JP2011235556A - 励起エネルギー特定方法、励起エネルギー特定装置、接合方法および接合装置 - Google Patents

励起エネルギー特定方法、励起エネルギー特定装置、接合方法および接合装置 Download PDF

Info

Publication number
JP2011235556A
JP2011235556A JP2010109659A JP2010109659A JP2011235556A JP 2011235556 A JP2011235556 A JP 2011235556A JP 2010109659 A JP2010109659 A JP 2010109659A JP 2010109659 A JP2010109659 A JP 2010109659A JP 2011235556 A JP2011235556 A JP 2011235556A
Authority
JP
Japan
Prior art keywords
energy
bonding film
amount
leaving group
excitation energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010109659A
Other languages
English (en)
Inventor
Mitsuru Sato
充 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2010109659A priority Critical patent/JP2011235556A/ja
Publication of JP2011235556A publication Critical patent/JP2011235556A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

【課題】接合膜に発現する接着性を制御するために、接合膜に照射するエネルギー線の最適な励起エネルギーを容易に特定することができる励起エネルギー特定方法および励起エネルギー特定装置、および接合膜に照射するエネルギー線の最適な励起エネルギーを特定することにより、接合膜ごとの個体差を把握して、部材同士を最適な接着力で接合することができる接合方法および接合装置を提供すること。
【解決手段】励起エネルギー特定装置200は、脱離基303の脱離により接着性を発現する接合膜3において、目的とする量の脱離基303を脱離させるのに最適な励起エネルギーを特定する装置であり、試料載置部11と、接合膜3にエネルギー量の異なるエネルギー線を時間的に独立して照射する線源12と、脱離した脱離基303の量を測定する測定部13と、エネルギー量ごとに測定された脱離基の量から、最適な励起エネルギーを特定する解析部とを有する。
【選択図】図4

