JP2011210921A - Junction inspection method and junction inspection device - Google Patents

Junction inspection method and junction inspection device Download PDF

Info

Publication number
JP2011210921A
JP2011210921A JP2010076693A JP2010076693A JP2011210921A JP 2011210921 A JP2011210921 A JP 2011210921A JP 2010076693 A JP2010076693 A JP 2010076693A JP 2010076693 A JP2010076693 A JP 2010076693A JP 2011210921 A JP2011210921 A JP 2011210921A
Authority
JP
Japan
Prior art keywords
shear
wire
joint
height
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010076693A
Other languages
Japanese (ja)
Inventor
Yayoi Matsushita
弥生 松下
Tomoko Yamada
友子 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010076693A priority Critical patent/JP2011210921A/en
Publication of JP2011210921A publication Critical patent/JP2011210921A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Wire Bonding (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To correctly identify the junction marks of a wire bonding junction after a shear test is performed, and to find a highly accurate wire residual rate.SOLUTION: The junction inspection test has: a step S1 to detect shear strength and perform a shear test, while wire bonding junctions 22 are sheared by a shear tester unit 32 at a fixed shear height H; and a step S2 to obtain the real picture 43 (i.e. pick-up image) of the junction marks 23 after the shear test is performed, to measure the height within a surface including the junction marks 23, to identify the aluminum residual section b of the junction marks 23 based on the height distribution within the surface including the junction marks 23 and the shear height H, and to identify the external form c of the junction marks 23 based on the real picture 43. The wire residual rate is calculated based on the aluminum residual area of the aluminum residual section b and the external form area of the external form c.

Description

本発明は、半導体チップ等の電極とワイヤとのワイヤボンド接合部を検査する技術に関する。   The present invention relates to a technique for inspecting a wire bond junction between an electrode such as a semiconductor chip and a wire.

一般に、パワー半導体装置においては、半導体チップの表面電極と周囲電極とを金線、銅線、アルミ線などの導電ワイヤを超音波接合等により接続している。スイッチング素子として使われるパワー半導体装置は、電力オン・オフに伴い室温から150度以上に及ぶ昇降温を繰り返し、熱応力を受ける厳しい環境下で使用される。このような熱応力を繰返し受けると、半導体チップとワイヤ(例えばアルミワイヤ)の線膨張係数差に起因する熱ひずみが半導体チップの表面電極やワイヤに加わり、ワイヤボンド接合部にきれつが生じ、進展する。亀裂が進展すると、チップ表面電極とワイヤの接合面積が減少し、電気抵抗が増大することで発熱量が増加するとともに、チップ表面電極、ワイヤを通した放熱経路の面積も低下し、放熱性も低下するため、半導体チップの温度が異常に上昇する。そして最終的にチップ表面電極とワイヤの溶融が発生し、半導体チップが耐熱限界に達し、整流機能が喪失し、故障状態になる。このよう表面電極とワイヤとの接合信頼性の評価には、半導体チップに断続的に大電流を通電することによって、非常に高速に温度変化させ、しかも非常に回数の多いヒートショックサイクル試験であるパワーサイクルテストが行われる。パワーサイクルテストにおける耐久信頼性、いわゆるパワーサイクル耐量には、ワイヤの接合状態が大きく影響する。   Generally, in a power semiconductor device, a surface electrode and a peripheral electrode of a semiconductor chip are connected to a conductive wire such as a gold wire, a copper wire, or an aluminum wire by ultrasonic bonding or the like. A power semiconductor device used as a switching element is used in a severe environment subject to thermal stress by repeatedly raising and lowering temperature from room temperature to 150 ° C. or more with power on / off. When such thermal stress is repeatedly applied, thermal strain due to the difference in linear expansion coefficient between the semiconductor chip and the wire (for example, aluminum wire) is applied to the surface electrode or wire of the semiconductor chip, resulting in cracks in the wire bond joint and progress. To do. When the crack progresses, the bonding area between the chip surface electrode and the wire decreases, and the electrical resistance increases, so the heat generation increases, the area of the heat dissipation path through the chip surface electrode and the wire also decreases, and the heat dissipation is also improved. As a result, the temperature of the semiconductor chip rises abnormally. Finally, melting of the chip surface electrode and the wire occurs, the semiconductor chip reaches the heat limit, the rectification function is lost, and a failure state occurs. The evaluation of the bonding reliability between the surface electrode and the wire is a heat shock cycle test in which the temperature is changed very rapidly by passing a large current intermittently through the semiconductor chip and the number of times is very high. A power cycle test is performed. The durability of the power cycle test, the so-called power cycle tolerance, is greatly affected by the bonding state of the wires.

ワイヤの接合状態の評価方法としては、ワイヤの引っ張り強度を測定する「ピールテスト」や、ワイヤボンド接合部のせん断強度を測定するシェアテストが一般に行われている。このシェアテストを行う装置としては、変位可能な試料ステージを備え、試料に水平方向のカを加えるツールによりワイヤボンド接合部をせん断しつつ、ツールに加わるせん断荷重(シェア強度)をセンサの出力から測定するシェアテスタ(せん断試験装置)が知られている。   As a method for evaluating the bonding state of the wire, a “peel test” for measuring the tensile strength of the wire and a shear test for measuring the shear strength of the wire bond bonded portion are generally performed. The shear test device is equipped with a displaceable sample stage, shearing the wire bond joint with a tool that applies horizontal force to the sample, and the shear load (shear strength) applied to the tool from the sensor output. A shear tester (shear test device) for measuring is known.

一般的に、シェア強度は、せん断時にツールに加えられた最大荷重により評価されるが、この最大荷重による評価では、ワイヤボンド接合部の中央部が充分に接合されていない状態と、ワイヤボンド接合部の中央まで充分に接合されている状態とで値に差異が生じ難く、これらの状態を検出できない。ワイヤボンド接合部の中央部が十分に接合されていない状態は、中央まで十分に接合されている状態と比較してパワーサイクル耐量が劣ることを考慮すると、これら接合状態の差異を検出できないことは耐久信頼性を評価する上で問題であることから、かかる接合状態をより定量的に把握することが求められる。   Generally, the shear strength is evaluated by the maximum load applied to the tool during shearing. In the evaluation by this maximum load, the state where the center part of the wire bond joint is not sufficiently joined and the wire bond joint It is difficult to make a difference in value between the state where the joint is sufficiently joined to the center of the part, and these states cannot be detected. Considering the fact that the center of the wire bond joint is not sufficiently bonded, the power cycle resistance is inferior compared to the state where it is fully bonded to the center, the difference between these bonded states cannot be detected. Since this is a problem in evaluating durability reliability, it is required to quantitatively grasp such a joining state.

そこで、接合状態評価の指標として、ワイヤ残存率を用いることが提案されている。ワイヤ残存率とは、ワイヤボンド接合部の外形面積中におけるワイヤ残存面積の割合である。このワイヤ残存面積は、例えば、画像処理用コンピュータによりシェアテスト後のワイヤボンド接合部の画像を2値化し、ワイヤ残存面積と接合面積(外形面積)との比に基づいて求められる(例えば、特許文献1参照)。   Thus, it has been proposed to use the wire remaining rate as an index for evaluating the bonding state. The wire remaining rate is the ratio of the wire remaining area in the outer area of the wire bond joint. This wire remaining area is obtained, for example, by binarizing the image of the wire bond bonded portion after the shear test by an image processing computer and based on the ratio of the wire remaining area and the bonded area (outer area) (for example, patent Reference 1).

特許第4242086号公報Japanese Patent No. 4220286

しかしながら、ワイヤボンド接合部の外形、及びワイヤ残存面積の測定にあたり、2値化したシェアテスト後の画像から面積を求める手法は、2値化処理前の画像状態やワイヤ特有の形状の影響により、ワイヤ残存面積の測定値のばらつきが大きい。例えば、銀白色のアルミ電極表面を持つ半導体チップ上に、同色のアルミワイヤをボンディング加工した場合、画像上でチップ表面とワイヤボンド接合部のコントラストがつきにくいため、2値化の閾値レベルの選定が難しく、正確な数値化が困難である。
また、ワイヤボンディング加工の際にワイヤがチップ表面に接触し、当該チップ表面にアルミなどのワイヤ材が若干付着した箇所や、シェアテスト時にワイヤがせん断された後、ひきちぎられた箇所など、本来接合していないがワイヤボンド接合部分と類似した画像を示す部分については、画像を2値化することによっても接合・未接合の境界判定が難しく、正確な数値化が困難である。
However, in measuring the outer shape of the wire bond joint and the remaining area of the wire, the technique for obtaining the area from the binarized image after the shear test is based on the influence of the image state before the binarization processing and the shape peculiar to the wire. There are large variations in the measured wire remaining area. For example, when aluminum wires of the same color are bonded on a semiconductor chip having a silver-white aluminum electrode surface, the contrast between the chip surface and the wire bond junction is difficult to attach on the image, so the threshold level for binarization is selected. Is difficult and accurate quantification is difficult.
In addition, the wire touches the chip surface during wire bonding, and the part where the wire material such as aluminum is slightly adhered to the chip surface, or the part where the wire is sheared and then torn after the shear test For a portion that is not joined but that shows an image similar to a wire bond joined portion, it is difficult to determine a boundary between joined and unjoined even by binarizing the image, and accurate quantification is difficult.

