JP2011502535A - Tumor necrosis factor superfamily mRNA expression through Fc receptors in peripheral blood leukocytes - Google Patents

Tumor necrosis factor superfamily mRNA expression through Fc receptors in peripheral blood leukocytes Download PDF

Info

Publication number
JP2011502535A
JP2011502535A JP2010534127A JP2010534127A JP2011502535A JP 2011502535 A JP2011502535 A JP 2011502535A JP 2010534127 A JP2010534127 A JP 2010534127A JP 2010534127 A JP2010534127 A JP 2010534127A JP 2011502535 A JP2011502535 A JP 2011502535A
Authority
JP
Japan
Prior art keywords
sample
tnfsf
mrna
amount
leukocytes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010534127A
Other languages
Japanese (ja)
Inventor
マサト ミツハシ
勝也 遠藤
和彦 小原
浩 井筒
修二 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of JP2011502535A publication Critical patent/JP2011502535A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Rheumatology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

腫瘍壊死因子スーパーファミリーである(「TNFSF」)−2、TNFSF−8、またはTNFSF−15の発現の変化に関与する、関節リウマチの治療に対する患者の反応性を予測するための方法を開示する。このような治療法の有効性をモニターするための方法もまた開示される。さらに、関節リウマチの治療において使用するための化合物のスクリーニング方法が開示される。関節リウマチ患者において、長期にわたり疾病の状態をモニターするための方法もまた開示される。  Disclosed are methods for predicting patient responsiveness to treatment of rheumatoid arthritis involving changes in expression of the tumor necrosis factor superfamily (“TNFSF”)-2, TNFSF-8, or TNFSF-15. Also disclosed are methods for monitoring the effectiveness of such treatments. Further disclosed are methods of screening for compounds for use in the treatment of rheumatoid arthritis. Also disclosed is a method for monitoring disease status over time in patients with rheumatoid arthritis.

Description

<関連出願の相互参照>
本出願は2007年11月14日に提出した米国仮出願第61/002,967号の非仮出願であり、かつ2008年10月7日に提出した米国特許出願第12/296,423号の一部継続出願である。該米国特許出願第12/296,423号は、2007年4月5日に提出した国際特許出願PCT/US2007/008559号の国内段階であり、該国際特許出願PCT/US2007/008559号は2006年4月7日に提出した米国仮出願第60/790,511号に基づく優先権を主張する
<Cross-reference of related applications>
This application is a non-provisional application of US Provisional Application No. 61 / 002,967, filed on November 14, 2007, and US Patent Application No. 12 / 296,423, filed October 7, 2008. Partial continuation application. The US patent application No. 12 / 296,423 is a national phase of the international patent application PCT / US2007 / 008559 filed on April 5, 2007, and the international patent application PCT / US2007 / 008559 is 2006. Claims priority based on US Provisional Application No. 60 / 790,511 filed April 7

<技術分野>
本開示は、腫瘍壊死因子スーパーファミリーメンバーまたはサイトカインに関係する関節リウマチの治療に対する患者の反応性を予測するための方法、このような治療法の有効性をモニターするための方法、および関節リウマチの治療において使用するための化合物のスクリーニング方法に関する。本開示はまた、関節リウマチ患者において疾患の状態をモニターするための方法にも関する。
<Technical field>
The present disclosure provides methods for predicting patient responsiveness to treatment of rheumatoid arthritis related to tumor necrosis factor superfamily members or cytokines, methods for monitoring the effectiveness of such therapies, and rheumatoid arthritis The present invention relates to a method for screening compounds for use in therapy. The present disclosure also relates to a method for monitoring disease status in rheumatoid arthritis patients.

自己免疫疾患は、ホスト細胞に反応する抗体または自己反応性の免疫エフェクターT細胞のいずれかの産生により特徴付けられる。自己抗体はしばしば、重症筋無力症における抗アセチルコリン受容体抗体および全身性エリテマトーデスにおける抗DNA抗体のような、自己免疫疾患の特定の型において同定される。しかしながら、このような自己抗体は自己免疫疾患の多くの型において見られることはない。さらに、自己抗体はしばしば健常人の間でも検出されるが、このような抗体は自己免疫疾患を引き起こさない。従って自己免疫疾患の病因には、自己抗体に加え、明らかにさらなる未同定の機構が関与している。   Autoimmune diseases are characterized by the production of either antibodies that react with host cells or autoreactive immune effector T cells. Autoantibodies are often identified in specific types of autoimmune diseases, such as anti-acetylcholine receptor antibodies in myasthenia gravis and anti-DNA antibodies in systemic lupus erythematosus. However, such autoantibodies are not found in many types of autoimmune diseases. Furthermore, autoantibodies are often detected even in healthy individuals, but such antibodies do not cause autoimmune diseases. Thus, in addition to autoantibodies, clearly further unidentified mechanisms are involved in the pathogenesis of autoimmune diseases.

自己抗体が標的ホスト細胞に一旦結合すると、ホスト細胞の死を導くC5−9膜攻撃複合体を標的細胞膜上に形成するため、補体カスケードが活性化されると考えられる(Esser, Toxicology 87, 229 (1994)を参照)。C3a、C4a、もしくはC5aのような副生成物としての走化性因子は、病変部へさらなる白血球を動員する(Hugli, Crit. Rev. Immunol. 1, 321 (1981)を参照)。病変部へ補充された白血球または天然に存在する白血球は、Fc受容体(「FcR」)を通して抗体結合細胞(免疫複合体)を認識する。免疫複合体により一旦FcRが架橋されると、白血球がTNF−αを放出し(Debets et al., J Immunol. 141, 1197 (1988)を参照)、これがホスト細胞表面の特異的受容体に結合してアポトーシスまたは細胞損傷を引き起こす(Micheau et al., Cell 114, 181 (2003)を参照)。活性化されたFcRはまた、走化性サイトカインの放出を開始して、病変部へ異なる白血球サブセットを動員する(Chantry et al., Eur. J. Immunol. 19, 189 (1989)を参照)。これはFcR関連自己免疫疾患の分子機構についての一般的な仮説である。   Once the autoantibody binds to the target host cell, it is thought that the complement cascade is activated to form a C5-9 membrane attack complex on the target cell membrane that leads to the death of the host cell (Esser, Toxicology 87, 229 (1994)). Chemotaxis factors as by-products such as C3a, C4a, or C5a mobilize additional leukocytes to the lesion (see Hugli, Crit. Rev. Immunol. 1, 321 (1981)). Leukocytes recruited to the lesion or naturally occurring leukocytes recognize antibody-bound cells (immunocomplexes) through Fc receptors (“FcR”). Once FcR is cross-linked by immune complexes, leukocytes release TNF-α (see Devets et al., J Immunol. 141, 1197 (1988)), which binds to specific receptors on the host cell surface. Cause apoptosis or cell damage (see Michelau et al., Cell 114, 181 (2003)). Activated FcR also initiates the release of chemotactic cytokines and recruits different leukocyte subsets to the lesion (see Chantry et al., Eur. J. Immunol. 19, 189 (1989)). This is a general hypothesis about the molecular mechanism of FcR-related autoimmune diseases.

関節リウマチ(「RA」)は、消化管の炎症を伴う免疫疾患である。臨床的に十分特徴付けられているにも関わらず、その病因はよく分かっていない。RAは通常、対称的な分布の末梢関節に関与する持続的炎症性の滑膜炎により特徴付けられる。これは軟骨破壊、骨侵食、および関節の完全性における変化を導き得る。RAの原因は未だ不明であるが、滑膜中にCD4+T細胞が優勢であること、RA患者の血液および血清中における可溶性
IL−2受容体(活性化T細胞から産生される)の増加、およびT細胞の除去による疾病の顕著な寛解から、この疾病においてCD4+T細胞が重要な役割を果たしていることが強く推測される。RAは関節内におけるTNF−α(TNFSF−2としても知られる)の蓄積に付随する。通常TNF−αは、冒された領域における炎症の原因となる感染およびその他の侵入者と戦うための白血球の移動に役立つ。健常体は過剰なTNF−αを除去できるが、関節リウマチ患者の体はそれができない。結果として、冒された領域へさらに多くの白血球が移動する。特にリウマチ性の関節におけるこのTNF−αの蓄積は、炎症、疼痛、および組織損傷の原因となる。
Rheumatoid arthritis (“RA”) is an immune disease with inflammation of the gastrointestinal tract. Despite being well characterized clinically, its etiology is not well understood. RA is usually characterized by persistent inflammatory synovitis involving a symmetric distribution of peripheral joints. This can lead to changes in cartilage destruction, bone erosion, and joint integrity. The cause of RA is not yet known, but the predominance of CD4 + T cells in the synovium, an increase in soluble IL-2 receptors (produced from activated T cells) in the blood and serum of RA patients, and From the marked remission of the disease by the removal of T cells, it is strongly speculated that CD4 + T cells play an important role in this disease. RA is associated with the accumulation of TNF-α (also known as TNFSF-2) in the joint. TNF-α usually serves to move white blood cells to fight infections and other invaders that cause inflammation in the affected area. Healthy bodies can remove excess TNF-α, but the body of rheumatoid arthritis patients cannot. As a result, more white blood cells move to the affected area. This accumulation of TNF-α, particularly in rheumatic joints, causes inflammation, pain, and tissue damage.

IgG Fc受容体(FcγR)は、様々な炎症反応を誘発する免疫複合体(IC)(エピトープと、このエピトープに対して作られた抗体との組み合わせ)と反応することが知られている。特定の抗原は完全に特徴付けられていないが、ICはRA患者の関節病変部において頻繁に確認される。ICはまた、炎症を確立する補体カスケード、同様に様々な白血球のFcγRへの結合による抗体依存性細胞傷害(ADCC)も活性化することが知られている。これまでに、局所浸潤性の白血球が滑液から採取され、研究されてきた。しかしながら、これらの採取物は新規の細胞および消耗した細胞の両方を含むため、結果の解釈が困難であった。末梢血白血球はそれらが疾病部位に遊走する際、RAの病因に主要な役割を果たすことから、このような機能をin vitroで模倣する多数の実験が行われてきた。典型的には、単核白血球が分離され、培養液に懸濁され、様々な刺激物質またはエフェクター細胞と共にCO2インキュベーター内でインキュベートされる。しかしながらこのようなアッセイが行われる条件は、異なる細胞集団との連絡、赤血球からの酸素供給、同様に血漿タンパク質およびその他の成分との複雑な相互作用が欠如していることから、生理的条件には近くない。長いインキュベーション期間の間には、第二の反応が起こり得る。さらに、労働集約型の技術および実験ごとの実質的な変動のため、これらのin vitro試験の診断検査における応用は少ない。 The IgG Fc receptor (FcγR) is known to react with immune complexes (IC) (a combination of an epitope and an antibody made against this epitope) that elicits various inflammatory responses. Although specific antigens are not fully characterized, IC is frequently confirmed in joint lesions of RA patients. IC is also known to activate complement cascades that establish inflammation, as well as antibody-dependent cellular cytotoxicity (ADCC) by binding of various leukocytes to FcγR. To date, locally infiltrating leukocytes have been collected from synovial fluid and studied. However, these collections contained both new and depleted cells and the results were difficult to interpret. Since peripheral blood leukocytes play a major role in the pathogenesis of RA as they migrate to the disease site, numerous experiments have been performed to mimic such functions in vitro. Typically, mononuclear leukocytes are separated, suspended in culture medium, and incubated with various stimulants or effector cells in a CO 2 incubator. However, the conditions under which such assays are performed are physiological conditions due to the lack of communication with different cell populations, oxygen supply from red blood cells, as well as complex interactions with plasma proteins and other components. Is not near. During a long incubation period, a second reaction can occur. Furthermore, due to labor intensive techniques and substantial variation from experiment to experiment, these in vitro tests have little application in diagnostic tests.