Description

本発明は、励起エネルギー特定方法、励起エネルギー特定装置、接合方法および接合装置に関するものである。
特許文献1には、プラズマ重合法により形成された接合膜を用いて部材同士を接合する方法が提案されている。
この接合膜は、気相成膜法等により、一方または双方の部材の表面に成膜される。その後、接合膜にエネルギー線が照射されると、接合膜中の脱離基が脱離し、これにより接着性が発現する。特許文献1に記載の接合膜は、この接着性を利用して部材同士を接合している。
接合膜の接着性は、接合膜に照射するエネルギー線の励起エネルギーに応じて変化するので、励起エネルギーを変えることによって接合膜の接着力の大きさや接合を完了するまでに要する時間を制御することが可能である。
ところが、接合膜の接着性と励起エネルギーとの間には、一定の相関関係が存在するものの、この相関関係は、接合に供される部材の種類や周囲の環境、接合膜の形成条件等に応じて変化する。すなわち、この相関関係には、接合膜ごとに個体差が存在している。この相関関係の個体差は、実際に接合してみて初めて把握できるものであり、したがって、接合前の段階で、目的とする接着力を発現させたり、あるいは短時間で効率よく接着性を発現させることのできる最適な励起エネルギーを非破壊で特定することは困難である。
特開2008−307873号公報
本発明の目的は、接合膜に発現する接着性を制御するために、接合膜に照射するエネルギー線の最適な励起エネルギーを容易に特定することができる励起エネルギー特定方法および励起エネルギー特定装置、および接合膜に照射するエネルギー線の最適な励起エネルギーを特定することにより、接合膜ごとの個体差を把握して、部材同士を最適な接着力で接合することができる接合方法および接合装置を提供することにある。
上記目的は、下記の本発明により達成される。
本発明の励起エネルギー特定方法は、任意の原子配列からなる骨格と、該骨格に結合した脱離基とを含んでおり、エネルギーが付与されることにより前記脱離基が脱離し、これにより接着性を発現する接合膜において、前記脱離基を脱離させるのに最適な励起エネルギーを特定する励起エネルギー特定方法であって、
前記接合膜に向けて、エネルギー量の異なるエネルギー線を時間的に独立して照射し、前記エネルギーを照射することにより脱離した前記脱離基の量を測定する第1の工程と、
エネルギー量ごとに測定された前記脱離基の量から、目的とする前記脱離基の量に対応するエネルギー量を特定し、前記エネルギー量を前記接合膜に付与する最適な励起エネルギーとする第2の工程と、を有することを特徴とする。
これにより、接合膜に発現する接着性を制御するために、接合膜に照射するエネルギー線の最適な励起エネルギーを容易に特定することができる。
本発明の励起エネルギー特定方法では、前記第1の工程において、所定の時間間隔でエネルギー量が変化するエネルギー線を照射し、
前記第2の工程において、前記所定の時間間隔ごとに測定された前記脱離基の量から、目的とする前記脱離基の量に対応する時間帯を特定し、この時間帯に対応するエネルギー量を、前記接合膜に付与する最適な励起エネルギーとすることが好ましい。
これにより、エネルギー線のエネルギー量が変化する時間間隔の情報を得なくても、エネルギー量と脱離基の量とを容易に対応させることができるので、最適な励起エネルギーを簡単に特定することができる。
本発明の励起エネルギー特定方法では、前記時間間隔は、20ns以上1μs以下であることが好ましい。
これにより、測定に際して必要かつ十分な量の脱離基を脱離させることができ、脱離基の量を高い精度で測定することができる。また、接合膜の一部に必要以上のエネルギー量が付与されるのを防止することができるので、脱離基が全て脱離したり、接合膜が劣化してしまったりするのを防止することができる。
本発明の励起エネルギー特定方法では、前記エネルギー線は電磁波であり、前記第1の工程において、波長の異なる電磁波を時間的に独立して照射することが好ましい。
これにより、適度なエネルギー量が付与されることとなり、接合膜の劣化を防止しつつ、必要かつ十分な接着性を発現させることができる。
本発明の励起エネルギー特定方法では、前記第2の工程において、前記脱離基の量を、前記脱離基の質量電荷比の大きさごとに個別に測定し、前記測定された脱離基の質量電荷比のそれぞれにおいて前記最適な励起エネルギーを求めることが好ましい。
これにより、脱離する脱離基の種類ごと、すなわち質量電荷比ごとに接合膜に発現する接着性が異なる場合であっても、質量電荷比ごとに最適な励起エネルギーを特定することができる。
本発明の励起エネルギー特定方法では、前記第2の工程において、前記脱離基の量が最大となるエネルギー量を、前記最適な励起エネルギーとすることが好ましい。
これにより、できるだけ大きな接着性を必要とする場合の最適な励起エネルギーを、簡単な解析で算出することができる。
本発明の励起エネルギー特定方法では、前記第1の工程において、前記エネルギー量が増加するよう変化させることが好ましい。
これにより、接合膜に付与されるエネルギー量は、時間の経過とともに徐々に増加することになるため、照射開始直後に付与されるエネルギー量を抑えることができ、脱離基の状態が不安定化するのを避けることができる。その結果、接合膜から脱離する脱離基の量をより正確に測定することができる。
本発明の励起エネルギー特定方法では、前記第1の工程において、前記エネルギー線の照射領域を、前記エネルギー線のエネルギー量を変化させるごとに異ならせることが好ましい。
これにより、同じ領域に高いエネルギー量が供給されて、脱離基の量の測定が不安定になったり、この領域が局所的に劣化してしまうのを防止することができる。
本発明の励起エネルギー特定方法では、前記第1の工程において、継続的に排気された空間内に前記接合膜を配置し、かつ、前記空間より低圧の空間を介して前記脱離基の量を測定することが好ましい。
これにより、脱離基を含むガスの圧力が高過ぎて測定可能な圧力範囲を超えている場合でも、ガスの圧力を所定の圧力範囲まで減圧することを可能にする。その結果、より正確な測定が可能になる。
本発明の励起エネルギー特定装置は、任意の原子配列からなる骨格と該骨格に結合した脱離基とを含んでおり、エネルギーが付与されることにより前記脱離基が脱離し、これにより接着性を発現する接合膜において、前記脱離基を脱離させるのに最適な励起エネルギーを特定する励起エネルギー特定装置であって、
前記接合膜を載置可能な載置部と、
前記接合膜に向けてエネルギー量の異なるエネルギー線を時間的に独立して照射する線源と、
前記接合膜から脱離した前記脱離基の量を測定する測定部と、
前記エネルギー線のエネルギー量と前記脱離基の量との関係を解析する解析部と、を有し、
前記解析部は、前記エネルギー線のエネルギー量ごとに測定された前記脱離基の量から、目的とする前記脱離基の量に対応するエネルギー量を特定し、前記エネルギー量を、前記接合膜に付与する最適な励起エネルギーとするよう構成されていることを特徴とする。
これにより、接合膜を発現する接着性を制御するために、接合膜に照射するエネルギー線の最適な励起エネルギーを容易に特定可能な励起エネルギー特定装置が得られる。
本発明の励起エネルギー特定装置では、前記線源は、所定の時間間隔でエネルギー量が変化するようにエネルギー線を照射するものであり、
前記解析部は、前記所定の時間間隔ごとに測定された前記脱離基の量から、目的とする前記脱離基の量に対応する時間帯を特定し、前記時間帯に対応するエネルギー量を、前記接合膜に付与する最適な励起エネルギーとするよう構成されていることが好ましい。
これにより、エネルギー線のエネルギー量が変化する時間間隔の情報を得なくても、エネルギー量と脱離基の量とを容易に対応させることができるので、最適な励起エネルギーを簡単に特定することができる。
本発明の励起エネルギー特定装置では、前記測定部は、前記脱離基の量を、前記脱離基の質量電荷比の大きさごとに個別に測定可能であることが好ましい。
これにより、脱離する脱離基の種類ごと、すなわち質量電荷比ごとに接合膜に発現する接着性が異なる場合であっても、質量電荷比ごとに最適な励起エネルギーを特定することができる。
本発明の励起エネルギー特定装置では、前記解析部は、前記脱離量の量が最大となるエネルギー量を、前記最適な励起エネルギーとするよう構成されていることが好ましい。
これにより、できるだけ大きな接着性を必要とする場合の最適な励起エネルギーを、簡単な解析で算出することができる。
本発明の励起エネルギー特定装置では、当該励起エネルギー特定装置は、さらに気密性を有する容器を有し、前記載置部は、継続的に排気された前記容器内に配置されており、
前記測定部は、前記容器よりさらに低圧の空間を介して配置されていることが好ましい。
これにより、脱離基を含むガスの圧力が高過ぎて測定可能な圧力範囲を超えている場合でも、ガスの圧力を所定の圧力範囲まで減圧することが可能になるので、より正確な測定が可能になる。
本発明の励起エネルギー特定装置では、前記線源と前記載置部との間に設けられ、前記エネルギー線が透過可能な窓材を有していることが好ましい。
これにより、接合膜を配置した空間を減圧していても、その減圧状態を維持しつつ、接合膜に対してエネルギー線を照射することができる。
本発明の接合方法は、基材と被着体とを、任意の原子配列からなる骨格と該骨格に結合した脱離基とを含み、エネルギーが付与されることにより前記脱離基が脱離し、これにより接着性を発現する接合膜を介して接合する接合方法であって、
前記基材と該基材の一方の面側に設けられた前記接合膜とを有する接合膜付き基材、および、前記被着体を用意する準備工程と、
本発明の励起エネルギー特定方法により、前記接合膜に付与する最適な励起エネルギーを特定する励起エネルギー特定工程と、
前記最適な励起エネルギーのエネルギー線を照射することにより、前記接合膜から前記脱離基を脱離させ、これにより接着性を発現させる活性化工程と、
前記接合膜と前記被着体とが対向するように、前記接合膜付き基材と前記被着体とを重ね合わせて、これらを接合する積層工程と、を有することを特徴とする。
これにより、接合膜に照射するエネルギー線の最適な励起エネルギーを特定することにより、接合膜ごとの個体差を把握して、部材同士を効率よく最適な接着力で接合することができる。
本発明の接合装置は、基材と被着体とを、任意の原子配列からなる骨格と該骨格に結合した脱離基とを含み、エネルギーが付与されることにより前記脱離基が脱離し、これにより接着性を発現する接合膜を介して接合する接合装置であって、
前記基材と該基材の一方の面側に設けられた前記接合膜とを有する接合膜付き基材を載置可能な第1の載置部と、
前記第1の載置部に載置された接合膜付き基材の前記接合膜に向けて、エネルギー量の異なるエネルギー線を時間的に独立して照射する第1の線源と、
前記第1の載置部に載置された接合膜付き基材の前記接合膜から脱離した前記脱離基の量を測定する測定部と、
前記エネルギー線のエネルギー量と前記脱離基の量との関係を解析し、前記エネルギー線のエネルギー量ごとに測定された前記脱離基の量から、目的とする前記脱離基の量に対応するエネルギー量を特定し、前記エネルギー量を、前記接合膜に付与する最適な励起エネルギーとするよう構成された解析部と、
前記第1の載置部に隣接して設けられ、前記接合膜付き基材を載置可能な第2の載置部と、
前記第2の載置部に載置された接合膜付き基材の前記接合膜に向けて、前記最適な励起エネルギーでエネルギー線を照射して、前記接合膜に接着性を発現させる第2の線源と、
接着性が発現した前記接合膜と前記被着体とが密着するように、前記接合膜付き基材と前記被着体とを積層し、これらを接合する積層手段と、を有することを特徴とする。
これにより、接合膜に照射するエネルギー線の最適な励起エネルギーを特定することにより、接合膜ごとの個体差を把握して、部材同士を効率よく最適な接着力で接合可能な接合装置が得られる。
本発明の接合装置では、前記第1の線源および前記第2の線源は、同一の線源から発生したエネルギー線を2つに分岐したものであることが好ましい。
これにより、第1の線源と第2の線源で、照射されるエネルギー線の特性を全く同一にすることができる。これにより、第1の線源を利用して最適な励起エネルギーを特定したとき、この励起エネルギーを第2の線源において正確に再現することができるので、接合膜において目的とする接着性を正確に再現することができる。
本発明の接合装置では、前記第1の載置部および前記第2の載置部は、それぞれ気密性を有する容器内に配置されており、
前記第1の載置部と前記第2の載置部とは、気密性を有する空間を介して接続されていることが好ましい。
これにより、第1の載置部と第2の載置部との間で、減圧状態を維持したまま、接合膜付き基材を搬送することができる。
本発明の接合装置では、前記第1の載置部と前記第2の載置部との間で前記接合膜付き基材を自在に移送可能な搬送部を有していることが好ましい。
これにより、作業者による作業を介することなく接合膜付き基材を搬送することができるので、第1の載置部および第2の載置部が作業者によって汚染されるのを防止することができる。
本発明の接合方法を説明するための図(断面図)である。 本発明の接合方法において用いられる接合膜のエネルギー付与前の状態を示す部分拡大図である。 本発明の接合方法において用いられる接合膜のエネルギー付与後の状態を示す部分拡大図である。 接合膜にエネルギー線を照射する様子を模式的に示す正面図である。 本発明の接合装置および本発明の励起エネルギー特定装置の実施形態を模式的に示すブロック図である。 実施例1の接合膜について、横軸に紫外線の波長、縦軸に脱離基の量に対応した強度をとったスペクトルを示す。 実施例2の接合膜について、横軸に紫外線の波長、縦軸に脱離基の量に対応した強度をとったスペクトルを示す。
