JP2011508227A - Colorimetric detection method and apparatus for ammonia nitrogen by flow injection - Google Patents

Colorimetric detection method and apparatus for ammonia nitrogen by flow injection Download PDF

Info

Publication number
JP2011508227A
JP2011508227A JP2010539993A JP2010539993A JP2011508227A JP 2011508227 A JP2011508227 A JP 2011508227A JP 2010539993 A JP2010539993 A JP 2010539993A JP 2010539993 A JP2010539993 A JP 2010539993A JP 2011508227 A JP2011508227 A JP 2011508227A
Authority
JP
Japan
Prior art keywords
groove
liquid
ammonia
gas
connection port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010539993A
Other languages
Japanese (ja)
Other versions
JP5000766B2 (en
Inventor
陵成 洪
Original Assignee
陵成 洪
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陵成 洪 filed Critical 陵成 洪
Publication of JP2011508227A publication Critical patent/JP2011508227A/en
Application granted granted Critical
Publication of JP5000766B2 publication Critical patent/JP5000766B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本発明はフローインジェクションによるアンモニア態窒素の比色検出方法を提供する。濃度が0.01mol/l〜0.03mol/lのNaOH溶液を放出液とし、深溝を含む気液分離器が接続されている毛管路系に前記放出液を注入し、放出液を有する毛管路に一定量の試水を注入してサンプルゾーンを形成し、ポンプによる輸送によって、前記サンプルゾーンが放出液と共に毛管路系において循環的に流動し、気液分離器の深溝を通過する際にアンモニアガスを放出する。前記アンモニアガスが溝口部まで拡散して通気膜を透過し、毛管グルーブにおける酸塩基指示薬を変色させ、アンモニアの放出が終了するまでにサンプルゾーンを連続的に循環させ、アンモニアが吸収された受液を注射ポンプによって比色計のフローセルまで輸送し、波長560nmの光で照射し、光電変換によって試水におけるアンモニア態窒素の濃度を測定する。  The present invention provides a method for colorimetric detection of ammonia nitrogen by flow injection. Capillary passage having a discharge solution by using a NaOH solution having a concentration of 0.01 mol / l to 0.03 mol / l as a discharge solution, injecting the discharge solution into a capillary channel system to which a gas-liquid separator including a deep groove is connected. A sample zone is injected into the sample zone to form a sample zone, and the sample zone circulates in the capillary system together with the discharge liquid by pumping, and passes through the deep groove of the gas-liquid separator. Release gas. The ammonia gas diffuses to the groove and permeates through the gas permeable membrane, discolors the acid-base indicator in the capillary groove, and continuously circulates through the sample zone until the end of the release of ammonia, thereby receiving the ammonia absorbed. Is transported to the flow cell of the colorimeter by an injection pump, irradiated with light having a wavelength of 560 nm, and the concentration of ammonia nitrogen in the test water is measured by photoelectric conversion.

Description

本発明は、化学的分析及び水環境監視分析の分野に属する、水又は溶液におけるアンモニア態窒素の含有量を検出し、或いはアンモニア態窒素の含有量をオンラインでモニターするためのフローインジェクションによるアンモニア態窒素の比色検出方法に関する。   The present invention belongs to the field of chemical analysis and water environment monitoring analysis, and detects the ammonia nitrogen content in water or solution, or the ammonia state by flow injection for online monitoring of the ammonia nitrogen content. The present invention relates to a colorimetric detection method for nitrogen.

アンモニアは、非イオンのアンモニア(NH)又はアンモニウムイオン(NH )の形で存在する窒素のことであり、水に溶解している時、その一部が水と反応してアンモニウムイオンを生成し、他の一部がアンモニア水(非イオンのアンモニア)を形成するため、アンモニア態窒素と総称される。 Ammonia is nitrogen present in the form of nonionic ammonia (NH 3 ) or ammonium ion (NH 4 + ). When dissolved in water, a part of it reacts with water to convert ammonium ion. This is generically referred to as ammonia nitrogen because it forms and part of the other forms ammonia water (nonionic ammonia).

アンモニアは自然界において、通常に窒素含有有機物の分解生成物として川や湖、海に幅広く存在している。水におけるアンモニアは酸素のある環境下では、亜硝酸塩に変化し、酸素のない環境下では、その亜硝酸塩が微生物の作用でアンモニアに還元され、ひいては引き続き硝酸塩に変化することができる。水溶液におけるアンモニア態窒素とは、遊離アンモニア(非イオンのアンモニア(NH)ともいう)又はアンモニウムイオン(NH )の形で存在している窒素のことである。アンモニアは水に溶解している時、その一部が水と反応してアンモニウムイオンを生成し、他の一部がアンモニア水(非イオンのアンモニア)を生成する。 Ammonia exists in nature in a wide range of rivers, lakes, and seas as a decomposition product of nitrogen-containing organic substances. Ammonia in water changes to nitrite in an oxygen-containing environment, and in an oxygen-free environment, the nitrite is reduced to ammonia by the action of microorganisms, and can subsequently be changed to nitrate. Ammonia nitrogen in an aqueous solution refers to nitrogen present in the form of free ammonia (also referred to as nonionic ammonia (NH 3 )) or ammonium ion (NH 4 + ). When ammonia is dissolved in water, a part thereof reacts with water to produce ammonium ions, and the other part produces aqueous ammonia (nonionic ammonia).

水におけるアンモニア態窒素の含有量が多すぎると、湖に藍藻が爆発的に増殖し、人の健康を損なうとともに魚類にも有害である。そのため、水におけるアンモニア態窒素の含有量は、水がどれほど窒素含有有機物に汚染されたかの基準であり、厳しく抑制しなければならない。経済の発展に伴って、多くの工業生産は大量のアンモニアを生じ、環境に対するアンモニア汚染源となる。例えば、肥料生産、硝酸、コークス化、石炭ガス、ニトロセルロース、レーヨン、合成ゴム、炭化カルシウム、染料、ワニス、苛性ソーダ、電気メッキ、石油採掘及び石油産品の加工などは、いずれもアンモニア汚染を発生する要因である。そのため、工業廃水又は川や湖などに対して常に迅速に分析し、水におけるアンモニア態窒素のリアルタイム含有量のデータを提供することができるアンモニア態窒素含有量のオンラインモニターは、非常に重要であり、これによって、対応する措置をとり、企業からの廃水が排出基準に達すること、また、川や湖などにおけるアンモニア態窒素の含有量が安全基準内にあることを確保する。   If the content of ammonia nitrogen in the water is too high, cyanobacteria grow explosively in the lake, harming human health and harmful to fish. Therefore, the content of ammonia nitrogen in water is a standard for how much water is contaminated with nitrogen-containing organic matter and must be strictly controlled. With the development of the economy, many industrial production produces a large amount of ammonia, becoming a source of ammonia pollution to the environment. For example, fertilizer production, nitric acid, coking, coal gas, nitrocellulose, rayon, synthetic rubber, calcium carbide, dyes, varnish, caustic soda, electroplating, oil mining and processing of petroleum products all produce ammonia pollution It is a factor. Therefore, online monitoring of ammonia nitrogen content is very important because it can always analyze industrial wastewater or rivers and lakes quickly and provide real time content data of ammonia nitrogen in water. This will take corresponding measures to ensure that the wastewater from companies reaches the discharge standard and that the content of ammonia nitrogen in rivers and lakes is within safety standards.

現在、アンモニア態窒素を測定する方法として、主にサリチル酸―次亜塩素酸塩又はヨウ化水銀を試薬とする分光光度比色法(ネスラー法)、酸塩基の中和滴定法及びイオン電極法がある。   Currently, methods for measuring ammonia nitrogen include spectrophotometric colorimetry (Nessler's method), acid-base neutralization titration method and ion electrode method mainly using salicylic acid-hypochlorite or mercury iodide as reagents. is there.