RAの治療は鎮痛、炎症の縮小、関節構造の保護、機能の維持、および全身性病変の制御に焦点を合わせる。選択肢は、アスピリンおよびその他の非ステロイド性抗炎症剤;メトトレキサート、金化合物、D−ペニシラミン、抗マラリア剤、およびスルファサラジンのような抗リウマチ剤;グルココルチコイド;インフリキシマブおよびエタネルセプトのようなTNF−α中和薬;ならびにアザチオプリン、レフルノミド、シクロスポリン、およびシクロホスファミドのような免疫抑制剤を含む。治療的選択肢の選択はRA患者における疾病状態の評価に依存するため、疾病状態を評価し、かつ疾病の進行をモニターする新しい方法の開発が望ましいであろう。   The treatment of RA focuses on analgesia, reducing inflammation, protecting joint structures, maintaining function, and controlling systemic lesions. Options include aspirin and other non-steroidal anti-inflammatory agents; methotrexate, gold compounds, D-penicillamine, antimalarials, and anti-rheumatic agents such as sulfasalazine; glucocorticoids; TNF-α neutralization such as infliximab and etanercept Drugs; and immunosuppressive agents such as azathioprine, leflunomide, cyclosporine, and cyclophosphamide. Since the choice of therapeutic option depends on the assessment of disease status in RA patients, it would be desirable to develop new methods for assessing disease status and monitoring disease progression.

末梢全血中のヒト白血球における、様々なTNFSF mRNAの、FcγRを介した遺伝子発現の定量結果を示す。The quantification result of the gene expression of various TNFSF mRNA in the peripheral leukocytes via FcγR is shown. 末梢全血中のヒト白血球における、様々なTNFSF mRNAの、FcγRを介した遺伝子発現の定量結果を示す。The quantification result of the gene expression of various TNFSF mRNA in the peripheral leukocytes via FcγR is shown. 末梢全血中のヒト白血球における、様々なTNFSF mRNAの、FcγRを介した遺伝子発現の定量結果を示す。The quantification result of the gene expression of various TNFSF mRNA in the peripheral leukocytes via FcγR is shown. 関節リウマチ患者およびコントロール患者の全血における、熱凝集IgG(HAG)刺激により誘導された様々なTNFSF mRNAレベルの増加倍率を、前記患者由来の無刺激全血に比較して示す。The fold increase in various TNFSF mRNA levels induced by heat-aggregated IgG (HAG) stimulation in the whole blood of rheumatoid arthritis patients and control patients is shown compared to unstimulated whole blood from said patients. 関節リウマチ患者およびコントロール患者の全血における、熱凝集IgG(HAG)刺激により誘導された様々なTNFSF mRNAレベルの増加倍率を、前記患者由来の無刺激全血に比較して示す。The fold increase in various TNFSF mRNA levels induced by heat-aggregated IgG (HAG) stimulation in the whole blood of rheumatoid arthritis patients and control patients is shown compared to unstimulated whole blood from said patients. 関節リウマチ患者およびコントロール患者の全血における、熱凝集IgG(HAG)刺激により誘導された様々なTNFSF mRNAレベルの増加倍率を、前記患者由来の無刺激全血に比較して示す。The fold increase in various TNFSF mRNA levels induced by heat-aggregated IgG (HAG) stimulation in the whole blood of rheumatoid arthritis patients and control patients is shown compared to unstimulated whole blood from said patients. 関節リウマチ患者およびコントロール患者の全血における、熱凝集IgG(HAG)刺激により誘導された様々なTNFSF mRNAレベルの比較上の増加倍率を、前記患者由来の無刺激全血に比較して示す。Shown is a comparative fold increase in various TNFSF mRNA levels induced by heat-aggregated IgG (HAG) stimulation in the whole blood of rheumatoid arthritis patients and control patients compared to unstimulated whole blood from said patients. 関節リウマチ患者およびコントロール患者の全血における、熱凝集IgG(HAG)刺激により誘導された様々なTNFSF mRNAレベルの比較上の増加倍率を、前記患者由来の無刺激全血に比較して示す。Shown is a comparative fold increase in various TNFSF mRNA levels induced by heat-aggregated IgG (HAG) stimulation in the whole blood of rheumatoid arthritis patients and control patients compared to unstimulated whole blood from said patients. 関節リウマチ患者およびコントロール患者の全血における、熱凝集IgG(HAG)刺激により誘導された様々なTNFSF mRNAレベルの比較上の増加倍率を、前記患者由来の無刺激全血に比較して示す。Shown is a comparative fold increase in various TNFSF mRNA levels induced by heat-aggregated IgG (HAG) stimulation in the whole blood of rheumatoid arthritis patients and control patients compared to unstimulated whole blood from said patients.

好ましい実施形態の詳細な説明
本開示は、特定の治療法に対してRA患者が適した候補であるか否かの評価における、特定の細胞刺激に応答した白血球内の差次的mRNA転写パターンの使用に関する。本開示はまた、RA患者に施した治療法が有効であるか否かの評価における、このような差次的転写パターンの使用にも関する。本開示はまた、RA患者の治療に使用するための候補となる薬剤のスクリーニングにおける、このような差次的転写パターンの使用にも関する。本開示はまた、患者のRAの状態の長期にわたる評価および疾病の進行のモニターにおける、このような差次的転写パターンの使用にも関する。
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS The present disclosure provides for the differential mRNA transcription pattern in leukocytes in response to specific cellular stimuli in assessing whether RA patients are suitable candidates for a particular therapy. Regarding use. The present disclosure also relates to the use of such differential transcription patterns in assessing whether a therapy given to RA patients is effective. The present disclosure also relates to the use of such differential transcription patterns in the screening of candidate agents for use in treating RA patients. The present disclosure also relates to the use of such differential transcription patterns in the long-term assessment of patient RA status and in monitoring disease progression.

上記のようにRAの病理学は、RA患者の免疫細胞のFcγRとICの間の相互作用に関連する可能性がある。この可能性をさらに評価するため、熱凝集IgG(HAG、ICの標準的モデル)を用い、健常成人コントロールおよびRA患者両方におけるヒト全血中のFcγRを刺激した。使用できるその他の刺激剤は、ホルボールミリステートアセテート(PMA)、フィトヘマグルチニン(PHA)、コムギ胚芽凝集素(WGA)、コンカナバリン−A(ConA)、リポ多糖(LPS)、ジャカリン、フコイダン、熱凝集IgE、熱凝集IgA、および熱凝集IgMを含む。   As mentioned above, the pathology of RA may be related to the interaction between FcγR and IC in immune cells of RA patients. To further evaluate this possibility, heat-aggregated IgG (HAG, a standard model of IC) was used to stimulate FcγR in human whole blood in both healthy adult controls and RA patients. Other stimulants that can be used are phorbol myristate acetate (PMA), phytohemagglutinin (PHA), wheat germ agglutinin (WGA), concanavalin-A (ConA), lipopolysaccharide (LPS), jacalin, fucoidan, thermal aggregation Includes IgE, thermal aggregation IgA, and thermal aggregation IgM.

HAGを直接ヘパリン化全血中に加え、腫瘍壊死因子スーパーファミリー(TNFSF)の様々なメンバーのmRNAレベルにおける変化を評価した。FcγRI、IIa、IIb、およびIII(GeneBank UniGeneデータベース)のような複数のFcγRが存在するが、HAGは全てのFcγRサブタイプと反応できる普遍的な刺激として作用する。HAGの刺激に起因する、TNFSF mRNAメンバー(例えばGeneBank UniGeneデータベースを参照)のmRNAレベルにおける変化を定量化した。   HAG was added directly into heparinized whole blood to assess changes in mRNA levels of various members of the tumor necrosis factor superfamily (TNFSF). Although there are multiple FcγRs such as FcγRI, IIa, IIb, and III (GeneBank UniGene database), HAG acts as a universal stimulus that can react with all FcγR subtypes. Changes in mRNA levels of TNFSF mRNA members (see, eg, the GeneBank UniGene database) due to HAG stimulation were quantified.

前述のように、FcγRを介する機能はIgGのFc部の4種のサブクラス(IgG1〜4)、FcγRの複数のクラス(FcγRIa−c、FcγRIIa−c、およびFcγRIIIa−b)、FcγRを有する白血球の異なるサブセット、および様々な下流の細胞内シグナルカスケードから成る。さらに、これらのタンパク質は複数の転写物変異体
および様々な遺伝的多型性を有する。疾病状態におけるFcγRの機能の変化は、どのようなレベルでも起こり得る。しかしながら、各個体において各因子を特徴付けることは現実的ではないであろう。本開示は、個々の細胞分析、様々な遺伝子の遺伝子型同定、および細胞内シグナルカスケードの変動のような、様々な下流アッセイの利益を享受し得る個人を同定するためのスクリーニング手段としての全血(ex vivo状態での付随物を含む)の使用を意図する。ICはTNFSF−2(=TNF−α)およびTNFSF−15(=TL1A)mRNAを誘導することが知られているため、全ての腫瘍壊死因子スーパーファミリー(TNFSF)メンバーはこの方法によりスクリーニングされた。
As described above, the function through FcγR is the function of four subclasses of IgG Fc region (IgG1-4), multiple classes of FcγR (FcγRIa-c, FcγRIIa-c, and FcγRIIIa-b), and leukocytes having FcγR. It consists of different subsets and various downstream intracellular signal cascades. In addition, these proteins have multiple transcript variants and various genetic polymorphisms. Changes in FcγR function in disease states can occur at any level. However, it may not be realistic to characterize each factor in each individual. The present disclosure provides whole blood as a screening tool to identify individuals who can benefit from various downstream assays, such as individual cell analysis, genotyping of various genes, and variations in intracellular signal cascades. Intended for use (including appendages in ex vivo state). Since IC is known to induce TNFSF-2 (= TNF-α) and TNFSF-15 (= TL1A) mRNA, all tumor necrosis factor superfamily (TNFSF) members were screened by this method.

用いられた方法は以下の通りである。様々なTNFSF遺伝子のヌクレオチド配列をGenBankのUniGeneデータベースから検索した。各遺伝子に対するPCRプライマーを、Primer Express(Applied Biosystem、フォスターシティー、カリフォルニア州)およびHYBsimulator(RNAture、アーバイン、カリフォルニア州)(Mitsuhashi et al., Nature 367, 759 (1994); Hyndman et al., BioTechniques 20, 1090 (1996)を参照)により設計した。配列の概要を以下の表1に示す。オリゴヌクレオチドはIDT(コーラルヴィル、アイオワ州)つくばオリゴサービス(筑波、日本)、ニッポンイージーティー(富山、日本)および北海道システム・サイエンス(札幌、日本)によって合成された。
表1.プライマー配列
The method used is as follows. Nucleotide sequences of various TNFSF genes were searched from GenBank's UniGene database. PCR primers for each gene were obtained from Primer Express (Applied Biosystem, Foster City, Calif.) And HYBsimulator (RNAture, Irvine, Calif.) (Mitsuhashi et al., Nature 367, 759 (1994); , 1090 (1996)). A summary of the sequence is shown in Table 1 below. Oligonucleotides were synthesized by IDT (Coralville, Iowa) Tsukuba Oligo Service (Tsukuba, Japan), Nippon Easy Tea (Toyama, Japan) and Hokkaido System Science (Sapporo, Japan).
Table 1. Primer sequence

Figure 2011502535
Figure 2011502535

熱凝集IgG(HAG)は、PBS中の20mg/mLヒトIgG(Sigma、セントルイス)を63℃において15分間加熱することにより調製した(Ostreiko et al., Immunol. Lett. 15, 311 (1987)を参照)。8ウェルストリップマイクロチューブ内に1.4μlのHAGまたはコントロール(リン酸緩衝食塩水)を加え、使用まで−20℃で保存した。70μlの新鮮なヘパリン化全血(ICによる刺激までに4℃で保持されていた)を各ウェルへ3通りに加え、蓋を閉めて37℃で4時間インキュベートした。血液サンプルは同日、採血によって処理した。処理後、各血液サンプルを使用まで−80℃で凍結保存した。   Thermoaggregated IgG (HAG) was prepared by heating 20 mg / mL human IgG (Sigma, St. Louis) in PBS at 63 ° C. for 15 minutes (Ostreiko et al., Immunol. Lett. 15, 311 (1987)). reference). 1.4 μl HAG or control (phosphate buffered saline) was added into 8-well strip microtubes and stored at −20 ° C. until use. 70 μl of fresh heparinized whole blood (held at 4 ° C. until stimulation with IC) was added in triplicate to each well, the lid was closed and incubated at 37 ° C. for 4 hours. Blood samples were processed by blood collection on the same day. After treatment, each blood sample was stored frozen at −80 ° C. until use.