以下、本発明の励起エネルギー特定方法、励起エネルギー特定装置、接合方法および接合装置を、添付図面に示す好適実施形態に基づいて詳細に説明する。
図1は、本発明の接合方法を説明するための図(断面図)、図2は、本発明の接合方法において用いられる接合膜のエネルギー付与前の状態を示す部分拡大図、図3は、本発明の接合方法において用いられる接合膜のエネルギー付与後の状態を示す部分拡大図である。なお、以下の説明では、図1ないし図3中の上側を「上」、下側を「下」という。
(接合方法および励起エネルギー特定方法)
本発明の接合方法は、図1に示すように、基材2と被着体4とを接合膜3を介して接合し、接合体5を得る方法であって、基材2上に接合膜3が成膜されてなる接合膜付き基材1と、被着体4とを用意する準備工程と、後述する本発明の励起エネルギー特定方法により接合膜3に照射するエネルギー線の最適な励起エネルギーを特定する励起エネルギー特定工程と、特定した励起エネルギーのエネルギー線を接合膜3に照射し、接合膜3を活性化させる活性化工程と、接合膜3と被着体4とが対向するように、接合膜付き基材1と被着体4とを重ね合わせ、これらを接合する積層工程と、を有する。以下、各工程について順次説明する。
[1]準備工程
まず、接合膜付き基材1と被着体4とを用意する。
図1に示す接合膜付き基材1は、基材2と、基材2上に成膜された接合膜3とを有するものである。
基材2は、被着体4との接合に供されるものであって、その形状は特に限定されず、図1に示すシート状の他、ブロック状、棒状等とされる。
基材2の構成材料としては、例えば、各種樹脂系材料、各種金属系材料、各種シリコン系材料、各種ガラス系材料、各種セラミックス系材料、各種炭素系材料、またはこれらの各材料の1種または2種以上を組み合わせた複合材料等が挙げられる。
このうち、基材2としては、可撓性を有するものが用いられる。これにより接合膜付き基材1は、被着体4と積層する際に、積層界面の密着性を高めることができる。これは、基材2が可撓性を有しているため、仮に被着体4の表面に凹凸があったとしても、基材2がその凹凸形状に沿って変形し得るようになるため、両者の密着性が向上するからである。したがって、基材2が可撓性を有することにより、接合体5において、接合膜付き基材1と被着体4との積層ムラを抑制することができる。
また、基材2のヤング率(引張弾性率)は、一般的な室温(25℃)で1GPa以上20GPa以下程度であるのが好ましく、2GPa以上12GPa以下程度であるのがより好ましい。ヤング率の範囲がこの程度であれば、基材2は、十分な可撓性を有するものとなり、上述したような効果を確実に奏するものとなる。
接合膜3は、シロキサン(Si−O)結合を含む原子配列を有するSi骨格と、このSi骨格に結合する脱離基とを含むものである。
このような接合膜3は、その少なくとも一部の領域にエネルギーを付与することにより、接合膜3に存在する脱離基がSi骨格から脱離し、エネルギーを付与した領域に接着性が発現するという特徴を有する。
このような接合膜3は、プラズマ重合、プラズマCVD等の気相成膜法により形成される。
図2、3には、一例として、シラン系の原料を用いて形成された接合膜3の構造を示す。
接合膜3は、図2に示すように、シロキサン(Si−O)結合302を含み、ランダムな原子配列(アモルファス構造)を有するSi骨格301と、このSi骨格301に結合する脱離基303とを有するものである。このような接合膜3は、シロキサン結合302を含みランダムな原子配列を有するSi骨格301の影響によって、変形し難い強固な膜となる。これは、Si骨格301の結晶性が低くなる(非晶質化する)ため、結晶粒界における転位やズレ等の欠陥が生じ難いためであると考えられる。このため、接合膜3自体が接合強度、耐薬品性、耐光性および寸法精度の高いものとなり、最終的に得られる接合体5においても、接合強度、耐薬品性、耐光性および寸法精度が高いものが得られる。なお、Si骨格301の原子配列は、特に限定されない。
このような接合膜3にエネルギーが付与されると、脱離基303がSi骨格301から脱離し、図3に示すように、接合膜3の表面35および内部に、活性手304が生じる。そして、これにより、接合膜3表面に接着性が発現する。かかる接着性が発現すると、接合膜3は、被着体4に対して強固に効率よく接合可能なものとなる。
なお、脱離基303とSi骨格301との結合エネルギーは、Si骨格301中のシロキサン結合302の結合エネルギーよりも小さい。このため、接合膜3は、エネルギーの付与により、Si骨格301が破壊されるのを防止しつつ、脱離基303とSi骨格301との結合を選択的に切断し、脱離基303を脱離させることができる。
また、このような接合膜3は、流動性を有しない固体状のものとなる。このため、従来、流動性を有する液状または粘液状の接着剤に比べて、接着層(接合膜3)の厚さや形状がほとんど変化しない。これにより、接合体5の寸法精度は、従来に比べて格段に高いものとなる。さらに、接着剤の硬化に要する時間が不要になるため、短時間での接合が可能となる。
なお、接合膜3においては、特に接合膜3を構成する全原子からH原子を除いた原子のうち、Si原子の含有率とO原子の含有率の合計が、10原子%以上90原子%以下程度であるのが好ましく、20原子%以上80原子%以下程度であるのがより好ましい。Si原子とO原子とが、前記範囲の含有率で含まれていれば、接合膜3はSi原子とO原子とが強固なネットワークを形成し、接合膜3自体が強固なものとなる。また、かかる接合膜3は、特に高い接合強度を示すものとなる。
また、接合膜3中のSi原子とO原子の存在比は、3:7以上7:3以下程度であるのが好ましく、4:6以上6:4以下程度であるのがより好ましい。Si原子とO原子の存在比を前記範囲内になるよう設定することにより、接合膜3の安定性が高くなり、より強固に接合することができるようになる。
また、接合膜3中のSi骨格301の結晶化度は、45%以下であるのが好ましく、40%以下であるのがより好ましい。これにより、Si骨格301は十分にランダムな原子配列を含むものとなり、より非晶質的な特性を示す。このため、前述したSi骨格301の特性が顕在化し、接合膜3の寸法精度および接着性がより優れたものとなる。
なお、Si骨格301の結晶化度は、一般的な結晶化度測定方法により測定することができ、具体的には、結晶部分における散乱X線の強度に基づいて測定する方法(X線法)、赤外線吸収の結晶化バンドの強度から求める方法(赤外線法)、核磁気共鳴吸収の微分曲線の下の面積に基づいて求める方法(核磁気共鳴吸収法)、結晶部分には化学試薬が浸透し難いことを利用した化学的方法等により測定することができる。
このうち、簡便性等の観点からX線法が好ましく用いられる。
また、Si骨格301の結晶化度を測定する際には、接合膜3に対して上述の測定方法を適用すればよいが、あらかじめ接合膜3に前処理を施しておくのが好ましい。この前処理としては、後述する接合膜3にエネルギーを付与する処理(例えば、紫外線照射処理等)が挙げられる。エネルギーの付与により、接合膜3中の脱離基が脱離し、Si骨格301の結晶化度をより正確に測定することが可能になる。
また、接合膜3は、その構造中にSi−H結合を含んでいるのが好ましい。このSi−H結合は、プラズマ重合、プラズマCVDによってシランが重合反応する際に重合物中に生じるものであるが、このとき、Si−H結合がシロキサン結合の生成が規則的に行われるのを阻害すると考えられる。このため、シロキサン結合は、Si−H結合を避けるように形成されることとなり、Si骨格301の原子配列の規則性が低下する。このようにして、プラズマ重合、プラズマCVDによれば、結晶化度の低いSi骨格301を効率よく形成することができる。
一方、接合膜3中のSi−H結合の含有率が多ければ多いほど結晶化度が低くなるわけではない。具体的には、接合膜3の赤外光吸収スペクトルにおいて、シロキサン結合に帰属するピークの強度を1としたとき、Si−H結合に帰属するピークの強度は、0.001以上0.2以下程度であるのが好ましく、0.002以上0.05以下程度であるのがより好ましく、0.005以上0.02以下程度であるのがさらに好ましい。Si−H結合のシロキサン結合に対する割合が前記範囲内であることにより、接合膜3中の原子配列は、相対的に最もランダムなものとなる。このため、Si−H結合のピーク強度がシロキサン結合のピーク強度に対して前記範囲内にある場合、接合膜3は、接合強度、耐薬品性および寸法精度において特に優れたものとなる。
また、Si骨格301に結合する脱離基303は、前述したように、Si骨格301から脱離することによって、接合膜3に活性手を生じさせるよう振る舞うものである。したがって、脱離基303には、エネルギーを付与されることによって、比較的簡単に、かつ均一に脱離するものの、エネルギーが付与されないときには、脱離しないようSi骨格301に確実に結合しているものである必要がある。
なお、プラズマ重合、プラズマCVDによる成膜の際には、原料ガスの成分が重合して、シロキサン結合を含むSi骨格301と、それに結合した残基とを生成するが、例えばこの残基が脱離基303となり得る。
かかる観点から、脱離基303には、H原子、B原子、C原子、N原子、O原子、P原子、S原子およびハロゲン系原子、またはこれらの各原子を含み、これらの各原子がSi骨格301に結合するよう配置された原子団からなる群から選択される少なくとも1種で構成されたものが好ましく用いられる。かかる脱離基303は、エネルギーの付与による結合/脱離の選択性に比較的優れている。このため、このような脱離基303は、上記のような必要性を十分に満足し得るものとなり、接合膜3の接着性をより高度なものとすることができる。
なお、上記のような各原子がSi骨格301に結合するよう配置された原子団(基)としては、例えば、メチル基、エチル基のようなアルキル基、ビニル基、アリル基のようなアルケニル基、アルデヒド基、ケトン基、カルボキシル基、アミノ基、アミド基、ニトロ基、ハロゲン化アルキル基、メルカプト基、スルホン酸基、シアノ基、イソシアネート基等が挙げられる。
これらの各基の中でも、脱離基303は、特に有機基であるのが好ましく、アルキル基であるのがより好ましい。有機基およびアルキル基は化学的な安定性が高いため、有機基およびアルキル基を含む接合膜3は、耐候性および耐薬品性に優れたものとなる。
ここで、脱離基303が特にメチル基(−CH)である場合、その好ましい含有率は、赤外光吸収スペクトルにおけるピーク強度から以下のように規定される。
すなわち、接合膜3の赤外光吸収スペクトルにおいて、シロキサン結合に帰属するピークの強度を1としたとき、メチル基に帰属するピークの強度は、0.05以上0.45以下程度であるのが好ましく、0.1以上0.4以下程度であるのがより好ましく、0.2以上0.3以下程度であるのがさらに好ましい。メチル基のピーク強度がシロキサン結合のピーク強度に対する割合が前記範囲内であることにより、メチル基がシロキサン結合の生成を必要以上に阻害するのを防止しつつ、接合膜3中に必要かつ十分な数の活性手が生じるため、接合膜3に十分な接着性が生じる。また、接合膜3には、メチル基に起因する十分な耐候性および耐薬品性が発現する。
このような特徴を有する接合膜3の構成材料としては、例えば、ポリオルガノシロキサンのような、シロキサン結合とそれに結合した脱離基303となり得る有機基とを含む重合物等が挙げられる。
ポリオルガノシロキサンで構成された接合膜3は、それ自体が優れた機械的特性を有している。また、多くの材料に対して特に優れた接着性を示すものである。したがって、ポリオルガノシロキサンで構成された接合膜3は、基材2に対して特に強固に被着するとともに、被着体4に対しても特に強い被着力を示し、その結果として、基材2と被着体4とを強固に接合することができる。
また、ポリオルガノシロキサンは、通常、撥水性(非接着性)を示すが、エネルギーを付与されることにより、容易に有機基を脱離させることができ、親水性に変化し、接着性を発現するが、この非接着性と接着性との制御を容易かつ確実に行えるという利点を有する。
なお、この撥水性(非接着性)は、主に、ポリオルガノシロキサン中に含まれた有機基(例えばアルキル基)による作用である。したがって、ポリオルガノシロキサンで構成された接合膜3は、エネルギーを付与されることにより、表面に接着性が発現するとともに、表面以外の部分においては、前述した有機基による作用・効果が得られるという利点も有する。したがって、このような接合膜3は、耐候性および耐薬品性に優れたものとなり、例えば、薬品類等に長期にわたって曝されるような光学素子や液滴吐出ヘッドの組み立てに際して、有効に用いられるものとなる。
また、ポリオルガノシロキサンの中でも、特に、オクタメチルトリシロキサンの重合物を主成分とするものが好ましい。オクタメチルトリシロキサンの重合物を主成分とする接合膜3は、接着性に特に優れるものである。また、オクタメチルトリシロキサンを主成分とする原料は、常温で液状をなし、適度な粘度を有するため、取り扱いが容易であるという利点もある。
このような接合膜3の平均厚さは、1nm以上1000nm以下程度であるのが好ましく、2nm以上800nm以下程度であるのがより好ましい。接合膜3の平均厚さを前記範囲内とすることにより、接合体5の寸法精度が著しく低下するのを防止しつつ、基材2と被着体4とをより強固に接合することができる。
このような接合膜3は、前述したようにプラズマ重合やプラズマCVD法により作製することができるが、このうちプラズマ重合法によれば、緻密で均質な接合膜3を効率よく作製することができる。これにより、接合膜3は、被着体4に対して特に強固に接合し得るものとなる。さらに、プラズマ重合法で作製された接合膜3は、エネルギーが付与されて活性化された状態が比較的長時間にわたって維持される。このため、接合体5の製造過程の簡素化、効率化を図ることができる。