ネスラー法はアンモニアを測定する典型的な方法であり、多くの国で標準的な分析方法とされている。ヨウ化水銀及びヨウ化カリウムのアルカリ性溶液はアンモニアと反応し、広い波長域に強い吸収を持つ薄赤褐色のコロイド状の化合物を生成する。しかし、ネスラー試薬とアンモニアとの反応は実際的に沈降反応である。混濁又は有色サンプル、或いはアルカリ条件で沈殿を生じる金属イオン及び有機物などが共にあるサンプルについては、予め凝集沈降法又は水蒸気蒸留の前処理を施してから定量を行う必要があり、それ以外にも、試薬の毒性が強く、方法の感度が高くないという欠点がある。   The Nessler method is a typical method for measuring ammonia, and is a standard analytical method in many countries. An alkaline solution of mercury iodide and potassium iodide reacts with ammonia to produce a light reddish brown colloidal compound with strong absorption in a wide wavelength range. However, the reaction between Nessler's reagent and ammonia is actually a precipitation reaction. For turbid or colored samples, or samples that have both metal ions and organic substances that cause precipitation under alkaline conditions, it is necessary to perform pre-treatment after coagulation sedimentation or steam distillation, in addition to that, There are drawbacks that the toxicity of the reagent is strong and the sensitivity of the method is not high.

サリチル酸―次亜塩素酸塩による比色法はニトロプルシドナトリウムの存在下において、アンモニウム及びフェノールが次亜塩素酸イオンと反応して青色化合物を生成するものであり、このような反応はBerthelot反応と呼ばれ、波長697nmに最大吸収を持つ。しかし、次亜塩素酸ナトリウムは安定的なものではなく、調製された直後に使用する必要があるから、モニターされていないオンライン型機器への使用には適合しない。   In the colorimetric method using salicylic acid-hypochlorite, ammonium and phenol react with hypochlorite ions to form a blue compound in the presence of sodium nitroprusside. Such a reaction is called Berthelot reaction. And has maximum absorption at a wavelength of 697 nm. However, sodium hypochlorite is not stable and must be used immediately after it is prepared, so it is not suitable for use in unmonitored online equipment.

酸塩基の滴定法は、試水を加熱して蒸留する必要があり、放出されたアンモニアがホウ酸溶液に吸収され、メチルレッド―メチレンブルーを指示薬とし、酸標準溶液で留出液におけるアンモニウムに対して滴定を行う。測定方法は比較的に煩雑で、測定に時間がかかる。この条件で留出され得る、また滴定の際に酸と反応可能なものが試水に含まれると、測定結果の値は高くなる。   The acid-base titration method requires heating and distilling the sample water, and the released ammonia is absorbed into the boric acid solution, methyl red-methylene blue as an indicator, and acid standard solution against ammonium in the distillate. Titrate. The measurement method is relatively complicated and takes time to measure. If the sample water contains water that can be distilled under these conditions and can react with an acid during titration, the value of the measurement result becomes high.

本発明は、操作が煩雑で、試薬の毒性があり、又は試薬を長期間保存できないなどのような、従来のネスラー試薬による分光光度法、サリチル酸―次亜塩素酸塩による分光光度法、アンモニア電極法などのアンモニア態窒素の検出方法における欠点を克服し、NH−Nに対する自動的なオンライン検出を実現するために、操作が簡単で、迅速で信頼でき、試薬の毒性がなく、またランニングコストが安いフローインジェクションによるアンモニア態窒素の検出方法、及びそのためのフローインジェクションによるアンモニア態窒素の検出装置を提供することを目的とする。 The present invention is a complicated operation, has toxicity of the reagent, or cannot store the reagent for a long period of time, such as spectrophotometry with a conventional Nessler reagent, spectrophotometry with salicylic acid-hypochlorite, ammonia electrode It overcomes the drawbacks in the detection method of the ammonium nitrogen, such as law, in order to realize automatic online detection for NH 3 -N, easy to operate, fast, reliable, non-toxic reagents, also running costs An object of the present invention is to provide a method for detecting ammonia nitrogen by cheap flow injection and an apparatus for detecting ammonia nitrogen by flow injection therefor.

つまり、本発明は、   In other words, the present invention

濃度が0.01mol/l〜0.03mol/lのNaOH溶液を放出液とし、サンプルと通気膜との接触を防止できる深溝を含む気液分離器が接続されている毛管路系に前記放出液を注入し、放出液を有する毛管路に一定量の試水を注入してサンプルゾーンを形成し、ポンプによる輸送によって、サンプルゾーンが放出液と共に毛管−気液分離器流路系において循環的に流動し、気液分離器の深溝を通過する際にアンモニアガスを放出し、このアンモニアガスが溝口部まで上昇し、次いで通気膜を透過し、膜のもう一方の側にある毛管グルーブにおける酸塩基指示薬を含む受液に吸収されてアンモニウムイオンとなり、酸塩基指示薬を変色させ、サンプルゾーンを連続的に循環させてアンモニアを放出させ、アンモニアが吸収された受液を注射ポンプによって比色計のフローセルに輸送し、波長560nmの光で照射し、この光が受液を透過する時の光電圧変化を測定し、換算によってサンプルにおけるアンモニア態窒素の濃度を算出するフローインジェクションによるアンモニア態窒素の検出方法である。   The discharge solution is connected to a capillary channel system in which a NaOH solution having a concentration of 0.01 mol / l to 0.03 mol / l is used as a discharge solution and a gas-liquid separator including a deep groove capable of preventing contact between the sample and the gas permeable membrane is connected. A sample zone is formed by injecting a certain amount of test water into the capillary passage having the discharge liquid, and the sample zone is circulated in the capillary-gas-liquid separator channel system together with the discharge liquid by pumping. As it flows and passes through the deep groove of the gas-liquid separator, ammonia gas is released, this ammonia gas rises up to the groove opening, then permeates through the gas-permeable membrane, and the acid base in the capillary groove on the other side of the membrane Absorbed in the receiver solution containing the indicator, it becomes ammonium ions, discolors the acid-base indicator, continuously circulates through the sample zone to release ammonia, Flow for transporting to a colorimeter flow cell by a radiation pump, irradiating with light with a wavelength of 560 nm, measuring the photovoltage change when this light passes through the receiver, and calculating the concentration of ammonia nitrogen in the sample by conversion This is a method for detecting ammonia nitrogen by injection.

前記一定量の試水は、サンプル注入弁によって循環しているキャリア液に分けて間欠的に注入され、循環する毛管−気液分離器流路において間欠的に分布した複数のサンプルゾーンを形成してもよく、一定量の試水を放出液に間欠的に混合させ、アンモニアガスの放出及び富化を速やかにする。   The predetermined amount of the sample water is intermittently injected into the carrier liquid circulating by the sample injection valve to form a plurality of sample zones intermittently distributed in the circulating capillary-gas-liquid separator flow path. Alternatively, a certain amount of sample water is intermittently mixed with the discharge liquid to expedite the release and enrichment of ammonia gas.

前記酸塩基指示薬を含む受液の酸塩基指示薬は、弱酸性のブロモチモールブルー溶液である。   The received acid-base indicator containing the acid-base indicator is a weakly acidic bromothymol blue solution.

当該方法では、NaOHの希薄溶液を供試サンプルのアンモニア放出液と兼ねてキャリア液とし、サンプルにおけるアンモニウムイオンとヒドロキシ基とが反応してアンモニアガスを生成し、即ちNH ++OH→NH Oである。試水はキャリア液と共に循環し、気液分離器を通過する際にアンモニアガスを放出し、このアンモニアガスが通気膜を透過して受液に入り、酸塩基指示薬溶液(以下、受液という)に吸収されてアンモニウムイオンとなり、前記受液はそのアルカリ性がアンモニウムイオンの増加に伴って増大し、酸塩基指示薬であるブロモチモールブルーは黄緑色から青色に変化し、青色がアンモニウムイオンの濃度の増加に従って深くなるとともに線形関係となるため、波長560nmの光で照射し、光電変換器によりこの光が受液を透過する時の光電圧を測定し、対応するピークの高さを有する応答曲線を取得し、既知の標準サンプルの測定値と比較することにより、試水におけるアンモニア態窒素の濃度を算出することができる。 In this method, a dilute solution of NaOH also serves as a carrier solution that also serves as an ammonia releasing solution of a test sample, and ammonium ions and hydroxy groups in the sample react to generate ammonia gas, that is, NH 4 ++ OH → NH 3. + H 2 O. The test water circulates with the carrier liquid and releases ammonia gas as it passes through the gas-liquid separator. This ammonia gas permeates through the gas permeable membrane and enters the receiving liquid, and the acid-base indicator solution (hereinafter referred to as receiving liquid). As the ammonium ion increases, the alkalinity of the receiver liquid increases as the ammonium ion increases, and the acid-base indicator bromothymol blue changes from yellow-green to blue, and the blue increases the concentration of ammonium ions. Therefore, it is irradiated with light having a wavelength of 560 nm, and the photoelectric voltage when the light passes through the liquid receiver is measured by a photoelectric converter to obtain a response curve having a corresponding peak height. And the density | concentration of ammonia nitrogen in a test water is computable by comparing with the measured value of a known standard sample.