mRNAおよびcDNAは、Mitsuhashi et al., Clin. Chem. 52, 634 (2006) に説明される以下の方法によって全血から調製した。参照としてここに取り込まれる米国特許出願第10/796,298号に開示される方法もまた用いられてよい。簡単に述べると、白血球を96−ウェルフィルタープレート内へ捕獲するため、50μlの全血をその中へ移した。これらのフィルタープレート
を採取プレート上に配置し、150μlの1.5mM Tris、pH7.4を加えた。4℃における120xg、1分間の遠心に続き、50μlの血液サンプルを各ウェルに加えて直ちに4℃で120xg、2分間遠心し、続いて各ウェルを300μlのPBSで4℃、2000xg、5分間の遠心により1回洗浄した。その後、1% 2−メルカプトエタノール(Bio Rad、ハーキュリーズ、カリフォルニア州、米国)、0.5mg/ml プロテナーゼK(Pierce、ロックフォード、イリノイ州、米国)、0.1mg/ml サケ精子(5 Prime Eppendorf/Brinkmann、ウェストベリー、ニューヨーク州、米国)、0.1mg/ml E.coli tRNA(Sigma)、各10mMの特異的逆方向プライマーの混合物、および標準的なRNA34オリゴヌクレオチドを追加した溶解緩衝液の原液60μlをフィルタープレートへ加え、続いて37℃で10分間インキュベートした。その後フィルタープレートをオリゴ(dT)固定化マイクロプレート(GenePlate、RNAture)(Mitsuhashi et al., Nature 357, 519 (1992); Hamaguchi et al., Clin. Chem. 44, 2256 (1998)(両方とも参照としてここに取り込まれる)を参照)上に配置し、4℃、2000xgにおいて5分間遠心した。4℃における一晩の保存後、マイクロプレートを100μlの単純な溶解緩衝液で3回洗浄し、続いて150μlの洗浄緩衝液(0.5M NaCl、10mM Tris、pH7.4、1mM EDTA)で4℃において3回洗浄した。cDNAは、1xRT−緩衝液、各1.25mMのdNTP、4単位のrRNasin、および80単位のMMLV逆転写酵素(Promega)(プライマーを含まない)を含む緩衝液を加え、37℃で2時間インキュベートすることにより、各ウェル30μlの溶液中で直接合成した。溶液中には特定のプライマーにより刺激されたcDNAが存在し、oligo(dT)により刺激されたcDNAはマイクロプレート内に固定されたままであった(Hugli, Crit. Rev. Immunol. 1, 321 (1981)を参照)。SYBRグリーンPCRのため(Morrison et al., Biotechniques 24, 954 (1998)(参照としてここに取り込まれる)を参照)、cDNAを水中で4倍希釈し、384ウェルPCRプレートに4μlのcDNA溶液を直接移し、5μlのiTaq SYBRマスターミックス(Bio Rad、ハーキュリーズ、カリフォルニア州)および1μlのオリゴヌクレオチド混合物(各15μMの順方向および逆方向プライマー)を加え、PCRをPRISM 7900HT(ABI)内で、95℃10分間の1サイクル、続く95℃30秒間および60℃1分間の45サイクルにより行った。TaqMan PCRもまた用いられてよく、この場合384ウェルPCRプレートにcDNA溶液を直接移し、5μlのTaqManユニバーサルマスターミックス(ABI)および1μlのオリゴヌクレオチド混合物(各15μMの順方向および逆方向プライマー、および3〜6μMのTaqManプローブ)を加え、PCRをPRISM 7900HT(ABI)内で、95℃10分間の1サイクル、続く95℃30秒間、55℃30秒間、および60〜65℃1分間の45サイクルにより行う。各遺伝子は個別に増幅された。
mRNA and cDNA are described in Mitsuhashi et al. , Clin. Chem. 52, 634 (2006) and was prepared from whole blood by the following method. The methods disclosed in US patent application Ser. No. 10 / 796,298, incorporated herein by reference, may also be used. Briefly, 50 μl of whole blood was transferred into it to capture leukocytes into a 96-well filter plate. These filter plates were placed on the collection plate and 150 μl of 1.5 mM Tris, pH 7.4 was added. Following 120 × g for 1 minute at 4 ° C., 50 μl of blood sample was added to each well and immediately centrifuged at 120 × g for 2 minutes at 4 ° C., followed by 300 μl of PBS at 4 ° C., 2000 × g for 5 minutes. Washed once by centrifugation. Then 1% 2-mercaptoethanol (Bio Rad, Hercules, CA, USA), 0.5 mg / ml proteinase K (Pierce, Rockford, Illinois, USA), 0.1 mg / ml salmon sperm (5 Prime Eppendorf) / Brinkmann, Westbury, New York, USA), 0.1 mg / ml E.I. 60 μl of lysis buffer stock supplemented with E. coli tRNA (Sigma), each 10 mM specific reverse primer mixture, and standard RNA34 oligonucleotide was added to the filter plate, followed by incubation at 37 ° C. for 10 minutes. The filter plate was then oligo (dT) immobilized microplate (GenePlate, RNAture) (Mitsuhashi et al., Nature 357, 519 (1992); Hamaguchi et al., Clin. Chem. 44, 2256 (1998) (both see And is centrifuged at 4 ° C. and 2000 × g for 5 minutes. After overnight storage at 4 ° C., the microplate was washed 3 times with 100 μl simple lysis buffer followed by 4 × 150 μl wash buffer (0.5 M NaCl, 10 mM Tris, pH 7.4, 1 mM EDTA). Washed 3 times at ° C. For cDNA, add buffer containing 1xRT-buffer, 1.25 mM dNTPs, 4 units of rRNasin, and 80 units of MMLV reverse transcriptase (Promega) (without primer) and incubate at 37 ° C for 2 hours To directly synthesize in 30 μl of each well. In the solution, cDNA stimulated by a specific primer was present, and the cDNA stimulated by oligo (dT) remained fixed in the microplate (Hugli, Crit. Rev. Immunol. 1, 321 (1981). )). For SYBR green PCR (see Morrison et al., Biotechniques 24, 954 (1998) (incorporated herein by reference)), dilute the cDNA 4 times in water and transfer 4 μl of the cDNA solution directly to a 384 well PCR plate. Transfer 5 μl of iTaq SYBR master mix (Bio Rad, Hercules, Calif.) And 1 μl of oligonucleotide mixture (15 μM each forward and reverse primer), and PCR in PRISM 7900HT (ABI) at 95 ° C. One cycle of minutes followed by 45 cycles of 95 ° C. for 30 seconds and 60 ° C. for 1 minute. TaqMan PCR may also be used, in which case the cDNA solution is transferred directly to a 384 well PCR plate and 5 μl TaqMan Universal Master Mix (ABI) and 1 μl oligonucleotide mixture (15 μM forward and reverse primers each, and 3 PCR is performed in PRISM 7900HT (ABI) with one cycle at 95 ° C. for 10 minutes, followed by 45 cycles at 95 ° C. for 30 seconds, 55 ° C. for 30 seconds, and 60-65 ° C. for 1 minute. . Each gene was amplified individually.

SYBRグリーンPCRの条件下でプライマーダイマーが産生されなかったことを確認するため、1xRT緩衝液を陰性コントロールとして使用した。さらに、PCRシグナルが単一のPCR産物由来であることを確認するため、それぞれの場合において融解曲線を分析した。分析ソフトウェア(SDS、ABI)により、一定量のPCR産物(蛍光)の産生のために必要とされたPCRサイクル数であるサイクル閾値(Ct)を決定した。ΔCtを算出するため、HAGにより処理した3通りのサンプルのCt値をPBSコントロールのCt値の平均によってそれぞれ通分し、未刺激サンプルに比較した刺激サンプルの増加倍率(以下、単に「増加倍率」とする)を、各PCRサイクルの効率が100%であったと仮定することにより、2^(−ΔCt)として算出した。   To confirm that no primer dimer was produced under the conditions of SYBR Green PCR, 1 × RT buffer was used as a negative control. In addition, melting curves were analyzed in each case to confirm that the PCR signal was derived from a single PCR product. Analysis software (SDS, ABI) determined the cycle threshold (Ct), which is the number of PCR cycles required for the production of a certain amount of PCR product (fluorescence). In order to calculate ΔCt, the Ct values of the three samples treated with HAG were divided by the average of the Ct values of the PBS control, respectively, and the increase rate of the stimulation sample compared to the unstimulated sample (hereinafter simply referred to as “increase rate”). ) Was calculated as 2 ^ (-ΔCt) by assuming that the efficiency of each PCR cycle was 100%.

図1A−1Cは、末梢血白血球における、FcγRを介したmRNA発現を示す。各デ
ータ点は、3通りの一定分量の全血からの平均+標準偏差(図1A)、または平均(図1B、1C)を示す。
1A-1C show mRNA expression via FcγR in peripheral blood leukocytes. Each data point represents the mean + standard deviation (Figure 1A), or mean (Figures 1B, 1C) from triplicate aliquots of whole blood.

図1Aは発現動態の分析結果を示す。ヘパリン化全血各70μlの一定分量の3通りをPBS、または200μg/mlの熱凝集IgG(HAG)と混合し、37℃において0〜8時間インキュベートした。その後TNFSF−2(=TNF−α、●)、TNFSF−8(▲)、またはTNFSF−15(=TL1A、◆)、およびβ−アクチン(△)のmRNAを定量化し、増加倍率(y軸)を上記のように算出した。図1Aに示すようにTNFSF−2の誘導は非常に迅速であり、ピークが30分前後で、4時間前後の大きな持続性のピークがそれに続く。TNFSF−2とは対照的に、TNFSF−8(図1A、▲)およびTNFSF−15(=TL1A)(図1A、◆)はゆっくりと増加し、ピークは4時間前後であった。HAGとの8時間のインキュベーションの間にハウスキーピング遺伝子(β−アクチン)は誘導されなかった(図1A、△)。従って、TNFSF−2、−8および−15のmRNAを分析するためのHAGとのインキュベーションは4時間に固定した。薬物誘導性の変化を同定するためのタンパク質検出が少なくとも一晩のインキュベーションを必要とすることから、この短いインキュベーション(4時間)は、mRNAに基づくアッセイの利点の一つである。   FIG. 1A shows the analysis results of expression kinetics. Three aliquots of 70 μl each of heparinized whole blood were mixed with PBS or 200 μg / ml heat-aggregated IgG (HAG) and incubated at 37 ° C. for 0-8 hours. Thereafter, TNFSF-2 (= TNF-α, ●), TNFSF-8 (▲), or TNFSF-15 (= TL1A, ◆) and β-actin (Δ) mRNA were quantified, and the multiplication factor (y-axis) Was calculated as described above. As shown in FIG. 1A, the induction of TNFSF-2 is very rapid, with a peak around 30 minutes followed by a large persistent peak around 4 hours. In contrast to TNFSF-2, TNFSF-8 (FIG. 1A, ▲) and TNFSF-15 (= TL1A) (FIG. 1A, ♦) increased slowly and the peak was around 4 hours. No housekeeping gene (β-actin) was induced during 8 hours incubation with HAG (FIG. 1A, Δ). Therefore, incubation with HAG to analyze TNFSF-2, -8 and -15 mRNA was fixed at 4 hours. This short incubation (4 hours) is one of the advantages of mRNA-based assays because protein detection to identify drug-induced changes requires at least an overnight incubation.