本発明は、上述した事情に鑑みてなされたものであり、シェアテスト後のワイヤボンド接合部の接合痕を正確に特定し、ワイヤ残存率を高精度に求めることができる接合部検査方法、及び接合部検査装置を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and accurately identifies the bonding trace of the wire bond bonded portion after the shear test, and can determine the wire remaining rate with high accuracy, and It aims at providing a junction inspection device.

上記目的を達成するために、本発明は、シェアテスタでワイヤボンド接合部を一定のシェア高さでせん断しつつ、シェア強度を検出してシェアテストをするステップと、前記シェアテスト後の接合痕の撮像画像を取得するとともに、前記接合痕を含む面内の高低を測定するステップと、前記接合痕を含む面内の高さ分布と前記シェア高さに基づいて前記接合痕のワイヤ残存部を特定するとともに、前記撮像画像に基づいて前記接合痕の外形を特定するステップと、を備え、前記ワイヤ残存部のワイヤ残存面積及び前記外形の外形面積からワイヤ残存率を算出することを特徴とする接合部検査方法を提供する。   In order to achieve the above object, the present invention includes a step of shearing a wire bond joint with a shear tester at a certain shear height, detecting a shear strength and performing a shear test, and a joint mark after the shear test. A step of measuring an in-plane height including the bonding trace, and an in-plane height distribution including the bonding trace and a wire remaining portion of the bonding trace based on the shear height. And specifying the outer shape of the bonding trace based on the captured image, and calculating a wire remaining ratio from the wire remaining area of the wire remaining portion and the outer shape area of the outer shape. A method for inspecting a joint is provided.

本発明によれば、シェアテスト後の接合痕の撮像画像を取得するとともに、前記接合痕を含む面内の高低を測定し、前記接合痕を含む面内の高さ分布と前記シェア高さとに基づいて前記接合痕のワイヤ残存部を特定するため、撮像画像上でチップ表面とワイヤボンド接合部のコントラストがつきにくい場合でも、ワイヤ残存部を正確に特定することができる。
これに加え、前記撮像画像に基づいて前記接合痕の外形を特定するため、ワイヤが残存せずにベースが露出したベース露出部がベースに近接し、或いは繋がっている場合であっても、接合痕の境界を正確に判定して外形を特定できる。
これにより、ワイヤ残存率を正確に求めることができ、シェアテスト結果と併せて、ワイヤボンド接合部の接合状態をより正確に把握できるようになる。
According to the present invention, the captured image of the joint trace after the shear test is acquired, the height in the plane including the joint trace is measured, and the height distribution in the plane including the joint trace and the shear height are determined. Since the remaining wire portion of the bonding trace is specified based on the above, the remaining wire portion can be accurately specified even when the contrast between the chip surface and the wire bond bonding portion is difficult to be obtained on the captured image.
In addition, since the outer shape of the joint trace is specified based on the captured image, even if the base exposed portion where the base is exposed without any wire remaining is close to or connected to the base, The outline can be specified by accurately determining the boundary of the mark.
Thereby, a wire residual rate can be calculated | required correctly and it becomes possible to grasp | ascertain the joining state of a wire bond junction part more correctly now together with a shear test result.

また本発明は、上記接合部検査方法において、前記接合痕を含む面内の高さが、前記シェア高さを基準にした所定の高さ範囲に入るエリアを前記ワイヤ残存部として特定することを特徴とする。
本発明によれば、チップ表面に付着したアルミなどのワイヤ材や、ワイヤボンド接合部がせん断時に伸びた箇所等の、本来接合していないがワイヤボンド接合部分と類似した部分であって撮像画像の二値化処理では識別できない部分を正確に除いてワイヤ残存部を特定することができる。
Further, the present invention provides the above-described bonding portion inspection method, wherein an area in which an in-plane height including the bonding mark falls within a predetermined height range based on the shear height is specified as the wire remaining portion. Features.
According to the present invention, a wire material such as aluminum adhering to the chip surface, or a portion similar to the wire bond bonded portion that is not originally bonded, such as a portion where the wire bond bonded portion extends during shearing, and is a captured image. Thus, the remaining wire portion can be specified by accurately excluding the portion that cannot be identified by the binarization process.

また本発明は、上記接合部検査方法において、前記シェアテスト時には、シェアスピードを前記ワイヤボンド接合部に伸びを発生させない速度以上に設定し、かつ、前記シェア強度のピーク値が検出されてから前記シェアテスタが備えるツールを、前記接合痕にワイヤ部材を残さない距離以上であって、前記ワイヤボンド接合部のせん断時の応力により前記ツールに生じた反りが解放したときの反動によって前記接合痕に変形を生じさせない範囲の距離だけ移動させたときに前記ツールの移動を停止させることを特徴とする。
本発明によれば、シェアテスト後の接合痕に対する不要な変形が防止され、ワイヤ残存率を正確に求めることができるため、接合状態をより正確に判定できる。
Further, the present invention, in the above-described joint inspection method, during the shear test, the shear speed is set to be equal to or higher than a speed at which the wire bond joint does not generate elongation, and the peak value of the shear strength is detected. The tool provided in the shear tester is not less than a distance that does not leave a wire member in the joint trace, and the joint trace is applied to the joint trace by the reaction when the warp generated in the tool is released by the stress at the time of shearing of the wire bond joint portion. The movement of the tool is stopped when it is moved by a distance in a range that does not cause deformation.
According to the present invention, unnecessary deformation of the bonding marks after the shear test is prevented, and the wire remaining rate can be accurately obtained, so that the bonding state can be determined more accurately.

また上記目的を達成するために、本発明は、ワイヤボンド接合部を一定のシェア高さでせん断しつつ、シェア強度を検出してシェアテストをするシェアテスタと、前記シェアテスト後の接合痕の撮像画像を取得する撮像手段と、前記接合痕を含む面内の高低を測定する高さ測定手段と、前記接合痕を含む面内の高さ分布と前記シェア高さに基づいて前記接合痕のワイヤ残存部を特定するとともに、前記撮像画像に基づいて前記接合痕の外形を特定し、前記ワイヤ残存部のワイヤ残存面積及び前記外形の外形面積からワイヤ残存率を算出する解析手段と、を備えることを特徴とする接合部検査装置を提供する。   In order to achieve the above object, the present invention shears the wire bond joint at a certain shear height, detects a shear strength and performs a shear test, and a joint test after the shear test. An image pickup means for acquiring a picked-up image, a height measurement means for measuring an in-plane height including the joint trace, an in-plane height distribution including the joint trace, and the shear height based on the shear height. Analysis means for specifying a wire remaining portion, specifying an outer shape of the bonding trace based on the captured image, and calculating a wire remaining ratio of the wire remaining portion and the outer shape area of the outer shape. There is provided a junction inspection apparatus characterized by the above.