本発明は、上記したアンモニア態窒素の検出方法を実現するために、専用のフローインジェクションによるアンモニア態窒素の検出装置を設計した。   In order to realize the above-described method for detecting ammonia nitrogen, the present invention has designed a device for detecting ammonia nitrogen by dedicated flow injection.

このフローインジェクションによるアンモニア態窒素の検出装置は、毛管によって気液分離器と、光電検出用フローセルと、放出液輸送ポンプP2と、試水輸送ポンプP1と、受液注射ポンプP3と、サンプル注入用の六方弁V1と、七方切替弁V2と、を接続してなり、前記気液分離器に深溝式のアンモニア放出プールが設けられ、このアンモニア放出プールの上部に通気膜及び受液の溝板が順に積層され、前記アンモニア放出プールの深溝の内底面に、その両端にそれぞれ入口接続管及び出口接続管が設置された放出液の毛管導流グルーブが設けられ、前記溝板の下面に、下へ向けて開口してその両端に入口接続管及び出口接続管が設置された受液の毛管グルーブが設けられ、そのうち出口接続管が光電比色フローセルに連通され、サンプル注入用の前記六方弁V1はその接続口2と接続口5との間にサンプリングループSが接続され、その接続口4がアンモニア放出液の毛管グルーブの入口接続管に連通され、その接続口1が輸送ポンプP1に連通される試水の廃液の出口であり、その接続口6が試水の入口であり、その接続口3が七方弁V2の接続口5に接続され、前記七方弁V2はその接続口1が溝板における受液の入口接続管に連通され、その接続口2が注射ポンプP3に接続され、その接続口3が受液の入口であり、その接続口4が放出液の入口であり、その接続口6が放出液輸送ポンプP2によってアンモニア放出プールにおけるキャリア液の毛管グルーブの出口接続管に連通され、その接続口7が放出液の廃液の出口である。   This ammonia-nitrogen detection apparatus by flow injection includes a gas-liquid separator, a photoelectric detection flow cell, a discharge liquid transport pump P2, a test water transport pump P1, a liquid receiving injection pump P3, and a sample injection by capillary. A six-way valve V1 and a seven-way switching valve V2 are connected, and the gas-liquid separator is provided with a deep groove type ammonia discharge pool, and a ventilation film and a liquid receiving groove plate are provided above the ammonia discharge pool. Are laminated in order, and a capillary guide groove for the discharge liquid is provided on the inner bottom surface of the deep groove of the ammonia discharge pool, and an inlet connection pipe and an outlet connection pipe are respectively installed at both ends thereof. A liquid-receiving capillary groove having an inlet connecting pipe and an outlet connecting pipe installed at both ends thereof is provided, and the outlet connecting pipe communicates with the photoelectric colorimetric flow cell. A sampling loop S is connected between the connection port 2 and the connection port 5 of the hexagonal valve V1 for injection, and the connection port 4 is communicated with an inlet connection tube of a capillary groove for ammonia releasing liquid. 1 is an outlet for the waste water of the test water communicated with the transport pump P1, its connection port 6 is an inlet of the test water, its connection port 3 is connected to the connection port 5 of the seven-way valve V2, The connection port 1 of the valve V2 communicates with the inlet connection pipe for receiving liquid in the groove plate, the connection port 2 is connected to the injection pump P3, the connection port 3 is an inlet for receiving liquid, and the connection port 4 is The outlet 6 is connected to the outlet connecting pipe of the capillary groove of the carrier liquid in the ammonia releasing pool by the outlet liquid transport pump P2, and the connecting port 7 is the outlet of the waste liquid of the discharged liquid.

薄膜状の通気膜については、アンモニア放出プールの上部と通気膜との間に支持プレートを設置する必要がある場合もあり、前記支持プレートに、溝板における受液の毛管グルーブに合わせるスルーホールが設けられる。支持プレートは通気膜を支持し、また上昇しているアンモニアガスを通過させることができる。   For thin-film breathable membranes, it may be necessary to install a support plate between the upper part of the ammonia release pool and the vent membrane, and the support plate has through holes that match the capillary grooves of the liquid receiving in the groove plate. Provided. The support plate supports the gas permeable membrane and allows the rising ammonia gas to pass therethrough.

本装置においては、まず、ポンプP1によって試水をバルブV1における定量サンプリングループSに輸送し、注射ポンプP3によって受液を気液分離器の溝板における受液グルーブ及びフローセルに注入し、ポンプP2による輸送によって、放出液を放出液の毛管路及びアンモニア放出プールの毛管グルーブに輸送し、その後、バルブV1を切り替えてサンプリングループを放出液の流路に接続し、そしてバルブV2を切り替えて放出液の毛管路をループに形成し、ポンプP2の作用で放出液を循環的に流動させることができる。このようにして、ポンプP2の作用で、サンプリングループにおける試水は、放出液と共に循環的に流動して且つ絶えず放出液へ互いに拡散する1つのサンプルゾーンを形成し、気液分離器を通過する際に、グルーブの上方で急激に拡大する深溝式の気体上昇溝が現れ、これによって、サンプルにおけるアンモニアが放出されて上昇し、通気膜を通過して溝板のグルーブにおける受液に吸収され、酸塩基指示薬を変色させ、アンモニアの放出が終了した後、注射ポンプを作動させ、変色した受液をフローセルに輸送し、これによって、サンプルにおけるアンモニアの含有量を測定することができる。   In this apparatus, first, the test water is transported to the quantitative sampling loop S in the valve V1 by the pump P1, and the received liquid is injected into the receiving groove and the flow cell in the groove plate of the gas-liquid separator by the injection pump P3. The release liquid is transported to the discharge liquid capillary channel and to the capillary groove of the ammonia discharge pool by means of the transport by means of, and then the valve V1 is switched to connect the sampling loop to the discharge liquid flow path, and the valve V2 is switched to release the liquid. The capillary passage is formed in a loop, and the discharge liquid can be made to flow cyclically by the action of the pump P2. In this way, under the action of the pump P2, the sample water in the sampling loop forms one sample zone that circulates with the discharge liquid and continually diffuses into the discharge liquid and passes through the gas-liquid separator. In this case, a deep groove type gas rising groove that suddenly expands above the groove appears, whereby ammonia in the sample is released and rises, passes through the gas permeable membrane and is absorbed by the liquid receiving in the groove of the groove plate, After the acid-base indicator is discolored and the release of ammonia is completed, the injection pump is operated, and the discolored receiving liquid is transported to the flow cell, whereby the content of ammonia in the sample can be measured.

本装置のさらなる改良は下記の通りである。   Further improvements of the device are as follows.

受液に存在している可能性がある微気泡が光電検出を妨げることを避けるために、受液の毛管グルーブの出口端はスルーホールを通過して溝板の上面へ延伸し、上へ向けて開口した毛管グルーブとなり、また、グルーブの末端が広い溝に拡大し、溝板の上に通気膜及びカバープレートが複合され、カバープレートの下面に、前記溝板の上面における広い溝の溝口部に対向してそれに合わせるガス収集溝が設けられ、ガス収集溝に、大気に連通される排気穴が設けられる。受液に微気泡が含まれる時に、微気泡は受液と共に溝板の下面におけるグルーブから上面におけるグルーブまで上昇し、気泡が広い溝において上昇し、溝板の上に積層された通気膜を透過してカバープレートのガス収集溝まで上昇し、排気穴から大気に排出され、そのため、気泡が光電フローセルに入り込むことにより検出精度に影響する現象を防止することができる。   In order to prevent microbubbles that may be present in the receiving solution from interfering with photoelectric detection, the outlet end of the receiving tube's capillary groove extends through the through hole to the upper surface of the groove plate and faces upward. And the groove end is expanded into a wide groove, a ventilation film and a cover plate are combined on the groove plate, and the groove opening portion of the wide groove on the upper surface of the groove plate is formed on the lower surface of the cover plate. A gas collection groove is provided opposite to the gas collection groove, and an exhaust hole communicating with the atmosphere is provided in the gas collection groove. When the liquid receiver contains microbubbles, the microbubbles rise together with the liquid from the groove on the lower surface of the groove plate to the groove on the upper surface, and the air bubbles rise in the wide groove and permeate the gas permeable membrane laminated on the groove plate. Then, the gas rises to the gas collecting groove of the cover plate and is discharged to the atmosphere from the exhaust hole. Therefore, it is possible to prevent the phenomenon that affects the detection accuracy by the bubbles entering the photoelectric flow cell.