図1Bは容量反応を示す。ヘパリン化全血を0〜800μg/mlのHAGと共に37℃で4時間インキュベートし、その後様々なmRNAを定量化した(各シンボルは図1Aのように定義される)。HAGにより誘導されたTNFSF−2、TNFSF−8およびTNFSF−15は、10μg/mlのHAGから用量依存性であり、100〜200μg/mlにおいて飽和するが、β−アクチンは変化しないことが確認された。   FIG. 1B shows a volume response. Heparinized whole blood was incubated with 0-800 μg / ml HAG for 4 hours at 37 ° C., after which various mRNAs were quantified (each symbol is defined as in FIG. 1A). It has been confirmed that TNFSF-2, TNFSF-8 and TNFSF-15 induced by HAG are dose-dependent from 10 μg / ml HAG and saturate at 100-200 μg / ml, but β-actin remains unchanged. It was.

図1Cは、同個体から一週間以内に2回採血し、HAGにより誘導されたTNFSF−2(●)、TNFSF−8(▲)、TNFSF−15(◆)mRNAおよび外部コントロールmRNA(合成RNA34)(○)を定量化して得られた結果を示す。図1Cに示すように誘導には再現性があり、8健常人の間での1日目と2日目の間のr2値は0.927(n=32、p<0.001)であった(図1C)。溶解緩衝液中に加えた外部合成RNAの増加倍率(RNA34、図1C、○)は常に1.5未満であり、これは各実験においてアッセイが適切に行われたことを示唆する。 FIG. 1C shows that TNFSF-2 (●), TNFSF-8 (▲), TNFSF-15 (♦) mRNA and external control mRNA (synthetic RNA 34) induced by HAG and collected twice within one week from the same individual. The result obtained by quantifying (◯) is shown. As shown in FIG. 1C, the induction is reproducible, and the r 2 value between the first day and the second day among 8 healthy persons is 0.927 (n = 32, p <0.001). (FIG. 1C). The fold increase in externally synthesized RNA added in lysis buffer (RNA34, FIG. 1C, o) is always less than 1.5, suggesting that the assay was performed properly in each experiment.

mRNA分析に使用する実際の血液量は50μlであったが、このアッセイでは一反応あたり70μlの全血を使用した(20μlは8ウェルストリップからフィルタープレートへ移動する間の予備である)。従って各試験は420μl(70μl/ウェルx2(HAGおよびPBS)x3(3通り))程度の少ない全血を消費した。50μlの全血/ウェルから、RT−PCR(30μlのcDNAに90μlの水を加える(1:4希釈)、4μlのcDNA/PCR)により30の異なるmRNAを定量化した。1:4希釈のcDNAからであっても、様々なTNFSFmRNAの測定は達成された。個体間でのヘマトクリットの変動のために血清量が予測できない血清に基づく試験とは異なり、全血は操作が容易である。   The actual blood volume used for mRNA analysis was 50 μl, but this assay used 70 μl of whole blood per reaction (20 μl was reserved during the transfer from the 8-well strip to the filter plate). Therefore, each test consumed as little as 420 μl (70 μl / well × 2 (HAG and PBS) × 3 (3 types)) of whole blood. Thirty different mRNAs were quantified from 50 μl whole blood / well by RT-PCR (90 μl water added to 30 μl cDNA (1: 4 dilution), 4 μl cDNA / PCR). Various TNFSF mRNA measurements were achieved even from 1: 4 dilutions of cDNA. Unlike serum-based tests where serum levels are unpredictable due to variations in hematocrit between individuals, whole blood is easy to manipulate.

表2は、末梢全血中のヒト白血球におけるFcRを介したTNFSF mRNAの遺伝子発現の分析結果を示す。ここに示した結果は、HAG刺激への応答によって2よりも大きい増加倍率を示す被験者として定義される、「応答者」被験者のパーセンテージとして表現される。健常被験者とRA患者の間で陽性反応の頻度をそれぞれのTNFSF mRNAについて比較するため、χ2検定を用いた。2つの集団(陽性および陰性反応)が存在したことから、t−検定は増加倍率が2を超える被験者に対してのみ適用した。 Table 2 shows the results of analysis of TNFSF mRNA gene expression via FcR in human leukocytes in peripheral whole blood. The results presented here are expressed as a percentage of “responder” subjects, defined as subjects exhibiting an increase factor greater than 2 by response to HAG stimulation. To compare the frequency of positive reactions between healthy subjects and RA patients for each TNFSF mRNA, a χ 2 test was used. Because there were two populations (positive and negative responses), the t-test was applied only to subjects with a fold increase greater than 2.

Figure 2011502535
Figure 2011502535

表2に示すように、HAGは全ての健常ドナー、および61人中59人のRA患者にTNFSF−15(=TL1A)mRNAを誘導した(増加倍率>2)。これらの結果は最近出版された報告により、ex vivo状態で再現された(Prehn et al., The T cell costimulator TL1A is induced by FcgammaR signaling in human monocytes and dendritic cells, J. Immunol. 178,
4033 (2007); Cassatella et al., Soluble
TNF−like cytokine (TL1A) production by immune complexes stimulated monocytes in
rheumatoid arthritis, J. Immunol. 178, 7325 (2007)(両方が参照としてここに取り込まれる)を参照)。HAGはまた、TNFSF−2(TNF−α)mRNAを誘導することも知られている(Satoh
et al., Endogenous production of TNF in
mice with immune complex as a primer, J. Biol. Response Mod. 5, 140 (1986); Chouchakova et al., Fc gamma RIII−mediated production of TNF−alpha induces immune complex alveolitis independently of CXC chemokine generation, J. Immunol. 166, 5193 (2001)(両方が参照としてここに取り込まれる)を参照)。しかしながら表2に示すように、TNFSF−2は全ての個体には誘導されないことが見出され、半分を超える被験者が反応しなかった。さらに、HAG刺激は1/3を超えるコントロールおよびRA患者にTNFSF−8(=CD153、CD30リガンド)およびTNFSF−14(=LIGHT)mRNAを誘導し、かつ数例にTNFSF−1(=リンホトキシンα、LTA)、TNFSF−3(=リンホトキシンβ、LTB)、TNFSF−4(=CD252、CD134リガンド)、TNFSF−6(=Fasリガンド)、TNFSF−7(=CD70、CD27リガンド)およびTNFSF−9を誘導したが、TNFSF−5(=CD154、CD40リガンド)、TNFSF−12(=TWEAK)、TNFSF−13(=CD256)およびTNFSF−13B(=CD257)は全く誘導されないか、わずかに誘導された。図1Aおよび1Bに示すように、飽和は200μg/mlのHAGとの4時間のインキュベーションにおいて達成されたことから、この個体ごとの変動
、あるいは刺激開始から4時間の応答者および非応答者の存在には意味がある。このex
vivoアッセイは様々な下流のアッセイのスクリーニングプラットフォームとして有用であると期待される。
As shown in Table 2, HAG induced TNFSF-15 (= TL1A) mRNA in all healthy donors and 59 of 61 RA patients (magnification> 2). These results were reproduced in an ex vivo state by a recently published report (Prehn et al., The T cell costimulator TL1A is induced by FcammaR signaling in humanities.
4033 (2007); Cassatella et al. , Soluble
TNF-like cytokine (TL1A) production by immune complexes simulated monocycles in
rheumatoid arthritis, J. et al. Immunol. 178, 7325 (2007) (both incorporated herein by reference). HAG is also known to induce TNFSF-2 (TNF-α) mRNA (Satoh).
et al. , Endogenous production of TNF in
rice with immune complex as a primer, J. et al. Biol. Response Mod. 5, 140 (1986); Chouchakova et al. , Fc gamma RIII-mediated production of TNF-alpha inducibles immune complex independent of CXC chemokin generation, J. Am. Immunol. 166, 5193 (2001) (both incorporated herein by reference). However, as shown in Table 2, TNFSF-2 was found not to be induced in all individuals, and more than half of the subjects did not respond. Furthermore, HAG stimulation induces TNFSF-8 (= CD153, CD30 ligand) and TNFSF-14 (= LIGHT) mRNA in over 1/3 control and RA patients, and in some cases TNFSF-1 (= lymphotoxin α, LTA), TNFSF-3 (= lymphotoxin β, LTB), TNFSF-4 (= CD252, CD134 ligand), TNFSF-6 (= Fas ligand), TNFSF-7 (= CD70, CD27 ligand) and TNFSF-9 However, TNFSF-5 (= CD154, CD40 ligand), TNFSF-12 (= TWEAK), TNFSF-13 (= CD256) and TNFSF-13B (= CD257) were not induced at all or were slightly induced. As shown in FIGS. 1A and 1B, since saturation was achieved in a 4 hour incubation with 200 μg / ml HAG, this individual-to-individual variation, or the presence of responders and non-responders for 4 hours from the start of stimulation Is meaningful. This ex
Vivo assays are expected to be useful as screening platforms for various downstream assays.

リウマチ因子(RF)(2型(ポリクローナルIgGに対するモノクローナルIgM)または3型(ポリクローナルIgGに対するポリクローナルIgM)クリオグロブリンのいずれか)に対する試験は、RAが疑われる症例における標準的な診断法である。HAG刺激によるTNFSF−2、TNFSF−8、およびTNFSF−15誘導の結果をRFレベルにより分類して相互関係を模索した。結果を図2A〜2Cに示す。HAGにより誘導されたTNFSF−2(A)、TNFSF−8(B)、およびTNFSF−15(C)mRNAを、40人の健常成人志願者(コントロール)、およびそれぞれRF<30、30〜100、および>100IU/mlを有する61人のRA患者から定量化した。2つの集団(増加倍率>2の応答者、および非応答者)が観察されたことから、t−検定は応答者集団にのみ適用した。χ2検定による分析では、これら4群の間の有意な相違は明らかではなかった。 Testing for rheumatoid factor (RF) (either type 2 (monoclonal IgM against polyclonal IgG) or type 3 (polyclonal IgM against polyclonal IgG) cryoglobulin) is the standard diagnostic method in cases suspected of RA. The results of TNFSF-2, TNFSF-8, and TNFSF-15 induction by HAG stimulation were classified by RF level to explore the correlation. The results are shown in FIGS. TNFSF-2 (A), TNFSF-8 (B), and TNFSF-15 (C) mRNA induced by HAG were transferred to 40 healthy adult volunteers (control) and RF <30, 30-100, respectively. And quantified from 61 RA patients with> 100 IU / ml. Since two populations were observed (responders with fold increase> 2 and non-responders), the t-test was applied only to the responder population. Analysis by χ 2 test did not reveal significant differences between these four groups.

図2に示すように、RFの量によるRA患者の分類はTNFSF誘導における著しい相違を明らかにした。図2Cに示すように、RF>100IU/mlのRA患者におけるTNFSF−15の増加倍率は、コントロール(p=0.01)およびRF<30IU/mlのRA患者(p=0.04)各々のそれよりも有意に少なかった。これはおそらくRFがICの天然型であり、ex vivoでHAGを添加したときにも全血中に存在したという事実に起因する。RA患者の大部分はHAG刺激への反応を維持した。このことは、長期間のRFへの曝露にもかかわらず、RA患者の末梢血中の循環白血球はなおICを活性化できることを示す。高RFを有するRA患者に見られる減少したTNFSF−15の応答は、末梢血白血球のTNFSF−15受容体機能が何故か減少していることを示し得る。   As shown in FIG. 2, the classification of RA patients by the amount of RF revealed significant differences in TNFSF induction. As shown in FIG. 2C, the fold increase in TNFSF-15 in RA patients with RF> 100 IU / ml is shown for each control (p = 0.01) and RA patients with RF <30 IU / ml (p = 0.04). Significantly less than that. This is probably due to the fact that RF is a natural form of IC and was also present in whole blood when HAG was added ex vivo. The majority of RA patients remained responsive to HAG stimulation. This indicates that, despite prolonged exposure to RF, circulating leukocytes in the peripheral blood of RA patients can still activate IC. The reduced TNFSF-15 response seen in RA patients with high RF may indicate that peripheral blood leukocyte TNFSF-15 receptor function is somehow reduced.