本発明によれば、シェアテスト後の接合痕の撮像画像を取得するとともに、前記接合痕を含む面内の高低を測定し、前記接合痕を含む面内の高さ分布と前記シェア高さとに基づいて前記接合痕のワイヤ残存部を特定するため、撮像画像上でチップ表面とワイヤボンド接合部のコントラストがつきにくい場合でも、ワイヤ残存部を正確に特定することができる。これに加え、前記撮像画像に基づいて前記接合痕の外形を特定するため、ワイヤが残存せずにベースが露出したベース露出部がベースに近接し、或いは繋がっている場合であっても、接合痕の境界を正確に判定して外形を特定できる。これにより、ワイヤ残存率を正確に求めることができ、シェアテスト結果と併せて、ワイヤボンド接合部の接合状態を正確に把握できるようになる。
また、本発明において、前記接合痕を含む面内の高さが、前記シェア高さを基準にした所定の高さ範囲に入るエリアを前記ワイヤ残存部として特定することで、ワイヤ残存部を正確に特定することができる。
また、本発明において、前記シェアテスト時には、シェアスピードを前記ワイヤボンド接合部に伸びを発生させない速度以上に設定し、かつ、前記シェア強度のピーク値が検出されてから前記シェアテスタが備えるツールを、前記接合痕にワイヤ部材を残さない距離以上であって、前記ワイヤボンド接合部のせん断時の応力により前記ツールに生じた反りが解放したときの反動によって前記接合痕に変形を生じさせない範囲の距離だけ移動させたときに前記ツールの移動を停止させることで、シェアテスト後の接合痕に対する不要な変形が防止され、ワイヤ残存率を正確に求めることができるため、接合状態をより正確に判定できる。
According to the present invention, the captured image of the joint trace after the shear test is acquired, the height in the plane including the joint trace is measured, and the height distribution in the plane including the joint trace and the shear height are determined. Since the remaining wire portion of the bonding trace is specified based on the above, the remaining wire portion can be accurately specified even when the contrast between the chip surface and the wire bond bonding portion is difficult to be obtained on the captured image. In addition, since the outer shape of the joint trace is specified based on the captured image, even if the base exposed portion where the base is exposed without any wire remaining is close to or connected to the base, The outline can be specified by accurately determining the boundary of the mark. Thereby, a wire residual rate can be calculated | required correctly and it becomes possible to grasp | ascertain correctly the joining state of a wire bond junction part with a shear test result.
In the present invention, the wire remaining portion can be accurately identified by identifying an area where the in-plane height including the joint trace falls within a predetermined height range based on the shear height as the wire remaining portion. Can be specified.
Further, in the present invention, during the shear test, a tool provided in the shear tester is set after a shear speed is set to be equal to or higher than a speed that does not cause elongation in the wire bond joint portion and a peak value of the shear strength is detected. , A distance that does not leave a wire member in the bonding trace, and does not cause deformation in the bonding trace due to a reaction when the warp generated in the tool is released due to a stress at the time of shearing of the wire bond joint portion. By stopping the movement of the tool when moved by a distance, unnecessary deformation of the joint marks after the shear test is prevented, and the wire remaining rate can be obtained accurately, so the joining state can be determined more accurately. it can.

本発明の実施形態に係る接合部検査装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the junction part test | inspection apparatus which concerns on embodiment of this invention. 検査対象のパワー半導体装置の断面の模式図である。It is a schematic diagram of the cross section of the power semiconductor device to be examined. ワイヤボンド接合部の接合状態の検査手順を示す図である。It is a figure which shows the test | inspection procedure of the joining state of a wire bond junction part. シェアテストの説明図である。It is explanatory drawing of a share test. ワイヤボンド接合部とシェア方向との関係を示す図である。It is a figure which shows the relationship between a wire bond junction part and a shear direction. 接合痕の実体画像の一例を示す図である。It is a figure which shows an example of the entity image of a joining trace. 図6に示した実体画像と同じ接合痕を対象に高さ計測して得られた高低分布画像を示す図である。It is a figure which shows the height distribution image obtained by measuring height for the same joining trace as the entity image shown in FIG. シェアスピードによる母材の伸びの発生の説明図である。It is explanatory drawing of generation | occurrence | production of the elongation of the base material by a share speed. シェアテスト時のシェア強度(せん断荷重)の検出値の時間変化を示す図である。It is a figure which shows the time change of the detected value of the shear strength (shear load) at the time of a shear test. シェア強度の検出値がピーク値から10%、30%及び90%低下するまでにツールが移動する距離を示す図である。It is a figure which shows the distance which a tool moves before the detection value of a share intensity | strength falls 10%, 30%, and 90% from a peak value.

以下、図面を参照して本発明の実施形態について説明する。
図1は本実施形態に係る接合部検査装置1の構成を模式的に示す図であり、また、図2は検査対象のパワー半導体装置3の断面の模式図である。
接合部検査装置1は、パワー半導体装置3のワイヤボンド接合部22(図2)の接合状態を検査する装置であり、当該装置の説明に先立って、パワー半導体装置3について簡単に説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram schematically showing a configuration of a joint inspection apparatus 1 according to the present embodiment, and FIG. 2 is a schematic cross-sectional view of a power semiconductor device 3 to be inspected.
The joint inspection device 1 is a device for inspecting the bonding state of the wire bond joint 22 (FIG. 2) of the power semiconductor device 3, and the power semiconductor device 3 will be briefly described prior to the description of the device.

図2に示すパワー半導体装置3は、電気自動車等の電力変換装置に用いられる三相インバータ回路の交流出力1相分の回路をパッケージ化したものである。すなわち、パワー半導体装置3は、1相分の回路を構成する半導体チップ5及びダイオード等の回路素子をはんだ6を介して絶縁回路基板7に実装し、当該絶縁回路基板7を、パッケージ底面を構成するベース板としての放熱板9の上に接合剤11で接合固定し、その周囲を囲む側壁たる樹脂ケース13をパッキン14を挟んで放熱板9に設け、樹脂ケース13内を樹脂剤たるシリコーンゲル15で封止して構成されている。
半導体チップ5は、例えば、IGBT、パワーMOSFET、サイリスタ、ダイオード等の大電流に対応した電源供給用のスイッチング素子であり、絶縁回路基板7は、金属板から成る上面基板7A及び下面基板7Bの間に絶縁基板7Cを挟んでロウ材等により接合してなる3層構造の基板である。なお、上面基板7A及び下面基板7Bを金属板ではなく導体層で形成しても良い。放熱板9は、例えば銅やアルミニウムなどの高熱伝導性を有する金属で構成された板材である。
A power semiconductor device 3 shown in FIG. 2 is a package of a circuit for one phase of an AC output of a three-phase inverter circuit used in a power conversion device such as an electric vehicle. That is, the power semiconductor device 3 mounts a semiconductor chip 5 and a circuit element such as a diode constituting a circuit for one phase on the insulating circuit board 7 via the solder 6, and the insulating circuit board 7 forms the bottom surface of the package. The resin case 13 as a side wall surrounding the periphery of the base plate is provided on the heat sink 9 with the packing 14 interposed therebetween, and the inside of the resin case 13 is a silicone gel as a resin agent. 15 and sealed.
The semiconductor chip 5 is a switching element for supplying power corresponding to a large current, such as an IGBT, a power MOSFET, a thyristor, or a diode, and the insulating circuit board 7 is between a top board 7A and a bottom board 7B made of a metal plate. A substrate having a three-layer structure in which an insulating substrate 7C is sandwiched and bonded by a brazing material or the like. The upper substrate 7A and the lower substrate 7B may be formed of a conductor layer instead of a metal plate. The heat sink 9 is a plate material made of a metal having high thermal conductivity such as copper or aluminum.

また、パワー半導体装置3には、パッケージ内から外部に樹脂ケース13を貫通して、半導体チップ5の周辺電極たる外部端子17が設けられている。外部端子17は半導体チップ5と導電ワイヤたるアルミニウム製のアルミワイヤ20により電気的に接続される。すなわち、アルミワイヤ20は、太さ数十μm〜数百μmの線材であり、その一端が半導体チップ5のチップ表面5Aに荷重と超音波によって接合され、他端は同様にして外部端子17に接合されている。パワー半導体装置3の製造時には、かかる接合工程が行われた後、シリコーンゲル15で封止される。   Further, the power semiconductor device 3 is provided with an external terminal 17 that is a peripheral electrode of the semiconductor chip 5 through the resin case 13 from the inside of the package to the outside. The external terminal 17 is electrically connected to the semiconductor chip 5 by an aluminum wire 20 made of aluminum as a conductive wire. That is, the aluminum wire 20 is a wire having a thickness of several tens μm to several hundreds μm, and one end thereof is bonded to the chip surface 5A of the semiconductor chip 5 by a load and ultrasonic waves, and the other end is similarly connected to the external terminal 17. It is joined. At the time of manufacturing the power semiconductor device 3, the bonding process is performed, and then sealing is performed with the silicone gel 15.