本装置においては、標準サンプルの測定を便宜にするために、サンプル注入弁V1の接続口6と試水との接続管路に、試水及び標準サンプルの変換用の1個〜3個の電磁弁が設けられる。当該装置において、気液分離器における放出プールは深溝式であり、プールの底部におけるグルーブから放出されるアンモニアガスが深溝を通過して上へ拡散し、そして通気膜を通過して受液系に入り込む。通気膜は、水ではなく気体のみが透過可能であるため、アンモニアガスと液体との分離をさらに確保する。深溝は通気膜をグルーブにおけるサンプルから離し、サンプルにおけるパレットのような不純物で通気膜の通気穴が詰まることを避ける。本検出装置は、自動制御システムによって所定のプロセスに基づいて各バルブを変換させ、アンモニアに対する自動的なオンライン検出を実現することができる。   In this apparatus, for convenience of measurement of the standard sample, 1 to 3 electromagnetic waves for conversion of the test water and the standard sample are connected to the connection port 6 of the sample injection valve V1 and the test water. A valve is provided. In this apparatus, the discharge pool in the gas-liquid separator is a deep groove type, and ammonia gas released from the groove at the bottom of the pool diffuses upward through the deep groove, and passes through the ventilation membrane to the liquid receiving system. Get in. The gas permeable membrane allows only gas, not water, to pass therethrough, further ensuring separation of ammonia gas and liquid. The deep groove keeps the gas permeable membrane away from the sample in the groove and avoids clogging the vent holes in the gas permeable membrane with impurities like pallets in the sample. This detection device can convert each valve based on a predetermined process by an automatic control system, and can realize automatic online detection for ammonia.

以上により、本発明はフローインジェクション分析法(FIA)及び専用の検出装置を使用し、水酸化ナトリウムを放出液とし、弱酸性の酸塩基指示薬を含む蒸留水を受液とすることによって、NH−Nに対する自動的なオンライン検出を実現し、また検出過程が簡単且つ迅速で、検出データが正確で信頼でき、1回の検出のために注入される試水は50μl〜1mlのみであり、消費される試薬の量が極めて小さく、ランニングコストが安く、試薬の毒性がなく、且つ汚染物質を排出しない。操作が煩雑で、試薬に毒性があり、又は試薬を長期間保存できず、機器の価格が高いなどのような、ネスラー試薬による分光光度法、サリチル酸−次亜塩素酸塩による分光光度法、及びイオンクロマトグラフィーなどの方法における欠点を克服した。 As described above, the present invention uses a flow injection analysis method (FIA) and a dedicated detection device, and by using sodium hydroxide as a release liquid and distilled water containing a weakly acidic acid-base indicator as a receiving liquid, NH 3 Automatic online detection for -N, simple and rapid detection process, accurate and reliable detection data, only 50 μl to 1 ml of sample water injected for one detection, consumption The amount of reagent produced is extremely small, the running cost is low, the reagent is not toxic and does not discharge contaminants. Spectrophotometry with Nessler's reagent, salicylic acid-hypochlorite spectrophotometry, such as cumbersome operation, reagent toxic, or inability to store reagent for long periods of time, and high instrument price, and Overcoming drawbacks in methods such as ion chromatography.

フローインジェクションによるアンモニア態窒素の比色検出システムのサンプリング状態及び循環富化状態の原理のフローチャートである。It is a flowchart of the principle of the sampling state and circulation enrichment state of the colorimetric detection system of ammonia nitrogen by flow injection. フローインジェクションによるアンモニア態窒素の比色検出システムのサンプリング状態及び循環富化状態の原理のフローチャートである。It is a flowchart of the principle of the sampling state and circulation enrichment state of the colorimetric detection system of ammonia nitrogen by flow injection. 気液分離器の立体構造の模式図である。It is a schematic diagram of the three-dimensional structure of a gas-liquid separator. 気液分離器の断面構造の模式図である。It is a schematic diagram of the cross-sectional structure of a gas-liquid separator. 図3のA−Aによる断面図である。It is sectional drawing by AA of FIG. 図3のB−Bによる断面図である。It is sectional drawing by BB of FIG. フローインジェクションによるアンモニア態窒素の比色検出装置のシステムフローの構成模式図である。It is a structure schematic diagram of the system flow of the colorimetric detection apparatus of ammonia nitrogen by flow injection. (1)、(2)はそれぞれ図6におけるバルブV1、V2の切り替え状態を示す図である。(1), (2) is a figure which shows the switching state of valve | bulb V1, V2 in FIG. 6, respectively. 標準サンプルの測定システムを含むフローインジェクションによるアンモニア態窒素の比色検出装置のシステムフローの構成模式図である。It is a structure schematic diagram of the system flow of the colorimetric detection device of ammonia nitrogen by flow injection including a standard sample measurement system.

以下、本発明のフローインジェクションによるアンモニア態窒素の比色検出方法の実施フロー及び操作過程を図1(1)に基づいて説明する。   Hereinafter, the implementation flow and operation process of the colorimetric detection method for ammonia nitrogen by flow injection according to the present invention will be described based on FIG.

本検出方法によるアンモニア態窒素の検出原理を図1(1)、図1(2)に示す。   The detection principle of ammonia nitrogen by this detection method is shown in FIGS. 1 (1) and 1 (2).

図1(1)、図1(2)は、いずれも上部が発色受液の毛管路系で、下部が放出液の毛管路系で、両方が気液分離器で接続されることを示す。   FIGS. 1 (1) and 1 (2) both show that the upper part is a color-receiving liquid capillary channel system, the lower part is a discharge liquid capillary system, and both are connected by a gas-liquid separator.

図1(1)は、システムがサンプリング状態であることを示し、受液は注射ポンプによって毛管に注入され、通気膜の上方に位置する、気液分離器上部で毛管グルーブを通過してフローセルへ通液し、このフローセルから流れ出し、上部の毛管路系を充満させ、その後注射ポンプを止める。一方、蠕動ポンプは切換弁によって放出液であるNaOHの希薄溶液を下部の管路系に通液させ、矢印の方向に従って末端まで流動させ、そして排出させる。試水は注入弁によって管路の途中に注入され、1つのサンプルゾーンが形成される。   FIG. 1 (1) shows that the system is in the sampling state, and the receiving liquid is injected into the capillary tube by an injection pump and passes through the capillary groove at the top of the gas-liquid separator located above the ventilation membrane to the flow cell. Pass through and flow out of this flow cell to fill the upper capillary system and then stop the injection pump. On the other hand, the peristaltic pump causes a dilute solution of NaOH as a discharge liquid to flow through the lower pipeline system through the switching valve, to flow to the end in the direction of the arrow, and to discharge. The sample water is injected in the middle of the pipe line by an injection valve to form one sample zone.

図1(2)は、システムが富化状態であることを示し、下部の管路は切換弁によって密閉したシステムとなり、放出液が循環的に流動し、試水が気液分離器のグルーブを経由して流れる時、水におけるアンモニアガスが深溝を通過して上昇し、通気膜を透過して受液に受けられ、サンプルの連続的循環に従って、アンモニアが留まった受液に富化される。図における拡大部は、下部のサンプルゾーンが流動している放出液において拡散状態となっていることを示し、サンプルにおけるアンモニア(NH)が放出されて通気膜まで上昇し、膜の上方の受液に入り込む。アンモニアが適当に富化された後、注射ポンプによって受液をフローセルへ押して光電検出を行い、ピークの高さの曲線図を取得した後、換算によってアンモニアの含有量を算出する。 Fig. 1 (2) shows that the system is in an enriched state, the lower pipe line becomes a system sealed by a switching valve, the discharge liquid flows cyclically, and the test water moves through the groove of the gas-liquid separator. When flowing through, the ammonia gas in the water rises through the deep groove, permeates through the gas permeable membrane and is received by the receiving liquid, and is enriched in the receiving liquid in which ammonia remains as the sample continuously circulates. The enlarged portion in the figure indicates that the lower sample zone is in a diffused state in the flowing discharge liquid, and ammonia (NH 3 ) in the sample is released and rises to the gas permeable membrane. Get into the liquid. After the ammonia is appropriately enriched, the receiving liquid is pushed into the flow cell by an injection pump to perform photoelectric detection, and after obtaining a peak height curve, the ammonia content is calculated by conversion.