RFによるFcγRの活性化を考慮し、TNFSF−15 mRNAの基線レベルがRFへの持続的曝露によって上昇するか否かについての評価を行った。結果は、表2に示すようにTNFSF−5、−13、および−13BのmRNAはHAGにより誘導されなかったため、これら3種のTNFSFに比較したTNFSF−15の相対的発現を算出することにより、Ctに関して測定した。しかしながら、RA患者におけるTNFSF−15の基線レベルは、3通りの算出全てにおいて、コントロール被験者との有意な相違は見られなかった。   Considering the activation of FcγR by RF, an evaluation was made as to whether the baseline level of TNFSF-15 mRNA is increased by continuous exposure to RF. As shown in Table 2, TNFSF-5, -13, and -13B mRNA were not induced by HAG, and as a result, by calculating the relative expression of TNFSF-15 compared to these three TNFSF, Measured for Ct. However, TNFSF-15 baseline levels in RA patients were not significantly different from control subjects in all three calculations.

図3は、図2に示す結果を、TNFSF−2および−8(A)、TNFSF−2および−15(B)、ならびにTNFSF−8および−15(C)をコントロール(○)およびRA(●)それぞれと比較することにより、x−yグラフに変換して得られた結果を示す。図3Cに示すように、TNFSF−15の増加倍率はRA(●)および健常被験者(○)の両方においてTNFSF−8のそれとよく相関しており、r2値はそれぞれ0.48(n=61、p<0.001)および0.27(n=38、p<0.001)であった。しかしながらTNFSF−8の増加倍率は低めで、かつ陽性応答者の集団はTNFSF−15のそれに比べて小さかったことから、RA患者をRFの量により分類した場合であっても、コントロールとRAの間にTNFSF−8についての著しい相違は見られなかった(図2B)。しかしながら図2Aに示すように、TNFSF−15とは対照的に、RF<30および<100のRA患者におけるTNFSF−2の増加倍率は健常被験者のそれよりも有意に(p<0.03、0.05)高かった。TNFSF−2の増加倍率はTNFSF−8(図3A)(コントロールおよびRAそれぞれ、r2=0.03および0.02)およびTNFSF−15(図3B)(コントロールおよびRAそれぞれ、r2=0.11および0.003)のそれとは相関しておらず、TNFSF−2およびTNFSF−8/
−15は異なる経路由来であることが示唆される。このことは、TNFSF−2およびTNFSF−8/−15の動態が異なるという図1Aに示される証拠により、さらに確認された。
FIG. 3 shows the results shown in FIG. 2 in which TNFSF-2 and -8 (A), TNFSF-2 and -15 (B), and TNFSF-8 and -15 (C) were controlled (◯) and RA (●). ) By comparing with each, the result obtained by converting to xy graph is shown. As shown in FIG. 3C, the magnification of TNFSF-15 was well correlated with that of TNFSF-8 in both RA (●) and healthy subjects (◯), and the r 2 values were 0.48 (n = 61, respectively). , P <0.001) and 0.27 (n = 38, p <0.001). However, the increase in TNFSF-8 was low and the population of positive responders was small compared to that of TNFSF-15, so even when RA patients were categorized by RF dose, between control and RA There was no significant difference for TNFSF-8 (FIG. 2B). However, as shown in FIG. 2A, in contrast to TNFSF-15, the increase in TNFSF-2 in RA patients with RF <30 and <100 was significantly greater than that of healthy subjects (p <0.03, 0 .05) It was expensive. The magnification of TNFSF-2 was as follows: TNFSF-8 (FIG. 3A) (control and RA, r 2 = 0.03 and 0.02, respectively) and TNFSF-15 (FIG. 3B) (control and RA, respectively, r 2 = 0. 11 and 0.003), which is not correlated with TNFSF-2 and TNFSF-8 /
It is suggested that -15 is derived from a different pathway. This was further confirmed by the evidence shown in FIG. 1A that the kinetics of TNFSF-2 and TNFSF-8 / -15 are different.

TNFSF−2(=TNF−α)は、RAの病因に関与する炎症性サイトカインの一つであり、RAの滑液中に存在する(Saxne et al., Detection of tumor necrosis factor alpha but not tumor necrosis factor beta in rheumatoid arthritis synovial fluid and serum, Arthritis Rheum. 31, 1041 (1988)(参照としてここに取り込まれる)を参照)。in situハイブリダイゼーションにより、TNF−α転写物が滑膜組織マクロファージに存在することが示されてきた(MacNaul et al., Analysis of IL−1 and TNF−alpha gene expression in human rheumatoid synoviocytes and normal monocytes by in situ hybridization, J. Immunol. 145, 4154 (1990)(参照としてここに取り込まれる)を参照)。さらに、抗−TNF−αモノクローナル抗体(インフリキシマブ、Remicade)およびTNF−αの作用を遮断する可溶性TNF受容体(エタネルセプト、Enbrel)が、RA患者において臨床的有効性を示した(Weaver, The impact of new biologicals in the treatment of rheumatoid arthritis, Rheumatology (Oxford) 43 Suppl. 3:iii17−iii23 (2004)(参照としてここに取り込まれる)を参照)。従って、我々のex vivoアッセイにおいてRA患者に見られた、HAGにより誘導されるTNF−α誘導の上昇は極めて妥当である。無論mRNAの誘導は、選択的スプライシング、翻訳後修飾、および阻害性のカスケードにより、タンパク質合成ならびにそれに続く生物学的および臨床的結果に常には対応しない。しかしながらこのex vivoシミュレーションは、受容体および付随するタンパク質の遺伝的多型性のような、様々な下流の分子アッセイの開始点のスクリーニング手段として有効となるであろう。   TNFSF-2 (= TNF-α) is one of the inflammatory cytokines involved in the pathogenesis of RA, and is present in RA synovial fluid (Saxne et al., Detection of tumor necrosis factor alpha nottator necrosis). factor beta in rheumatoid arthritis synovial fluid and serum, Arthritis Rheum. 31, 1041 (1988), incorporated herein by reference). In situ hybridization has shown that TNF-α transcripts are present in synovial tissue macrophages (MacNaul et al., Analysis of IL-1 and TNF-alpha gene expression in human rhematologic synthesis in situ hybridization, J. Immunol. 145, 4154 (1990), incorporated herein by reference). Furthermore, anti-TNF-α monoclonal antibodies (infliximab, Remicade) and soluble TNF receptors (Etanercept, Enbrel) that block the action of TNF-α have shown clinical efficacy in RA patients (Weaver, The impact of new biologics in the treatment of rhematoid arthritis, Rheumatology (Oxford) 43 Suppl. 3: iii17-iii23 (2004), incorporated herein by reference). Thus, the HAG-induced increase in TNF-α induction seen in RA patients in our ex vivo assay is quite reasonable. Of course, the induction of mRNA does not always correspond to protein synthesis and subsequent biological and clinical consequences due to alternative splicing, post-translational modification, and an inhibitory cascade. However, this ex vivo simulation will be useful as a screening tool for the starting point of various downstream molecular assays, such as genetic polymorphisms of receptors and associated proteins.

また、HAGにより誘導されたTNFSF−2 mRNAの、応答者(増加倍率>=2)および非応答者(増加倍率<2)の間での患者の臨床的特徴も比較した。結果を表3に示す。   We also compared the clinical characteristics of patients between responders (magnification> = 2) and non-responders (magnification <2) for TNFSF-2 mRNA induced by HAG. The results are shown in Table 3.

Figure 2011502535
Figure 2011502535

表3に示すように、RF<30IU/ml群の応答者集団は、非応答者の集団よりも有意に若かった(p=0.04)。年齢、性別、罹病期間、CRP、腫脹関節の数、および圧痛のある関節の数のようなその他の臨床パラメータについては、全てのRF群において応答者と非応答者の間に有意な違いはなかった(表3)。興味深いことに全ての患者を組み合わせた場合、抗TNF−αモノクローナル抗体または可溶性TNF受容体のような生物学的薬剤で処置した患者の数は、非応答者集団よりも応答者集団において有意に多かった(p=0.02)(表3)。これらの抗TNF−α薬剤の使用は、未知の負のフィードバック機構を通してFcγRを介するTNF−αの作用を増大し得るか、またはこれらの患者は生物学的治療法のよい候補者であり得る。HAGにより誘導されるTNF−αmRNAに応答を示すRA患者は、RA病理学においてTNF−αが有意に関与する可能性がさらにあり、それ故、これらの生物学的薬剤のよい候補者である可能性がさらにある。生物学的薬物は非常に高価であり、全ての患者に有効ではなく、かつ時折望ましくない副作用を示すため、これらの薬物に応答する可能性のある患者の同定は、個別化された医学としての臨床的有用性をもつであろう。   As shown in Table 3, the responder population in the RF <30 IU / ml group was significantly younger than the non-responder population (p = 0.04). There were no significant differences between responders and non-responders in all RF groups for other clinical parameters such as age, sex, duration of disease, CRP, number of swollen joints, and number of joints with tenderness (Table 3). Interestingly, when all patients were combined, the number of patients treated with biological agents such as anti-TNF-α monoclonal antibodies or soluble TNF receptors was significantly higher in the responder population than in the non-responder population. (P = 0.02) (Table 3). The use of these anti-TNF-α agents may increase the effects of TNF-α via FcγR through an unknown negative feedback mechanism, or these patients may be good candidates for biological therapy. RA patients who respond to HAG-induced TNF-α mRNA may further have a significant involvement of TNF-α in RA pathology and may therefore be good candidates for these biological agents There is more sex. Because biological drugs are very expensive, are not effective for all patients, and sometimes show undesirable side effects, the identification of patients who may respond to these drugs has become a personalized medicine It will have clinical utility.

細胞毒性試験は一般に、RAにおいて起こると信じられている免疫システムの活性に起因する、実際の細胞死を研究するために用いられてきた。細胞毒性試験は一般に、51Cr負荷細胞とエフェクター細胞とを様々な比においてインキュベートすること、ならびに死滅または損傷した細胞から放出された51Crの放射活性量を定量化することにより行われる(Dunkley et al., J. Immunol. Methods 6,
39 (1974)を参照)。ある場合には、放射性物質は蛍光定量物質のような非放射性物質に置き換えられているが(Kruger−Krasagakes et al., J. Immunol. Methods 156, 1 (1992)を参照)、基本的原理は変化していない。従って細胞毒性試験の結果は実際の細胞死を反映する。
Cytotoxicity tests have generally been used to study actual cell death due to the activity of the immune system believed to occur in RA. Cytotoxicity tests are generally performed by incubating 51 Cr loaded cells and effector cells at various ratios and quantifying the amount of 51 Cr radioactivity released from dead or damaged cells (Dunkley et al. al., J. Immunol.Methods 6,
39 (1974)). In some cases, radioactive materials have been replaced with non-radioactive materials, such as fluorometric materials (see Kruger-Kragakes et al., J. Immunol. Methods 156, 1 (1992)), but the basic principle is It has not changed. Thus, cytotoxicity test results reflect actual cell death.

しかしながら、細胞毒性試験は非生理的な実験条件下で行われ、このような研究過程において複雑な細胞と細胞、および細胞と血漿の相互作用を評価することは困難である。さらに、細胞毒性試験はどのTNFSFメンバーが細胞死の原因であるかを示さない。単一のエフェクター細胞は多数の標的細胞の死滅には十分でないことから、一旦エフェクター細胞が標的細胞を認識すると、エフェクター細胞の機能は標的を死滅させることのみではなく、その他のエフェクター細胞を動員することでもある。この動員機能は走化性因子の放出に代表されると考えられている。エフェクター細胞から放出されるこのような走化性因子の同一性は、古典的な細胞毒性試験によっては明らかにされないであろう。しかしながら本開示中で説明されるアッセイシステムは、エフェクター細胞における遺伝子発現の多数のクラスを同時に同定可能である。   However, cytotoxicity tests are performed under non-physiological experimental conditions, and it is difficult to evaluate the complex cell-to-cell and cell-to-plasma interactions in such a research process. Furthermore, cytotoxicity tests do not indicate which TNFSF member is responsible for cell death. Since a single effector cell is not sufficient to kill many target cells, once the effector cell recognizes the target cell, the function of the effector cell is not only to kill the target, but also to recruit other effector cells It is also a thing. This mobilization function is thought to be represented by the release of chemotactic factors. The identity of such chemotactic factors released from effector cells will not be revealed by classical cytotoxicity tests. However, the assay system described in this disclosure can simultaneously identify multiple classes of gene expression in effector cells.

