying raw synthesis gas

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131972A (en) * 1977-04-21 1978-11-17 Shell Int Research Acid gas removal
US4242108A (en) * 1979-11-07 1980-12-30 Air Products And Chemicals, Inc. Hydrogen sulfide concentrator for acid gas removal systems
JPS60156528A (en) * 1983-07-26 1985-08-16 ベツクテル インタ−ナシヨナル コ−ポレ−シヨン Method and device for removing acidic gas
US4568364A (en) * 1984-03-22 1986-02-04 Bechtel International Corporation Process for desulfurization of fuel gas
JPS61272287A (en) * 1985-05-24 1986-12-02 スナムプロゲツチ・エス・ペ−・ア− Selective removal of acidic gas

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2088240B (en) * 1980-11-28 1984-02-22 British Gas Corp Regenerating solvents in gas absorption
IT1193601B (en) * 1983-01-19 1988-07-21 Snam Progetti CRYOGENIC PROCEDURE FOR SELECTIVE REMOVAL OF ACID GASES FROM SOLVENT GAS MIXTURES
US4498911A (en) * 1983-06-29 1985-02-12 Shell Oil Company Simultaneous removal of water and hydrogen sulfide from gaseous carbon dioxide
US5137550A (en) * 1991-04-26 1992-08-11 Air Products And Chemicals, Inc. Cascade acid gas removal process
US6090356A (en) * 1997-09-12 2000-07-18 Texaco Inc. Removal of acidic gases in a gasification power system with production of hydrogen
PL1720632T3 (en) * 2004-01-20 2018-03-30 Fluor Technologies Corporation Methods and configurations for acid gas enrichment
EP2117682B1 (en) * 2007-02-22 2012-08-08 Fluor Technologies Corporation Configurations for carbon dioxide and hydrogen production from gasification streams

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131972A (en) * 1977-04-21 1978-11-17 Shell Int Research Acid gas removal
US4242108A (en) * 1979-11-07 1980-12-30 Air Products And Chemicals, Inc. Hydrogen sulfide concentrator for acid gas removal systems
JPS60156528A (en) * 1983-07-26 1985-08-16 ベツクテル インタ−ナシヨナル コ−ポレ−シヨン Method and device for removing acidic gas
US4568364A (en) * 1984-03-22 1986-02-04 Bechtel International Corporation Process for desulfurization of fuel gas
JPS61272287A (en) * 1985-05-24 1986-12-02 スナムプロゲツチ・エス・ペ−・ア− Selective removal of acidic gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014500221A (en) * 2010-12-15 2014-01-09 ユーオーピー エルエルシー Production of carbon dioxide from synthesis gas
JP2014523802A (en) * 2011-07-01 2014-09-18 リンデ アクチエンゲゼルシャフト Method and apparatus for obtaining a gas product
JP2018501947A (en) * 2014-11-21 2018-01-25 ガス テクノロジー インスティテュート Energy efficient solvent regeneration process for carbon dioxide recovery

Also Published As

Publication number Publication date
AU2009262906A1 (en) 2009-12-30
CN102065976A (en) 2011-05-18
WO2009158064A2 (en) 2009-12-30
WO2009158064A3 (en) 2010-03-04
EP2291229A4 (en) 2011-12-21
CA2726640A1 (en) 2009-12-30
EP2291229A2 (en) 2011-03-09
KR20110016945A (en) 2011-02-18

Similar Documents

Publication Publication Date Title
JP2011525860A (en) Partial pump-around of carbon dioxide absorbent for cooling semi-physical physical solvents
KR101518726B1 (en) Removal of carbon dioxide from a feed gas
JP5722031B2 (en) Method and absorbent composition for recovering a gas component from a gas stream
JP3953534B2 (en) How to separate, recover and use acid gas
US8535613B2 (en) Method and apparatus for separating acidic gases from syngas
WO2013073662A1 (en) Direct-reduced iron production system
CN101820969B (en) Method and system for regenerating an amine-containing wash solution obtained during gas purification
JP2013108109A (en) Direct-reduced iron production system
JP2015530426A (en) Selective desulfurization of crude synthesis gas
CA2706267C (en) Methods and system for separating carbon dioxide from syngas
CN105008002B (en) The method and apparatus for producing the burning fuel for gas turbine
JP6242789B2 (en) Method and apparatus for obtaining a gas product
CN104275075A (en) Process and apparatus for separating metal carbonyls from gas mixtures
WO2011033191A1 (en) Process for the deacidification of a gas by an absorbent solution with removal of cos by hydrolysis
JP5595243B2 (en) CO2 and H2S containing gas recovery system and method
US20070134148A1 (en) Process and apparatus for the selective removal of sulfur-containing components from feed gas streams obtained periodically
CN109381985A (en) A kind of purifying treatment method of natural gas
CN104415643A (en) Method for selectively removing H2S from gas flow containing CO2
CN107429178A (en) Apparatus and method for handling acid synthesis gas
CN103013605A (en) Method and device for reducing triethylene glycol consumption in dehydration process of natural gas
CN116694370A (en) Low-temperature methanol washing system and method for treating unconverted air

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130522

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130822

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140204