図2〜図5は気液分離器にかかる実施形態の構造を示す。   2-5 shows the structure of embodiment concerning a gas-liquid separator.

気液分離器は図2に示すように、下から上に、放出液の入口接続管11及び出口接続管10が設けられるアンモニア放出プール13と、支持プレート15と、通気膜16と、受液の入口接続管12及び出口接続管14が設けられる溝板17と、通気膜16’と、排気穴19が設けられるカバープレート18と、を順に重ね合わせて接続することにより構成される。   As shown in FIG. 2, the gas-liquid separator comprises, from bottom to top, an ammonia discharge pool 13 provided with an inlet connection pipe 11 and an outlet connection pipe 10 for the discharge liquid, a support plate 15, a gas permeable membrane 16, and a liquid receiver. The groove plate 17 provided with the inlet connection pipe 12 and the outlet connection pipe 14, the gas permeable membrane 16 ', and the cover plate 18 provided with the exhaust holes 19 are sequentially overlapped and connected.

図3は分離器の内部構造を示す。アンモニア放出プール13に深溝23が設けられ、溝内の底面に放出液の毛管導流グルーブ24(図5参照)が設けられ、グルーブの一端に入口接続管11が接続され、他端が出口接続管10に連通される。通気膜16の下側に膜を支持するための支持プレート15が設けられ、支持プレートにスルーホール25が設けられる。溝板17の下面に受液グルーブ21が設けられ、その上面に排気グルーブ22が設けられ、両グルーブはスルーホール26で連通される。溝板17とカバープレート18との間には、支持プレート15のスルーホール25に合わせる通気膜16’が設けられる。   FIG. 3 shows the internal structure of the separator. A deep groove 23 is provided in the ammonia discharge pool 13, a capillary flow guide groove 24 (see FIG. 5) of the discharge liquid is provided on the bottom surface of the groove, the inlet connection pipe 11 is connected to one end of the groove, and the other end is connected to the outlet. It communicates with the tube 10. A support plate 15 for supporting the membrane is provided below the gas permeable membrane 16, and a through hole 25 is provided in the support plate. A liquid receiving groove 21 is provided on the lower surface of the groove plate 17, an exhaust groove 22 is provided on the upper surface thereof, and both grooves communicate with each other through a through hole 26. Between the groove plate 17 and the cover plate 18, a gas permeable membrane 16 ′ that matches the through hole 25 of the support plate 15 is provided.

上記分離器は接続管11、10によって放出液の毛管路系へ接続され、また接続管12、14によって受液の毛管路系へ接続される。試水が放出液と共に入口接続管11からグルーブ24へ流れ込むと、アンモニアガスがグルーブ24から上へ放出され、深溝23の上部まで上昇して支持プレート15のスルーホール25を通過し、通気膜16を透過して溝板17の受液グルーブ21に入り、受液に受けられる。   The separator is connected to the capillary line system of the discharged liquid by connecting pipes 11 and 10, and is connected to the capillary line system of the receiving liquid by connecting pipes 12 and 14. When the test water flows into the groove 24 from the inlet connecting pipe 11 together with the discharge liquid, ammonia gas is released upward from the groove 24, rises to the upper part of the deep groove 23, passes through the through hole 25 of the support plate 15, and the ventilation film 16. And then enters the liquid receiving groove 21 of the groove plate 17 and is received by the liquid receiving.

受液に微気泡が含まれると、受液が穴26を通過する時に、そのうち微気泡がグルーブ22まで上昇し、ガス収集溝20の下側における通気膜を通過する際に通気膜16’を透過してガス収集溝20に入り、そして排気穴19から系外へ排出される。   If the received liquid contains fine bubbles, when the received liquid passes through the hole 26, the fine bubbles rise to the groove 22 and pass through the gas permeable membrane 16 'when passing through the gas permeable membrane below the gas collecting groove 20. The gas passes through the gas collecting groove 20 and is discharged from the exhaust hole 19 to the outside of the system.

図6はフローインジェクションによるアンモニア態窒素の比色検出装置のシステムフローの構成を示し、以下、図6に基づいて当該装置によるアンモニア態窒素検出の動作過程を説明し、その工程は下記の通りである。   FIG. 6 shows the configuration of the system flow of the colorimetric detection device for ammonia nitrogen by flow injection. The operation process of ammonia nitrogen detection by the device will be described below with reference to FIG. is there.

[1.洗浄]
a.V1、V2は例えば図6のV1B、V2Bの状態に切り替えられ、蠕動ポンプP2は作動し、放出液は、放出液→V2の接続口4→接続口5→V1の接続口3→接続口4→気液分離器→蠕動ポンプP2→V2の接続口6→接続口7→廃液瓶という流路に従って流動し、分離器に残留したNHをt1秒間洗浄する。
[1. Washing]
a. V1 and V2 are switched to, for example, the states of V1B and V2B in FIG. 6, the peristaltic pump P2 is activated, and the discharged liquid is discharged liquid → V2 connection port 4 → connection port 5 → V1 connection port 3 → connection port 4 → Gas-liquid separator → Peristaltic pump P2 → Connection port 6 of V2 → Connection port 7 → Flow along the flow path of waste liquid bottle, and wash NH 3 remaining in the separator for t1 second.

b.注射ポンプP3が作動し、光電圧がベースラインに戻るまでに受液を注射ポンプ→V2の接続口2→接続口1→気液分離器→フローセル→廃液瓶という流路に従って流動させ、20秒維持して洗浄を終了させる。   b. By the time the injection pump P3 is activated and the photovoltage returns to the baseline, the received liquid is made to flow according to the flow path of injection pump → V2 connection port 2 → connection port 1 → gas-liquid separator → flow cell → waste liquid bottle, 20 seconds Maintain to finish washing.

[2.サンプリング]
c.V1はV1B状態のままで、V2は例えば図6(2)のV2Aの状態に切り替えられ、P2は止まり、P1は作動し、試水を試水瓶→V1の接続口6→接続口5→接続口2→接続口1→蠕動ポンプP1→廃液瓶という流路に従って60秒間流動させる。試水がサンプリングループSに充満した。
[2. sampling]
c. V1 remains in the V1B state, V2 is switched to, for example, the state of V2A in FIG. 6 (2), P2 stops, P1 operates, and the test water is supplied from the test bottle → V1 connection port 6 → connection port 5 → connection. It is made to flow for 60 seconds according to the flow path of port 2-> connection port 1-> peristaltic pump P1-> waste bottle. The sample water filled the sampling loop S.

[3.サンプルの途中注入]
d.P1は止まり、V1はV1Bの状態のままで、V2はV2Bの状態に切り替えられ、P2は作動し、放出液は引き続き工程aの流路に従って10秒間流動した後、V1は例えば図6(1)のV1Aの状態に切り替えられ、P2は再度25秒間作動し、流路は放出液→V2の接続口4→接続口5→V1の接続口3→接続口2→接続口5→接続口4→気液分離器→蠕動ポンプP2→V2の接続口6→接続口7→廃液瓶であり、サンプリングループSにおける試水を放出液流の途中で注入する。
[3. Sample injection]
d. P1 stops, V1 remains in the state of V1B, V2 is switched to the state of V2B, P2 is activated, and the discharge liquid continues to flow for 10 seconds according to the flow path of step a. ) Is switched to the state of V1A, and P2 operates again for 25 seconds, and the flow path is discharged liquid → V2 connection port 4 → connection port 5 → V1 connection port 3 → connection port 2 → connection port 5 → connection port 4 → Gas-liquid separator → Peristaltic pump P2 → V2 connection port 6 → connection port 7 → waste liquid bottle, and sample water in the sampling loop S is injected in the middle of the discharge liquid flow.