以下、接合膜3を作製する方法について説明する。ここでは、プラズマ重合法による作製方法を例に説明する。
接合膜3は、強電界中に、原料ガスとキャリアガスとの混合ガスを供給することにより、原料ガス中の分子を重合させ、重合物を基材2上に堆積させることにより得ることができる。
原料ガスとしては、例えば、メチルシロキサン、オクタメチルトリシロキサン、デカメチルテトラシロキサン、デカメチルシクロペンタシロキサン、オクタメチルシクロテトラシロキサン、メチルフェニルシロキサンのようなオルガノシロキサン等が挙げられる。
このような原料ガスを用いて得られるプラズマ重合膜、すなわち接合膜3は、これらの原料が重合してなるもの(重合物)、すなわちポリオルガノシロキサンで構成されることとなる。
プラズマ重合の際、プラズマ発生電極に印加する高周波の周波数は、特に限定されないが、1kHz以上100MHz以下程度であるのが好ましく、10MHz以上60MHz以下程度であるのがより好ましい。
また、高周波の出力密度は、特に限定されないが、0.01W/cm以上100W/cm以下程度であるのが好ましく、0.1W/cm以上50W/cm以下程度であるのがより好ましく、1W/cm以上40W/cm以下程度であるのがさらに好ましい。
また、成膜時の圧力は、133.3×10−5Pa以上1333Pa以下(1×10−5Torr以上10Torr以下)程度であるのが好ましく、133.3×10−4Pa以上133.3Pa以下(1×10−4Torr以上1Torr以下)程度であるのがより好ましい。
原料ガス流量は、0.5sccm以上200sccm以下程度であるのが好ましく、1sccm以上100sccm以下程度であるのがより好ましい。一方、キャリアガス流量は、5sccm以上750sccm以下程度であるのが好ましく、10sccm以上500sccm以下程度であるのがより好ましい。
処理時間は、1分以上10分以下程度であるのが好ましく、4分以上7分以下程度であるのがより好ましい。
また、基材2の温度は、25℃以上であるのが好ましく、25℃以上100℃以下程度であるのがより好ましい。
以上のようにして、接合膜3を得る。
なお、接合膜3の構成材料としては、上述した気相成膜法で形成されるシラン系材料の他、(i)液相成膜法で形成されるシラン系材料、(ii)金属酸化物系材料、(iii)有機金属系材料等が挙げられる。
(i)
接合膜3は、上述した気相成膜法の他、液相成膜法により形成することもできる。
この場合、原材料としてシリコーン材料を用いることができる。
シリコーン材料とは、ポリオルガノシロキサン骨格を有する化合物であり、通常、主骨格(主鎖)部分が主としてオルガノシロキサン単位の繰り返しからなる化合物のことを言い、主鎖の一部から突出する分枝状の構造を有するものであってもよく、主鎖が環状をなす環状体であってもよく、主鎖の末端同士が連結しない直鎖状のものであってもよい。
例えば、ポリオルガノシロキサン骨格を有する化合物において、オルガノシロキサン単位は、その末端部では下記一般式(1)で表わされる構造単位を有し、連結部では下記一般式(2)で表わされる構造単位を有し、また、分枝部では下記一般式(3)で表わされる構造単位を有している。
Figure 2011235556
[式中、各Rは、それぞれ独立して、置換または無置換の炭化水素基を表し、各Zは、それぞれ独立して、水酸基または加水分解基を表し、Xはシロキサン残基を表し、aは0または3以下の正の整数を表し、bは0または2以下の正の整数を表し、cは0または1を表す。]
なお、シロキサン残基とは、酸素原子を介して隣接する構造単位が有するケイ素原子に結合しており、シロキサン結合を形成している置換基のことを表す。具体的には、−O−(Si)構造(Siは隣接する構造単位が有するケイ素原子)となっている。
このようなシリコーン材料において、ポリオルガノシロキサン骨格は、直鎖状をなすもの、すなわち上記一般式(1)の構造単位および上記一般式(2)の構造単位で構成されるものであるのが好ましい。これにより、次工程において、液状材料中に含まれるシリコーン材料同士が絡まり合うようにして接合膜3が形成されることから、得られる接合膜3は膜強度に優れたものとなる。
具体的には、かかる構成のポリオルガノシロキサン骨格を有する化合物としては、例えば、下記一般式(4)で表わされるものが挙げられる。
Figure 2011235556
[式中、各Rは、それぞれ独立して、置換または無置換の炭化水素基を表し、各Zは、それぞれ独立して、水酸基または加水分解基を表し、aは0または1〜3の整数を表し、mは0または1以上の整数を表し、nは0または1以上の整数を表す。]
上記一般式(1)〜上記一般式(4)中、基R(置換または無置換の炭化水素基)としては、例えば、メチル基、エチル基、プロピル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、フェニル基、トリル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基等のアラルキル基等が挙げられる。さらに、これらの基の炭素原子に結合している水素原子の一部または全部が、I)フッ素原子、塩素原子、臭素原子のようなハロゲン原子、II)グリシドキシ基のようなエポキシ基、III)メタクリル基のような(メタ)アクリロイル基、IV)カルボキシル基、スルフォニル基のようなアニオン性基等で置換された基等が挙げられる。
また、加水分解基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等のアルコキシ基、ジメチルケトオキシム基、メチルエチルケトオキシム基等のケトオキシム基、アセトキシ基等のアシルオキシ基、イソプロペニルオキシ基、イソブテニルオキシ基等のアルケニルオキシ基等が挙げられる。
これらの基Rが、脱離基となり得る。
また、上記一般式(4)中、mおよびnは、ポリオルガノシロキサンの重合度を表すものであるが、mおよびnの合計(m+n)が、5以上10000以下程度の整数であるのが好ましく、50以上1000以下程度の整数であるのがより好ましい。かかる範囲内に設定することにより、原材料の粘度を後に示すような好適な範囲内に比較的容易に設定することができる。
このようなシリコーン材料を基材2上に塗布した後、得られた液状被膜を乾燥させる。これにより、接合膜3が形成され、接合膜付き基材1が得られる。
(ii)
金属酸化物系材料で構成された接合膜3は、金属原子と、この金属原子に結合する酸素原子と、金属原子および酸素原子の少なくとも一方に結合する脱離基とを含むものである。すなわち、接合膜3は、金属酸化物で構成される膜に脱離基を導入した膜である。
このような接合膜3は、エネルギーが付与されると、脱離基が金属原子および酸素原子の少なくとも一方から脱離し、接着性を発現するものである。
金属酸化物系材料としては、例えば、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、アンチモン錫酸化物(ATO)、フッ素含有インジウム錫酸化物(FTO)、酸化亜鉛(ZnO)および二酸化チタン(TiO)等が挙げられる。
金属酸化物系材料で構成された接合膜3は、例えば、A:脱離基を構成する原子成分を含む雰囲気下で、物理的気相成膜法(PVD法)により、金属原子と酸素原子とを含む金属酸化物材料を成膜する方法、B:金属原子と酸素原子とを含む金属酸化物膜を成膜した後、この金属酸化物膜に脱離基を導入する方法等により形成することができる。
PVD法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、レーザーアブレーション法等が挙げられる。
また、脱離基の導入には、脱離基をイオンビームとして照射可能なイオン源等を用いて行うことができる。脱離基としては、前述した各種の原子団が挙げられる。
(iii)
有機金属系材料で構成された接合膜3は、金属原子と、有機成分で構成される脱離基とを含むものである。
金属原子としては、例えば、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Hf、Ta、W、Re、Os、Ir、Pt、Au、各種ランタノイド元素、各種アクチノイド元素のような遷移金属元素、Li、Be、Na、Mg、Al、K、Ca、Zn、Ga、Rb、Sr、Cd、In、Sn、Sb、Cs、Ba、Tl、Pd、Bi、Poのような典型金属元素等が挙げられる。
一方、有機成分で構成される脱離基としては、例えば、炭素原子を必須成分とし、水素原子、窒素原子、リン原子、硫黄原子およびハロゲン原子のうちの少なくとも1種を含む原子団が好適に選択される。より具体的には、例えば、メチル基、エチル基のようなアルキル基、メトキシ基、エトキシ基のようなアルコキシ基、カルボキシル基の他、前記アルキル基の末端がイソシアネート基、アミノ基およびスルホン酸基等で終端しているもの等が挙げられる。
このような接合膜3は、エネルギーが付与されると、脱離基が脱離し、接着性を発現するものである。
有機金属系材料で構成された接合膜3は、例えば、A:金属原子で構成される金属膜に、脱離基(有機成分)を含む有機物を付与(化学修飾)する方法、B:金属原子と脱離基(有機成分)を含む有機物とを有する有機金属材料を原材料として有機金属化学気相成長法を用いて接合膜3を形成する方法、C:金属原子と脱離基を含む有機物とを有する有機金属材料を原材料として適切な溶媒に溶解させスピンコート法等を用いて成膜する方法等が挙げられる。
接合膜3としては、上記のような材料で構成されたものも用いることができる。
また、被着体4としては、前述した基材2と同様のものが用いられる。
なお、被着体4は、基材2と対向する面に、接合膜3と同様の接合膜を有するものであってもよい。この場合、接合膜同士の接合により、基材2と被着体4とが接合されるため、より強固な接合が可能になる。また、この場合には、両方の接合膜について接着性を発現させる必要があるため、両方の接合膜について最適な励起エネルギーを特定するようにすればよい。
[2]励起エネルギー特定工程
次に、本発明の励起エネルギー特定方法により、接合膜3に照射するエネルギー線の最適な励起エネルギー(エネルギー量)を特定する。
ここで、基材2と被着体4との接合において、接合膜3に必要とされる接着性(接着力および接着に要する時間)は、接着の目的に応じて様々である。具体的には、基材2と被着体4とをできるだけ強固にまたはできるだけ短時間に接合する場合もあれば、基材2と被着体4とをやや弱い接着力でまたはやや長い時間をかけて接合する場合もある。
このような接着性の程度は、接合膜3に照射するエネルギー線の励起エネルギー(エネルギー量)によって制御することができる。
しかしながら、この必要とされる接着性の大きさと励起エネルギーとの間には、ある相関関係が存在するものの、その相関関係は接合膜ごとに異なっている。このため、従来は、実際に接合してみるまで、相関関係を特定することができなかった。換言すれば、従来は、接合前の段階で、必要とされる接着性を発現させ得る最適な励起エネルギーを特定することができなかった。
そこで、本発明の励起エネルギー特定方法は、接合前の段階でも、必要とされる接着性を発現させ得る最適な励起エネルギーを特定することを目的とする。
ここで、接着性の大きさと励起エネルギーとの相関関係は、前述したように接合膜ごとに異なるものの、本発明者は、接着性の大きさと、エネルギー線の照射により脱離する脱離基の量との間には、一定の相関関係が存在することを見出した。そして、接合前の段階で、励起エネルギーと脱離基の量との相関関係を見出せば、最終的に上記目的を達成し得ることに想到し、本発明を完成するに至った。
本発明の励起エネルギーの特定方法は、接合膜3に向けて、エネルギー量を変化させつつエネルギー線を照射し、これにより脱離した脱離基の量を測定する第1の工程と、エネルギー量ごとに測定された脱離基の量から、目的とする脱離基の量に対応するエネルギーを特定する第2の工程と、を有する。以下、各工程について説明する。
[2−1]第1の工程
図4は、接合膜3にエネルギー線を照射する様子を模式的に示す正面図である。
まず、接合膜付き基材1を試料載置部11上に載置する。また、接合膜付き基材1の上方には、エネルギー線を発生させる線源12が配置されている。さらに、試料載置部11の近傍には、脱離基の量を測定する測定部13が配置されている。
次いで、接合膜3に向けて、エネルギー量を変化させつつエネルギー線を照射する。これにより、接合膜3から脱離基303が脱離する。この脱離した脱離基303の量を測定部13により測定する。なお、エネルギー量を変化させつつエネルギー線を照射するには、異なるエネルギー量のエネルギー線を時間的に重複することなく独立に照射すればよく、例えばエネルギー量を連続的に変化させながら照射してもよく、エネルギー量の変化が不連続的であってもよい。さらには、所定のエネルギー量のエネルギー線を照射した後、一定時間エネルギー線の照射を停止し、異なるエネルギー量で再びエネルギー線を照射するようにしてもよい。
[2−2]第2の工程
測定部13により測定した脱離基303の量は、変化させたエネルギー量ごとに分割して集計する。そして、各エネルギー量ごとに集計された脱離基303の量のうち、目的とする脱離基の量に対応するエネルギー量を特定する。このエネルギー量が、必要とされる接着性を発現させ得る最適な励起エネルギーである。
[3]活性化工程
次に、特定した最適な励起エネルギーのエネルギー線を、接合膜3に照射する。これにより、接合膜3には、必要とされる接着性が過不足なく発現することとなる。
[4]積層工程
次に、接着性が発現した接合膜3と被着体4とが密着するように、接合膜付き基材1と被着体4とを重ね合わせる。これにより、接合膜付き基材1と被着体4とを目的とする接着性でもって接合し、接合体5が得られる。