全血の使用は、分離された白血球の培養液中での使用よりも好ましい。その理由は、前者は後者よりもさらに生理的であり、かつ白血球の全集団をスクリーニングできることである。全血の長めのインキュベーションはさらなるアーチファクトを生じ得る。従って理想的な方法は、in vitroからex vivoへの切り替えによる短期間のインキュベーションの間に、全血中でキラーの初期シグナルおよび動員シグナルを同定することである。mRNAの転写は、タンパク質合成または最終の生物学的結果のいずれよりも早期の出来事である。従って、mRNAは論理にかなった標的である。   The use of whole blood is preferred over the use of isolated leukocytes in culture. The reason is that the former is more physiological than the latter and can screen the entire population of leukocytes. Longer incubation of whole blood can produce further artifacts. The ideal method is therefore to identify the initial killer and recruitment signals of killer in whole blood during a brief incubation by switching from in vitro to ex vivo. Transcription of mRNA is an earlier event than either protein synthesis or the final biological outcome. Thus, mRNA is a logical target.

本方法は全血を使用することから、TNFSF非活性化治療法に対する可能な応答性を評価し、かつ治療的応答をモニターする、RAの診断試験として使用されてよい。特に、RAを有するヒトがT細胞刺激に応答して転写されたmRNAを標的とする治療法に応答する可能性があるか否かを決定する方法の好ましい実施形態においては、前述のようにRA患者から全血を採取し、血液サンプルをHAG刺激へ、かつ必要に応じてコントロール刺激(PBS)へ供する。TNFSF−2,TNFSF−8、またはTNFSF−15mRNAの量は上記のサンプル中で測定されてよい。HAGによる刺激後、これらのうち1以上のmRNAのレベルが有意に上昇している(示したように、例えば増加倍率が2を超える)RA患者は、これらのmRNAを標的とした治療法のよい候補である。   Because this method uses whole blood, it may be used as a diagnostic test for RA to assess possible responsiveness to TNFSF non-activated therapy and monitor therapeutic response. In particular, in a preferred embodiment of a method for determining whether a human having RA is likely to respond to a therapy that targets transcribed mRNA in response to T cell stimulation, as described above, RA Whole blood is collected from the patient and the blood sample is subjected to HAG stimulation and, if necessary, to control stimulation (PBS). The amount of TNFSF-2, TNFSF-8, or TNFSF-15 mRNA may be measured in the sample. RA patients with significantly elevated levels of one or more of these after stimulation with HAG (as indicated, eg, greater than 2 multiplication factors) RA patients are better treated with these mRNAs Is a candidate.

さらに、TNFSF−2,TNFSF−8、またはTNFSF−15mRNAのうちの1以上を標的にしたRA治療法の有効性を患者において評価する方法の好ましい実施形態においては、処置開始前に、HAG刺激後の全血中のmRNA量のコントロール刺激後の量に対する第一の比を求める。処置開始後に、HAG刺激後の全血中のmRNA量のコントロール刺激後の量に対する第二の比を求める。第一の比が第二の比よりも大きいような、比における有意な相違により、治療法の有効性が示される。このような治療法は例えば、インフリキシマブまたはエタネルセプトの投与を含んでよい。   Further, in a preferred embodiment of the method for assessing in a patient the effectiveness of RA therapy targeting one or more of TNFSF-2, TNFSF-8, or TNFSF-15 mRNA, prior to initiation of treatment, after HAG stimulation The first ratio of the amount of mRNA in the whole blood to the amount after control stimulation is determined. After the start of treatment, a second ratio of the amount of mRNA in whole blood after HAG stimulation to the amount after control stimulation is determined. A significant difference in the ratio such that the first ratio is greater than the second ratio indicates the effectiveness of the treatment. Such treatment may include, for example, administration of infliximab or etanercept.

重要なことには、このex vivo法はTNFSF−2,TNFSF−8、またはTNFSF−15mRNAのうちの1以上、特に疾病病理学に関わることが知られているTNFSF−2の、抗FcRを介した発現を阻害する化合物のスクリーニングに使用できる
。このような化合物は、これらの新しい薬物候補が白血球におけるmRNA産生を転写レベルで遮断し得ることから、興味あるものとなるであろう。このことは、RAに対する薬剤の発展に対し新しい戦略を提供するであろう。
Importantly, this ex vivo method involves the anti-FcR of one or more of TNFSF-2, TNFSF-8, or TNFSF-15 mRNA, particularly TNFSF-2, which is known to be involved in disease pathology. Can be used to screen for compounds that inhibit the expressed expression. Such compounds would be of interest because these new drug candidates can block mRNA production in leukocytes at the transcriptional level. This will provide a new strategy for drug development against RA.

開示されたシステムを用い、それによりRA治療のための推定される薬剤を同定する薬物化合物のスクリーニング方法の実施形態において、全血は反応者であるRA患者から得られ、ここで反応者は、その白血球がHAGのようなT細胞刺激に曝露されたとき、RAに付随するmRNAのレベルにおいて少なくとも2倍の増加を示す個体である。HAG刺激後の被験者の全血中のmRNA量のコントロール刺激後の量に対する第一の比を算出した。被験者からのさらなる全血サンプルをin vitroで薬物化合物へ曝露し、その後上記のように差次的に刺激した。その後これら曝露したサンプルの、HAG刺激後の全血中のmRNA量のコントロール刺激後の量に対する第二の比を算出した。第一の比が第二の比よりも大きいような、比における有意な相違により、薬物化合物がRAの有望な治療法としてのさらなる検討のための候補であることが示される。   In an embodiment of a drug compound screening method using the disclosed system, thereby identifying a putative agent for RA treatment, whole blood is obtained from a responding RA patient, wherein the responder is: An individual who exhibits at least a 2-fold increase in the level of mRNA associated with RA when the leukocytes are exposed to a T cell stimulus such as HAG. The first ratio of the amount of mRNA in the whole blood of the subject after HAG stimulation to the amount after control stimulation was calculated. Additional whole blood samples from subjects were exposed to drug compounds in vitro and then stimulated differentially as described above. Thereafter, a second ratio of the amount of mRNA in the whole blood after HAG stimulation to the amount after control stimulation of these exposed samples was calculated. A significant difference in the ratio, such that the first ratio is greater than the second ratio, indicates that the drug compound is a candidate for further study as a promising treatment for RA.

加えて、患者から得られた白血球を含むサンプル中のTNFSF−2,TNFSF−8、またはTNFSF−15mRNAのうちの1以上のレベルを測定することにより、RA患者の疾病状態をモニターする方法の好ましい実施形態において、第一の時に、in vitroでの熱凝集IgG抗体を用いたT細胞刺激またはその他の刺激後の全血中のmRNA量の、in vitroでのコントロール刺激後の量に対する第一の比を得る。前記第一の時に続く第二の時に、in vitroでのT細胞刺激後の全血中のmRNA量の、in vitroでのコントロール刺激後の量に対する第二の比を得る。比における有意な相違により、疾病状態の変化が示される。例えば、第二の比が第一よりも大きな場合には疾病の進行が示されるが、第一の比がより大きな場合には疾病の退行が示される。   In addition, a method for monitoring the disease state of RA patients by measuring the level of one or more of TNFSF-2, TNFSF-8, or TNFSF-15 mRNA in a sample containing leukocytes obtained from a patient is preferred In an embodiment, at a first time, the amount of mRNA in whole blood following T cell stimulation or other stimulation with an in vitro heat-aggregating IgG antibody relative to the amount after control stimulation in vitro. Get the ratio. At a second time following the first time, a second ratio of the amount of mRNA in whole blood after in vitro T cell stimulation to the amount after control stimulation in vitro is obtained. A significant difference in the ratio indicates a change in disease state. For example, disease progression is indicated when the second ratio is greater than the first, while disease regression is indicated when the first ratio is greater.

Claims (32)