[4.循環富化]
e.V1はV1Aの状態のままで、V2は例えば図6(2)のV2Aの状態に切り替えられると、放出液は密閉したシステムとなり、ポンプP2は引き続き作動し、放出液は試水を押して下記の流路のようにt3秒間循環的に流動させ、試水におけるアンモニアガスを放出させ、受液に富化させる。
V1の接続口3→2→5→4→気液分離器
↑ ↓
V2の接続口5←V2の接続口6←蠕動ポンプP2
[4. Circulation enrichment]
e. When V1 remains in the state of V1A and V2 is switched to the state of V2A in FIG. 6 (2), for example, the discharge liquid becomes a sealed system, the pump P2 continues to operate, and the discharge liquid pushes the test water to It is made to flow cyclically for t3 seconds like a flow path, the ammonia gas in a test water is discharge | released, and it enriches in a receiving liquid.
V1 port 3 → 2 → 5 → 4 → Gas-liquid separator
↑ ↓
V2 port 5 ← V2 port 6 ← Peristaltic pump P2

[5.測定]
f.P2は止まり、t4秒後、V1はV1Aの状態のままで、V2はV2B状態に切り替えられ、循環は終了する。注射ポンプP3は作動し、注射ポンプP3→V2の接続口2→接続口1→気液分離器→フローセル→廃液瓶に従って、気液分離器におけるアンモニアが吸収された受液を光電比色フローセルへ押し、光電圧を測定し、ベースラインとピークを計測し、アンモニアの含有量を算出する。
[5. Measurement]
f. P2 stops, and after t4 seconds, V1 remains in the state of V1A, V2 is switched to the V2B state, and the circulation ends. The injection pump P3 is activated, and according to the injection port P3 → V2 connection port 2 → connection port 1 → gas-liquid separator → flow cell → waste liquid bottle, the ammonia-absorbed liquid received in the gas-liquid separator is supplied to the photoelectric colorimetric flow cell. Push, measure the photovoltage, measure the baseline and peak, and calculate the ammonia content.

図7は標準サンプルの測定システムを含むフローインジェクションによるアンモニア態窒素の検出装置のフローチャートであり、図6のシステムに3つの電磁弁V3、V4、V5を追加したものである。   FIG. 7 is a flow chart of an ammonia-nitrogen detection apparatus by flow injection including a standard sample measurement system, in which three solenoid valves V3, V4, and V5 are added to the system of FIG.

アンモニア態窒素検出の実施例
[1.試薬の調製]
放出液の調製:分析用水酸化ナトリウム0.8gを量り、水100mlに溶解させ、1000mlの目盛り線まで水を添加して均一に振り混ぜる。濃度0.02mol/lのNaOH溶液を作製した。 受液の調製:ブロモチモールブルー50mgを量り、小さいビーカーに置き、無水エタノール8mlを添加して溶解させた後、容量が1000mlの瓶に移し、水を添加して1000mlに近づく時、黄褐色(pH=6.7)になるまで0.02mol/lのNaOHを添加し、水で1000mlに定容する。
Example of detection of ammonia nitrogen [1. Preparation of reagents]
Preparation of release solution: 0.8 g of sodium hydroxide for analysis is weighed and dissolved in 100 ml of water, and water is added to the 1000 ml scale line and shaken uniformly. A NaOH solution having a concentration of 0.02 mol / l was prepared. Preparation of receiving solution: Weigh 50 mg of bromothymol blue, place in a small beaker, add 8 ml of absolute ethanol to dissolve, transfer to a bottle with a volume of 1000 ml, and add water to approach 1000 ml. Add 0.02 mol / l NaOH until pH = 6.7) and make up to 1000 ml with water.

また、200mg/lより濃度が大きいアンモニア態窒素の試水に対しては、受液のpHを6.2程度(色はpH=6.7の場合より黄色い)に調整することができる。   In addition, for ammonia nitrogen test water having a concentration higher than 200 mg / l, the pH of the receiver solution can be adjusted to about 6.2 (color is yellower than in the case of pH = 6.7).

標準サンプルの調製:2セットの標準サンプルを調製し、セット毎の三つの標準サンプルにおけるアンモニア態窒素の含有量(mg/l)はそれぞれ下記の通りである。   Preparation of standard samples: Two sets of standard samples were prepared, and the contents (mg / l) of ammonia nitrogen in the three standard samples for each set were as follows.

セット1:
標準サンプル1:50mg/l、標準サンプル2:70mg/l、標準サンプル3:100mg/l
Set 1:
Standard sample 1: 50 mg / l, Standard sample 2: 70 mg / l, Standard sample 3: 100 mg / l

セット2:
標準サンプル1:800mg/l、標準サンプル2:1000mg/l、標準サンプル3:1200mg/l。
Set 2:
Standard sample 1: 800 mg / l, standard sample 2: 1000 mg / l, standard sample 3: 1200 mg / l.

[2.実験]
上記のような洗浄、サンプリング、サンプルの途中注入、循環富化、測定という操作工程に基づいてアンモニアを検出する。
[2. Experiment]
Ammonia is detected based on the operation steps such as washing, sampling, halfway injection of sample, circulation enrichment, and measurement.

(1)サンプル1
セット1の標準サンプルを参照とし、標準サンプルとサンプル1の測定を行い(富化時間:130秒、静置時間:25秒、洗浄回数:5回とする)、データは下記の表の通りである。

Figure 2011508227
(1) Sample 1
Measure the standard sample and sample 1 with reference to the standard sample of set 1 (enrichment time: 130 seconds, settling time: 25 seconds, number of washings: 5 times), and data are as shown in the table below is there.
Figure 2011508227

(2)サンプル2
セット1の標準サンプルを参照として、標準サンプルとサンプル2との測定を行い(富化時間:100秒、静置時間:5秒、洗浄回数:12回とする)、データは下記の表の通りである。

Figure 2011508227
(2) Sample 2
Measure the standard sample and sample 2 with reference to the standard sample of set 1 (enrichment time: 100 seconds, settling time: 5 seconds, number of washings: 12 times), and data are as shown in the table below It is.
Figure 2011508227

上記の2つの実験から、当該方法によって測定されたサンプルのアンモニア態窒素の濃度はサンプルの実際の濃度に比べ、誤差が極めて小さいことがわかり、これは検出精度が高いことを示す。   From the above two experiments, it can be seen that the ammonia nitrogen concentration of the sample measured by the method has a very small error compared to the actual concentration of the sample, which indicates that the detection accuracy is high.

10 (放出液の)出口接続管
11 (放出液の)入口接続管
12 (受液の)入口接続管
13 アンモニア放出プール
14 (受液の)出口接続管
15 支持プレート
16、16’ 通気膜
17 溝板
18 カバープレート
19 排気穴
20 ガス収集溝
21 受液グルーブ (受液の)毛管グルーブ
22 排気グルーブ
23 放出プールの深溝
24 毛管導流グルーブ
25 スルーホール
26 スルーホール
P1 試水輸送ポンプ
P2 放出液輸送ポンプ
P3 受液注射ポンプ
V1 六方弁
V2 七方弁、七方逆転弁
10 (Discharged liquid) outlet connection pipe 11 (Discharged liquid) inlet connection pipe 12 (Received liquid) inlet connection pipe 13 Ammonia discharge pool 14 (Received liquid) outlet connection pipe 15 Support plates 16, 16 ′ Ventilation membrane 17 Groove plate 18 Cover plate 19 Exhaust hole 20 Gas collecting groove 21 Receiving groove (receiving liquid) Capillary groove 22 Exhausting groove 23 Deep groove 24 of discharge pool Capillary flow guide groove 25 Through hole 26 Through hole P1 Test water transport pump P2 Emission liquid Transport pump P3 Receiving injection pump V1 Six-way valve V2 Seven-way valve, Seven-way reverse valve

Claims (7)