上記接合部検査装置1は、半導体チップ5のチップ表面5Aとアルミワイヤ20の接合箇所であるワイヤボンド接合部22のシェア強度、及び接合面Q(図5)でのワイヤ残存率を測定し、接合状態を検査する装置である。すなわち、接合部検査装置1は、シェア強度を測定するシェアテストのためのシェアテスタユニット32と、ワイヤ残存率を測定するためのワイヤ残存率測定ユニット34とを備え、これらシェアテスタユニット32及びワイヤ残存率測定ユニット34の制御、及び解析を行うコンピュータ30とを備えている。   The joint inspection apparatus 1 measures the shear strength of the wire bond joint 22 which is a joint between the chip surface 5A of the semiconductor chip 5 and the aluminum wire 20, and the wire remaining rate at the joint surface Q (FIG. 5). It is an apparatus for inspecting the joining state. That is, the joint inspection apparatus 1 includes a shear tester unit 32 for a shear test for measuring the shear strength and a wire residual ratio measuring unit 34 for measuring a wire residual ratio. And a computer 30 for controlling and analyzing the remaining rate measuring unit 34.

シェアテスタユニット32は、検査対象の試料たる半導体チップ5を、シェアテスト時に少なくとも後述するツール36の移動方向(シェア方向)Mに移動しないように固定する固定ステージ38と、当該固定ステージ38に対して昇降自在に設けられ、固定ステージ38に固定された半導体チップ5のチップ表面5Aを基準に所定のシェア高さHに位置決めされ、当該シェア高さHを維持したまま水平に所定のシェア方向Mに移動してチップ表面5Aのワイヤボンド接合部22をせん断するツール36と、せん断時のせん断荷重を検出するロードセル40とを備えている。
シェアテスト時には、ワイヤボンド接合部22のせん断開始から終了までの間、コンピュータ30が経時的に複数の測定点でせん断荷重をロードセル40の検出信号に基づいて検出し、それらの中で最大のせん断荷重を、接合強度の指標たるシェア強度として測定する。
The share tester unit 32 fixes the semiconductor chip 5 as a sample to be inspected so as not to move at least in the movement direction (share direction) M of the tool 36 described later at the time of the shear test, and to the stationary stage 38. The chip surface 5A of the semiconductor chip 5 fixed to the fixed stage 38 is positioned at a predetermined shear height H with reference to the chip surface 5A, and is maintained in the predetermined shear direction M while maintaining the shear height H. And a tool 36 for shearing the wire bond joint portion 22 on the chip surface 5A and a load cell 40 for detecting a shear load during shearing.
During the shear test, the computer 30 detects the shear load at a plurality of measurement points with time based on the detection signal of the load cell 40 from the start to the end of the shearing of the wire bond joint 22, and the largest shear among them. The load is measured as the shear strength, which is an index of bonding strength.

ワイヤ残存率測定ユニット34は、シェアテスタユニット32によるシェアテスト後の半導体チップ5を載置する台座42と、ツール36によりワイヤボンド接合部22がせん断されて形成された接合痕23の実体画像43(図5)を対面から撮像しコンピュータ30に出力する撮像装置たるマイクロスコープ44と、3D測定レーザ顕微鏡のレーザ光源や光学系、反射光量の受光センサ等を内蔵し、検出信号をコンピュータ30に出力する走査ヘッド46とを備えている。
コンピュータ30は、マイクロスコープ44からグレースケール画像或いはカラー画像等の多値画像の実体画像43を取得し、また、走査ヘッド46の検出信号に基づいて、接合痕23を含む範囲のチップ表面5Aの高低を測定する。
なお、コンピュータ30は、シェアテスタユニット32及びワイヤ残存率測定ユニット34ごとに分けて設けても良い。また、ワイヤ残存率測定ユニット34においては、3D測定レーザ顕微鏡の走査ヘッド46をマイクロスコープ44として機能させ実体画像43を得る構成としても良い。
The wire remaining rate measurement unit 34 includes a base 42 on which the semiconductor chip 5 after the shear test by the shear tester unit 32 is placed, and a solid image 43 of a bonding mark 23 formed by shearing the wire bond joint 22 by the tool 36. It incorporates a microscope 44 that is an imaging device that captures (FIG. 5) from the opposite side and outputs it to the computer 30, a laser light source and optical system of a 3D measurement laser microscope, a light receiving sensor for the amount of reflected light, etc. Scanning head 46.
The computer 30 acquires a multi-valued entity image 43 such as a grayscale image or a color image from the microscope 44, and the chip surface 5A in a range including the joint mark 23 based on the detection signal of the scanning head 46. Measure height.
The computer 30 may be provided separately for each of the shear tester unit 32 and the wire remaining rate measurement unit 34. Further, the wire residual ratio measuring unit 34 may be configured to obtain the substantial image 43 by causing the scanning head 46 of the 3D measurement laser microscope to function as the microscope 44.

図3は、ワイヤボンド接合部22の接合状態の接合部検査装置1による検査手順を示す図である。
パワー半導体装置3のパワーサイクル耐量の評価にあたっては、アルミワイヤ20の接合状態を評価することが重要であり、その評価は、上記接合部検査装置1を用いて次ぎのようにして行われる。
すなわち、図3に示すように、先ず、シェアテスタユニット32を用いて、ワイヤボンド接合部22のシェア強度を測定するシェアテストを行う(ステップS1)。このシェアテストにおいては、図4に示すように、シェアテスタユニット32のツール36を、半導体チップ5の接合面たるチップ表面5Aから一定のシェア高さHに保持し、このシェア高さHを維持したままツール36をシェア方向Mに水平に(接合面に平行に)移動させ、ワイヤボンド接合部22をせん断(シェア)する。このせん断の過程において、ツール36に加えられるせん断荷重がコンピュータ30によって逐次検出され、その最大値がシェア強度として測定される。
上記シェア方向Mは、アルミワイヤ幅方向Jに対して平行(0度)または垂直(90度)が望ましいが、本実施形態では、接合状態を全体的に観察するため、図5に示すように、アルミワイヤ20の接合時の超音波振幅方向、すなわちアルミワイヤ20の長さ方向Kに対して垂直となる、アルミワイヤ20のワイヤ幅の方向Jと平行方向で行っている。
FIG. 3 is a diagram illustrating an inspection procedure by the bonding portion inspection apparatus 1 in a bonding state of the wire bond bonding portion 22.
In evaluating the power cycle tolerance of the power semiconductor device 3, it is important to evaluate the bonding state of the aluminum wire 20, and the evaluation is performed as follows using the bonding portion inspection apparatus 1.
That is, as shown in FIG. 3, first, a shear test is performed to measure the shear strength of the wire bond joint portion 22 using the shear tester unit 32 (step S1). In this shear test, as shown in FIG. 4, the tool 36 of the shear tester unit 32 is held at a certain shear height H from the chip surface 5 </ b> A that is the bonding surface of the semiconductor chip 5, and this shear height H is maintained. As it is, the tool 36 is moved horizontally in the shear direction M (parallel to the joint surface), and the wire bond joint 22 is sheared. During this shearing process, the shear load applied to the tool 36 is sequentially detected by the computer 30, and the maximum value is measured as the shear strength.
The shear direction M is preferably parallel (0 degree) or perpendicular (90 degrees) to the aluminum wire width direction J. However, in this embodiment, as shown in FIG. The ultrasonic wire is joined in the direction parallel to the wire width direction J of the aluminum wire 20 which is perpendicular to the ultrasonic amplitude direction when the aluminum wire 20 is joined, ie, the length direction K of the aluminum wire 20.

ここで、チップ表面5Aとアルミワイヤ20との間の接合面Qでは、前掲図5に示すように、接合面Qの中央部O等には、十分に接合されていない未接合部Rが生じている事があり、係る接合面Qの接合状態を次の手順で検査する。
すなわち、前掲図3に示すように、ステップS1のシェアテスト後に、シェアテストによってせん断されたワイヤボンド接合部22の接合痕23の形状を、ワイヤ残存率測定ユニット34によって測定する(ステップS2)。この形状測定では、コンピュータ30がチップ表面5Aの接合痕23の正面画像(チップ表面5Aに対面して撮像した画像)を撮像した実体画像43、及び、接合痕23を含むチップ表面5Aの面内の高低分布を取得し、これらに基づいて接合痕23の外形面積及びワイヤ残存面積を特定する。
Here, at the bonding surface Q between the chip surface 5A and the aluminum wire 20, as shown in FIG. 5, an unbonded portion R that is not sufficiently bonded is generated at the central portion O or the like of the bonding surface Q. The joining state of the joining surface Q is inspected by the following procedure.
That is, as shown in FIG. 3, the shape of the bonding mark 23 of the wire bond bonded portion 22 sheared by the shear test is measured by the wire residual ratio measuring unit 34 after the shear test in step S1 (step S2). In this shape measurement, the computer 30 captures a front image (an image captured facing the chip surface 5A) of the bonding mark 23 on the chip surface 5A, and an in-plane of the chip surface 5A including the bonding mark 23. Are obtained, and based on these, the outer area of the bonding mark 23 and the remaining wire area are specified.