(接合装置および励起エネルギー特定装置)
図5は、本発明の接合装置および本発明の励起エネルギー特定装置の実施形態を模式的に示すブロック図である。
図5に示す接合装置100は、上述した接合方法および励起エネルギー特定方法に用いる接合装置であって、接合膜付き基材1を載置可能な第1の載置部111を備え、前述した励起エネルギー特定工程を行うための分析部110と、接合膜付き基材1を載置可能な第2の載置部131を有し、前述した活性化工程を行うための活性化部130と、分析部110と活性化部130との間に配置され、分析部110と活性化部130との間で接合膜付き基材1を自在に搬送可能な搬送部120と、活性化部130の搬送部120と反対側に設けられ、前述した積層工程を行うための積層部140と、分析部110に対してエネルギー線を供給可能な第1の線源164と、活性化部130に対してエネルギー線を供給可能な第2の線源165とを備える線源ユニット160とを有している。
また、分析部110には、接合膜3から脱離した脱離基303の量を測定する測定部150が接続されている。
そして、接合装置100は、測定部150で測定された脱離基303の量と、第1の線源164から供給されたエネルギー線のエネルギー量との関係を解析する解析部170を有している。
なお、分析部110と、第1の線源164と、測定部150と、解析部170とにより、励起エネルギー特定装置200が構成されている。
以下、各部の構成について詳述する。
<分析部>
分析部110は、第1の載置部111と、気密性を有し、第1の載置部111を収納するチャンバー(容器)112と、チャンバー112内を排気可能な排気ポンプ113と、隣り合う搬送部120との間を開閉可能なゲートバルブ114とを有している。
第1の載置部111は、接合膜付き基材1を載置可能な試料ステージである。また、チャンバー112は、ステンレス鋼等の高強度材料で構成され、内外の圧力差に耐え得る構成となっている。排気ポンプ113としては、油回転ポンプ、油拡散ポンプ、ターボ分子ポンプ等が挙げられる。また、ゲートバルブ114は、搬送部120との間を開閉し、開状態のときには、チャンバー112の気密性を損なうことなく、搬送部120と接続可能になっている。このゲートバルブ114は、外部からの制御信号により開閉操作することも可能なものであれば、解析部170により、他のゲートバルブと協調制御することも可能になる。
<測定部>
測定部150は、質量分析ユニット151と、チャンバー112内を差動排気する差動排気部152と、差動排気部152と分析部110との間を開閉可能なゲートバルブ153とを有している。
質量分析ユニット151は、チャンバー112内の気体成分(イオン)の定量分析を行う装置であり、磁場偏向型、四重極型等の方式のものが知られている。このうち、四重極型の質量分析ユニット151は、減圧雰囲気中に存在するイオンの種類とその分圧(体積分率)とを測定することができる。
四重極型の質量分析ユニット151は、その内部に、図示しないイオン源部、四重極部およびイオン検出部を備えている。イオンの質量分析を行う際には、イオン源部のフィラメントで作成された熱電子により、気体成分をイオン化する。次に、種々のイオンの中から特定の質量電荷比を有するイオンのみを四重極部を通過させ、これをイオン検出部においてイオン電流として検出する。同様にして四重極部を通過させるイオンの種類を変えることにより、イオンの種類とその分圧とを測定する。
したがって、イオンの種類は、イオンの質量電荷比(質量数/電荷数)ごとに測定される。このため、質量分析ユニットによる測定結果は、イオンの質量電荷比ごとの分圧として出力されることとなる。
差動排気部152は、ゲートバルブ153を介してチャンバー112と質量分析ユニット151との間を接続する配管1521と、配管1521内を排気する排気ポンプ1522とを有している。質量分析ユニット151は、この差動排気部152を介して脱離基の量を測定することになるため、チャンバー112内の圧力が高過ぎて質量分析ユニット151で測定可能な圧力範囲を超えている場合でも、ガスの圧力を所定の圧力範囲まで減圧することを可能にする。よって、配管1521内の圧力は、チャンバー112内の圧力と同じかそれより低圧(高真空)になるよう減圧されている必要がある。
また、差動排気部152によりチャンバー112内のガスが速やかに配管1521に移動する。このため、接合膜3から脱離した脱離基303を速やかにかつ漏れなく質量分析ユニット151まで導くことができ、質量分析ユニット151ではより正確な測定が可能になる。
<搬送部>
搬送部120は、分析部110と活性化部130との間に配置されている。搬送部120は、接合膜付き基材1を把持し、自在に搬送可能な把持部121と、把持部121を収納するチャンバー122と、チャンバー122内を排気可能な排気ポンプ123と、チャンバー122に設けられ、外部からチャンバー122内に接合膜付き基材1を配置することができるように開閉可能なアクセスドア124と、隣り合う活性化部130との間を開閉可能なゲートバルブ125とを有している。
把持部121は、アクセスドア124を介して外部から持ち込まれた接合膜付き基材1を把持するチャック手段と、チャック手段を分析部110から活性化部130を経て積層部140まで自在に搬送可能な搬送手段とで構成されており、分析部110内、活性化部130内、または積層部140内にそれぞれ接合膜付き基材1を搬送し、配置することができる。
なお、チャンバー122、排気ポンプ123およびゲートバルブ125の構成は、前述したチャンバー112、排気ポンプ113およびゲートバルブ114と同様である。また、後述する各部のチャンバー、排気ポンプおよびゲートバルブについても同様である。
<活性化部>
活性化部130は、第2の載置部131と、気密性を有し、第2の載置部131を収納するチャンバー132と、チャンバー132内を排気可能な排気ポンプ133と、隣り合う積層部140との間を開閉可能なゲートバルブ134とを有している。
第2の載置部131は、第1の載置部111と同様、接合膜付き基材1を載置可能な試料ステージである。
<積層部>
積層部140は、第3の載置部141と、気密性を有し、第3の載置部141を収納するチャンバー142と、チャンバー142内を排気可能な排気ポンプ143と、チャンバー142に設けられ、外部からチャンバー142内の接合体5を取り出せるように開閉可能なアクセスドア144とを有している。
第3の載置部141も、第1の載置部111や第2の載置部131と同様、接合膜付き基材1を載置可能な試料ステージである。
また、チャンバー142内には、第3の載置部141上に載置された接合膜付き基材1に対して被着体4を重ね合わせる積層手段(図示せず)が設けられている。この積層手段により、接合膜付き基材1と被着体4とを接合してなる接合体5が得られる。
積層手段としては、被着体4を把持して自在に搬送可能なロボットアームや、上下方向に被着体4を移動可能なマニピュレーター等が挙げられる。
<線源ユニット>
線源ユニット160は、線源161と、線源161を収納する筐体162とを有している。また、筐体162内には、線源161から発生したエネルギー線を伝送するとともに出口側を2つに分岐する導波路163が設けられており、導波路163の入口側は線源161に、出口側は分析部110および活性化部130に対応する位置に接続されている。分析部110に接続された一方の出口は、第1の線源164であり、活性化部130に接続された他方の出口は、第2の線源165である。このように同一の線源161から2つに分岐したものを第1の線源164および第2の線源165とすることにより、両者の線源でエネルギー線の特性を全く同一にすることができる。その結果、第1の線源164を利用して最適な励起エネルギーを特定し、この励起エネルギーのエネルギー線を第2の線源165から照射するようにすれば、脱離基の量の再現性を確保することができ、目的とする接着性を正確に発現させることができる。なお、第1の線源164と第2の線源165は、それぞれ個別の線源で構成されていてもよい。
また、線源ユニット160は、第1の線源164と分析部110との間に設けられ、第1の線源164から照射されたエネルギー線を透過可能な窓材166と、第2の線源165と活性化部130との間に設けられ、第2の線源165から照射されたエネルギー線を透過可能な窓材167とを有している。これらの窓材166、167を用いることにより、チャンバー112内を減圧状態に維持しつつ、接合膜3に対してエネルギー線を照射することができる。
線源161としては、例えば、固体レーザー、気体レーザー、半導体レーザー等のレーザー光源、紫外線を照射するUVランプ、X線を照射するX線管、電子ビーム、イオンビーム等の粒子線、その他、各種電磁波を発生させる線源(レーザー誘導プラズマ光源)等が挙げられる。このうち、線源161としては特に、紫外線等の電磁波が好ましく用いられる。これにより、適度なエネルギー量が付与されることとなり、接合膜3の劣化を防止しつつ、必要かつ十分な接着性を発現させることができる。
この線源161は、エネルギー量(波長)を徐々に変化させつつ、エネルギー線を照射可能なものである。この機能により、測定部150では、エネルギー量ごとにイオンの量を測定することができ、その結果、目的とするイオン(脱離基)の量に応じた最適な励起エネルギーを特定することができる。
また、導波路163は、例えば光ファイバー、光導波路の他、ミラー、レンズ、プリズム、回折格子等の光学部品で構成される。この導波路163により、第1の線源164および第2の線源165の双方に同じエネルギー線を照射することもでき、いずれか一方にのみ照射するよう制御することもできる。
<解析部>
解析部170は、パーソナルコンピューター、各種IC、各種LSI等で構成される。解析部170は、測定部150、光源ユニット160、各排気ポンプ、各ゲートバルブ、把持部121等に対して電気的に接続されており、各部の動作を制御する制御信号を送受し得るよう構成されている。
解析部170では、測定部150で取得されたイオンの種類およびその分圧の情報と、線源ユニット160からのエネルギー量の情報とを解析し、これらの関係に基づいて、接合膜3を活性化するのに最適な励起エネルギーを特定する。解析部170では、この特定した励起エネルギーの情報を基に、第2の線源165から照射されるエネルギー線のエネルギー量が設定される。このようにして解析部170では、接合膜3に目的とする接着性を発現させるための最適な励起エネルギーを算出することができる。
算出した最適な励起エネルギーの情報は、線源ユニット160に送信され、第2の線源165から照射されるエネルギー線のエネルギー量の設定に利用される。
<接合装置の動作>
次に、本実施形態に係る接合装置100の動作、すなわち、接合装置100により接合膜付き基材1と被着体4とを接合し、接合体5を得る方法について説明する。
まず、アクセスドア124を介して接合膜付き基材1をチャンバー122内に収納し、把持部121のチャック手段により把持する。また、アクセスドア144を介して被着体4を積層手段に配置する。次いで、搬送部120のチャンバー122内を排気ポンプ123により排気して減圧する。減圧後のチャンバー122内の圧力は、特に限定されないが、好ましくは0.01Pa以上100Pa以下とされる。
また、排気ポンプ113、133、143、1522についても同様に動作させ、チャンバー112、132、142および配管1521内を排気して減圧する。このとき、各チャンバー間の圧力は同じにするのが好ましく、配管1521の圧力はそれより低いことが好ましい。
次いで、ゲートバルブ114を開状態とし、搬送手段により接合膜付き基材1を分析部110の第1の載置部111上に搬送して配置する。その後、ゲートバルブ114を閉状態とする。このように、各チャンバー内を減圧した後、搬送手段により接合膜付き基材1を搬送するようにすれば、作業者による作業を介することなく搬送することができるので、チャンバー112、132内が大気や作業者によって汚染されるのを防止することができる。その結果、接合膜付き基材1やチャンバー112、132内に水分や異物等が吸着するのを防止することができる。
次いで、第1の線源164からエネルギー線を発生させ、接合膜付き基材1の接合膜3に照射する。第1の線源164からは、所定の時間間隔でエネルギー量を上昇させつつエネルギー線を照射する。エネルギー線の照射により、接合膜3は、エネルギー量に応じた量の脱離基が脱離する。この脱離基は、測定部150の差動排気部152により吸引され、質量分析ユニット151に到達する。そして、質量分析ユニット151により脱離基の質量電荷比の大きさごとに、エネルギー量ごとの脱離基の量が測定される。このようにして測定された脱離基の量の情報と、第1の線源164から照射されるエネルギー量の情報とが、解析部170に送られる。そして、解析部170で解析されることにより、目的とする脱離基の量に対応する最適な励起エネルギーが算出され、特定される。
なお、解析部170では、第1の線源164からのエネルギー量の変化パターンを取得し、一方、測定部150で取得された脱離基の量の変化パターンを取得し、これらを対応させることで最適な励起エネルギーを算出する。なお、最適な励起エネルギーは、発現させようとする接着性に応じて異なり、例えばできるだけ大きな接着性(接着力ができるだけ大きいまたは接着に要する時間ができるだけ短い)を必要とする場合は、脱離基の量が最も大きくなるエネルギー量が最適な励起エネルギーに対応する。この場合、取得された脱離基の量の最大値を求めればよいので、簡単な解析で最適な励起エネルギーを算出することができる。