濃度が0.01mol/l〜0.03mol/lのNaOH溶液を放出液とし、
サンプルと通気膜との接触を防止するための深溝を含む気液分離器が接続されている毛管路系に前記放出液を注入し、
前記放出液を有する毛管路に一定量の試水を注入してサンプルゾーンを形成し、
ポンプによる輸送によって、前記サンプルゾーンが前記放出液と共に前記毛管路系において循環的に流動し、前記気液分離器の前記深溝を通過する際にアンモニアガスを放出し、
このアンモニアガスが溝口部まで上昇し、次いで前記通気膜を透過し、前記通気膜のもう一方の側にある毛管グルーブにおける酸塩基指示薬を含む受液に吸収され、前記酸塩基指示薬を変色させ、
アンモニアガスの放出が終了するまでに前記サンプルゾーンを連続的に循環させ、アンモニアガスが吸収された前記受液を注射ポンプによって比色計のフローセルに移送し、波長560nmの光で照射し、
この光が前記受液を透過する時の光電圧変化を測定し、換算によって前記試水におけるアンモニア態窒素の濃度を算出する、
ことを特徴とするフローインジェクションによるアンモニア態窒素の比色検出方法である。
A NaOH solution having a concentration of 0.01 mol / l to 0.03 mol / l is used as a release solution,
Injecting the release liquid into the capillary system to which a gas-liquid separator including a deep groove for preventing contact between the sample and the gas permeable membrane is connected,
A sample zone is formed by injecting a certain amount of sample water into the capillary passage having the discharge liquid;
By pumping, the sample zone flows cyclically in the capillary system with the discharge liquid, releasing ammonia gas as it passes through the deep groove of the gas-liquid separator,
This ammonia gas rises up to the groove opening, then permeates through the gas permeable membrane, is absorbed in the liquid containing the acid base indicator in the capillary groove on the other side of the gas permeable membrane, discolors the acid base indicator,
The sample zone is continuously circulated until the end of the release of the ammonia gas, the receiver solution in which the ammonia gas is absorbed is transferred to the flow cell of the colorimeter by an injection pump, and irradiated with light having a wavelength of 560 nm,
Measure the change in photovoltage when this light passes through the receiver, and calculate the concentration of ammonia nitrogen in the sample water by conversion.
This is a method for colorimetric detection of ammonia nitrogen by flow injection.
前記酸塩基指示薬はブロモチモールブルーであり、前記受液は弱酸性のブロモチモールブルー溶液であることを特徴とする請求項1に記載のアンモニア態窒素の比色検出方法。   The method for colorimetric detection of ammonia nitrogen according to claim 1, wherein the acid-base indicator is bromothymol blue, and the receiving solution is a weakly acidic bromothymol blue solution. 一定量の前記試水はサンプル注入弁によってキャリア液に分けて間欠的に注入され、循環する毛管−気液分離器流路に間欠的に分布した複数の前記サンプルゾーンを形成することを特徴とする請求項1に記載のアンモニア態窒素の比色検出方法。   A predetermined amount of the sample water is intermittently injected into a carrier liquid by a sample injection valve to form a plurality of sample zones intermittently distributed in a circulating capillary-gas-liquid separator flow path. The colorimetric detection method for ammonia nitrogen according to claim 1. 毛管によって気液分離器と、光電検出用フローセルと、放出液輸送ポンプ(P2)と、試水輸送ポンプ(P1)と、受液注射ポンプ(P3)と、サンプル注入用の六方弁(V1)と、七方逆転弁(V2)と、を接続してなり、
前記気液分離器に深溝式のアンモニア放出プール(13)が設けられ、
前記アンモニア放出プールの上部に、通気膜(16)と受液溝板(17)とが順に積層され、
前記アンモニア放出プールの深溝(23)の内底面に、その両端にそれぞれ入口接続管(11)と出口接続管(10)とが設置された放出液の毛管導流グルーブ(24)が設けられ、
前記溝板(17)の下面に、下へ向けて開口してまたその両端に入口接続管(12)と出口接続管(14)とが設置された受液の毛管グルーブ(21)が設けられ、
そのうち前記出口接続管(14)が光電比色フローセルに連通され、前記六方弁(V1)における接続口(2)と接続口(5)との間にサンプリングループ(S)が接続され、サンプル注入用の前記六方弁(V1)の接続口(4)がアンモニア放出液の前記毛管導流グルーブ(24)の前記入口接続管(11)に連通され、前記六方弁(V1)の接続口(1)が前記輸送ポンプ(P1)によって輸送される試水の廃液の出口であり、接続口(6)が前記試水の入口であり、
接続口(3)が前記七方弁(V2)の前記接続口(5)に接続され、前記七方弁(V2)の接続口(1)が前記溝板(17)における受液の入口接続管(12)に連通され、接続口(2)が前記注射ポンプ(P3)に接続され、前記七方弁(V2)の接続口(3)が前記受液の接続口であり、その接続口(4)が放出液の接続口であり、その接続口(6)が前記放出液輸送ポンプ(P2)によって前記放出液の前記毛管導流グルーブ(24)の前記出口接続管(10)に連通され、その接続口7が前記放出液の廃液の出口である、
ことを特徴とするフローインジェクションによるアンモニア態窒素の比色検出装置。
A gas-liquid separator, a photoelectric detection flow cell, a discharge liquid transport pump (P2), a test water transport pump (P1), a liquid receiving injection pump (P3), and a six-way valve for sample injection (V1). And a seven-way reversing valve (V2)
The gas-liquid separator is provided with a deep groove type ammonia discharge pool (13),
On the upper part of the ammonia release pool, a gas permeable membrane (16) and a liquid receiving groove plate (17) are sequentially laminated,
On the inner bottom surface of the deep groove (23) of the ammonia discharge pool, there is provided a capillary flow guide groove (24) for the discharge liquid with an inlet connection pipe (11) and an outlet connection pipe (10) installed at both ends thereof,
On the lower surface of the groove plate (17), there is provided a liquid-receiving capillary groove (21) opened downward and having an inlet connection pipe (12) and an outlet connection pipe (14) installed at both ends thereof. ,
Among them, the outlet connection pipe (14) communicates with the photoelectric colorimetric flow cell, and a sampling loop (S) is connected between the connection port (2) and the connection port (5) in the six-way valve (V1), and sample injection The connection port (4) of the six-way valve (V1) for use is communicated with the inlet connection tube (11) of the capillary flow groove (24) for ammonia release liquid, and the connection port (1 of the hexagonal valve (V1)) ) Is the outlet of the waste water of the test water transported by the transport pump (P1), and the connection port (6) is the inlet of the test water,
The connection port (3) is connected to the connection port (5) of the seven-way valve (V2), and the connection port (1) of the seven-way valve (V2) is connected to the inlet of liquid receiving in the groove plate (17). The pipe (12) communicates, the connection port (2) is connected to the injection pump (P3), the connection port (3) of the seven-way valve (V2) is the connection port for the liquid receiver, and the connection port (4) is a connection port of the discharge liquid, and the connection port (6) communicates with the outlet connection pipe (10) of the capillary flow guide groove (24) of the discharge liquid by the discharge liquid transport pump (P2). The connection port 7 is an outlet of the waste liquid of the discharge liquid,
A colorimetric detection device for ammonia nitrogen by flow injection.
前記アンモニア放出プールの上部と前記通気膜との間に支持プレート(15)が設けられ、前記支持プレートに、前記溝板(17)における前記受液の毛管グルーブ(21)に合わせるスルーホール(25)が設けられることを特徴とする請求項4に記載の比色検出装置。   A support plate (15) is provided between the upper part of the ammonia release pool and the gas permeable membrane, and a through hole (25) that matches the capillary groove (21) of the liquid receiving in the groove plate (17) on the support plate. The colorimetric detection device according to claim 4, wherein: 前記受液の毛管グルーブ(21)の出口端はスルーホール(26)を通過して前記溝板(17)の上面へ延伸し、上へ向けて開口した排気グルーブ(22)となり、また、グルーブの末端が広い溝に拡大し、溝板の上方に通気膜(16’)及びカバープレート(18)が積層され、カバープレート(18)の下面に、前記溝板(17)の上面における広い溝の溝口部に対向して且つそれに合わせるガス収集溝(20)が設けられ、前記ガス収集溝(20)に大気に連通される排気穴(19)が設けられることを特徴とする請求項4に記載の比色検出装置。   The outlet end of the liquid-receiving capillary groove (21) passes through a through hole (26), extends to the upper surface of the groove plate (17), and becomes an exhaust groove (22) opened upward. The vent is expanded into a wide groove, a ventilation film (16 ′) and a cover plate (18) are laminated above the groove plate, and a wide groove on the upper surface of the groove plate (17) is formed on the lower surface of the cover plate (18). The gas collection groove (20) facing the groove opening portion of the gas collection groove is provided, and the gas collection groove (20) is provided with an exhaust hole (19) communicating with the atmosphere. The colorimetric detection device described. サンプル注入用の前記六方弁(V1)の前記接続口(6)と前記試水との接続管路に、前記試水と標準サンプルとの変換のための1個〜3個の電磁弁が設けられることを特徴とする請求項4又は5に記載の比色検出装置。   One to three solenoid valves for converting the sample water and the standard sample are provided in the connection line between the connection port (6) of the hexagonal valve (V1) for sample injection and the sample water. The colorimetric detection device according to claim 4 or 5, wherein
JP2010539993A 2007-12-25 2008-07-17 Colorimetric detection method and apparatus for ammonia nitrogen by flow injection Expired - Fee Related JP5000766B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN200710192335.8 2007-12-25
CN2007101923358A CN101226153B (en) 2007-12-25 2007-12-25 Colorimetric assay apparatus for testing flow injection ammonia nitrogen
PCT/CN2008/001334 WO2009079903A1 (en) 2007-12-25 2008-07-17 Flow injection colorimetric detection method and device for ammoniacal nitrogen