図6は、撮像装置たるマイクロスコープ44により接合痕23を撮像した実体画像43の一例を示す図である。
同図において、実体画像43におけるベースaは、チップ表面5Aに該当し、このチップ表面5Aは、例えば銀白色のアルミ電極表面であることから、アルミワイヤ20と略同色となる。このため、シェアテスト後にアルミワイヤ20が残存するアルミ残存部bと、アルミワイヤ20が残存せずにチップ表面5Aたるベースaが露出したベース露出部dとのコントラストがつき難く、アルミ残存部bがベースaやベース露出部dより若干明度が暗くなる程度である。したがって、2値化処理において、ベース露出部dを基準に当該ベース露出部dを白抜きしてアルミ残存部bと区別すべく閾値を小さくすると、当該アルミ残存部bの領域内でも白抜きされる箇所が増えてしまう。これとは逆に、アルミ残存部bを基準に当該アルミ残存部bを黒塗りしてベース露出部dと区別すべく閾値を高くすると、ベース露出部dの領域内でも黒塗りされる箇所が増えてしまう。このように、アルミ残存部bとベース露出部dとのいずれか一方を基準に閾値を設定すると、他方の領域が正確でなくなり、アルミ残存部bとベース露出部dとの面積比を正確に求めることができず、ワイヤボンド接合部22の接合状態を正確に評価できない。
そこで、本実施形態では、シェアテスト時にシェア高さHを一定にしてシェアすることで、接合痕23のアルミ残存部bの高さをシェア高さHと略同程度になるようにし、接合痕23を含むチップ表面5Aの面内の高低分布と、シェアテスト時のシェア高さHとに基づいて、アルミ残存部bを特定することとしている。
FIG. 6 is a diagram illustrating an example of a substantial image 43 obtained by imaging the joint mark 23 with the microscope 44 serving as an imaging device.
In the figure, the base a in the entity image 43 corresponds to the chip surface 5A, and this chip surface 5A is, for example, a silver-white aluminum electrode surface, and therefore has substantially the same color as the aluminum wire 20. For this reason, it is difficult to provide contrast between the aluminum remaining portion b where the aluminum wire 20 remains after the shear test and the base exposed portion d where the base a which is the chip surface 5A is exposed without the aluminum wire 20 remaining, and the aluminum remaining portion b. However, the brightness is slightly darker than the base a and the base exposed portion d. Therefore, in the binarization process, if the base exposed portion d is whitened with reference to the base exposed portion d and the threshold value is reduced to distinguish it from the aluminum remaining portion b, the region of the aluminum remaining portion b is also whitened. The number of places will increase. On the other hand, if the remaining aluminum portion b is blacked on the basis of the remaining aluminum portion b and the threshold value is increased to distinguish it from the exposed base portion d, a portion that is blackened also in the region of the exposed base portion d. It will increase. As described above, when the threshold value is set based on one of the aluminum remaining portion b and the base exposed portion d, the other region becomes inaccurate, and the area ratio between the aluminum remaining portion b and the base exposed portion d is accurately set. It cannot be determined, and the bonding state of the wire bond bonding portion 22 cannot be accurately evaluated.
Therefore, in this embodiment, the share height H is kept constant during the share test so that the height of the remaining aluminum portion b of the joint mark 23 is substantially the same as the share height H, so that the joint mark The remaining aluminum portion b is specified on the basis of the height distribution in the surface of the chip surface 5A including 23 and the share height H at the shear test.

図7は、図6に示した実体画像43と同じ接合痕23を対象に高さ計測して得られた高低分布画像50を示す図である。
この高低分布画像50は、図7(A)に示すように、レーザ高さ計測によって得られたチップ表面5Aの高さ分布を示す高さ分布データ52に基づいて、高さがシェア高さH±マージンαの範囲(本実施形態ではシェア高さH=10μm、マージンα=2μm)に収まるエリアをアルミ残存部bとして抽出し、それ以外をベースa或いはベース露出部dとして二値化している。このように、シェア高さHを基準にしてエリアを抽出することで、シェアテスト後のアルミ残存部bを正確に抽出することができる。このとき、シェア高さH+マージンα以上の高さの範囲を除外することで、ワイヤボンディング加工の際にチップ表面に付着したワイヤ材や、シェアテスト時にアルミワイヤ20がせん断された後、ひきちぎられて伸び出た箇所など、本来接合していない箇所を正確に除外することができる。なお、マージンαは、シェアテスト時のツール36の移動方向とチップ表面5Aとの間の平行度やせん断された面粗さ等を考慮して、アルミ残存部bを正確に抽出するために適宜に設定される値である。またシェア高さHは、測定の精度の観点から、シェアテスタユニット32の測定誤差を超える高さであることが望ましい。例えば、測定誤差±2μmであれば、シェア高さHは4μm以上が望ましい。
FIG. 7 is a diagram showing a height distribution image 50 obtained by measuring the height of the same joint mark 23 as the entity image 43 shown in FIG.
As shown in FIG. 7A, the height distribution image 50 has a height of share height H based on height distribution data 52 indicating the height distribution of the chip surface 5A obtained by laser height measurement. An area that falls within the range of ± margin α (in this embodiment, the share height H = 10 μm, margin α = 2 μm) is extracted as the remaining aluminum portion b, and the rest is binarized as the base a or the base exposed portion d. . Thus, by extracting the area based on the share height H, the remaining aluminum portion b after the share test can be accurately extracted. At this time, by excluding the range of the shear height H + the margin α or more, the wire material adhered to the chip surface during the wire bonding process or the aluminum wire 20 is sheared during the shear test, It is possible to accurately exclude a portion that is not originally joined, such as a portion that has been extended. The margin α is appropriately selected in order to accurately extract the remaining aluminum portion b in consideration of the parallelism between the moving direction of the tool 36 and the chip surface 5A at the shear test and the sheared surface roughness. It is a value set to. The share height H is desirably a height that exceeds the measurement error of the share tester unit 32 from the viewpoint of measurement accuracy. For example, if the measurement error is ± 2 μm, the share height H is desirably 4 μm or more.

高低分布画像50においては、アルミ残存部bを正確に抽出できるものの、例えば図7(A)に示すように、ベース露出部dがベースaと近接し、或いは繋がっている場合には、その近接或いは繋がっている箇所Xで、ベース露出部dとベースaとの境界が不鮮明となる。このため、高低分布画像50に対しアルミ残存部b及びベース露出部dのそれぞれの輪郭を抽出し、それぞれの輪郭に基づいて接合痕23の外形cを特定しようとすると、ベース露出部dとベースaが近接或いは繋がっている箇所Xでの外形cが不明となり、当該接合痕23の外形cを正確には特定できない。
一方、前掲図6に示すように、実体画像43においては、二値化処理を施すことで、ベース露出部dとベースaが近接或いは繋がっている箇所Xを含め外形cが全体的に抽出できる。そこで、本実施形態では、外形cについては、コンピュータ30が実体画像43を二値化処理し、その二値化処理後の画像に基づいて、接合痕23の外形cを特定する。
In the height distribution image 50, the aluminum remaining portion b can be accurately extracted. However, when the base exposed portion d is close to or connected to the base a as shown in FIG. Alternatively, the boundary between the base exposed portion d and the base a becomes unclear at the connected portion X. Therefore, when the contours of the remaining aluminum portion b and the base exposed portion d are extracted from the height distribution image 50 and the outer shape c of the joint mark 23 is specified based on the respective contours, the base exposed portion d and the base exposed portion 50 The outer shape c at the location X where a is close or connected is unclear, and the outer shape c of the joint mark 23 cannot be accurately specified.
On the other hand, as shown in FIG. 6, in the entity image 43, by performing binarization processing, the outer shape c including the portion X where the base exposed portion d and the base a are close or connected can be extracted as a whole. . Therefore, in the present embodiment, for the outer shape c, the computer 30 binarizes the entity image 43 and specifies the outer shape c of the joint mark 23 based on the binarized image.