一方、例えば接着性を半分程度に抑える場合には、脱離基の量が最大時の半分程度となるエネルギー量が、最適な励起エネルギーに対応する。
このような脱離基の量とエネルギー量との相関関係は、接合膜3ごとに異なるため、接合体5の製造に先立ち、個々の接合膜3に対して固有の相関関係が特定すればよい。そして、この結果に基づき、活性化工程において、目的とする接着性を発現させることができる。なお、活性化工程において十分な接着性を発現させるためには、その準備段階である励起エネルギー特定工程では、照射されるエネルギー線の積算エネルギー量を、活性化工程における積算エネルギー量よりも少なくするのが好ましい。
また、解析部170は、上述したように各変化パターンを取得するものでもよいが、第1の線源164が所定の時間間隔でエネルギー量を変化させるものである場合、測定部150において測定された脱離基の量を、解析部170において、この所定の時間間隔で分割することにより、エネルギー量と脱離基の量とを容易に対応させることが可能になる。これにより、第1の線源164からのエネルギー量の変化パターンを取得しなくても、最適な励起エネルギーを簡単に特定することができる。
なお、解析部170において、例えば横軸をエネルギー量、縦軸を脱離基の量とした相関グラフを出力するようにすれば、最適な励起エネルギーを視覚的に理解することも容易になる。
また、測定部150が有する質量分析ユニット151では、脱離基の質量電荷比の大きさごとに、エネルギー量ごとの脱離基の量が測定されるため、最適な励起エネルギーは、脱離基の質量電荷比ごとに特定されることとなる。したがって、励起エネルギー特定装置200では、仮に脱離する脱離基の種類ごと、すなわち質量電荷比ごとに接合膜3に発現する接着性が異なる場合であっても、脱離基の種類ごとに最適な励起エネルギーを特定することができる。このため、接着性の発現に大きく寄与する脱離基についての最適な励起エネルギーはもちろん、あまり寄与しない脱離基についての最適な励起エネルギー、さらには接着性を阻害する脱離基についての最適な励起エネルギー等を、それぞれ独立して特定することができる。その結果、最終的には、接合膜3において目的とする接着性を確実に発現させることができる。
ここで、接合膜3の接着性の発現に関わる脱離基は、いかなる質量電荷比を有するものであってもよいが、質量電荷比の好ましい範囲を有している。
例えば、接合膜3がシラン系材料で構成されたものである場合、接着性の発現に関わる脱離基としては、特に、質量電荷比が14または15のものが挙げられる。これらは、メチル基かまたはそれに近い構造の脱離基であると考えられる。したがって、この接合膜3の場合には、質量電荷比が14または15である脱離基について、最適な励起エネルギーを特定することが好ましい。
メチル基は、その他の材料で構成された接合膜3についても、接着性の発現に関わる脱離基となる傾向が高い。したがって、そのような接合膜3における最適な励起エネルギーについても、メチル基かまたはそれに近い構造の脱離基に着目して特定されるのが好ましい。なお、メチル基かそれに近い構造の脱離基は、構造によって質量電荷比の大きさが若干異なり、おおよそ13以上17以下程度の幅を含んでいる。
また、第1の線源164が所定の時間間隔(パルス幅)でエネルギー量を変化させる場合、この時間間隔は、20ns以上1μs以下であるのが好ましく、50ns以上500ns以下であるのがより好ましい。時間間隔を前記範囲内にすれば、測定に際して必要かつ十分な量の脱離基を脱離させることができ、かつ、接合膜3の一部に必要以上のエネルギー量が付与されるのを防止することができる。その結果、接合膜3の脱離基が全て脱離してしまったり、接合膜3が劣化してしまうのを防止しつつ、脱離基の量を高い精度で測定することができる。
また、第1の線源164が照射するエネルギー線のエネルギー量を変化させる場合、エネルギー量が徐々に増加するよう変化させるのが好ましい。仮にエネルギー量が徐々に減少するよう変化させる場合、照射開始時には最大のエネルギー量が付与されることになるため、脱離基の脱離量が多くなり、接合膜3中の脱離基の状態が不安定になるおそれがあるためである。すなわち、エネルギー量が徐々に増加するよう変化させることにより、脱離基の不安定化を避けつつ、接合膜3から脱離する脱離基の量をより正確に測定することができる。
また、接合膜3に照射するエネルギー線の照射領域は、エネルギー線のエネルギー量を変化させるごとに異なる位置に移動させるのが好ましい。このようにすれば、同じ領域に高いエネルギー量が供給されて、脱離基の量の測定が不安定になったり、この領域が局所的に劣化してしまうのを防止することができる。
照射領域の移動は、固定した接合膜付き基材1に対して第1の線源164を移動させるようにしてもよく、反対に、固定した第1の線源164に対して接合膜付き基材1を移動させるようにしてもよい。
前者の場合、エネルギー線の照射方向は、光学部品等の駆動機構、例えば首振り機構等により比較的簡単に行うことができる。一方、後者の場合、第1の載置部111にX−Yステージを組み込んでおけば、エネルギー線の照射領域を高精度に制御することができる。
以上のようにして、接合膜3に目的とする接着性を発現させるための最適な励起エネルギーを特定する。なお、上記方法によれば、前記励起エネルギーを非破壊で測定することができるので、接合膜3と同条件で製造された接合膜のサンプルではなく、被着体4との接合に供される接合膜3そのものに関して励起エネルギーを特定することができる点で有用である。
次に、ゲートバルブ113、125を開状態とする。そして把持部121により、接合膜付き基材1を活性化部130内の第2の載置部131に搬送し、載置する。その後、ゲートバルブ113、125を閉状態とする。
次いで、第2の線源165から、分析部110で特定した最適な励起エネルギーでエネルギー線を発生させ、接合膜3に照射する。これにより、接合膜3に目的とする接着性が発現する。なお、第2の線源165の励起エネルギーの設定は、解析部170の制御により自動的に行うようにしてもよく、手動で行うようにしてもよい。
接合膜3の接着性をできるだけ高めるという観点では、エネルギー線の波長は126nm以上300nm以下程度であるのが好ましい。
また、接合膜3に照射されるエネルギー線の出力は、1mW/cm以上1W/cm以下程度であるのが好ましく、5mW/cm以上50mW/cm以下程度であるのがより好ましい。
次に、ゲートバルブ134を開状態とする。そして把持部121により、接合膜付き基材1を積層部140内の第3の載置部141に搬送し、載置する。その後、ゲートバルブ134を閉状態とする。
次いで、接合膜3と被着体4とが対向するように、接合膜付き基材1と被着体4とを重ね合わせる。これにより両者を接合して接合体5が得られる。得られた接合体5は、アクセスドア144を介して外部に取り出すことができる。
以上のようにして接合体5が得られる。
以上のような接合方法は、種々の部材同士を接合するのに用いられる。
具体的には、トランジスター、ダイオード、メモリーのような半導体素子、水晶発振子のような圧電素子、反射鏡、光学レンズ、回折格子、光学フィルターのような光学素子、太陽電池のような光電変換素子、半導体基板とそれに搭載される半導体素子、絶縁性基板と配線または電極、インクジェット式記録ヘッド、マイクロリアクター、マイクロミラーのようなMEMS(Micro Electro Mechanical Systems)部品、圧力センサー、加速度センサーのようなセンサー部品、半導体素子や電子部品のパッケージ部品、磁気記録媒体、光磁気記録媒体、光記録媒体のような記録媒体、液晶表示素子、有機EL素子、電気泳動表示素子のような表示素子用部品、燃料電池用部品等の接合に際して、本発明の接合方法が適用可能である。
以上、本発明の励起エネルギー特定方法、励起エネルギー特定装置、接合方法および接合装置を図示の実施形態に基づいて説明したが、本発明はこれらに限定されるものではなく、例えば励起エネルギー特定装置や接合装置を構成する各部は、同様の機能を発揮し得る任意の構成のものと置換することができる。また、任意の構成物が付加されていてもよい。
次に、本発明の具体的実施例について説明する。
1.接合体の製造
(実施例1)
まず、基材として、縦20mm×横20mm×平均厚さ1mmのシリコン基板を用意した。また、基材と接合する被着体として、縦20mm×横20mm×平均厚さ0.5mmのステンレス鋼基板を用意した。
次いで、各基板に酸素プラズマによる表面処理を行った。
次に、シリコン基板の表面処理を施した面に、平均厚さ150nmのプラズマ重合膜を成膜した。成膜条件は、以下の示す通りである。
<成膜条件>
・原料ガスの組成 :オクタメチルトリシロキサン
・原料ガスの流量 :50sccm
・キャリアガスの組成:アルゴン
・キャリアガスの流量:100sccm
・高周波電力の出力 :100W
・高周波出力密度 :25W/cm
・チャンバー内圧力 :1Pa(低真空)
・処理時間 :15分
・基板温度 :20℃
これにより、シリコン基板(基材)上にプラズマ重合膜(接合膜)を成膜してなる接合膜付き基材を得た。
次いで、得られた接合膜付き基材を、図5に示す接合装置の搬送部内に、ステンレス鋼基板を、活性化部内にそれぞれ配置した。そして、搬送部のチャンバー内を1Paまで減圧した。
次いで、接合膜付き基材を分析部内に搬送し、分析部において接合膜に紫外線を照射した。線源にはレーザー誘導プラズマ光源を用い、波長を300nmから100nmまで、60nsごとに1nmずつ短くするという変化パターンで変化させつつ照射した。
紫外線の照射中、質量分析ユニットにより、脱離基の質量電荷比ごとの脱離基の量(イオンの分圧)を測定した。
図6には、本実施例の接合膜について、横軸に紫外線の波長、縦軸に脱離基の量に対応した強度をとったスペクトルを示す。
図6から明らかなように、質量電荷比(M/z)が14〜16、29のスペクトルにおいて、波長140nm付近に顕著な極大が認められる。このことから、できるだけ強固に接着する場合や、できるだけ短時間で接着する場合には、波長140nm付近の紫外線を用いることにより、目的とする接着性を発現させ得ることが特定された。
ここでは、できるだけ強固に接着することを目的に、波長140nmを最適な励起エネルギーとした。
次いで、接合膜付き基材を活性化部に搬送した。そして、接合膜に向けてレーザー誘導プラズマ光源から波長140nmの紫外線を照射し、接合膜を活性化させた。
次いで、接合膜付き基材を積層部に搬送し、接合膜とステンレス鋼基板とが対向するように、接合膜付き基材とステンレス鋼基板とを重ね合わせた。これにより、シリコン基板とステンレス鋼基板とを接合してなる接合体を得た。
(実施例2)
接合膜を以下のようにして成膜した以外は、実施例1と同様にして接合膜付き基材を得た。
まず、シリコーン材料として、信越化学工業(株)製、「KR−251」を用意した。このシリコーン材料は、ポリジメチルシロキサン骨格を有するものであり、溶媒(トルエンおよびイソブタノール)で希釈した。
次いで、シリコン基板上にシリコーン材料を塗布し、得られた液状被膜を常温(25℃)で24時間乾燥させた。これにより、接合膜付き基材を得た。
次いで、得られた接合膜付き基材について、実施例1と同様にして最適な励起エネルギーを特定した。
図7には、本実施例の接合膜について、横軸に紫外線の波長、縦軸に脱離基の量に対応した強度をとったスペクトルを示す。
図7から明らかなように、質量電荷比(M/z)が15および16のスペクトルにおいて、波長160nm付近に顕著な極大が認められる。このことから、できるだけ強固に接着する場合や、できるだけ短時間で接着する場合には、波長160nm付近の紫外線を用いることにより、目的とする接着性を発現させ得ることが特定された。
ここでは、できるだけ強固に接着することを目的に、波長160nmを最適な励起エネルギーとした。
以下、実施例1と同様にして接合体を得た。
(比較例1)
活性化部内に配置した接合膜付き基材に対して、波長220nmの紫外線を照射するようにした以外は、実施例1と同様にして接合体を得た。
(比較例2)
活性化部内に配置した接合膜付き基材に対して、波長220nmの紫外線を照射するようにした以外は、実施例2と同様にして接合体を得た。
2.接合体の評価
各実施例および各比較例で得られた接合体について、それぞれの接合強度を評価した。なお、接合強度の測定は、各接合体の接合界面を引き剥がすのに必要な荷重を測定することにより行った。
その結果、実施例1で得られた接合体は、比較例1で得られた接合体に対して、実施例2で得られた接合体は、比較例2で得られた接合体に対して、それぞれ接合強度が高いことが認められた。
1……接合膜付き基材 2……基材 3……接合膜 301……Si骨格 302……シロキサン結合 303……脱離基 304……活性手 4……被着体 5……接合体 11……試料載置部 12……線源 13……測定部 100……接合装置 110……分析部 111……第1の載置部 112……チャンバー 113……排気ポンプ 114……ゲートバルブ 120……搬送部 121……把持部 122……チャンバー 123……排気ポンプ 124……アクセスドア 125……ゲートバルブ 130……活性化部 131……第2の載置部 132……チャンバー 133……排気ポンプ 134……ゲートバルブ 140……積層部 141……第3の載置部 142……チャンバー 143……排気ポンプ 144……アクセスドア 150……測定部 151……質量分析ユニット 152……差動排気部 1521……配管 1522……排気ポンプ 153……ゲートバルブ 160……線源ユニット 161……線源 162……筐体 163……導波路 164……第1の線源 165……第2の線源 166、167……窓材 170……解析部 200……励起エネルギー特定装置