関節リウマチ患者が抗TNF治療法に応答する可能性があるか否かを決定する方法であって、
前記患者由来の第一のサンプル中の白血球のFc受容体をin vitroで刺激すること;
刺激後に、第一のサンプル中の腫瘍壊死因子スーパーファミリー(「TNFSF」)タンパク質をコードするmRNAの量を測定すること:
第二のサンプル中の白血球をin vitroでコントロール刺激に曝露すること:
第二のサンプル中の前記mRNAの量を測定すること;
第一のサンプル中のmRNA量の第二のサンプル中のmRNA量に対する比を決定すること;および
該比が約2:1又はそれ以上の場合に、患者が該治療法に応答する可能性があると決定することを含む方法。
A method of determining whether a patient with rheumatoid arthritis is likely to respond to anti-TNF therapy comprising:
Stimulating leukocyte Fc receptors in a first sample from said patient in vitro;
Following stimulation, measuring the amount of mRNA encoding the tumor necrosis factor superfamily (“TNFSF”) protein in the first sample:
Exposing the leukocytes in the second sample to a control stimulus in vitro:
Measuring the amount of said mRNA in a second sample;
Determining the ratio of the amount of mRNA in the first sample to the amount of mRNA in the second sample; and if the ratio is about 2: 1 or greater, the patient may respond to the therapy A method comprising determining to be.
該mRNAがTNFSF−2をコードする、請求項1に記載の方法。   2. The method of claim 1, wherein the mRNA encodes TNFSF-2. 第一のサンプル中の白血球を刺激することが第一のサンプルに熱凝集ヒトIgGを混合することを含む、請求項2に記載の方法。   3. The method of claim 2, wherein stimulating leukocytes in the first sample comprises mixing thermally aggregated human IgG with the first sample. 第一および第二のサンプルのうち少なくとも1つが全血を含む、請求項2に記載の方法。   The method of claim 2, wherein at least one of the first and second samples comprises whole blood. コントロール刺激がリン酸緩衝食塩水である、請求項2に記載の方法。   The method of claim 2, wherein the control stimulus is phosphate buffered saline. 該治療法がインフリキシマブおよびエタネルセプトから成る群より選択される薬剤の投与を含む、請求項2に記載の方法。   3. The method of claim 2, wherein the treatment comprises administration of a drug selected from the group consisting of infliximab and etanercept. 関節リウマチ患者が、抗FcRを介した腫瘍壊死因子スーパーファミリー(「TNFSF」)タンパク質をコードするmRNAの発現を阻害する治療法に応答する可能性があるか否かを決定する方法であって、
前記患者由来の第一のサンプル中の白血球のFc受容体をin vitroで刺激すること;
刺激後に、第一のサンプル中の腫瘍壊死因子スーパーファミリー(「TNFSF」)タンパク質をコードするmRNAの量を測定すること:
第二のサンプル中の白血球をin vitroでコントロール刺激に曝露すること:
第二のサンプル中の前記mRNAの量を測定すること;
第一のサンプル中のmRNA量の第二のサンプル中のmRNA量に対する比を決定すること;および
該比が約2:1又はそれ以上の場合に、患者が該治療法に応答する可能性があると決定することを含む方法。
A method for determining whether a patient with rheumatoid arthritis is likely to respond to a therapy that inhibits the expression of mRNA encoding a tumor necrosis factor superfamily ("TNFSF") protein via anti-FcR, comprising:
Stimulating leukocyte Fc receptors in a first sample from said patient in vitro;
Following stimulation, measuring the amount of mRNA encoding the tumor necrosis factor superfamily (“TNFSF”) protein in the first sample:
Exposing the leukocytes in the second sample to a control stimulus in vitro:
Measuring the amount of said mRNA in a second sample;
Determining the ratio of the amount of mRNA in the first sample to the amount of mRNA in the second sample; and if the ratio is about 2: 1 or greater, the patient may respond to the therapy A method comprising determining to be.
該mRNAがTNFSF−2をコードする、請求項7に記載の方法。   8. The method of claim 7, wherein the mRNA encodes TNFSF-2. 第一のサンプル中の白血球の刺激が第一のサンプルに熱凝集ヒトIgGを混合すること含む、請求項8に記載の方法。   9. The method of claim 8, wherein the stimulation of leukocytes in the first sample comprises mixing thermally aggregated human IgG with the first sample. 第一および第二のサンプルのうち少なくとも1つが全血を含む、請求項8に記載の方法。   9. The method of claim 8, wherein at least one of the first and second samples comprises whole blood. コントロール刺激がリン酸緩衝食塩水である、請求項8に記載の方法。   9. The method of claim 8, wherein the control stimulus is phosphate buffered saline. 関節リウマチを治療するための候補薬剤を同定する方法であって、
熱凝集ヒトIgGに曝露したとき、腫瘍壊死因子スーパーファミリー(「TNFSF」)タンパク質をコードするmRNAの転写が少なくとも1.5倍増加する白血球を有するヒト由来の白血球を含む、第一、第二、第三、および第四のサンプルを得ること;
第一のサンプル中の白血球のFc受容体をin vitroで刺激すること;
第二のサンプル中の白血球をin vitroでコントロール刺激に曝露すること:
刺激後の、第一および第二のサンプル中のmRNAの量を測定すること;
第三および第四のサンプルを薬剤に曝露すること;
曝露後の第三サンプル中の白血球のFc受容体をin vitroで刺激すること;
第四サンプル中の白血球をin vitroでコントロール刺激に曝露すること:
刺激後の第三および第四サンプル中のmRNAレベルを測定すること;および
第一のサンプルから得られたデータを第三サンプルから得られたデータに比較することおよび第二のサンプルから得られたデータを第四サンプルから得られたデータに比較することを含み、比較データ間の有意な相違により候補薬剤が示唆される、方法。
A method for identifying a candidate agent for treating rheumatoid arthritis comprising:
First, second, comprising leukocytes from a human having leukocytes that increase transcription of mRNA encoding tumor necrosis factor superfamily ("TNFSF") protein by at least 1.5-fold when exposed to heat-aggregated human IgG, Obtaining a third and fourth sample;
Stimulating leukocyte Fc receptors in the first sample in vitro;
Exposing the leukocytes in the second sample to a control stimulus in vitro:
Measuring the amount of mRNA in the first and second samples after stimulation;
Exposing the third and fourth samples to the drug;
In vitro stimulation of leukocyte Fc receptors in the third sample after exposure;
Exposing the leukocytes in the fourth sample to a control stimulus in vitro:
Measuring mRNA levels in the third and fourth samples after stimulation; and comparing the data obtained from the first sample to the data obtained from the third sample and obtained from the second sample Comparing the data to data obtained from a fourth sample, wherein a significant difference between the comparison data suggests a candidate agent.
第一および第二のサンプル中のmRNA量の測定後、第一のサンプル中のmRNA量の第二のサンプル中のmRNA量に対する第一の比が算出され;
第三および第四サンプル中のmRNAレベルの測定後、第三サンプル中のmRNA量の第四サンプル中のmRNA量に対する第二の比が算出され;かつ
第一および第二の比が比較され、比の間が有意に相違する候補薬剤を示唆する、請求項12に記載の方法。
After measuring the amount of mRNA in the first and second samples, a first ratio of the amount of mRNA in the first sample to the amount of mRNA in the second sample is calculated;
After measuring the mRNA level in the third and fourth samples, a second ratio of the amount of mRNA in the third sample to the amount of mRNA in the fourth sample is calculated; and the first and second ratios are compared, 13. The method of claim 12, wherein the method suggests candidate agents that differ significantly between the ratios.
該TNFSFタンパク質がTNFSF−2、TNFSF−8、またはTNFSF−15である、請求項13に記載の方法。   14. The method of claim 13, wherein the TNFSF protein is TNFSF-2, TNFSF-8, or TNFSF-15. 第一および第三サンプル中の白血球を刺激することがサンプルに熱凝集ヒトIgGを混合することを含む、請求項14に記載の方法。   15. The method of claim 14, wherein stimulating leukocytes in the first and third samples comprises mixing the sample with heat-aggregated human IgG. コントロール刺激がリン酸緩衝食塩水である、請求項14に記載の方法。   15. The method of claim 14, wherein the control stimulus is phosphate buffered saline. 第一、第二、第三、および第四サンプルのうち少なくとも1つが全血を含む、請求項14に記載の方法。   15. The method of claim 14, wherein at least one of the first, second, third, and fourth samples comprises whole blood. 比における有意な相違は、第一の比が第二の比よりも大である、請求項14に記載の方法。   15. The method of claim 14, wherein the significant difference in ratio is that the first ratio is greater than the second ratio. 該mRNAがTNFSF−2をコードする、請求項14に記載の方法。   15. The method of claim 14, wherein the mRNA encodes TNFSF-2. 該TNFSFタンパク質がTNFSF−2、TNFSF−8、またはTNFSF−15である、請求項12に記載の方法。   13. The method of claim 12, wherein the TNFSF protein is TNFSF-2, TNFSF-8, or TNFSF-15. 第一および第三サンプル中の白血球を刺激することがサンプルに熱凝集ヒトIgGを混合すること含む、請求項20に記載の方法。   21. The method of claim 20, wherein stimulating leukocytes in the first and third samples comprises mixing the sample with heat-aggregated human IgG. コントロール刺激がリン酸緩衝食塩水である、請求項20に記載の方法。   21. The method of claim 20, wherein the control stimulus is phosphate buffered saline. 第一、第二、第三、および第四サンプルのうち少なくとも1つが全血を含む、請求項20に記載の方法。   21. The method of claim 20, wherein at least one of the first, second, third, and fourth samples comprises whole blood. 該mRNAがTNFSF−2をコードする、請求項20に記載の方法。   21. The method of claim 20, wherein the mRNA encodes TNFSF-2. 患者の関節リウマチの状態を評価する方法であって、
白血球を含み、かつ患者から第一の時に得られた第一のサンプル中の白血球のFc受容体をin vitroで刺激すること;
刺激後に第一のサンプル中の腫瘍壊死因子スーパーファミリー(「TNFSF」)タンパク質をコードするmRNA量を測定すること;
患者から前記第一の時に得られた白血球を含む第二のサンプル中の白血球をin vitroでコントロール刺激に曝露すること;
刺激後に第二のサンプル中のmRNA量を測定すること;
第一のサンプル中のmRNA量の第二のサンプル中のmRNA量に対する第一の比を決定すること;
白血球を含み、かつ前記第一の時に続く第二の時に患者から得られた第三サンプル中の白血球のFc受容体をin vitroで刺激すること;
刺激後に第三サンプル中のmRNA量を測定すること;
患者から前記第二の時に得られた白血球を含む第四サンプル中の白血球をin vitroでコントロール刺激に曝露すること;
刺激後に第四サンプル中のmRNA量を測定すること;
第三サンプル中のmRNA量の第四サンプル中のmRNA量に対する第二の比を決定すること;および
第一および第二の比を比較し、第一および第二の比における有意な相違が疾病状態の変化を示唆することを含む方法。
A method for assessing the status of a patient's rheumatoid arthritis,
In vitro stimulation of leukocyte Fc receptors in a first sample containing leukocytes and obtained at a first time from a patient;
Measuring the amount of mRNA encoding the tumor necrosis factor superfamily (“TNFSF”) protein in the first sample after stimulation;
Exposing leukocytes in a second sample containing leukocytes obtained from said patient at said first time in vitro to a control stimulus;
Measuring the amount of mRNA in the second sample after stimulation;
Determining a first ratio of the amount of mRNA in the first sample to the amount of mRNA in the second sample;
In vitro stimulation of leukocyte Fc receptors in a third sample containing leukocytes and obtained from a patient at a second time following said first time;
Measuring the amount of mRNA in the third sample after stimulation;
Exposing the leukocytes in the fourth sample containing leukocytes obtained from the patient at the second time in vitro to a control stimulus;
Measuring the amount of mRNA in the fourth sample after stimulation;
Determining a second ratio of the amount of mRNA in the third sample to the amount of mRNA in the fourth sample; and comparing the first and second ratios, a significant difference in the first and second ratios being A method comprising suggesting a change in state.
該TNFSFタンパク質がTNFSF−2、TNFSF−8、またはTNFSF−15である、請求項25に記載の方法。   26. The method of claim 25, wherein the TNFSF protein is TNFSF-2, TNFSF-8, or TNFSF-15. 第一および第三サンプル中の白血球を刺激することがサンプルにヒト熱凝集IgGを混合することを含む、請求項26に記載の方法。   27. The method of claim 26, wherein stimulating leukocytes in the first and third samples comprises mixing human heat-aggregated IgG with the samples. コントロール刺激がリン酸緩衝食塩水である、請求項26に記載の方法。   27. The method of claim 26, wherein the control stimulus is phosphate buffered saline. 第一、第二、第三、および第四サンプルのうち少なくとも1つが全血を含む、請求項26に記載の方法。   27. The method of claim 26, wherein at least one of the first, second, third, and fourth samples comprises whole blood. 第二の比が第一の比よりも、比における有意な相違が大きく、かつ疾病状態の変化が疾病の進行である、請求項26に記載の方法。   27. The method of claim 26, wherein the second ratio is significantly different in the ratio than the first ratio, and the change in disease state is disease progression. 第一の比が第二の比よりも、比における有意な相違が大きく、かつ疾病状態の変化が疾病の退行である、請求項26に記載の方法。   27. The method of claim 26, wherein the first ratio is significantly greater in the ratio than the second ratio, and the change in disease state is disease regression. 該mRNAがTNFSF−2をコードする、請求項26に記載の方法。   27. The method of claim 26, wherein the mRNA encodes TNFSF-2.
JP2010534127A 2007-11-14 2008-11-11 Tumor necrosis factor superfamily mRNA expression through Fc receptors in peripheral blood leukocytes Pending JP2011502535A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US296707P 2007-11-14 2007-11-14
PCT/US2008/083136 WO2009070442A2 (en) 2007-11-14 2008-11-11 Fc receptor-mediated tumor necrosis factor superfamily mrna expression in peripheral blood leukocytes

Publications (1)

Publication Number Publication Date
JP2011502535A true JP2011502535A (en) 2011-01-27

Family

ID=40679200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010534127A Pending JP2011502535A (en) 2007-11-14 2008-11-11 Tumor necrosis factor superfamily mRNA expression through Fc receptors in peripheral blood leukocytes

Country Status (5)

Country Link
US (1) US8268566B2 (en)
EP (1) EP2209919A4 (en)
JP (1) JP2011502535A (en)
CN (1) CN101855367A (en)
WO (1) WO2009070442A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014057582A (en) * 2012-09-17 2014-04-03 Hitachi Chemical Co Ltd Method and kit for predicting cytotoxic activity