以上のような処理により、図7(B)に示すように、接合痕23におけるアルミ残存部bと外形cが正確に特定されることとなる。そして、コンピュータ30は、これらアルミ残存部bと外形cに基づいて、外形cで囲まれた面積である外形面積と、アルミ残存部bとして抽出されたエリアの面積できるアルミ残存面積(ワイヤ残存面積)とを算出する。この算出には、例えば実体画像43或いは高低分布画像50において、外形c及びアルミ残存部bが占める画素数に基づいて算出するなど任意の算出手法が用いられる。
なお、実体画像43のみから外形cを特定するのはなく、実体画像43及び高低分布画像50の両方のデータに基づいて、より正確に求めても良い。例えば、実体画像43から求めた外形cを、高低分布画像50から抽出されるアルミ残存部b及びベース露出部dのそれぞれの輪郭と整合性が図れるように、これら輪郭に基づいて補正することで、外形cの精度を高めることができる。
Through the processing as described above, as shown in FIG. 7B, the aluminum remaining portion b and the outer shape c in the bonding mark 23 are accurately specified. Then, based on the aluminum remaining portion b and the outer shape c, the computer 30 determines the outer area that is the area surrounded by the outer shape c and the aluminum remaining area (wire remaining area) that can be the area extracted as the aluminum remaining portion b. ) Is calculated. For this calculation, for example, an arbitrary calculation method such as calculation based on the number of pixels occupied by the outer shape c and the remaining aluminum portion b in the entity image 43 or the height distribution image 50 is used.
Note that the outline c is not specified only from the entity image 43, but may be obtained more accurately based on data of both the entity image 43 and the height distribution image 50. For example, the outer shape c obtained from the entity image 43 is corrected based on these contours so as to be consistent with the contours of the remaining aluminum portion b and the base exposed portion d extracted from the height distribution image 50. The accuracy of the outer shape c can be increased.

前掲図3に戻り、コンピュータ30は、ステップS2で求めたアルミ残存面積を外形面積で除すことで、接合痕23に占めるアルミ残存面積の割合であるワイヤ残存率を求める(ステップS3)。そして、コンピュータ30は、このワイヤ残存率と、ステップS1で測定したシェア強度とを例えばモニタ装置に表示する。ワイヤボンド接合部22の接合状態を統合的に評価可能とする(ステップS4)。なお、この評価は、コンピュータ30が適宜に行い評価結果を出力するようにしても良い。   Returning to FIG. 3, the computer 30 divides the aluminum remaining area obtained in step S2 by the outer shape area, thereby obtaining the wire remaining ratio, which is the ratio of the aluminum remaining area to the joint mark 23 (step S3). Then, the computer 30 displays the wire remaining rate and the shear strength measured in step S1 on, for example, a monitor device. The bonding state of the wire bond bonding part 22 can be evaluated in an integrated manner (step S4). This evaluation may be performed appropriately by the computer 30 and the evaluation result may be output.

ここで、上述の通り、シェア強度が同等な場合でも、ワイヤボンド接合部22の接合状態が異なることがある。例えば、ワイヤ残存率と、接合面Qにおける未接合部Rの位置や有無の関係によっては、ワイヤボンド接合部22の接合状態が異なるにもかかわらず同等のシェア強度となる場合がある。したがって、シェア強度だけでは、接合状態を十分には判断できない。発明者らは、接合状態とパワーサイクル耐量との関係を調査したところ、パワーサイクル耐量はアルミワイヤ20の残存面積と相関があることが判明した。そして発明者らは、そのQ相関値をもとに、パワーサイクル耐量を満足するワイヤ残存率の判定値を設定することで、高いパワーサイクル耐量を確保できるとの知見を得た。   Here, as described above, even when the shear strength is the same, the bonding state of the wire bond bonding portion 22 may be different. For example, depending on the relationship between the wire remaining rate and the position and presence of the unbonded portion R on the bonding surface Q, there may be an equivalent shear strength despite the bonding state of the wire bond bonding portion 22 being different. Therefore, the joining state cannot be judged sufficiently only by the shear strength. The inventors investigated the relationship between the bonding state and the power cycle resistance, and found that the power cycle resistance correlated with the remaining area of the aluminum wire 20. The inventors obtained knowledge that a high power cycle resistance can be ensured by setting a determination value of the wire remaining rate that satisfies the power cycle resistance based on the Q correlation value.

そこで、コンピュータ30は、ステップS4において、このワイヤ残存率と、シェア強度とを例えばモニタ装置に表示するに際し、ワイヤ残存率に基づくパワーサイクル耐量の良否判定を出力する。これにより、シェア強度、ワイヤ残存率、及びパワーサイクル耐量に基づいて、パワー半導体装置3として用いることを前提に、ワイヤボンド接合部22の接合状態を総合的に評価することができる。   Therefore, when displaying the wire remaining rate and the share strength on, for example, a monitor device in step S4, the computer 30 outputs a power cycle withstand capability determination based on the wire remaining rate. As a result, based on the shear strength, the wire remaining rate, and the power cycle tolerance, it is possible to comprehensively evaluate the bonding state of the wire bond bonding portion 22 on the assumption that the power semiconductor device 3 is used.

ところで、本実施形態の接合部検査装置1においては、シェアテスト後の接合痕23の外形cとアルミ残存部bとに基づいて接合状態が評価されるため、シェアテストのせん断時に接合痕23が変形すると、接合状態の評価精度が低下してしまう。
具体的には、シェアスピードが遅いと、図8に示すように、アルミワイヤ20の母材に伸びが発生し、当該伸びにより未接合部R(ベース露出部d)の状態が観察し難くなる。すなわち、シェアテスト時のシェアスピードは速いほど好ましく、本実施形態では、シェアスピードを700μm/秒としている。
By the way, in the joining part inspection apparatus 1 of this embodiment, since a joining state is evaluated based on the external shape c and the aluminum remaining part b of the joining trace 23 after a shear test, the joining trace 23 is formed when the shear test is sheared. If it is deformed, the accuracy of evaluation of the bonding state is lowered.
Specifically, when the shear speed is slow, as shown in FIG. 8, the base material of the aluminum wire 20 is stretched, and it is difficult to observe the state of the unjoined portion R (base exposed portion d) due to the stretch. . That is, the faster the share speed during the share test, the better. In this embodiment, the share speed is set to 700 μm / second.

また、シェアテストにおいては、ツール36がワイヤボンド接合部22をせん断し始めると、図9に示すように、シェア強度(せん断荷重)の検出値は、せん断開始に伴い順次増加し、ピークに達し後に、速やかに低下する。このとき、シェア強度のピーク値検出時点をワイヤボンド接合部22が破壊された点と認識して、シェアテストを終了すると、ワイヤボンド接合部22からアルミワイヤ20がはがれ切れずに残ってしまっている事があり、接合痕23からワイヤ残存率を正確に求めることができなくなる。   In the shear test, when the tool 36 begins to shear the wire bond joint 22, as shown in FIG. 9, the detected value of the shear strength (shear load) sequentially increases with the start of shearing and reaches a peak. Later, it drops quickly. At this time, when the shear strength peak value detection time point is recognized as the point where the wire bond joint portion 22 is broken and the shear test is completed, the aluminum wire 20 remains without being peeled off from the wire bond joint portion 22. In some cases, the wire remaining rate cannot be accurately obtained from the bonding mark 23.