Claims (20)

  1. 任意の原子配列からなる骨格と、該骨格に結合した脱離基とを含んでおり、エネルギーが付与されることにより前記脱離基が脱離し、これにより接着性を発現する接合膜において、前記脱離基を脱離させるのに最適な励起エネルギーを特定する励起エネルギー特定方法であって、
    前記接合膜に向けて、エネルギー量の異なるエネルギー線を時間的に独立して照射し、前記エネルギーを照射することにより脱離した前記脱離基の量を測定する第1の工程と、
    エネルギー量ごとに測定された前記脱離基の量から、目的とする前記脱離基の量に対応するエネルギー量を特定し、前記エネルギー量を前記接合膜に付与する最適な励起エネルギーとする第2の工程と、を有することを特徴とする励起エネルギー特定方法。
  2. 前記第1の工程において、所定の時間間隔でエネルギー量が変化するエネルギー線を照射し、
    前記第2の工程において、前記所定の時間間隔ごとに測定された前記脱離基の量から、目的とする前記脱離基の量に対応する時間帯を特定し、この時間帯に対応するエネルギー量を、前記接合膜に付与する最適な励起エネルギーとする請求項1に記載の励起エネルギー特定方法。
  3. 前記時間間隔は、20ns以上1μs以下である請求項2に記載の励起エネルギー特定方法。
  4. 前記エネルギー線は電磁波であり、前記第1の工程において、波長の異なる電磁波を時間的に独立して照射する請求項1ないし3のいずれかに記載の励起エネルギー特定方法。
  5. 前記第2の工程において、前記脱離基の量を、前記脱離基の質量電荷比の大きさごとに個別に測定し、前記測定された脱離基の質量電荷比のそれぞれにおいて前記最適な励起エネルギーを求める請求項1ないし4のいずれかに記載の励起エネルギー特定方法。
  6. 前記第2の工程において、前記脱離基の量が最大となるエネルギー量を、前記最適な励起エネルギーとする請求項1ないし5のいずれかに記載の励起エネルギー特定方法。
  7. 前記第1の工程において、前記エネルギー量が増加するよう変化させる請求項1ないし6のいずれかに記載の励起エネルギー特定方法。
  8. 前記第1の工程において、前記エネルギー線の照射領域を、前記エネルギー線のエネルギー量を変化させるごとに異ならせる請求項1ないし7のいずれかに記載の励起エネルギー特定方法。
  9. 前記第1の工程において、継続的に排気された空間内に前記接合膜を配置し、かつ、前記空間より低圧の空間を介して前記脱離基の量を測定する請求項1ないし8のいずれかに記載の励起エネルギー特定方法。
  10. 任意の原子配列からなる骨格と該骨格に結合した脱離基とを含んでおり、エネルギーが付与されることにより前記脱離基が脱離し、これにより接着性を発現する接合膜において、前記脱離基を脱離させるのに最適な励起エネルギーを特定する励起エネルギー特定装置であって、
    前記接合膜を載置可能な載置部と、
    前記接合膜に向けてエネルギー量の異なるエネルギー線を時間的に独立して照射する線源と、
    前記接合膜から脱離した前記脱離基の量を測定する測定部と、
    前記エネルギー線のエネルギー量と前記脱離基の量との関係を解析する解析部と、を有し、
    前記解析部は、前記エネルギー線のエネルギー量ごとに測定された前記脱離基の量から、目的とする前記脱離基の量に対応するエネルギー量を特定し、前記エネルギー量を、前記接合膜に付与する最適な励起エネルギーとするよう構成されていることを特徴とする励起エネルギー特定装置。
  11. 前記線源は、所定の時間間隔でエネルギー量が変化するようにエネルギー線を照射するものであり、
    前記解析部は、前記所定の時間間隔ごとに測定された前記脱離基の量から、目的とする前記脱離基の量に対応する時間帯を特定し、前記時間帯に対応するエネルギー量を、前記接合膜に付与する最適な励起エネルギーとするよう構成されている請求項10に記載の励起エネルギー特定装置。
  12. 前記測定部は、前記脱離基の量を、前記脱離基の質量電荷比の大きさごとに個別に測定可能である請求項10または11に記載の励起エネルギー特定装置。
  13. 前記解析部は、前記脱離量の量が最大となるエネルギー量を、前記最適な励起エネルギーとするよう構成されている請求項10ないし12のいずれかに記載の励起エネルギー特定装置。
  14. 当該励起エネルギー特定装置は、さらに気密性を有する容器を有し、前記載置部は、継続的に排気された前記容器内に配置されており、
    前記測定部は、前記容器よりさらに低圧の空間を介して配置されている請求項10ないし13のいずれかに記載の励起エネルギー特定装置。
  15. 前記線源と前記載置部との間に設けられ、前記エネルギー線が透過可能な窓材を有している請求項10ないし14のいずれかに記載の励起エネルギー特定装置。
  16. 基材と被着体とを、任意の原子配列からなる骨格と該骨格に結合した脱離基とを含み、エネルギーが付与されることにより前記脱離基が脱離し、これにより接着性を発現する接合膜を介して接合する接合方法であって、
    前記基材と該基材の一方の面側に設けられた前記接合膜とを有する接合膜付き基材、および、前記被着体を用意する準備工程と、
    請求項1ないし9のいずれかに記載の励起エネルギー特定方法により、前記接合膜に付与する最適な励起エネルギーを特定する励起エネルギー特定工程と、
    前記最適な励起エネルギーのエネルギー線を照射することにより、前記接合膜から前記脱離基を脱離させ、これにより接着性を発現させる活性化工程と、
    前記接合膜と前記被着体とが対向するように、前記接合膜付き基材と前記被着体とを重ね合わせて、これらを接合する積層工程と、を有することを特徴とする接合方法。
  17. 基材と被着体とを、任意の原子配列からなる骨格と該骨格に結合した脱離基とを含み、エネルギーが付与されることにより前記脱離基が脱離し、これにより接着性を発現する接合膜を介して接合する接合装置であって、
    前記基材と該基材の一方の面側に設けられた前記接合膜とを有する接合膜付き基材を載置可能な第1の載置部と、
    前記第1の載置部に載置された接合膜付き基材の前記接合膜に向けて、エネルギー量の異なるエネルギー線を時間的に独立して照射する第1の線源と、
    前記第1の載置部に載置された接合膜付き基材の前記接合膜から脱離した前記脱離基の量を測定する測定部と、
    前記エネルギー線のエネルギー量と前記脱離基の量との関係を解析し、前記エネルギー線のエネルギー量ごとに測定された前記脱離基の量から、目的とする前記脱離基の量に対応するエネルギー量を特定し、前記エネルギー量を、前記接合膜に付与する最適な励起エネルギーとするよう構成された解析部と、
    前記第1の載置部に隣接して設けられ、前記接合膜付き基材を載置可能な第2の載置部と、
    前記第2の載置部に載置された接合膜付き基材の前記接合膜に向けて、前記最適な励起エネルギーでエネルギー線を照射して、前記接合膜に接着性を発現させる第2の線源と、
    接着性が発現した前記接合膜と前記被着体とが密着するように、前記接合膜付き基材と前記被着体とを積層し、これらを接合する積層手段と、を有することを特徴とする接合装置。
  18. 前記第1の線源および前記第2の線源は、同一の線源から発生したエネルギー線を2つに分岐したものである請求項17に記載の接合装置。
  19. 前記第1の載置部および前記第2の載置部は、それぞれ気密性を有する容器内に配置されており、
    前記第1の載置部と前記第2の載置部とは、気密性を有する空間を介して接続されている請求項17または18に記載の接合装置。
  20. 前記第1の載置部と前記第2の載置部との間で前記接合膜付き基材を自在に移送可能な搬送部を有している請求項17ないし19のいずれかに記載の接合装置。
JP2010109659A 2010-05-11 2010-05-11 励起エネルギー特定方法、励起エネルギー特定装置、接合方法および接合装置 Pending JP2011235556A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010109659A JP2011235556A (ja) 2010-05-11 2010-05-11 励起エネルギー特定方法、励起エネルギー特定装置、接合方法および接合装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010109659A JP2011235556A (ja) 2010-05-11 2010-05-11 励起エネルギー特定方法、励起エネルギー特定装置、接合方法および接合装置