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1888089B9 (en) * 2005-04-28 2012-08-08 Hitachi Chemical Research Center, Inc. Ex vivo gene expression in whole blood as a model of assessment of individual variation to dietary supplements
WO2009070442A2 (en) 2007-11-14 2009-06-04 Hitachi Chemical Co. Ltd. Fc receptor-mediated tumor necrosis factor superfamily mrna expression in peripheral blood leukocytes
WO2012066536A2 (en) * 2010-11-16 2012-05-24 Prediguard Transcriptome signatures discriminate etanercept-treated rheumatoid arthritis (ra) patients according to their response or refractory status
WO2012170037A1 (en) 2011-06-10 2012-12-13 Hitachi Chemical Co., Ltd. Vesicle capturing devices and methods for using same
US20140147470A1 (en) * 2011-07-18 2014-05-29 Hitachi Chemical C., Ltd. METHODS OF PREDICTING HOST RESPONSIVENESS TO CANCER IMMUNOTHERAPIES BY EX VIVO INDUCTION OF LEUKOCYTE-FUNCTION-ASSOCIATED mRNAs
US9662649B2 (en) 2013-05-06 2017-05-30 Hitachi Chemical Company America, Ltd. Devices and methods for capturing target molecules
US10266895B2 (en) 2014-11-05 2019-04-23 Hitachi Chemical Company Ltd. Exosomes and microvesicles in intestinal luminal fluids and stool and use of same for the assessment of inflammatory bowel disease
US10370719B2 (en) 2014-11-12 2019-08-06 Hitachi Chemical Co., Ltd. Method and device for diagnosing organ injury
WO2017040520A1 (en) 2015-08-31 2017-03-09 Hitachi Chemical Co., Ltd. Molecular methods for assessing urothelial disease

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007117589A2 (en) * 2006-04-07 2007-10-18 Hitachi Chemical Co., Ltd. Enhanced fc receptor-mediated tumor necrosis factor superfamily and chemokine mrna expression in peripheral blood leukocytes in patients with rheumatoid arthritis

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4925572A (en) 1987-10-20 1990-05-15 Pall Corporation Device and method for depletion of the leukocyte content of blood and blood components
US4880548A (en) 1988-02-17 1989-11-14 Pall Corporation Device and method for separating leucocytes from platelet concentrate
DE68921918T2 (en) 1988-05-09 1995-09-07 Univ Temple Procedure for predicting the effectiveness of antineoplastic treatment in individual patients.
US5474909A (en) 1992-08-07 1995-12-12 Anticancer, Inc. Noncolorimetric histoculture method for predicting drug response of tumors
US7625697B2 (en) 1994-06-17 2009-12-01 The Board Of Trustees Of The Leland Stanford Junior University Methods for constructing subarrays and subarrays made thereby
DK0938320T3 (en) 1996-03-26 2010-10-18 Michael S Kopreski Method of extracting extracellular RNA from plasma or serum to detect, monitor or assess cancer
US5683698A (en) 1996-08-02 1997-11-04 New England Deaconess Hospital Formulation for alleviating symptoms associated with arthritis
IL130074A0 (en) 1996-11-22 2000-02-29 Shiloov Medical Technologies L A whole blood/mitogen assay for the early detection of a subject with cancer and kit
US7514232B2 (en) 1996-12-06 2009-04-07 Becton, Dickinson And Company Method for detecting T cell response to specific antigens in whole blood
US6183951B1 (en) 1997-04-11 2001-02-06 Prometheus Laboratories, Inc. Methods of diagnosing clinical subtypes of crohn's disease with characteristic responsiveness to anti-Th1 cytokine therapy
US20020006613A1 (en) 1998-01-20 2002-01-17 Shyjan Andrew W. Methods and compositions for the identification and assessment of cancer therapies
US6692916B2 (en) 1999-06-28 2004-02-17 Source Precision Medicine, Inc. Systems and methods for characterizing a biological condition or agent using precision gene expression profiles
JP3897086B2 (en) 2000-08-22 2007-03-22 株式会社日立製作所 Cancer-related gene expression observation array
US20020048566A1 (en) 2000-09-14 2002-04-25 El-Deiry Wafik S. Modulation of cellular apoptosis and methods for treating cancer
EP1330518B1 (en) 2000-10-31 2010-09-08 Hitachi Chemical Research Center, Inc. Method for collecting and using nuclear mrna
JP2002223753A (en) 2001-01-30 2002-08-13 Hitachi Ltd Oligonucleotide array for analyzing drug response
US20020182274A1 (en) 2001-03-21 2002-12-05 Kung-Ming Lu Methods for inhibiting cancer growth, reducing infection and promoting general health with a fermented soy extract
US6905827B2 (en) 2001-06-08 2005-06-14 Expression Diagnostics, Inc. Methods and compositions for diagnosing or monitoring auto immune and chronic inflammatory diseases
WO2003030719A2 (en) 2001-10-09 2003-04-17 The University Of Chicago Methods and kits for use in selecting approaches to treating cancer
JP5236856B2 (en) 2001-11-09 2013-07-17 ライフ テクノロジーズ コーポレーション Identification, observation and treatment of diseases and identification of biological states using gene expression profiles
WO2003044215A2 (en) 2001-11-20 2003-05-30 Oncomedx, Inc. Methods for evaluating drug-resistance gene expression in the cancer patient
FI20020078A (en) 2002-01-15 2003-07-16 Danisco Stimulation of the immune system by polydextrosis
US6878518B2 (en) 2002-01-22 2005-04-12 The Trustees Of The University Of Pennsylvania Methods for determining steroid responsiveness
US7745180B2 (en) 2002-04-24 2010-06-29 Hitachi Chemical Co., Ltd. Device and method for high-throughput quantification of mRNA from whole blood
CA2526950C (en) 2002-05-27 2012-06-26 Leif Hakansson Method for determining immune system affecting compounds
SE522979C2 (en) 2002-07-03 2004-03-23 Moelnlycke Health Care Ab Wound dressing comprising a non-enzymatic antioxidant
AU2003261366A1 (en) 2002-08-05 2004-02-23 The Wistar Institute Methods for regulating brca1-brca2-containing complex activity
GB0219642D0 (en) 2002-08-23 2002-10-02 Gauthier Pierre Method and device for preparing tissues sections
AU2002953533A0 (en) * 2002-12-24 2003-01-16 Arthron Limited Fc receptor modulating compounds and compositions
US20080261207A1 (en) 2004-05-25 2008-10-23 Masato Mitsuhashi Method of Measuring Cancer Susceptibility
JP4772055B2 (en) 2004-10-20 2011-09-14 日立化成工業株式会社 Method of selecting drug administration by mRNA quantification
WO2006076492A2 (en) 2005-01-13 2006-07-20 Whatman, Inc. Reconstitution and transfer device and method
WO2006110091A1 (en) 2005-04-15 2006-10-19 Therim Diagnostica Ab Diagnostic method for detecting cancer by measuring amount of a cytokine like il-6
EP1888089B9 (en) 2005-04-28 2012-08-08 Hitachi Chemical Research Center, Inc. Ex vivo gene expression in whole blood as a model of assessment of individual variation to dietary supplements
EP1904657B1 (en) 2005-06-08 2011-05-25 Hitachi Chemical Research Center, Inc. METHOD FOR PREDICTING IMMUNE RESPONSE TO NEOPLASTIC DISEASE BASED ON mRNA EXPRESSION PROFILE IN NEOPLASTIC CELLS AND STIMULATED LEUKOCYTES
WO2007038501A2 (en) 2005-09-27 2007-04-05 The Feinstein Institute For Medical Research Rheumatoid arthritis markers
EP2161348A1 (en) 2005-09-27 2010-03-10 Source MDX Gene expression profiling for identification monitoring and treatment of rheumatoid arthritis
JP5027209B2 (en) 2006-04-07 2012-09-19 日立化成工業株式会社 Enhanced T cell receptor-mediated tumor necrosis factor superfamily and chemokine mRNA expression in peripheral blood leukocytes of patients with Crohn's disease
WO2009070442A2 (en) 2007-11-14 2009-06-04 Hitachi Chemical Co. Ltd. Fc receptor-mediated tumor necrosis factor superfamily mrna expression in peripheral blood leukocytes
JP2009536524A (en) 2006-05-08 2009-10-15 日立化成工業株式会社 Method for testing drug sensitivity of solid tumors by quantifying mRNA expression in sliced tumor tissue
US20100190162A1 (en) 2007-02-26 2010-07-29 Cedars-Sinai Medical Center Methods of using single nucleotide polymorphisms in the tl1a gene to predict or diagnose inflammatory bowel disease
US20090215064A1 (en) 2008-02-27 2009-08-27 Hitachi Chemical Co., Ltd. Quantitative assessment of individual cancer susceptibility by measuring dna damage-induced mrna in whole blood

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007117589A2 (en) * 2006-04-07 2007-10-18 Hitachi Chemical Co., Ltd. Enhanced fc receptor-mediated tumor necrosis factor superfamily and chemokine mrna expression in peripheral blood leukocytes in patients with rheumatoid arthritis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014057582A (en) * 2012-09-17 2014-04-03 Hitachi Chemical Co Ltd Method and kit for predicting cytotoxic activity

Also Published As

Publication number Publication date
CN101855367A (en) 2010-10-06
WO2009070442A3 (en) 2009-09-24
EP2209919A2 (en) 2010-07-28
EP2209919A4 (en) 2011-04-13
US20100279296A1 (en) 2010-11-04
US8268566B2 (en) 2012-09-18
WO2009070442A2 (en) 2009-06-04

Similar Documents

Publication Publication Date Title
US7838239B2 (en) Methods regarding enhanced T-cell receptor-mediated tumor necrosis factor superfamily mRNA expression in peripheral blood leukocytes in patients with crohn&#39;s disease
JP2011502535A (en) Tumor necrosis factor superfamily mRNA expression through Fc receptors in peripheral blood leukocytes
Fury et al. Transcript abundance patterns in Kawasaki disease patients with intravenous immunoglobulin resistance
JP5727484B2 (en) Type I interferon diagnostics
JP5166368B2 (en) Methods and kits for diagnosing ulcerative colitis
US20130012860A1 (en) Methods and compositions to predict and detect acute rejection
Meugnier et al. Gene expression profiling in peripheral blood cells of patients with rheumatoid arthritis in response to anti-TNF-α treatments
US20120258076A1 (en) Method for characterizing host immune funtion by ex vivo induction of offensive and defensive immune markers
Wu et al. Interaction between RANKL and HLA–DRB1 genotypes may contribute to younger age at onset of seropositive rheumatoid arthritis in an inception cohort
JP7235508B2 (en) Method for Predicting Cancer Susceptibility to Treatment with PD-1 Immune Checkpoint Inhibitors
Clanchy et al. TLR expression profiles are a function of disease status in rheumatoid arthritis and experimental arthritis
McKay et al. The low EOMES/TBX21 molecular phenotype in multiple sclerosis reflects CD56+ cell dysregulation and is affected by immunomodulatory therapies
EP2734233A1 (en) Methods of predicting host responsiveness to cancer immunotherapies by ex vivo induction of leukocyte-function-associated mrnas
JP2009536021A (en) Increased FC receptor-mediated tumor necrosis factor superfamily and chemokine mRNA expression in peripheral blood leukocytes of patients with rheumatoid arthritis
JP6347477B2 (en) Method for predicting efficacy of anti-IL-6 receptor antibody treatment for rheumatoid arthritis patients
Soós et al. Angiotensin converting enzyme activity in anti-TNF-treated rheumatoid arthritis and ankylosing spondylitis patients
US8965708B2 (en) Method for the treatment of acquired lymphedema
US20220351806A1 (en) Biomarker Panels for Guiding Dysregulated Host Response Therapy
Park et al. Gene expression profile in patients with axial spondyloarthritis: meta-analysis of publicly accessible microarray datasets
US20030068645A1 (en) Methods and materials for evaluating cardiovascular conditions
US6762021B2 (en) Method for diagnosis of crohn&#39;s disease
WO2024025923A1 (en) Methods for selection of cancer patients for anti-angiogenic and immune checkpoint blockade therapies and combinations thereof
WO2022235901A1 (en) Methods, kits, and systems for modulating and predicting changes in p16, senescence, and physiological reserve
Acosta-Colman et al. AB0005 Hla class ii in paraguayan immune-mediated inflammatory patients
Shubaeva et al. THU0484 Serum Levels of Extracellular DNA (EXDNA) and EXDNA-Complexed Proteins at Ankylosing Spondylitis (AS), Correlation with Biomarkers–Crp, Esr, Methylation Level and Leukocyte Count

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106