シェア強度の検出値がピーク値から10%、30%及び90%低下するまでにツール36が移動する距離の測計結果を図10に示す。この図に示すように、シェア強度の検出値がピーク値から10%、30%及び90%と順次低下するごとに、ツール36の移動距離は大きくなる。したがって、ワイヤボンド接合部22からアルミワイヤ20が確実にはがれ切った時点で測定を終了させる場合には、シェア強度の検出値がピーク値から例えば90%まで下がった時点を、ワイヤボンド接合部22が破壊された認識タイミング(破壊認識点)としてコンピュータ30に設定し、この破壊認識点でツール36によるシェアを停止して測定を終了すれば良いことになる。
しかしながら、破壊認識点をピーク値から90%低下時に設定するなどしてツール36の移動距離を大きくすると、ワイヤボンド接合部22のせん断時の応力によってツール36に生じていた反りが開放されたときの反動によってシェアされた箇所が測定範囲内に生じてしまい、接合痕23の外形cが変形することから、接合痕23の外形面積が正確に求められなくなる。すなわち、シェアテスト時の測定終了点(ツール36によるシェアを停止するタイミング)は、シェア強度のピーク値が検出された後であって、アルミワイヤ20がワイヤボンド接合部22から確実にはがれ、なおかつ、ツール36の反りの反動によるシェアが生じない範囲でツール36が移動したタイミングにする必要がある。本実施形態では、破壊認識点をピーク値から10%低下時に設定するとアルミワイヤ20が残存し、90%低下時に設定すると反りの反動によるシェアが生じるとの知見が実験等により得られているため、その間である30%低下時を破壊認識点に設定し、接合痕23の外形cが正確に求められるようにしている。
FIG. 10 shows the measurement results of the distance that the tool 36 moves until the detected value of the shear strength decreases by 10%, 30%, and 90% from the peak value. As shown in this figure, the moving distance of the tool 36 increases every time the detected value of the shear strength decreases sequentially from the peak value to 10%, 30%, and 90%. Therefore, in the case where the measurement is terminated when the aluminum wire 20 is surely peeled off from the wire bond joint portion 22, the time when the detected value of the shear strength is lowered from the peak value to 90%, for example, is determined. Is set in the computer 30 as the recognition timing (destruction recognition point) at which the damage is destroyed, and the share by the tool 36 is stopped at the destruction recognition point to end the measurement.
However, if the movement distance of the tool 36 is increased by setting the fracture recognition point when it is 90% lower than the peak value, the warp generated in the tool 36 due to the stress at the time of shearing of the wire bond joint 22 is released. As a result of this reaction, a shared location is generated within the measurement range, and the outer shape c of the bonding mark 23 is deformed, so that the outer area of the bonding mark 23 cannot be obtained accurately. That is, the measurement end point at the shear test (timing when the shearing by the tool 36 is stopped) is after the peak value of the shear strength is detected, and the aluminum wire 20 is surely peeled off from the wire bond joint portion 22. It is necessary to make the timing at which the tool 36 moves within a range where no share is generated due to the reaction of the warp of the tool 36. In the present embodiment, since the knowledge that the aluminum wire 20 remains when the fracture recognition point is set when the peak value is reduced by 10% from the peak value and the share due to the reaction of the warp is generated when the fracture recognition point is set when the value is reduced by 90% is obtained by experiments. Then, the 30% drop during that time is set as the fracture recognition point so that the outer shape c of the joining mark 23 can be obtained accurately.

このように、本実施形態によれば、シェアテスト後の接合痕23の実体画像43を取得するとともに、接合痕23を含む面内の高低を測定し、接合痕23を含む面内の高さ分布とシェア高Hさとに基づいて接合痕23のアルミ残存部(ワイヤ残存部)bを特定する構成とした。これにより、実体画像43上でチップ表面5Aたるベースaとワイヤボンド接合部22のコントラストがつきにくい場合でも、アルミ残存部bを正確に特定することができる。
これに加え、本実施形態によれば、実体画像43に基づいて接合痕23の外形cを特定するため、ベース露出部dがベースaに近接し、或いは繋がっている場合であっても、接合痕23の境界を正確に判定して外形cを特定できる。
これにより、ワイヤ残存率を正確に数値化することができ、シェアテスト結果と併せて、ワイヤボンド接合部の接合状態をより正確に把握できるようになる。
As described above, according to the present embodiment, the substantial image 43 of the joint trace 23 after the shear test is acquired, the height in the plane including the joint trace 23 is measured, and the height in the plane including the joint trace 23 is measured. Based on the distribution and the shear height H, the aluminum remaining portion (wire remaining portion) b of the bonding mark 23 is specified. Thereby, even when the contrast between the base a which is the chip surface 5 </ b> A and the wire bond bonding portion 22 is difficult to attach on the actual image 43, the remaining aluminum portion b can be accurately specified.
In addition to this, according to the present embodiment, since the outer shape c of the bonding mark 23 is specified based on the entity image 43, the bonding is performed even when the base exposed portion d is close to or connected to the base a. The outline c can be specified by accurately determining the boundary of the mark 23.
Thereby, a wire residual rate can be quantified correctly and it becomes possible to grasp | ascertain the joining state of a wire bond junction part more correctly now together with a shear test result.

また本実施形態によれば、高低分布画像50において、接合痕23を含む面内の高さが、シェア高さH±所定のマージンαの範囲に入るエリアをアルミ残存部bとして特定する構成とした。これにより、チップ表面5Aに付着したアルミなどのワイヤ材や、ワイヤボンド接合部22がせん断時に伸びた箇所等の、本来接合していないがワイヤボンド接合部22と類似した部分であって実体画像43の二値化処理では識別できない部分を正確に除いてアルミ残存部bを特定することができる。   Further, according to the present embodiment, in the height distribution image 50, the area in which the in-plane height including the joint mark 23 falls within the range of the share height H ± the predetermined margin α is specified as the aluminum remaining portion b. did. As a result, a wire material such as aluminum attached to the chip surface 5A, a portion where the wire bond joint portion 22 is stretched at the time of shearing, etc. are portions that are not originally joined but are similar to the wire bond joint portion 22 and are substantial images. The aluminum remaining portion b can be specified by accurately excluding the portion that cannot be identified by the binarization processing of 43.

また本実施形態によれば、シェアテスト時には、シェアスピードをワイヤボンド接合部22に伸びを発生させない速度以上に設定し、かつ、シェア強度のピーク値が検出されてからシェアテスタユニット32が備えるツール36を、接合痕23にワイヤ部材を残さない距離以上であって、ワイヤボンド接合部22のせん断時の応力によりツール36に生じた反りが解放したときの反動によって接合痕23に変形を生じさせない範囲の距離だけ移動させたときに、当該ツール36の移動を停止させる構成とした。
これにより、シェアテスト後の接合痕23に対する不要な変形が防止され、ワイヤ残存率を正確に数値化できるため、接合状態をより正確に判定できる。
Further, according to the present embodiment, at the time of the shear test, the shear tester unit 32 includes a tool that is set after the shear speed is set to a speed that does not cause the wire bond joint portion 22 to be stretched and the peak value of the shear strength is detected. 36 is equal to or longer than a distance that does not leave a wire member in the bonding mark 23, and the bonding mark 23 is not deformed by a recoil when the warp generated in the tool 36 is released by the stress at the time of shearing of the wire bond bonding portion 22. The movement of the tool 36 is stopped when it is moved by a distance in the range.
Thereby, unnecessary deformation of the bonding mark 23 after the shear test is prevented, and the wire remaining rate can be accurately quantified, so that the bonding state can be determined more accurately.

なお、上述した実施形態は、あくまでも本発明の一態様を示すものであって、本発明の趣旨を逸脱しない範囲で任意に変形及び応用が可能である。   The above-described embodiment is merely an aspect of the present invention, and can be arbitrarily modified and applied without departing from the spirit of the present invention.

例えば、上述した実施形態では、接合痕23を含む面内の高低分布の測定に、3D計測レーザ顕微鏡を用いたが、これに限らず、例えばレーザ変位計等の高さ方向の測長ができる任意の測長装置を用いることができる。また、レーザによる非接触式の測長に限らず、測定時にチップ表面5Aにキズ等がつくことがなければ接触式であっても良い。   For example, in the above-described embodiment, the 3D measurement laser microscope is used for the measurement of the height distribution in the plane including the bonding marks 23. However, the measurement is not limited to this, and for example, length measurement in a height direction such as a laser displacement meter can be performed. Any length measuring device can be used. Further, the measurement is not limited to the non-contact type measurement by the laser, and the contact type may be used as long as the chip surface 5A is not scratched at the time of measurement.

また、上述した実施形態では、導電ワイヤとしてアルミワイヤ20を例示したが、導電ワイヤの材質はアルミニウムに限らず、金、銅などでも良い。
また上述した実施形態では、接合部検査装置1が半導体チップ5のチップ表面5Aとアルミワイヤ20のワイヤボンド接合部22を検査対象としたが、これに限らず、周辺電極(外部端子17)とアルミワイヤ20とのワイヤボンド接合部を検査対象としても良い。さらに、半導体チップ5や電極たる外部端子17に限らず、また、パワー半導体装置3以外の任意の装置が備える電子部品のワイヤボンド接合部の接合状態評価に本発明を適用することができる。
In the above-described embodiment, the aluminum wire 20 is exemplified as the conductive wire. However, the material of the conductive wire is not limited to aluminum but may be gold, copper, or the like.
Further, in the above-described embodiment, the bonding portion inspection apparatus 1 sets the chip surface 5A of the semiconductor chip 5 and the wire bond bonding portion 22 of the aluminum wire 20 to be inspected, but the present invention is not limited thereto, and the peripheral electrode (external terminal 17) and A wire bond joint with the aluminum wire 20 may be an inspection target. Furthermore, the present invention can be applied not only to the semiconductor chip 5 and the external terminal 17 that is an electrode, but also to the evaluation of the bonding state of the wire bond bonding portion of an electronic component provided in any device other than the power semiconductor device 3.

1 接合部検査装置
5A チップ表面
20 アルミワイヤ
22 ワイヤボンド接合部
23 接合痕
30 コンピュータ(解析手段)
32 シェアテスタユニット(シェアテスタ)
34 ワイヤ残存率測定ユニット
36 ツール
43 実体画像(撮像画像)
44 マイクロスコープ(撮像手段)
46 走査ヘッド
50 高低分布画像
52 分布データ
H シェア高
M シェア方向
Q 接合面
R 未接合部
b アルミ残存部(ワイヤ残存部)
c 外形
d ベース露出部
DESCRIPTION OF SYMBOLS 1 Junction inspection apparatus 5A Chip surface 20 Aluminum wire 22 Wire bond junction 23 Bond trace 30 Computer (analysis means)
32 Share tester unit (Share tester)
34 Wire remaining rate measurement unit 36 Tool 43 Real image (captured image)
44 Microscope (Imaging means)
46 Scanning head 50 Height distribution image 52 Distribution data H Shear height M Shear direction Q Joint surface R Unjoined part b Aluminum remaining part (wire remaining part)
c Outline d Base exposed part

Claims (4)

シェアテスタでワイヤボンド接合部を一定のシェア高さでせん断しつつ、シェア強度を検出してシェアテストをするステップと、
前記シェアテスト後の接合痕の撮像画像を取得するとともに、前記接合痕を含む面内の高低を測定するステップと、
前記接合痕を含む面内の高さ分布と前記シェア高さに基づいて前記接合痕のワイヤ残存部を特定するとともに、前記撮像画像に基づいて前記接合痕の外形を特定するステップと、を備え、
前記ワイヤ残存部のワイヤ残存面積及び前記外形の外形面積からワイヤ残存率を算出する
ことを特徴とする接合部検査方法。
Shearing wire bond joints at a certain shear height with a shear tester, detecting the shear strength and performing a shear test,
Acquiring a captured image of the joint trace after the shear test, measuring the height in the plane including the joint trace,
Specifying a wire remaining portion of the bonding trace based on an in-plane height distribution including the bonding trace and the shear height, and specifying an outer shape of the bonding trace based on the captured image. ,
A wire remaining rate is calculated from the wire remaining area of the wire remaining portion and the outer shape area of the outer shape.
前記接合痕を含む面内の高さが、前記シェア高さを基準にした所定の高さ範囲に入るエリアを前記ワイヤ残存部として特定することを特徴とする請求項1に記載の接合部検査方法。   2. The joint inspection according to claim 1, wherein an area in which a height in a plane including the joint trace falls within a predetermined height range based on the shear height is specified as the remaining wire portion. Method. 前記シェアテスト時には、シェアスピードを前記ワイヤボンド接合部に伸びを発生させない速度以上に設定し、かつ、
前記シェア強度のピーク値が検出されてから前記シェアテスタが備えるツールを、前記接合痕にワイヤ部材を残さない距離以上であって、前記ワイヤボンド接合部のせん断時の応力により前記ツールに生じた反りが解放したときの反動によって前記接合痕に変形を生じさせない範囲の距離だけ移動させたときに前記ツールの移動を停止させる
ことを特徴とする請求項1又は2に記載の接合部検査方法。
At the time of the shear test, the shear speed is set to a speed that does not cause elongation in the wire bond joint, and
The tool provided in the shear tester after the peak value of the shear strength is detected is longer than the distance that does not leave a wire member in the joint trace, and is generated in the tool due to the stress at the time of shearing of the wire bond joint portion. The joint inspection method according to claim 1, wherein the movement of the tool is stopped when the joint is moved by a distance within a range that does not cause deformation of the joint trace due to a reaction when the warp is released.
ワイヤボンド接合部を一定のシェア高さでせん断しつつ、シェア強度を検出してシェアテストをするシェアテスタと、
前記シェアテスト後の接合痕の撮像画像を取得する撮像手段と、
前記接合痕を含む面内の高低を測定する高さ測定手段と、
前記接合痕を含む面内の高さ分布と前記シェア高さに基づいて前記接合痕のワイヤ残存部を特定するとともに、前記撮像画像に基づいて前記接合痕の外形を特定し、前記ワイヤ残存部のワイヤ残存面積及び前記外形の外形面積からワイヤ残存率を算出する解析手段と、
を備えることを特徴とする接合部検査装置。
A shear tester that detects the shear strength and performs a shear test while shearing the wire bond joint at a certain shear height,
An imaging means for acquiring a captured image of the joint mark after the share test;
A height measuring means for measuring an in-plane height including the joint mark;
The wire remaining part of the bonding mark is specified based on the height distribution in the plane including the bonding mark and the shear height, the outer shape of the bonding mark is specified based on the captured image, and the wire remaining part Analyzing means for calculating the wire remaining rate from the wire remaining area and the outer area of the outer shape,
A joint inspection apparatus comprising:
JP2010076693A 2010-03-30 2010-03-30 Junction inspection method and junction inspection device Pending JP2011210921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010076693A JP2011210921A (en) 2010-03-30 2010-03-30 Junction inspection method and junction inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010076693A JP2011210921A (en) 2010-03-30 2010-03-30 Junction inspection method and junction inspection device

Publications (1)

Publication Number Publication Date
JP2011210921A true JP2011210921A (en) 2011-10-20

Family

ID=44941673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010076693A Pending JP2011210921A (en) 2010-03-30 2010-03-30 Junction inspection method and junction inspection device

Country Status (1)

Country Link
JP (1) JP2011210921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102637613A (en) * 2012-05-09 2012-08-15 四川立泰电子有限公司 Realization method for lead bonding thick aluminum wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102637613A (en) * 2012-05-09 2012-08-15 四川立泰电子有限公司 Realization method for lead bonding thick aluminum wire

Similar Documents

Publication Publication Date Title
US8714015B2 (en) Joint quality inspection and joint quality inspection method
Schiffmacher et al. Thermomechanical deformations of power modules with sintered metal buffer layers under consideration of the operating time and conditions
Kassamakov et al. Scanning white light interferometry in quality control of single-point tape automated bonding
JP2017129395A (en) Semiconductor device inspection apparatus and semiconductor device inspection method
US20200395333A1 (en) Wedge tool, bonding device, and bonding inspection method
JP6432126B2 (en) Semiconductor module inspection method and semiconductor system
JP2011210921A (en) Junction inspection method and junction inspection device
JP5420461B2 (en) Temperature sensor joint inspection apparatus and temperature sensor joint inspection method
JP2011222717A (en) Semiconductor manufacturing device, and method for manufacturing semiconductor device
Arjmand et al. Reliability of thick Al wire: A study of the effects of wire bonding parameters on thermal cycling degradation rate using non-destructive methods
Schiffmacher et al. In situ degradation monitoring methods during lifetime testing of power electronic modules
KR102462567B1 (en) Method for measuring the heights of wire interconnections
JPH05172772A (en) Inspecting method for bonded part of electronic component
Liedtke et al. Thermomechanical reliability investigation of insulated gate bipolar transistor module
Jang et al. Developed non-destructive verification methods for accelerated temperature cycling of power MOSFETs
Hermann et al. Crack growth prediction in high-power LEDs from TTA, SAM and simulated data
TW200409914A (en) Method and device for the detection of defective printed circuit board blanks
JP2017084958A (en) Evaluation device and evaluation method for semiconductor device
JP2013032965A (en) Test equipment of semiconductor device and test method of semiconductor device
JP6652337B2 (en) Method of inspecting mounting state of semiconductor device and semiconductor device mounted on mounting substrate
KR100291780B1 (en) Bond wire inspection device and its inspection method
Zhou et al. Study on detection method of small-size solder ball defects
US8657180B2 (en) Bond pad assessment for wire bonding
Yang et al. Reliability of solder joints assessed by acoustic imaging during accelerated thermal cycling
US10658328B2 (en) Detection of foreign particles during wire bonding