Publications (1)

Publication Number Publication Date
JP2011235556A true JP2011235556A (ja) 2011-11-24

Family

ID=45324061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010109659A Pending JP2011235556A (ja) 2010-05-11 2010-05-11 励起エネルギー特定方法、励起エネルギー特定装置、接合方法および接合装置

Country Status (1)

Country Link
JP (1) JP2011235556A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106132688A (zh) * 2014-01-27 2016-11-16 康宁股份有限公司 用于薄片与载体的受控粘结的制品和方法
US10510576B2 (en) 2013-10-14 2019-12-17 Corning Incorporated Carrier-bonding methods and articles for semiconductor and interposer processing
US10538452B2 (en) 2012-12-13 2020-01-21 Corning Incorporated Bulk annealing of glass sheets
US10543662B2 (en) 2012-02-08 2020-01-28 Corning Incorporated Device modified substrate article and methods for making
US11097509B2 (en) 2016-08-30 2021-08-24 Corning Incorporated Siloxane plasma polymers for sheet bonding
US11167532B2 (en) 2015-05-19 2021-11-09 Corning Incorporated Articles and methods for bonding sheets with carriers
US11192340B2 (en) 2014-04-09 2021-12-07 Corning Incorporated Device modified substrate article and methods for making
US11331692B2 (en) 2017-12-15 2022-05-17 Corning Incorporated Methods for treating a substrate and method for making articles comprising bonded sheets
US11535553B2 (en) 2016-08-31 2022-12-27 Corning Incorporated Articles of controllably bonded sheets and methods for making same
US11905201B2 (en) 2015-06-26 2024-02-20 Corning Incorporated Methods and articles including a sheet and a carrier
US11999135B2 (en) 2018-08-20 2024-06-04 Corning Incorporated Temporary bonding using polycationic polymers

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10543662B2 (en) 2012-02-08 2020-01-28 Corning Incorporated Device modified substrate article and methods for making
US10538452B2 (en) 2012-12-13 2020-01-21 Corning Incorporated Bulk annealing of glass sheets
US10510576B2 (en) 2013-10-14 2019-12-17 Corning Incorporated Carrier-bonding methods and articles for semiconductor and interposer processing
US11123954B2 (en) 2014-01-27 2021-09-21 Corning Incorporated Articles and methods for controlled bonding of thin sheets with carriers
JP2017506170A (ja) * 2014-01-27 2017-03-02 コーニング インコーポレイテッド 薄いシートの担体との制御された結合のための物品および方法
CN106132688B (zh) * 2014-01-27 2020-07-14 康宁股份有限公司 用于薄片与载体的受控粘结的制品和方法
CN106132688A (zh) * 2014-01-27 2016-11-16 康宁股份有限公司 用于薄片与载体的受控粘结的制品和方法
US11192340B2 (en) 2014-04-09 2021-12-07 Corning Incorporated Device modified substrate article and methods for making
US11167532B2 (en) 2015-05-19 2021-11-09 Corning Incorporated Articles and methods for bonding sheets with carriers
US11660841B2 (en) 2015-05-19 2023-05-30 Corning Incorporated Articles and methods for bonding sheets with carriers
US11905201B2 (en) 2015-06-26 2024-02-20 Corning Incorporated Methods and articles including a sheet and a carrier
US11097509B2 (en) 2016-08-30 2021-08-24 Corning Incorporated Siloxane plasma polymers for sheet bonding
US11535553B2 (en) 2016-08-31 2022-12-27 Corning Incorporated Articles of controllably bonded sheets and methods for making same
US11331692B2 (en) 2017-12-15 2022-05-17 Corning Incorporated Methods for treating a substrate and method for making articles comprising bonded sheets
US11999135B2 (en) 2018-08-20 2024-06-04 Corning Incorporated Temporary bonding using polycationic polymers

Similar Documents

Publication Publication Date Title
JP2011235556A (ja) 励起エネルギー特定方法、励起エネルギー特定装置、接合方法および接合装置
JP4720808B2 (ja) 接着シート、接合方法および接合体
US20140170424A1 (en) Gas barrier film and method for producing same
JP5141213B2 (ja) 光学デバイス、波長可変フィルタモジュール、および光スペクトラムアナライザ
JP6085652B2 (ja) 非晶質炭素膜からなる層への固定化方法及び積層体
JP2019531946A (ja) シートを結合するためのシロキサンプラズマ高分子
JP5516046B2 (ja) 接合膜転写シートおよび接合方法
JP5469784B1 (ja) 積層体
US20100098954A1 (en) Optical element and optical element manufacturing method
CN103764387A (zh) 气体阻隔性膜
JP2011201977A (ja) 接合方法
WO2016056605A1 (ja) 積層体の製造方法
WO2015053405A1 (ja) ガスバリア性フィルムの製造方法
JP2013185206A5 (ja)
JP2009134025A (ja) 光学デバイス、波長可変フィルタモジュール、および光スペクトラムアナライザ
JP2012183823A (ja) 水蒸気バリアーフィルムの製造方法、水蒸気バリアーフィルム及び電子機器
JP5076844B2 (ja) 光学デバイス、波長可変フィルタモジュール、および光スペクトラムアナライザ
KR101574835B1 (ko) 광경화 조성물, 이를 포함하는 장벽층 및 이를 포함하는 봉지화된 장치
JP2011235559A (ja) 接合膜転写シートおよび接合方法
JP5076843B2 (ja) 光学デバイス、波長可変フィルタモジュール、および光スペクトラムアナライザ
CN111093973B (zh) 阻气膜及阻气膜的制造方法
JP2019010733A (ja) ガスバリアーフィルム、その製造方法及びそれを用いた電子デバイス
JP2010229412A (ja) 接着シート、接合方法および接合体
JP2011129590A (ja) 接合方法および封止型デバイスの製造方法
JP2009131911A (ja) 封止型デバイスの製造方法および封止型デバイス