Publications (2)

Publication Number Publication Date
JP2011508227A true JP2011508227A (en) 2011-03-10
JP5000766B2 JP5000766B2 (en) 2012-08-15

Family

ID=39858273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010539993A Expired - Fee Related JP5000766B2 (en) 2007-12-25 2008-07-17 Colorimetric detection method and apparatus for ammonia nitrogen by flow injection

Country Status (3)

Country Link
JP (1) JP5000766B2 (en)
CN (1) CN101226153B (en)
WO (1) WO2009079903A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587128B (en) * 2009-06-16 2011-11-16 华中农业大学 Special ammonia indicator for analyzing ammonia content by flow injection instruments and preparation thereof
CN101598719B (en) * 2009-06-30 2013-10-02 烟台大学 Waste flow quantity, ammonia nitrogen concentration and ammonia nitrogen total content water quality on-line combined tester
CN101936978B (en) * 2009-07-02 2012-01-25 杭州慕迪科技有限公司 Method for on-line measurement of ammonia nitrogen content in water by recycling same reagent
CN101788493B (en) * 2010-01-19 2011-07-27 成都海兰天澄科技有限公司 Method for testing ammonia nitrogen in water
CN101793902A (en) * 2010-03-29 2010-08-04 河海大学 Device for fluidly injecting and rapidly analyzing residual chlorine of water quality and analysis method thereof
CN102128835B (en) * 2010-11-30 2012-11-07 上海交通大学 AA3 type flow injection analyzer-based method for measuring total nitrogen content of soil
CN103091262B (en) * 2011-11-04 2015-03-25 中国科学院电子学研究所 Miniaturized optical device for detecting ammonia nitrogen in water and detecting method
CN102721786A (en) * 2012-05-24 2012-10-10 武汉巨正环保科技有限公司 Method for determining ammonia nitrogen content in water
CN103018169A (en) * 2012-11-30 2013-04-03 江苏德林环保技术有限公司 Integrated digestion colorimetric pool
CN103076320B (en) * 2012-12-28 2015-07-15 重庆川仪分析仪器有限公司 Ammonia nitrogen detector and detection method
CN103245697A (en) * 2013-04-18 2013-08-14 姜堰市华晨仪器有限公司 Ammonia nitrogen on-line monitoring instrument
CN103630505B (en) * 2013-04-28 2016-03-23 中国科学院电子学研究所 The apparatus and method of water sample ammonia nitrogen optical detection
CN104535506A (en) * 2015-01-30 2015-04-22 四川清和科技有限公司 Drainage basin ammonia-nitrogen concentration detection method
CN105107230B (en) * 2015-09-09 2017-06-13 南月英 A kind of chromatograph reequips the method for perfusion culture purified
CN105352948A (en) * 2015-10-20 2016-02-24 深圳市清时捷科技有限公司 Fluid path device of water quality on-line detector and detection method
CN106442493B (en) * 2016-09-18 2020-01-24 江苏大学 Method and device for detecting low-concentration ammonia nitrogen of accumulated ammonia gas
CN106745629A (en) * 2016-12-22 2017-05-31 重庆淼森环保工程有限公司 A kind of ammonia nitrogen handling arrangement in waste water
CN106769677B (en) * 2017-01-12 2019-07-05 中国石油大学(北京) The online viscosity detecting device of high temperature and pressure grease fluid-mixing and method
CN107340355A (en) * 2017-06-20 2017-11-10 中国石油化工股份有限公司 A kind of method for directly detecting ammonia nitrogen in high salt and Complex water body
CN107340319A (en) * 2017-06-20 2017-11-10 中国石油化工股份有限公司 A kind of method that non-contact gas membrane diffusion conductance directly detects ammonia nitrogen in waste water
CN108732162A (en) * 2018-05-29 2018-11-02 四川理工学院 The device for fast detecting and detection method of arsenic concentration in a kind of water
CN110441539B (en) * 2019-08-21 2023-08-01 东软威特曼生物科技(沈阳)有限公司 Reaction cup holder for solid direct heating type or air bath type reaction disk and full-automatic biochemical analyzer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279364A (en) * 1985-10-02 1987-04-11 Mitsui Petrochem Ind Ltd Flow injection analysis
JPH05137904A (en) * 1991-11-19 1993-06-01 Sumitomo Heavy Ind Ltd Method and device for separating gas and liquid

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315754A (en) * 1979-08-28 1982-02-16 Bifok Ab Flow injection analysis with intermittent flow
EP0273934B1 (en) * 1986-07-01 1990-09-05 Biotech Instruments Limited Apparatus for automatic chemical analysis
SE503661C2 (en) * 1987-10-20 1996-07-29 Dowa Mining Co Methods for flow injection analysis and therefore adapted spectrophotometric flow cell
JPH11295226A (en) * 1998-04-09 1999-10-29 Meidensha Corp Measurement system
CN2583663Y (en) * 2002-07-04 2003-10-29 广州市怡文科技有限公司 Water quality ammonia nitrogen on line monitering apparatus
CN2754699Y (en) * 2004-09-06 2006-02-01 洪陵成 Vapour-liquid separator
CN100429505C (en) * 2005-09-21 2008-10-29 广东环凯微生物科技有限公司 Reagent for quick detection of ammonia and nitrogen concentration in water and use method thereof
CN100541172C (en) * 2007-05-16 2009-09-16 洪陵成 The method of fastly analyzing chemical oxygen demand by high-pressure flowing injection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279364A (en) * 1985-10-02 1987-04-11 Mitsui Petrochem Ind Ltd Flow injection analysis
JPH05137904A (en) * 1991-11-19 1993-06-01 Sumitomo Heavy Ind Ltd Method and device for separating gas and liquid

Also Published As

Publication number Publication date
CN101226153A (en) 2008-07-23
CN101226153B (en) 2010-09-08
JP5000766B2 (en) 2012-08-15
WO2009079903A1 (en) 2009-07-02

Similar Documents

Publication Publication Date Title
JP5000766B2 (en) Colorimetric detection method and apparatus for ammonia nitrogen by flow injection
Lin et al. Determination of ammonia nitrogen in natural waters: Recent advances and applications
Zhu et al. Development of analytical methods for ammonium determination in seawater over the last two decades
Worsfold et al. Determination of phosphorus in natural waters: A historical review
Jarvie et al. Review of robust measurement of phosphorus in river water: sampling, storage, fractionation and sensitivity
Ma et al. Determination of nanomolar levels of nutrients in seawater
Kröckel et al. Fluorescence detection for phosphate monitoring using reverse injection analysis
Alahmad et al. Development of flow systems incorporating membraneless vaporization units and flow-through contactless conductivity detector for determination of dissolved ammonium and sulfide in canal water
US20110212533A1 (en) Determination of nitrate/nitrite concentration in water by photochemical reduction
US11796525B2 (en) Instrument and method for simultaneously testing molecular weight distribution and organic nitrogen level of water sample
Almeida et al. A membraneless gas-diffusion unit–multisyringe flow injection spectrophotometric method for ammonium determination in untreated environmental samples
Lin et al. An automated spectrophotometric method for the direct determination of nitrite and nitrate in seawater: Nitrite removal with sulfamic acid before nitrate reduction using the vanadium reduction method
CN110308140B (en) Method for detecting chemical substances by using potassium ferrate
CN110596031A (en) Quantitative analysis device for ammonia nitrogen in seawater
Li et al. Improving the measurement of total dissolved sulfide in natural waters: a new on-site flow injection analysis method
CN211955227U (en) Total nitrogen on-line monitoring device
CN202119742U (en) Chemical oxygen demand (COD)/total organic carbon (TOC)/twisted nematic (TN) online automatic monitor using high temperature burning oxidation method
CN106591424A (en) Method for testing biotoxicity of oil production wastewater by using Selenastrum capricornutum
CN110658140A (en) Chemical analysis system for total phosphorus
Zagatto et al. Detecting and circumventing sources of inaccuracy in flow analysis
CN114295570A (en) Method for rapidly and efficiently measuring concentration of nitrate radical in water body and application thereof
CN204203105U (en) Water body ammonia-nitrogen content speed check reagent box
Sasaki et al. A new strategy for membraneless gas-liquid separation in flow analysis: Determination of dissolved inorganic carbon in natural waters
Suzuki Flow analytical systems for the determination of components in seawater
Cerdá et al. Automatic water and wastewater quality monitoring systems

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees