JP2011177231A - Coiled structure used for medical treatment and method for manufacturing the same; and medical endoscope, medical treatment instrument and ultrasonic or optical interferometry diagnostic and medical treatment catheters using coiled structure for medical treatment - Google Patents

Coiled structure used for medical treatment and method for manufacturing the same; and medical endoscope, medical treatment instrument and ultrasonic or optical interferometry diagnostic and medical treatment catheters using coiled structure for medical treatment Download PDF

Info

Publication number
JP2011177231A
JP2011177231A JP2010042380A JP2010042380A JP2011177231A JP 2011177231 A JP2011177231 A JP 2011177231A JP 2010042380 A JP2010042380 A JP 2010042380A JP 2010042380 A JP2010042380 A JP 2010042380A JP 2011177231 A JP2011177231 A JP 2011177231A
Authority
JP
Japan
Prior art keywords
medical
coil
wire
coil body
coil structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010042380A
Other languages
Japanese (ja)
Other versions
JP5436266B2 (en
Inventor
Tomihisa Kato
富久 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PatentStra Co Ltd
Original Assignee
PatentStra Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PatentStra Co Ltd filed Critical PatentStra Co Ltd
Priority to JP2010042380A priority Critical patent/JP5436266B2/en
Publication of JP2011177231A publication Critical patent/JP2011177231A/en
Application granted granted Critical
Publication of JP5436266B2 publication Critical patent/JP5436266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To disclose a coiled structure for medical treatment, medical treatment instrument, etc. that utilize a coil connection method as the technical task of not deteriorating by thermal effects but improving the mechanical strength properties of metal wires of the coil or coil structure used for medical treatment, when a connection is formed on the coil body in part using a connector attached to the coil body or when a connection by the connector is formed in part between the coiled structure for medical treatment and a connection cap. <P>SOLUTION: The metal wire of coil structure for medical treatment undergoes a strong wire drawing processing of an austenite stainless steel wire and then a winding or twisting processing for the manufacture of a connector material. With attention paid to the temperature and tensile yield strength properties of the high-treated austenite-based stainless steel wire, a connector material is used to form this connector, where its fusion temperature agrees with the temperature to improve its tensile yield strength. Thus the tensile yield strength of metal wire of the coil structure for medical treatment is more improved at the connector. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、コイル体に接合部材を用いて部分的に接合した接合部をもつ医療用コイル構造体、並びに前記コイル体、若しくは前記医療用コイル構造体の、先端部、又は手元部に接合部材を用いて部分的に接合した接合部での機械的強度特性を向上させた医療用コイル構造体、及びそれを用いて成る医療用処置具等に関する。   The present invention relates to a medical coil structure having a joint part that is partially joined to a coil body using a joining member, and a joining member at a tip part or a hand part of the coil body or the medical coil structure. The present invention relates to a medical coil structure in which mechanical strength characteristics are improved at a joint part that is partially joined using, and a medical treatment instrument using the medical coil structure.

体内へ挿入する例えば医療用処置具等の先端部、又は手元操作部は、操作用ロープを貫挿させたコイル体を備え、手元操作を先端部へ伝達させる為、接続口金とコイル体との接合部の機械的強度特性を考慮して、病変部治療に際して人体への安全確保を満たさなければならず、この為種々の提案がなされている。   For example, a distal end portion of a medical treatment instrument or the like, which is inserted into the body, or a hand operation portion includes a coil body through which an operation rope is inserted, and in order to transmit the hand operation to the tip portion, Considering the mechanical strength characteristics of the joint, it is necessary to satisfy the safety of the human body when treating the lesion, and various proposals have been made for this purpose.

特許文献1には、密着コイルを用いて良好な回転伝達性能を得ることを目的とした医療用処置具の記載がある。
しかし、コイル体の素線同士は「溶接」であって細線のワイヤは溶け、溶接前のコイル体の機械的強度を維持することはできない。
Patent Document 1 describes a medical treatment instrument aimed at obtaining good rotation transmission performance using a contact coil.
However, the strands of the coil body are “welded” and the thin wire melts, and the mechanical strength of the coil body before welding cannot be maintained.

特許文献2には、コイル体と接続口金とを「ロウ接」して固定強度を向上することを目的とした内視鏡の記載がある。
しかし、一般的に、例えばステンレス鋼のろう付けには融点が895℃から1030℃の金ろう(JISZ3266)等が用いられ、かかる場合にコイル体を構成する金属素線は溶けて溶接され、又かかる特許文献にはろう材の開示はなく、そして、ろう材の溶融温度とコイル体との機械的強度特性との相関性については何ら開示はなく、さらに上記いずれの特許文献も接合技術に関して「接合部材を単なる固着手段」として用いる考え方である。
Patent Document 2 describes an endoscope for the purpose of improving the fixing strength by “brazing” the coil body and the connection base.
However, in general, for example, a brazing metal (JIS Z3266) having a melting point of 895 ° C. to 1030 ° C. is used for brazing stainless steel, and in such a case, the metal wire constituting the coil body is melted and welded, or There is no disclosure of brazing material in such patent documents, and there is no disclosure about the correlation between the melting temperature of the brazing material and the mechanical strength characteristics of the coil body. The idea is to use the joining member as a mere fixing means.

特許文献3には、中空撚線コイル体の回転伝達性を向上させる捻回加工の記載があるが、特に静荷重ウエイトと回転数との回転伝達性能との関係の解析が不十分であり、かつ接合部材の溶融熱を利用してコイル体に用いる金属素線の引張破断強度を向上させる本発明の基本技術思想については何ら明示されていない。   In Patent Document 3, there is a description of the twisting process that improves the rotation transmission performance of the hollow stranded coil body, but in particular, the analysis of the relationship between the rotation load performance of the static load weight and the rotation speed is insufficient, In addition, there is no description of the basic technical idea of the present invention that improves the tensile breaking strength of the metal wire used for the coil body by utilizing the heat of fusion of the joining member.

特開2010−5430号公報JP 2010-5430 A 特開2009−153714号公報JP 2009-153714 A 特許第4098613号公報Japanese Patent No. 40986613

従来、複数の金属素線を用いて巻回成形したコイル体の端部は、複数本から成る金属素線がバラバラになるのを防ぐ為、バラケ防止として溶接等しているのが一般的である。又、例えば医療用鉗子等の医療用処置具等において操作用ロープを貫挿したコイル体に、ステンレス鋼線を用いてコイル体とし、コイル体の端部に接続された接続口金とを接合する際、接合部材であるろう材等は単なる固着手段としてのみの技術思想しか存在せず、ステンレス鋼線の加工度の高い強加工の伸線加工した金属素線を巻回成形、又は撚合構成してコイル体とし、この強加工した金属素線を用いたコイル体の熱影響による機械的強度特性を考慮した、ろう付けやはんだ付けの際の接合部材である共晶合金を用いた接合に関する技術思想は存在していない。
又、後述する本発明の医療用コイル構造体を駆動シャフトとして用いた診断医療用カテーテルにおいても前記同様である。
この発明の目的は、コイル体の金属素線にオーステナイト系ステンレス鋼線を用いて強加工の伸線加工を行い、この強加工した金属素線への熱影響による引張破断強度特性向上効果を利用して、前記接合部材を単に固着手段として用いるのみではなく、コイル体の金属素線の引張破断強度を向上させながら、かつ接合強度を向上させる新たな接合に関する技術思想を開示することにより、術者が安全に操作できる医療用コイル構造体、及びこれを用いて成る医療用処置具等、並びに診断医療用カテーテルを提供することにある。
Conventionally, an end portion of a coil body formed by winding using a plurality of metal strands is generally welded or the like to prevent a plurality of metal strands from breaking apart. is there. Further, for example, in a medical treatment instrument such as a medical forceps, a coil body inserted with an operation rope is made into a coil body using a stainless steel wire, and a connection base connected to an end of the coil body is joined. At this time, the brazing material, which is a joining member, has only a technical idea as a simple fixing means, and is formed by winding or twisting a metal wire that has been subjected to high-strength drawing with a high degree of processing of stainless steel wire. In connection with joining using eutectic alloy, which is a joining member at the time of brazing and soldering, considering the mechanical strength characteristics due to the thermal effect of the coil body using this strongly processed metal element wire There is no technical idea.
The same applies to a diagnostic medical catheter using a medical coil structure of the present invention described later as a drive shaft.
The object of the present invention is to use austenitic stainless steel wire as a metal wire of the coil body and perform a strong wire drawing process, and use the effect of improving the tensile fracture strength characteristics due to the heat effect on the strongly processed metal wire Thus, by not only using the joining member as a fixing means, but also by disclosing a technical idea related to a new joining that improves the joining strength while improving the tensile breaking strength of the metal wire of the coil body. It is an object of the present invention to provide a medical coil structure that can be safely operated by a person, a medical treatment instrument using the medical coil structure, and a diagnostic medical catheter.

請求項1記載の発明は、素線直径が0.014mmから0.300mmの金属素線を用いてコイル体に成形した後、接合部材を用いて部分的に接合した接合部を設けた医療用コイル構造体において、
前記コイル体の金属素線は、オーステナイト系ステンレス鋼線を用いて固溶化処理した後に総減面率が80%から99.5%の伸線加工を行い、引張破断強度を200kgf/mm2 以上450kgf/mm2 以下とし、
前記接合部材は、180℃から495℃の溶融温度をもつ共晶合金を用い、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには、180℃から525℃の溶融温度をもつ共晶合金を用い、
前記部分的に接合した接合部が、前記コイル体の少なくとも一方の端部の長手方向に前記コイル体外径の1/20倍から30倍の幅で隣接線同士を接合したことを特徴とする医療用コイル構造体である。
この構成により、接合部材の溶融熱を利用して接合部でのコイル体の金属素線の引張破断強度を向上させた高度の耐圧縮性等の機械的強度特性を備えた医療用コイル構造体を得ることができる。
According to the first aspect of the present invention, the medical device is provided with a joint portion that is formed into a coil body using a metal wire having a wire diameter of 0.014 mm to 0.300 mm and then partially joined using a joining member. In the coil structure,
The metal element wire of the coil body is subjected to a solid solution treatment using an austenitic stainless steel wire, followed by wire drawing with a total area reduction of 80% to 99.5%, and a tensile breaking strength of 200 kgf / mm 2 or more. 450 kgf / mm 2 or less,
The joining member uses a eutectic alloy having a melting temperature of 180 ° C. to 495 ° C., or an eutectic having a melting temperature of 180 ° C. to 525 ° C. when the metal strand is an austenitic stainless steel wire containing Mo. Using alloys,
The medical device characterized in that the partially joined joint joins adjacent lines with a width of 1/20 to 30 times the outer diameter of the coil body in the longitudinal direction of at least one end of the coil body. This is a coil structure for use.
With this configuration, a medical coil structure having high mechanical strength characteristics such as high compression resistance, which improves the tensile breaking strength of the metal wire of the coil body at the joint using the heat of fusion of the joining member Can be obtained.

請求項2記載の発明は、請求項1に記載の医療用コイル体構造において、
前記コイル体の金属素線は、伸線と伸線後に180℃から495℃の低温加熱処理を設けて、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには180℃から525℃の低温加熱処理を設けて、前記伸線と前記低温加熱処理を1セットとして少なくとも1セット以上繰り返した後に最終伸線を設けて、前記最終伸線までの総減面率を90%から99.5%としたことを特徴とする医療用コイル構造体である。
この構成により、接合部材の溶融熱を利用して接合部でのコイル体の金属素線の引張破断強度をより向上させた、より高度の耐圧縮性等の機械的強度特性を備えた医療用コイル構造体を得ることができる。
The invention according to claim 2 is the medical coil body structure according to claim 1,
The metal wire of the coil body is provided with a low temperature heat treatment of 180 ° C. to 495 ° C. after drawing and drawing, or when the metal wire is an austenitic stainless steel wire containing Mo, 180 ° C. to 525 ° C. A low temperature heat treatment is provided, and the wire drawing and the low temperature heat treatment are repeated as at least one set, and then the final wire drawing is provided, and the total area reduction ratio until the final wire drawing is 90% to 99.5. % Is a medical coil structure.
With this configuration, the tensile strength of the metal wire of the coil body at the joint is further improved by utilizing the heat of fusion of the joining member, and the medical device has higher mechanical strength characteristics such as higher compression resistance. A coil structure can be obtained.

請求項3記載の発明は、前記医療用コイル構造体のコイル体が、前記金属素線を2本から30本用いて芯金の外周に巻回成形した後に前記芯金を抜き取って中空状の多条線から成るコイル体、又は芯材の外周にロープを撚るようにして撚合構成してロープ体とした後に前記芯材を抜き取って中空状の多条線から成るコイル体であることを特徴とする請求項1〜2のいずれか一つに記載の医療用コイル構造体である。
この構成により、金属素線の引張破断強度を向上させたコイル体を用いて接合部材の溶融熱を利用して接合部でのコイル体の金属素線の引張破断強度、及び接合部の接合強度をさらに向上させて耐圧縮性を向上させ、又特に屈曲状態での回転操作による先端側への回転伝達性能を向上させた医療用コイル構造体を得ることができる。
According to a third aspect of the present invention, the coil body of the medical coil structure is formed by winding the core bar around the outer periphery of the core bar using 2 to 30 metal strands, and then removing the core bar into a hollow shape. A coil body consisting of a multi-filament, or a coil body consisting of a hollow multi-strand after extracting the core material after twisting the rope around the outer periphery of the core material to form a rope body It is a medical coil structure as described in any one of Claims 1-2 characterized by these.
With this configuration, using a coil body that has improved the tensile breaking strength of the metal strand, the tensile breaking strength of the metal strand of the coil body at the joint using the melting heat of the joining member, and the joining strength of the joint Can be further improved to improve the compression resistance, and in particular, a medical coil structure with improved rotation transmission performance to the distal end side by a rotating operation in a bent state can be obtained.

請求項4記載の発明は前記医療用コイル構造体のコイル体が、内層と、前記内層の外周に密着して外層を設け、前記内層の巻回方向、又は撚合方向とが異なる、前記内層と前記外層の二層構造から成るコイル体、又は中層と、前記中層の内周、及び外周に密着して内層と外層を設け、前記中層の巻回方向、又は撚合方向と前記内層及び前記外層の巻回方向、又は撚合方向とが異なる、前記内層と前記中層と前記外層の三層構造から成るコイル体であることを特徴とする請求項1〜3のいずれか一つに記載の医療用コイル構造体である。
この構成により、金属素線の引張破断強度を向上させ、かつ接合部での金属素線の引張破断強度を向上させた医療用コイル構造体を得て、特に屈曲状態での耐圧縮性、又は回転操作による先端側への回転伝達性をより向上させることができる。
According to a fourth aspect of the present invention, the coil body of the medical coil structure is provided with an inner layer and an outer layer in close contact with an outer periphery of the inner layer, and the inner layer is different in winding direction or twisting direction. And a coil body comprising a two-layer structure of the outer layer, or an intermediate layer, and an inner layer and an outer layer are provided in close contact with the inner periphery and outer periphery of the intermediate layer, the winding direction of the intermediate layer, or the twisting direction and the inner layer and the 4. The coil body comprising a three-layer structure of the inner layer, the middle layer, and the outer layer, wherein the winding direction or the twisting direction of the outer layer is different. 5. It is a medical coil structure.
With this configuration, a medical coil structure with improved tensile strength of metal strands and improved tensile strength of metal strands at the joint is obtained, particularly compression resistance in a bent state, or It is possible to further improve the transmission of rotation to the tip side by the rotation operation.

請求項5記載の発明は、前記医療用コイル構造体のコイル体が、180℃から525℃の低温加熱処理したコイル体であることを特徴とする請求項1〜4のいずれか一つに記載の医療用コイル構造体である。
この構成により、医療用コイル構造体の直線性をより向上させることができる。
The invention according to claim 5 is the coil body according to any one of claims 1 to 4, wherein the coil body of the medical coil structure is a coil body that has been subjected to a low-temperature heat treatment at 180 ° C to 525 ° C. This is a medical coil structure.
With this configuration, the linearity of the medical coil structure can be further improved.

請求項6記載の発明は、前記医療用コイル構造体のコイル体が、芯材の外周に前記金属素線を撚合構成してロープ体とし、前記ロープ体に電流を導通させて電気抵抗加熱による加熱処理可能状態に設定し、前記ロープ体の一端に前記ロープ体の引張破断力の3%から40%の引張力を加えた状態で前記ロープ体の他端を、前記ロープ体の撚合方向と同一方向へ20回/mから200回/mの捻回加工をした後に、前記捻回加工の10%から30%逆方向へ逆捻回加工を行い、かつ前記捻回加工と同時、又は捻回加工中、又は捻回加工後に180℃から525℃で電気抵抗加熱による熱処理を行い、その後前記ロープ体の芯材を抜き出して中空状の多条線から成るコイル体であることを特徴とする請求項1〜4のいずれか一つに記載の医療用コイル構造体である。
この構成により、コイル体の直線性を向上させ、かつ特に屈曲状態での回転操作による先端側への回転伝達性を飛躍的に向上させる医療用コイル構造体を得ることができる。
According to a sixth aspect of the present invention, in the coil body of the medical coil structure, the metal element wire is twisted around the outer periphery of the core material to form a rope body, and an electric current is conducted to the rope body to cause electric resistance heating. The other end of the rope body is twisted with the other end of the rope body in a state where 3% to 40% of the tensile breaking force of the rope body is applied to one end of the rope body. After twisting 20 times / m to 200 times / m in the same direction as the direction, reverse twisting is performed in the opposite direction of 10% to 30% of the twisting process, and simultaneously with the twisting process, Alternatively, the coil body is formed of a hollow multi-strand by performing heat treatment by electric resistance heating at 180 ° C. to 525 ° C. during or after the twisting process, and then extracting the core material of the rope body. The medical core according to any one of claims 1 to 4. It is a le structure.
With this configuration, it is possible to obtain a medical coil structure that improves the linearity of the coil body and dramatically improves the rotation transmission property to the distal end side by a rotation operation in a bent state.

請求項7記載の発明は、医療用コイル構造体の金属素線の伸線工程と、金属素線を複数本用いてロープ体とする撚合工程と、加熱処理可能に設定する工程と、ロープ体に引張力を加える工程と、ロープ体の撚合方向と同一方向へ所定量捻回する捻回加工工程と、ロープ体の撚合方向と逆方向へ所定量捻回する逆捻回加工工程と、電気抵抗加熱による熱処理工程と、芯抜きコイル体工程と、接合部材を用いて部分的に接合する接合工程から成ることを特徴とする医療用コイル構造体の製造方法である。
この構成により、直線性を向上させ、かつ特に屈曲状態での回転操作による先端側への回転伝達性を飛躍的に向上させた医療用コイル構造体を製造することができる。
The invention according to claim 7 is a wire drawing step of a metal strand of a medical coil structure, a twisting step using a plurality of metal strands as a rope body, a step of setting heat treatment, and a rope A step of applying a tensile force to the body, a twisting process of twisting a predetermined amount in the same direction as the twisting direction of the rope body, and a reverse twisting process of twisting a predetermined amount in the direction opposite to the twisting direction of the rope body And a heat treatment step by electric resistance heating, a cored coil body step, and a joining step of partially joining using a joining member.
With this configuration, it is possible to manufacture a medical coil structure that improves the linearity and dramatically improves the transmission of rotation to the distal end side, particularly by a rotating operation in a bent state.

請求項8記載の発明は、前記芯抜きコイル体工程において、前記芯材が、溶融温度が180℃から420℃の樹脂被膜を外周部に形成した芯材から成ることを特徴とし、請求項9記載の発明は、前記芯抜きコイル体工程の後に、溶融温度が180℃から420℃の樹脂被膜を外周部に形成した芯材を前記中空状のコイル体内へ挿入した後、前記接合部材を用いて部分的に接合する工程と、その後、前記樹脂被膜を形成した芯材を抜き出す工程から成ることを特徴とする請求項7記載の医療用コイル構造体の製造方法である。
この構成により、芯抜き作業を容易にするとともにコイル体接合部の内周面を平滑にして均等内径から成る医療用コイル構造体を製造することができる。
The invention according to claim 8 is characterized in that, in the cored coil body step, the core material is composed of a core material in which a resin film having a melting temperature of 180 ° C. to 420 ° C. is formed on the outer periphery. In the described invention, after the cored coil body step, a core material in which a resin film having a melting temperature of 180 ° C. to 420 ° C. is formed on the outer peripheral portion is inserted into the hollow coil body, and then the joining member is used. The method for manufacturing a medical coil structure according to claim 7, comprising: a step of partially joining the core material, and a step of extracting the core material on which the resin film is formed.
With this configuration, it is possible to manufacture a medical coil structure having a uniform inner diameter by facilitating the core removal operation and smoothing the inner peripheral surface of the coil body joint portion.

請求項10記載の発明は、可とう性シース体の先端側に先端処置部と、手元側に手元操作部を備え、前記可とう性シース体内に、前記先端処置部と前記手元操作部と連結した操作用ロープを貫挿したコイル体を備え、
前記先端処置部は、湾曲駒を複数個連結し、先端側の前記湾曲駒と前記操作用ロープとの先端部を連結した湾曲部から成り、前記手元操作部を操作して前記操作用ロープの操作力の伝達作用により、前記湾曲部を湾曲変形させた医療用内視鏡において、
前記可とう性シース体内のコイル体が、請求項1〜6のいずれか一つに記載の医療用コイル構造体を用いて成り、又は前記接合部材を用いて前記コイル体の少なくとも一端と接合する接続口金、又は前記湾曲駒と部分的に接合した接合部を有する請求項1〜6のいずれか一つに記載の医療用コイル構造体を用いて成ることを特徴とする医療用内視鏡である。
この構成により、医療用コイル構造体内へ貫挿した操作用ロープの操作時の反力を支えて先端部への操作力を伝達する構造体において、医療用コイル構造体が操作反力を支えきれずにコイル体に用いる金属素線、及び金属素線の接合部での引張破断強度不足に起因する耐圧縮性低下での操作力不能による術者の手技中断を防ぎ、先端処置部の湾曲部の湾曲操作を円滑にさせ、かつ迅速な手技対応ができる医療用内視鏡の提供ができる。
According to a tenth aspect of the present invention, a distal treatment section is provided on the distal end side of the flexible sheath body, and a hand operation section is provided on the hand side, and the distal treatment section and the hand operation section are connected to the flexible sheath body. With a coil body that has been inserted through the rope for operation,
The distal treatment section is composed of a bending section that connects a plurality of bending pieces and connects the distal ends of the bending piece and the operation rope on the distal end side, and operates the hand operation section to control the operation rope. In the medical endoscope in which the bending portion is bent and deformed by the transmission action of the operation force,
The coil body in the flexible sheath body is formed using the medical coil structure according to any one of claims 1 to 6, or is bonded to at least one end of the coil body using the bonding member. A medical endoscope comprising the medical coil structure according to any one of claims 1 to 6, wherein the medical coil structure has a joint part or a joint part partially joined to the bending piece. is there.
With this configuration, the medical coil structure can support the operation reaction force in the structure that transmits the operation force to the tip by supporting the reaction force when operating the operation rope inserted through the medical coil structure. The metal wire used for the coil body, and the surgeon's procedure interruption due to the inability to operate due to a decrease in compression resistance due to insufficient tensile break strength at the joint of the metal wire, the curved portion of the distal treatment section Therefore, it is possible to provide a medical endoscope that can smoothly perform the bending operation and can respond quickly to a procedure.

請求項11記載の発明は、コイル体から成る可とう性管体の先端側に先端処置部と、手元側に手元操作部を備え、前記コイル体内に貫挿した操作用ロープを前記先端処置部と手元操作部とに連結し、前記手元操作部を押し、引き、又は回転操作して前記操作用ロープの操作力の伝達作用により、前記先端処置部を動作させる医療用処置具において、
前記可とう性管体のコイル体が、請求項1〜6のいずれか一つに記載の医療用コイル構造体を用いて成り、又は前記接合部材を用いて前記コイル体の少なくとも一端と接合する接続口金と部分的に接合した接合部を有する請求項1〜6のいずれか一つに記載の医療用コイル構造体を形成して成ることを特徴とする医療用処置具である。
この構成により、医療用コイル構造体内へ貫挿した操作用ロープの操作力を支えきれずに、金属素線、及び金属素線接合部の引張破断強度不足に起因する耐圧縮性低下での操作不能状態での術者の手技の中断を防ぐことができ、先端処置部の円滑動作を図り、高度の操作性を維持しながら患部の切除、又は生体組織採取、及び止血等の迅速な手技対応ができる医療用鉗子、医療用クリップ装置等の医療用処置具の提供ができる。
According to the eleventh aspect of the present invention, a distal treatment section is provided on the distal end side of a flexible tubular body made of a coil body, and a proximal operation section is provided on the proximal side, and an operation rope inserted through the coil body is provided in the distal treatment section. In the medical treatment instrument that is connected to the hand operation unit, and pushes, pulls, or rotates the hand operation unit to transmit the operation force of the operation rope to operate the distal treatment unit,
The coil body of the flexible tubular body is formed using the medical coil structure according to any one of claims 1 to 6, or is joined to at least one end of the coil body using the joining member. A medical treatment instrument comprising the medical coil structure according to any one of claims 1 to 6 having a joint part that is partially joined to a connection base.
With this configuration, the operation force of the operating rope inserted into the medical coil structure cannot be supported, and the operation with reduced compression resistance due to insufficient tensile break strength of the metal wire and the metal wire joint It is possible to prevent the operator's procedure from being interrupted in an inoperable state, to facilitate the smooth operation of the distal treatment section, and to respond quickly to procedures such as excision of the affected area or collection of living tissue and hemostasis while maintaining high operability. Medical treatment tools such as medical forceps and medical clip devices can be provided.

請求項12記載の発明は、可とう性管体の手元側は、血管内超音波診断装置の操作制御装置と信号線で連結された駆動シャフトコネクタから成るコネクタを備え、先端側は、中空管体のカテーテルシースから成り、前記カテーテルシース内に、先端部が超音波を送受信する振動子として機能する超音波振動子を収納、保持するハウジングから成り、手元側は前記コネクタまで延びてコイル状に形成された駆動シャフトを備え、前記駆動シャフトの回転により体腔内組織画像を描出する超音波診断医療用カテーテルにおいて、
前記駆動シャフトが、請求項1〜6のいずれか一つに記載の医療用コイル構造体を用いて成り、又は前記接合部材を用いて前記ハウジング、又は前記駆動シャフトコネクタに部分的に接合した接合部を有する請求項1〜6のいずれか一つに記載の医療用コイル構造体を形成して成ることを特徴とする超音波診断医療用カテーテルで、
請求項13記載の発明は、可とう性管体の手元側は、光干渉断層診断装置の操作制御装置と信号線で連結された駆動シャフトコネクタから成るコネクタを備え、先端側は、中空管体のカテーテルシースから成り、前記カテーテルシース内に、先端部が低干渉光を照射、受光する光プローブとして機能するプリズム、又はミラーを収納、保持するハウジングから成り、手元側は前記コネクタまで延びてコイル状に形成された駆動シャフトを備え、前記駆動シャフトの回転により体腔内組織画像を描出する光干渉診断医療用カテーテルにおいて、
前記駆動シャフトが、請求項1〜6のいずれか一つに記載の医療用コイル構造体を用いて成り、又は前記接合部材を用いて前記ハウジング、又は前記駆動シャフトコネクタに部分的に接合した接合部を有する請求項1〜6のいずれか一つに記載の医療用コイル構造体を形成して成ることを特徴とする光干渉診断医療用カテーテルである。
この構成により、高強度の引張破断強度特性と、先端部へ回転伝達性の高い医療用コイル構造体から成る駆動シャフトを備えた診断医療用カテーテルを用いることにより、又接合部材を用いてハウジング等と接合して接合部を有して成る医療用コイル構造体の駆動シャフトを備えた診断医療用カテーテルを用いることにより、屈曲度合に応じた回転変動による血管断層画像ムラを解消して良好な血管断層画像を得て、動脈硬化の診断、又はバルーンカテーテル等の血管治療時の術前診断、又は術後の治療確認を術者が正確に判断できる。かかる場合に用いられる超音波診断医療用カテーテル、及び光干渉診断医療用カテーテルの提供ができる。
According to a twelfth aspect of the present invention, the proximal side of the flexible tube body includes a connector comprising a drive shaft connector connected to the operation control device of the intravascular ultrasonic diagnostic apparatus by a signal line, and the distal end side is hollow. Consists of a tubular catheter sheath. The catheter sheath has a housing that houses and holds an ultrasonic transducer that functions as a transducer for transmitting and receiving ultrasonic waves. The proximal side extends to the connector and is coiled. In an ultrasonic diagnostic medical catheter that includes a drive shaft formed on the body and renders an intracorporeal tissue image by rotation of the drive shaft.
The said drive shaft is comprised using the medical coil structure as described in any one of Claims 1-6, or the joining partially joined to the said housing or the said drive shaft connector using the said joining member. An ultrasonic diagnostic medical catheter comprising the medical coil structure according to any one of claims 1 to 6 having a portion,
According to a thirteenth aspect of the present invention, the proximal side of the flexible tube body is provided with a connector comprising a drive shaft connector connected to the operation control device of the optical coherence tomography diagnostic apparatus by a signal line, and the distal end side is a hollow tube. A catheter sheath of the body, and a distal end portion of the catheter sheath includes a prism that functions as an optical probe for receiving and receiving low-interference light, or a housing that holds and holds a mirror, and the proximal side extends to the connector. In an optical interference diagnostic medical catheter comprising a drive shaft formed in a coil shape and rendering a tissue image in a body cavity by rotation of the drive shaft,
The said drive shaft is comprised using the medical coil structure as described in any one of Claims 1-6, or the joining partially joined to the said housing or the said drive shaft connector using the said joining member. An optical interference diagnostic medical catheter comprising the medical coil structure according to any one of claims 1 to 6 having a portion.
With this configuration, by using a diagnostic medical catheter having a high strength tensile breaking strength characteristic and a drive shaft made of a medical coil structure with high rotational transmission to the tip, a housing or the like using a joining member Vascular tomographic image unevenness due to rotational fluctuations according to the degree of bending is eliminated by using a diagnostic medical catheter equipped with a drive shaft of a medical coil structure having a joint portion and a good blood vessel. By obtaining a tomographic image, the operator can accurately determine the diagnosis of arteriosclerosis, the preoperative diagnosis at the time of blood vessel treatment such as a balloon catheter, or the confirmation of treatment after the operation. An ultrasonic diagnostic medical catheter and an optical interference diagnostic medical catheter used in such a case can be provided.

本発明の医療用コイル構造体の構成図。The block diagram of the medical coil structure of this invention. 総減面率と引張破断強度特性図。Total area reduction ratio and tensile breaking strength characteristic diagram. 本発明の医療用コイル構造体の金属素線の温度と引張破断強度特性図。The temperature and tensile breaking strength characteristic figure of the metal strand of the medical coil structure of this invention. 本発明の医療用コイル構造体を用いて成る医療用ガイドワイヤの構成図。The block diagram of the medical guide wire which uses the medical coil structure of this invention. 本発明の医療用コイル構造体を用いて成る医療用内視鏡の構成図。The block diagram of the medical endoscope which uses the medical coil structure of this invention. 本発明の医療用コイル構造体を用いて成る医療用鉗子である医療用処置具の構成図。The block diagram of the medical treatment tool which is a medical forceps which uses the medical coil structure of this invention. 本発明の医療用コイル構造体を用いて成る医療用クリップ装置である医療用処置具の構成図。The block diagram of the medical treatment tool which is a medical clip apparatus which uses the medical coil structure of this invention. 診断装置の全体図。FIG. 本発明の医療用コイル構造体を駆動シャフトとして用いて成る診断医療用カテーテルの構成図。The block diagram of the diagnostic medical catheter which uses the medical coil structure of this invention as a drive shaft. 本発明の医療用コイル構造体のコイル体の捻回装置。The coil body twisting device of the medical coil structure of the present invention. 本発明の医療用コイル構造体のコイル体の一次から三次成形体の工程図。Process drawing of the primary to tertiary molded body of the coil body of the medical coil structure of the present invention. 本発明の医療用コイル構造体の回転性能試験とその取り回し状態の説明図。Explanatory drawing of the rotational performance test of the medical coil structure of this invention, and its handling state.

この発明の実施形態を図に示すとともに説明する。   An embodiment of the present invention will be described with reference to the drawings.

図1は本発明の医療コイル構造体の実施例を示し、図示(イ)は金属素線を1本用いて巻回成形したコイル体5に接合部材7を用いて部分的に接合部6を有する実施例1Aから1Eの医療用コイル構造体1である。
コイル平均径(D0)は、0.194mmから0.377mm(実施例1Aでは0.275mm)で、金属素線の素線直径が0.050mmから0.090mm(本実施例1Aでは0.065mm)のオーステナイト系ステンレス鋼線を用い、又後述する接合部材7を用いて部分的に接合する符号61、62の接合部6を設け、接合部6の外径D01は概ねコイル体5の外径D01と同一とし、接合部6の長手方向の長さ(L1、L2)は概ねコイル体外径の1/20倍から30倍(本実施例では0.2mmから5mm)とする。好適な実施例としては、後述する医療用ガイドワイヤ100である。
尚、医療用コイル構造体1で、前記実施例1Aよりもコイル体外径が径小の実施例としては、コイル平均径(D0)が、0.124mmから0.292mm(実施例1Bでは0.160mm、実施例1Cで0.220mm)で、金属素線の素線直径が0.014mmから0.040mm(本実施例1Bでは0.030mm、実施例1Cで0.040mm)のオーステナイト系ステンレス鋼線を用いている。
そして好適な用途例としては、後述する細径の医療用ガイドワイヤ100、又は外側のコイルスプリング体3a内へ同心状に外径が径小の内側コイル体56を設けた二重コイル形態の医療用ガイドワイヤである。(図4)
そして、前記実施例1A〜1Cよりもコイル線の金属素線の線径が太い実施例1Dの医療用コイル構造体1としては、コイル平均径(D0)が、0.40mmから1.75mm(実施例1Dでは0.74mm、実施例1Eで1.72mm)で、金属素線の素線直径が0.15mmから0.30mm(本実施例1D、1Eでは0.26mm)のオーステナイト系ステンレス鋼線を用い、接合部材7、及び接合部6の外径(D01)と長手方向の長さ(L1、L2)は概ね前記実施例1A〜1Cと同様である。好適な用途例としては、操作用ロープをコイル体内へ貫挿させ、高耐圧縮性が要求される医療用コイル構造体1をもつ、後述する医療用内視鏡101、及び医療用鉗子等の医療用処置具(102A、102B)である。
FIG. 1 shows an embodiment of a medical coil structure according to the present invention, and FIG. 1 (a) shows a joint portion 6 partially formed by using a joining member 7 on a coil body 5 formed by winding using one metal wire. It is the medical coil structure 1 of Example 1A-1E which has.
The coil average diameter (D0) is 0.194 mm to 0.377 mm (0.275 mm in Example 1A), and the wire diameter of the metal strand is 0.050 mm to 0.090 mm (0.065 mm in Example 1A). ) And a joining portion 6 of reference numerals 61 and 62 that are partially joined using a joining member 7 described later is provided, and the outer diameter D01 of the joining portion 6 is approximately the outer diameter of the coil body 5. The length in the longitudinal direction (L1, L2) of the joint 6 is approximately 1/20 to 30 times the outer diameter of the coil body (0.2 mm to 5 mm in this embodiment). A preferred embodiment is a medical guide wire 100 described later.
In the coil structure 1 for medical use, the coil average outer diameter (D0) is 0.124 mm to 0.292 mm (0. Austenitic stainless steel having a wire diameter of 0.014 mm to 0.040 mm (0.030 mm in this Example 1B and 0.040 mm in Example 1C) at 160 mm, 0.220 mm in Example 1C) The line is used.
As a preferable application example, a medical treatment in the form of a double coil in which a small-diameter medical guide wire 100 described later or an inner coil body 56 having a small outer diameter is provided concentrically in the outer coil spring body 3a. Guide wire. (Fig. 4)
And as the medical coil structure 1 of Example 1D whose wire diameter of the metal strand of a coil wire is thicker than the said Examples 1A-1C, a coil average diameter (D0) is 0.40 mm to 1.75 mm ( Austenitic stainless steel of 0.74 mm in Example 1D and 1.72 mm in Example 1E), and the strand diameter of the metal strand is 0.15 mm to 0.30 mm (0.26 mm in Examples 1D and 1E). The outer diameter (D01) and the lengths in the longitudinal direction (L1, L2) of the bonding member 7 and the bonding portion 6 are substantially the same as those of the above-described Examples 1A to 1C. As a suitable application example, an operation rope is inserted into a coil body, and a medical endoscope 101 and a medical forceps described later having a medical coil structure 1 that requires high compression resistance are used. This is a medical treatment instrument (102A, 102B).

次に図1(ロ)は、金属素線を2本から30本用いてコイル状に巻回成形、又は撚合構成した多条線から成る実施例2A〜2Cの医療用コイル構造体2である。そしてコイル平均径、金属素線の素線直径、接合部6(符号61)の形状、及び接合部材7は前記実施例1A〜1Eと概ね同様である。
実施例2Aとしては、素線直径が0.030mmの金属素線を6本用いて巻回成形、又は撚合構成し、コイル平均径が0.160mmの医療用コイル構造体2で、好適用途例としては前記実施例1A〜1Cと同様に、外側のコイルスプリング体3a内へ同心状に外径が径小の内側コイル体5bを設けた二重コイル形態の医療用ガイドワイヤである。
又、実施例2Bとして素線直径が0.26mmの金属素線を26本巻回成形、又は撚合構成してコイル平均径が0.74mmの医療用コイル構造体2で、好適用途例としては後述する耐圧縮性が要求されるとともに、手元側の回転を先端側へ伝える回転伝達性能も併せて要求される医療用鉗子、医療用クリップ装置、医療用高周波ナイフ等の医療用処置具102A、102Bである。
Next, FIG. 1 (b) is a medical coil structure 2 of Examples 2A to 2C, which is composed of multiple strands that are formed by winding or twisting into a coil shape using 2 to 30 metal strands. is there. The coil average diameter, the strand diameter of the metal strand, the shape of the joining portion 6 (reference numeral 61), and the joining member 7 are substantially the same as those of Examples 1A to 1E.
Example 2A is a medical coil structure 2 having a coil average diameter of 0.160 mm, which is formed by winding or twisting using six metal strands having a strand diameter of 0.030 mm, and is suitable for use. An example is a medical guide wire in the form of a double coil in which an inner coil body 5b having a small outer diameter is provided concentrically in the outer coil spring body 3a, as in Examples 1A to 1C.
In addition, as Example 2B, the medical coil structure 2 having an average coil diameter of 0.74 mm by forming or twisting 26 metal strands having a strand diameter of 0.26 mm as a suitable application example The medical treatment instrument 102A such as a medical forceps, a medical clip device, a medical high-frequency knife or the like that is required to have compression resistance, which will be described later, and also has a rotation transmission performance that transmits rotation on the proximal side to the distal end side. , 102B.

又実施例2Cとして素線直径が0.26mmの金属素線を18本巻回成形、又は撚合構成してコイル平均径が1.72mmのコイル体5で、前記実施例2Bと同様に耐圧縮性、及び回転伝達性が要求される前記医療用処置具の他、後述する血管内超音波診断装置、又は光干渉断層診断装置等に用いられる診断医療用カテーテルの駆動シャフトである。
尚、ここでいう「巻回成形のコイル体」とは、芯金(マンドレル)に複数の金属素線を巻き付けてコイル状にし、その後芯金を抜き出してコイル体にすることをいう。又「撚合構成のコイル体」とは、複数の金属素線を用いて芯材の外周に側材を撚り合わせてロープ状に撚合構成し、その後芯材を抜き出してコイル体にすることをいう。
そしてこの巻回成形の場合には、巻回成形する金属素線の総本数毎(例えば金属素線の本数が4本であれば4本毎)に隣接線間に隙間が開き易い。これに対して、撚合構成の場合には、ロープを撚るように撚りあわせる為、前記隣接線間に金属素線の総本数毎の隙間は発生しないという差がある。この隙間発生の有無の差は、回転伝達性に影響する。
Further, as Example 2C, a coil body 5 having an average coil diameter of 1.72 mm formed by winding or twisting 18 metal strands having a strand diameter of 0.26 mm, and having the same resistance as Example 2B. In addition to the medical treatment instrument that requires compressibility and rotational transmission, this is a drive shaft for a diagnostic medical catheter used in an intravascular ultrasound diagnostic apparatus, an optical coherence tomography diagnostic apparatus, or the like described later.
Here, the “coiled body of winding” means that a plurality of metal wires are wound around a cored bar (mandrel) to form a coil, and then the cored bar is extracted to form a coiled body. In addition, “coiled body of twisted configuration” means that a plurality of metal strands are used to twist a side material around the core material and twisted into a rope shape, and then the core material is extracted to form a coil body. Say.
In the case of this winding forming, a gap is easily opened between adjacent wires for every total number of metal strands to be wound (for example, every 4 if the number of metal strands is 4). On the other hand, in the case of the twisted configuration, since the ropes are twisted so as to be twisted, there is a difference that no gap is generated between the adjacent wires for each total number of metal strands. The difference in the presence or absence of this gap affects the rotation transmission.

次に図1(ハ)は、前記医療用コイル構造体2を用いて外層コイル体51の内側に内層コイル体52を密着状に設けた二層構造の医療用コイル構造体3を示し、又図示(二)は、前記医療用コイル構造体3に対して外層コイル体51と内層コイル体52との間に中層コイル体53を密着状に設けた三層構造から成る医療用コイル構造体4を示す。
そして前記医療用コイル構造体3、4は、いずれも外層コイル体51のコイル平均径(D1)は、0.901 mmから1.28mmで、金属素線の素線直径が0.10mmから0.30mmのオーステナイト系ステンレス鋼線を2本から30本用いてコイル状に巻回成形、又は撚合構成した外層コイル体51を設け、使用する金属素線の素線直径にそれぞれ対応したコイル平均径の内層コイル体52をもつ二層構造の医療用コイル構造体3、及び外層コイル体51と内層コイル体52との間に中層コイル体53をもつ三層構造の医療用コイル構造体4で、そして又接合部61の形状、及び接合部材7は前記医療用コイル構造体1〜2と概ね同様である。
そして又、各層のコイル体の巻回方向、又は撚合方向は全て同一方向でも良いが均質な柔軟性と先端側への高回転伝達性を得る為には、各層それぞれが逆方向が望ましく、例えば外層コイル体51の巻回方向、又は撚合方向がZ巻き方向(右ねじ)であれば、中層コイル体53は逆方向のS巻き方向(左ねじ)とし、内層コイル体53は外層コイル体51と同方向のZ巻き方向(右ねじ)の組合せ等である。
Next, FIG. 1 (c) shows a medical coil structure 3 having a two-layer structure in which an inner layer coil body 52 is provided in close contact with an inner side of an outer layer coil body 51 using the medical coil structure 2. The illustrated (2) is a medical coil structure 4 having a three-layer structure in which an intermediate layer coil body 53 is provided in close contact with the medical coil structure 3 between an outer layer coil body 51 and an inner layer coil body 52. Indicates.
In each of the medical coil structures 3 and 4, the coil average diameter (D1) of the outer layer coil body 51 is 0.901 mm to 1.28 mm, and the strand diameter of the metal strand is 0.10 mm to 0. Coil averages corresponding to the wire diameters of the metal wires to be used, provided with an outer layer coil body 51 that is formed by winding or twisting into a coil shape using 2 to 30 austenitic stainless steel wires of 30 mm A two-layered medical coil structure 3 having a diameter inner-layer coil body 52 and a three-layered medical coil structure 4 having an intermediate-layer coil body 53 between the outer-layer coil body 51 and the inner-layer coil body 52; The shape of the joint 61 and the joint member 7 are substantially the same as those of the medical coil structures 1 and 2.
And, the winding direction of the coil body of each layer, or the twisting direction may all be the same direction, but in order to obtain uniform flexibility and high rotational transmission to the tip side, each layer is preferably reverse direction, For example, if the winding direction or the twisting direction of the outer layer coil body 51 is the Z winding direction (right thread), the middle layer coil body 53 is the reverse S winding direction (left thread), and the inner layer coil body 53 is the outer layer coil. For example, a combination of the Z-winding direction (right-hand thread) in the same direction as the body 51 is used.

この二層構造から成る医療用コイル構造体3の実施例3Aとして、素線直径(d1)が0.16mmの金属素線を16本巻回成形、又は撚合構成してコイル平均径(D1)が0.96mmの外層コイル体51と、同一の素線直径(d2)の金属素線を11本巻回成形、又は撚合構成してコイル平均径(D2)が0.64mmの内層コイル体52から成る医療用コイル構造体3、又三層構造から成る医療用コイル構造体4の実施例4Aとして素線直径(d1)が0.14mmの金属素線を22本巻回成形、又は撚合構成してコイル平均径(D1)が1.18mmの外層コイル体51と、同一の素線直径(d3)の金属素線を17本巻回成形、又は撚合構成してコイル平均径(D3)が0.90mmの中層コイル体53と、同一の素線直径(d2)の金属素線を12本巻回成形、又は撚合構成してコイル平均径(D2)が0.62mmの内層コイル体52から成る医療用コイル構造体4である。   As Example 3A of the medical coil structure 3 having this two-layer structure, a coil average diameter (D1) is formed by winding or twisting 16 metal strands having a strand diameter (d1) of 0.16 mm. ) Is 0.96 mm and the inner layer coil having an average coil diameter (D2) of 0.64 mm is formed by winding or twisting 11 wire elements having the same wire diameter (d2). As Example 4A of the medical coil structure 3 composed of the body 52 and the medical coil structure 4 composed of the three-layer structure, 22 metal strands having a strand diameter (d1) of 0.14 mm are wound or formed, or An outer coil body 51 having a coil average diameter (D1) of 1.18 mm and 17 metal strands having the same wire diameter (d3) are formed by winding or twisted to form a coil average diameter. (D3) is 0.90 mm middle layer coil body 53 and the same wire diameter (d2 Forming the metal filaments 12 wound, or twisted configuration to coil mean diameter (D2) is a medical coil structure 4 composed of inner coil 52 of 0.62 mm.

そしてこれらの好適用途例としては、先端部への回転伝達性を重視される医療用クリップ装置、医療用高周波ナイフ等の医療用処置具102A、102Bのシースに用いられるコイル体の他、特に好適用途例は後述する血管内超音波診断装置、又は光干渉断層診断装置等に用いられる診断医療用カテーテル103、104の駆動シャフト5eである。   Examples of these preferred applications include a medical clip device that places importance on the ability to transmit rotation to the distal end, and a coil body used for the sheath of the medical treatment instrument 102A, 102B such as a medical high-frequency knife. An application example is a drive shaft 5e of diagnostic medical catheters 103 and 104 used in an intravascular ultrasonic diagnostic apparatus or an optical coherence tomographic diagnostic apparatus described later.

そして前記実施例1D、1E、2B、2Cに用いる金属素線の素線直径0.26mm、及び実施例1Aに用いる金属素線の素線直径0.065mmの製造工程をそれぞれ表1、2に示す。又前記実施例1D、1E、2B、2Cに用いる金属素線の材質はオーステナイト系ステンレス鋼線のSUS304材を用い、前記実施例1Aに用いる金属素線はMoを含むSUS316材を用いた。尚、表中の金属素線の符号は、同一線径の線材を伸線加工工程の減面率の差、又は低温加熱処理工程の有無の差がある為、それぞれ区分表記したものである。
尚、ここでいう総減面率とは、固溶化処理した線材を用いて線材(例えば1050℃の熱処理により引張破断強度が60kgf/mm2 から80kgf/mm2 の性質をもつ線材)の伸線前の線径と、複数のダイスを用いた伸線工程を経て最終伸線の仕上がりの線径との間の断面積差を減少率で表したものをいい、ここでは一伸線工程を経た場合を減面率とし、全伸線工程を経た減面率を総減面率として説明上区分する。又、引張破断強度とは、線材に引張力を加えて破断した時の値を線材の断面積で除した値のことをいい、引張破断力とは、線材に引張力を加えて破断した時の値のことをいう。
又、ここでいう「低温加熱処理」は、引張破断強度の低下、及び硬度を低下させて鋼線を軟化させる焼きなまし、又は低温焼きなまし、並びに変態点以上(例Ac3 約730℃以上)で加熱する焼きならしとは異なり、引張破断強度が増大して機械的性質を向上させる熱処理、と位置づけて「低温加熱処理」と呼称し区別する。
Tables 1 and 2 show the manufacturing process of the wire diameter 0.26 mm of the metal wire used in Examples 1D, 1E, 2B, and 2C and the wire diameter 0.065 mm of the metal wire used in Example 1A, respectively. Show. In addition, the material of the metal wire used in Examples 1D, 1E, 2B, and 2C was an austenitic stainless steel wire SUS304 material, and the metal wire used in Example 1A was an SUS316 material containing Mo. In addition, since the code | symbol of the metal strand in a table | surface has the difference in the area reduction rate of a wire drawing process, or the difference in the presence or absence of a low-temperature heat processing process, it shows each division | segmentation description.
Here, the term total reduction rate and the drawing of the wire by using a solid solution treated wire (e.g. wire tensile strength by heat treatment at 1050 ° C. has a property of 80 kgf / mm 2 from 60 kgf / mm 2) This refers to the difference in cross-sectional area between the previous wire diameter and the final wire diameter after the wire drawing process using multiple dies. Is the area reduction rate, and the area reduction rate after the complete wire drawing process is classified as the total area reduction rate. In addition, the tensile breaking strength is a value obtained by dividing the value obtained when a tensile force is applied to a wire by the sectional area of the wire, and the tensile breaking force is a value obtained when a tensile force is applied to the wire. Means the value of
In addition, the “low temperature heat treatment” referred to here is annealing that lowers the tensile strength at break and softens the steel wire by reducing the hardness, or low temperature annealing, and heats above the transformation point (Example Ac 3 about 730 ° C. or higher). Unlike normalizing, it is called “low-temperature heat treatment” and is distinguished from heat treatment in which the tensile strength at break increases and mechanical properties are improved.

Figure 2011177231
Figure 2011177231

Figure 2011177231
Figure 2011177231

表1によれば、金属素線aは、伸線工程の減面率が79.9%とすることにより、引張破断強度は70kgf/mm2 から206kgf/mm2 に向上し、そして金属素線aよりも伸線工程の減面率を89.9%向上させた金属素線bの引張破断強度は、70kgf/mm2 から224kgf/mm2 となって金属素線aよりも増大する。
そして金属素線cは、一次伸線後に温度範囲が180℃〜495℃で10分から180分で熱処理炉を用いた炉内での雰囲気加熱による一次低温加熱処理(本実施例では450℃、30分)を行ない、その後二次伸線(本実施例では最終伸線)を行い、総減面率を89.9%としたもので、一次伸線後に低温加熱処理を加えることにより、金属素線bと同一の総減面率であっても引張破断強度が238kgf/mm2 となって金属素線bよりもさらに14kgf/mm2 引張破断強度を増大させることができる。
そして又、表2によれば、金属素線d、eに対しても前記同様の傾向を示し、同一の総減面率である金属素線dに対して、一次伸線後に前記同様の低温加熱処理(本実施例では450℃、30分)を加えることにより金属素線eは引張破断強度が264kgf/mm2 となって金属素線dよりも38kgf/mm2 引張破断強度を増大させることができる。
According to Table 1, the metal wire a, by reduction of area of the wire drawing step is 79.9% tensile strength increased from 70 kgf / mm 2 to 206kgf / mm 2, and a metal wire The tensile strength at break of the metal wire b in which the surface area reduction rate of the wire drawing process is improved by 89.9% from that of a is increased from 70 kgf / mm 2 to 224 kgf / mm 2 and increased from that of the metal wire a.
The metal wire c is subjected to primary low-temperature heat treatment (at 450 ° C., 30 ° C. in this embodiment) by atmospheric heating in a furnace using a heat treatment furnace at a temperature range of 180 ° C. to 495 ° C. for 10 minutes to 180 minutes after the primary wire drawing. After that, the secondary wire drawing (final wire drawing in the present example) is performed and the total area reduction rate is 89.9%. tensile strength at break a total reduction of area of the same line b can be increased further 14 kgf / mm 2 tensile strength than the metal wire b becomes 238kgf / mm 2.
Also, according to Table 2, the same tendency as described above is shown for the metal wires d and e, and the same low temperature after the primary drawing with respect to the metal wire d having the same total area reduction rate. By applying heat treatment (450 ° C., 30 minutes in the present embodiment), the tensile strength of the metal wire e is 264 kgf / mm 2 and is increased by 38 kgf / mm 2 than the metal wire d. Can do.

そして表1、2より、総減面率が80%以上で引張破断強度は200kgf/mm2 以上を確保することができ、又総減面率90%以上で引張破断強度は少なくとも210kgf/mm2 以上を確保することができる。又、表1、2によれば、伸線工程における減面率の増加と共に金属素線の引張破断強度は増大し、そして一定の温度範囲の低温加熱処理を加えることにより金属素線の引張破断強度は増大する。
そして金属素線cは、減面率80.7%の伸線加工後に低温加熱処理を加えたときの金属素線の引張破断強度の増加率は5.8%であるのに対して、金属素線eは、減面率91%の伸線加工後に低温加熱処理を加えたときの引張破断強度の増加率は16%となって約2.7倍以上増大し、減面率が高い伸線工程後に低温加熱処理を加えるほど引張破断強度は急傾斜増大する傾向にある。この傾向は、総減面率が80%を境にして総減面率90%、そして総減面率95%を境にして顕著に表れ、図2を用いて後述する。
From Tables 1 and 2, it is possible to secure a tensile breaking strength of 200 kgf / mm 2 or more when the total area reduction is 80% or more, and a tensile breaking strength of at least 210 kgf / mm 2 when the total area reduction is 90% or more. The above can be ensured. Further, according to Tables 1 and 2, the tensile strength of the metal wire increases with an increase in the area reduction ratio in the wire drawing process, and the tensile strength of the metal wire is increased by applying a low temperature heat treatment within a certain temperature range. Strength increases.
The metal wire c has a metal rupture strength increase rate of 5.8% when a low-temperature heat treatment is applied after wire drawing with a surface reduction rate of 80.7%. For the wire e, when the low-temperature heat treatment is applied after the wire drawing process with a surface reduction rate of 91%, the increase rate of the tensile breaking strength is 16%, which is increased by about 2.7 times or more. As the low-temperature heat treatment is applied after the wire process, the tensile strength at break tends to increase steeply. This tendency is prominent when the total area reduction rate is 80% and the total area reduction rate is 90%, and the total area reduction rate is 95%, which will be described later with reference to FIG.

そして次に、前記実施例3A、4Aに用いる金属素線の素線直径が0.16mm(金属素線f)、0.14mm(金属素線g)の製造工程を前記同様表3に示す。   Next, Table 3 shows manufacturing steps in which the strand diameters of the metal strands used in Examples 3A and 4A are 0.16 mm (metal strand f) and 0.14 mm (metal strand g).

Figure 2011177231
Figure 2011177231

表3によれば、素線直径が0.14mmの金属素線fは、固溶化処理したオーステナイト系ステンレス鋼線(Moを2重量%から3重量%含むSUS316)の引張破断強度が79kgf/mm2 の線材(母線)の線径1.10mmを用いて、一次伸線後180℃から525℃で10分から180分の熱処理炉を用いた炉内での雰囲気加熱による一次低温加熱処理(本実施例では450℃で30分)を行い、その後二次伸線を行い、さらに前記一次低温加熱処理と同条件で二次低温加熱処理を行い、その後三次伸線(本実施例では最終伸線)を行い、総減面率を98.4%として引張破断強度を400kgf/mm2 としたものである。又素線直径が0.16mmの金属素線gについても同様の工程を経て、総減面率99.5%で引張破断強度が402kgf/mm2 として、各実施例の金属素線の中で最も高い値を示す。従って、総減面率が99.5%で引張破断強度は400kgf/mm2 を確保することができる。
そして又、各実施例に用いる金属素線の引張破断強度をより向上させる為には、伸線工程と低温加熱処理工程を1セットとして少なくとも1セット以上の繰り返しが望ましく、又、5セット以上繰り返してもよいが生産性等の観点から3セット以下が望ましい。
According to Table 3, the metal strand f having a strand diameter of 0.14 mm has a tensile breaking strength of a solid solution treated austenitic stainless steel wire (SUS316 containing 2 to 3 wt% Mo) of 79 kgf / mm. Primary low-temperature heat treatment by atmospheric heating in a furnace using a heat treatment furnace at 180 ° C. to 525 ° C. for 10 minutes to 180 minutes after primary wire drawing using a wire diameter of 1.10 mm of the wire (bus wire) 2 (this implementation) In the example, it is performed at 450 ° C. for 30 minutes), after which secondary wire drawing is performed, followed by secondary low-temperature heat treatment under the same conditions as the primary low-temperature heat treatment, followed by tertiary wire drawing (final wire drawing in this example). The total area reduction rate was 98.4%, and the tensile strength at break was 400 kgf / mm 2 . The same process was performed for the metal wire g having a strand diameter of 0.16 mm, and the total area reduction rate was 99.5% and the tensile breaking strength was 402 kgf / mm 2. Shows the highest value. Accordingly, the total area reduction rate is 99.5% and the tensile strength at break can be ensured to be 400 kgf / mm 2 .
Moreover, in order to further improve the tensile breaking strength of the metal wire used in each example, it is desirable to repeat the wire drawing step and the low-temperature heat treatment step as one set, and at least one set is repeated, and five sets or more are repeated. However, 3 sets or less are desirable from the viewpoint of productivity and the like.

そして次に、前記金属素線f、gを用いて短時間低温加熱処理を施したものをそれぞれ金属素線h、iとし、短時間低温加熱処理と引張破断強度との関係を表4に示す。尚、温度と時間は後述する接合部材7を用いて接合する際の溶融加熱時間、及び組付時間等を考慮したもので、時間の2秒は、接合部材7を用いて接合固着するときに、接合部材7が溶けてコイル体5が180℃以上で加熱される平均時間を示し、又60秒は、再度接合固着作業(やり直し作業)によりコイル体5が180℃以上で再加熱されるのを含む時間を示したものである。   And next, what performed the low-temperature heat processing for a short time using the said metal strands f and g is set as the metal strand h and i, respectively, and Table 4 shows the relationship between short-time low-temperature heat processing and tensile fracture strength. . Note that the temperature and time take into account the melting and heating time when assembling using the joining member 7 to be described later, the assembly time, etc., and the time of 2 seconds is when joining and fixing using the joining member 7 The average time during which the bonding member 7 is melted and the coil body 5 is heated at 180 ° C. or higher is shown, and the coil body 5 is reheated at 180 ° C. or higher by the bonding and fixing operation (redoing operation) for 60 seconds. The time including is shown.

Figure 2011177231
Figure 2011177231

表4によれば、総減面率が98.4%で素線直径0.14mmの金属素線hは、450℃で60秒間の低温加熱処理であっても引張破断強度は6.7%上昇し、又2秒間の短時間低温加熱処理であっても引張破断強度は3.5%上昇する。そして又、総減面率が99.5%で素線直径が0.16mmの金属素線iは、前記実施例hよりもいずれも条件においても高い増加率の引張破断強度を示す。
このように短時間の低温加熱処理であっても引張破断強度が向上する理由は、総減面率の高い伸線加工の伸線時に局部的に発生した集中応力を一定温度範囲の低温加熱処理により集中応力を平均化させることによると考えることができ、総減面率の高いほどこの傾向が著しい。
According to Table 4, a metal strand h having a total area reduction ratio of 98.4% and a strand diameter of 0.14 mm has a tensile breaking strength of 6.7% even when subjected to a low-temperature heat treatment at 450 ° C. for 60 seconds. Also, the tensile strength at break increases by 3.5% even after a short low-temperature heat treatment for 2 seconds. Further, the metal wire i having a total area reduction of 99.5% and a wire diameter of 0.16 mm exhibits a higher tensile rupture strength at a higher rate than in Example h.
The reason why the tensile fracture strength is improved even in such a low temperature heat treatment for a short time is that the concentrated stress generated locally at the time of wire drawing with a high total area reduction is reduced to a low temperature heat treatment in a certain temperature range. Therefore, it can be considered that the concentrated stress is averaged, and this tendency is more remarkable as the total area reduction is higher.

そして、前記各実施例に用いる金属素線の引張破断強度をより向上させる為には、低温加熱処理の温度範囲は、後述する金属素線の温度と引張破断強度特性(図3)における引張破断強度が増大する温度範囲とし、180℃から525℃が望ましく、より望ましくは300℃から495℃の範囲である。
そして又、2秒から180秒(本実施例では2秒、60秒)の短時間低温加熱処理であっても引張破断力を向上させることができ、このことから、接合部材7を用いて溶融接合する短時間であっても、前記短時間低温加熱処理と同様な効果を示すと考えられる。
この理由は、前記金属素線が強加工の伸線加工であると同時に、素線直径が0.300mm以下の細線、極細線で熱容量が極めて小さいことによると考えられる。
そしてその結果、接合部材7を用いた接合部での引張破断強度向上効果に伴う耐屈曲疲労特性を向上させた医療用コイル構造体を得ることができる。
In order to further improve the tensile breaking strength of the metal wire used in each of the above examples, the temperature range of the low-temperature heat treatment is the tensile breaking strength in the temperature and tensile breaking strength characteristics (FIG. 3) of the metal strand to be described later. A temperature range in which the strength is increased is preferably 180 ° C. to 525 ° C., more preferably 300 ° C. to 495 ° C.
In addition, the tensile breaking force can be improved even by short-time low-temperature heat treatment of 2 seconds to 180 seconds (2 seconds and 60 seconds in this embodiment). Even if it is a short time to join, it is thought that the effect similar to the said short time low-temperature heat processing is shown.
The reason for this is considered to be that the metal element wire is a strong wire drawing process, and at the same time, the wire diameter is 0.300 mm or less, and the heat capacity is extremely small.
As a result, it is possible to obtain a medical coil structure with improved bending fatigue resistance accompanying the effect of improving the tensile fracture strength at the joint using the joining member 7.

そしてさらに、表3、4によれば、金属素線f、gの最終伸線後(本実施例f、gでは三次伸線後)に短時間の加熱であっても金属素線の引張破断強度は向上し、前記各実施例にみられるように最終伸線前の伸線後の「低温加熱処理」と最終伸線後の「短時間(2秒から180秒)低温加熱処理」とを併用することにより、金属素線の引張破断強度をより向上させることができる。   Further, according to Tables 3 and 4, even after heating for a short time after the final drawing of the metal wires f and g (after the third wire drawing in Examples f and g), the tensile break of the metal wires is performed. Strength is improved, as shown in each of the above examples, “low temperature heat treatment” after drawing before final drawing and “short time (2 seconds to 180 seconds) low temperature heat treatment” after final drawing. By using together, the tensile breaking strength of a metal strand can be improved more.

そして次に、医療用コイル構造体1〜4に用いる金属素線の総減面率と引張破断強度との関係、並びに温度と引張破断強度との関係について説明する。
図2は、前記金属素線の総減面率と引張破断強度特性との関係を示したものである。図2によれば、引張破断強度は総減面率が80%以降急傾斜増大する傾向を示している。
前記各実施例の金属素線の総減面率を80%以上としたのは、80%を境にして引張破断応力が増大する変曲ポイントとなるからである。(図6、及び、ばね第3版丸善株式会社63頁、図2.82参照)そして、総減面率90%を境にして、さらに急激に引張破断強度が急傾斜増大し、総減面率が95%に至っては、より飛躍的に増大する変曲ポイントとなることを見出した。
これは、総減面率80%以上という強加工による伸線加工により加工度の増大に伴い繊維状組織が現れ、そしてさらに総減面率90%以上においてはこの繊維状組織が著しく発達したことによると考えられる。
そして総減面率が99.5%以下としたのは、これを超える伸線加工の強い加工度では、金属組織内に空隙が生じはじめて脆化が著しく、これが特に0.06以下mmの極細線の伸線加工の限界と考えるからである。
従って、総減面率が80%から99.5%が好ましく、より好ましくは90%から99.5%で、最も好ましくは90%から99%である。そして99%以下とした理由は、例えば医療用コイル構造体1〜4のように前記金属素線を撚合構成する場合、前記金属素線の伸びが不足して、撚合構成時、特に金属素線の断線が発生し易くなるからである。
Next, the relationship between the total area reduction of the metal wires used for the medical coil structures 1 to 4 and the tensile breaking strength, and the relationship between the temperature and the tensile breaking strength will be described.
FIG. 2 shows the relationship between the total surface area reduction ratio and the tensile strength at break of the metal strand. According to FIG. 2, the tensile strength at break shows a tendency that the total area reduction rate increases steeply after 80%.
The reason why the total surface area reduction ratio of the metal wires in each of the above examples is 80% or more is that it becomes an inflection point at which the tensile breaking stress increases at 80% as a boundary. (See Fig. 6 and Spring 3rd edition Maruzen Co., Ltd., p. 63, Fig. 2.82) And, with the total area reduction rate of 90% as a boundary, the tensile rupture strength suddenly increases sharply and the total area reduction It has been found that when the rate reaches 95%, the inflection point increases dramatically.
This is because a fibrous structure appeared as the degree of processing increased due to wire drawing by strong processing with a total area reduction of 80% or more, and this fibrous structure developed significantly at a total area reduction of 90% or more. It is thought that.
The total area reduction ratio is 99.5% or less because, when the degree of wire drawing is higher than this, voids begin to appear in the metal structure and the embrittlement is remarkable, and this is particularly fine as 0.06 mm or less. This is because it is considered the limit of wire drawing.
Therefore, the total area reduction is preferably 80% to 99.5%, more preferably 90% to 99.5%, and most preferably 90% to 99%. And the reason why it is 99% or less is that, for example, when the metal strands are twisted and configured like the medical coil structures 1 to 4, the metal strands are not sufficiently stretched, and particularly when the twisted configuration, This is because breakage of the strands is likely to occur.

そして前記金属素線を「固溶化処理したオーステナイト系ステンレス鋼線の伸線加工」としたのは、加工性のよいオーステナイト組織を得る為であり、オーステナイト系ステンレス鋼線は変態点を利用した熱処理による結晶粒の微細化ができず、冷間加工によってのみ結晶粒の微細化が可能で、伸線加工により顕著な加工硬化性を示して引張強度を向上させることができるからである。又オーステナイト系ステンレス鋼線を用いる理由は、マルテンサイト系ステンレス鋼線では熱処理による焼入硬化性を示して熱影響を受け易く、析出硬化系ステンレス鋼線(SUS630等)では靭性が不足して撚合構成時に断線が発生して前記実施例のような細線・極細線の撚合構成はできず、又フェライト系ステンレス鋼線では温度脆性(シグマ脆性)の問題があるからである。   And, the above-mentioned metal element wire was made into “solution-drawn austenitic stainless steel wire drawing” in order to obtain an austenitic structure with good workability, and the austenitic stainless steel wire was heat-treated using a transformation point. This is because the crystal grains cannot be refined by the above-described method, the crystal grains can be refined only by cold working, and the tensile strength can be improved by exhibiting remarkable work-hardness by the wire drawing. The reason for using austenitic stainless steel wire is that martensitic stainless steel wire exhibits quench hardenability by heat treatment and is easily affected by heat, and precipitation hardened stainless steel wire (SUS630, etc.) has insufficient toughness and is twisted. This is because wire breakage occurs at the time of the composition, and the twisted composition of the fine wire and the ultrathin wire cannot be made as in the above-described embodiment, and the ferritic stainless steel wire has a problem of temperature brittleness (sigma brittleness).

次に図3は、一般に金属素線の母線にオーステナイト系ステンレス鋼線を用いて総減面率が90%以上の最終伸線加工後の金属素線を熱影響下(各温度30分)での引張破断強度特性を示した図で、SUS304材のときは図示イを、SUS316材のときは図示ロを示す。
これによるとSUS304材は180℃の熱影響により引張破断強度が上昇し始めて急傾斜し、概ね450℃近傍で最高の引張破断強度特性を示し、495℃まで引張破断強度特性向上効果が顕著にみられ、そして520℃を超えると常温(20℃)よりも急激に引張破断強度が低下する。又、Moを含むSUS316材は、低温側でSUS304材と同様な傾向を示すが高温側では概ね480℃近傍で最高の引張破断強度特性を示し、525℃まで引張破断強度特性向上効果が顕著にみられ、そして540℃を超えると常温(20℃)よりも急激に引張破断強度が低下する。
この引張破断強度特性が急激に低下する理由は、この固溶化処理したオーステナイト系ステンレス鋼線は、前記520℃、540℃を超える温度から800℃に加熱されると、カーボンの析出、クロムの移動の為のエネルギーを必要とし、鋭敏化現象を生じて、特にカーボンが0.08%以下の通常のSUS304のオーステナイト系ステンレス鋼線では、700℃4分から5分程度で、この鋭敏化現象が現れ、引張破断強度が極端に低下するからである。
Next, FIG. 3 shows that the austenitic stainless steel wire is generally used as the metal wire, and the metal wire after the final wire drawing with a total area reduction of 90% or more is under the influence of heat (each temperature is 30 minutes). FIG. 5 is a diagram showing the tensile breaking strength characteristics of FIG. 5 and is shown in the figure for SUS304 material and shown in the figure for SUS316 material.
According to this, SUS304 material begins to increase in tensile rupture strength due to the heat effect at 180 ° C and steeply slopes, and shows the highest tensile rupture strength property in the vicinity of 450 ° C. When the temperature exceeds 520 ° C., the tensile strength at break is lowered more rapidly than normal temperature (20 ° C.). The SUS316 material containing Mo shows the same tendency as the SUS304 material on the low temperature side, but shows the highest tensile rupture strength characteristics at about 480 ° C. on the high temperature side, and the effect of improving the tensile rupture strength properties to 525 ° C. is remarkable. In addition, when the temperature exceeds 540 ° C., the tensile strength at break decreases more rapidly than normal temperature (20 ° C.).
The reason why the tensile strength at break is abruptly decreased is that when the austenitic stainless steel wire subjected to solution treatment is heated from 520 ° C. and 540 ° C. to 800 ° C., carbon precipitation and chromium migration occur. Energy is required, and a sensitization phenomenon occurs, and this sensitization phenomenon appears at 700 ° C. for about 4 to 5 minutes, particularly in a normal SUS304 austenitic stainless steel wire having a carbon content of 0.08% or less. This is because the tensile strength at break is extremely reduced.

このような引張破断強度特性を有する為、引張破断強度を向上させる為には、例えばSUS304材のときの低温加熱処理の温度範囲は、引張破断強度が急傾斜増大する温度域である180℃から495℃が望ましく、又Moを含む例えばSUS316材(Moが2重量%〜3重量%)の低温加熱処理の温度範囲は、180℃から525℃が望ましい。   In order to improve the tensile breaking strength because of having such tensile breaking strength characteristics, for example, the temperature range of the low temperature heat treatment for SUS304 material is from 180 ° C., which is a temperature range where the tensile breaking strength increases steeply. 495 ° C. is desirable, and the temperature range of low-temperature heat treatment of, for example, SUS316 material (Mo is 2 wt% to 3 wt%) containing Mo is desirably 180 ° C. to 525 ° C.

そしてさらに前記金属素線を接合する接合部材7は、溶融温度が前記金属素線の引張破断強度が急傾斜増大する温度範囲と合致する温度範囲(180℃から525℃)が望ましく、この温度範囲で溶融する共晶合金を用いることにより、接合部の前記金属素線の引張破断強度を向上させながら、かつ強固接合することのできる新たな技術思想を提供するものである。
このように本発明は、強加工の伸線加工して総減面率の高いオーステナイト系ステンレス鋼線の温度による引張破断強度特性、並びに前記金属素線が細線・極細線で熱影響を受け易いことに着目して、はんだ材、ろう材等の接合部材を単なる固着手段として用いるのではなく、前記金属素線の引張破断強度を向上させながら、かつ強固接合させる、新たな考え方である。
Further, the joining member 7 for joining the metal strands preferably has a melting temperature in a temperature range (180 ° C. to 525 ° C.) that matches the temperature range in which the tensile breaking strength of the metal strands increases steeply. By using a eutectic alloy that melts in step (b), a new technical idea is provided that allows strong bonding while improving the tensile breaking strength of the metal strand of the joint.
Thus, according to the present invention, the tensile breaking strength characteristics depending on the temperature of an austenitic stainless steel wire having a high total area reduction ratio after being subjected to strong wire drawing, and the metal element wire are easily affected by heat due to the fine wire and the fine wire. Paying attention to this, it is a new idea that a joining member such as a solder material or a brazing material is not used as a mere fixing means, but is firmly joined while improving the tensile breaking strength of the metal wire.

そして接合部材7は、溶融温度が180℃から495℃の共晶合金、又は金属素線がMoを含むオーステナイト系ステンレス鋼線のときには180℃から525℃の共晶合金を用いる。ここでいう共晶合金とは、合金の成分比を変更することにより得られる最低融点(溶融温度)を有する特殊な合金のことをいい、具体的には、金又は銀を含む合金材で金錫系合金材として金80重量%、残部が錫で溶融温度が280℃、又銀錫系合金として銀3.5重量%、残部が錫で溶融温度が221℃、そして、金88重量%、残部がゲルマニウムで溶融温度が356℃、又銀と錫とインジウムから成り、溶融温度が450℃から472℃の共晶合金であり、その代表例を表5に示す。   The joining member 7 uses a eutectic alloy having a melting temperature of 180 ° C. to 495 ° C., or an eutectic alloy having a melting point of 180 ° C. to 525 ° C. when the metal strand is an austenitic stainless steel wire containing Mo. The eutectic alloy here refers to a special alloy having the lowest melting point (melting temperature) obtained by changing the component ratio of the alloy, and specifically, an alloy material containing gold or silver. 80% by weight of gold as a tin-based alloy material, the balance being tin and a melting temperature of 280 ° C., and 3.5% by weight of silver as a tin-based alloy, the balance being tin and a melting temperature of 221 ° C., and 88% by weight of gold, The balance is germanium, which is a eutectic alloy having a melting temperature of 356 ° C., silver, tin, and indium, and having a melting temperature of 450 ° C. to 472 ° C. Typical examples are shown in Table 5.

Figure 2011177231
Figure 2011177231

ここで接合部材7として金を用いる理由は、放射線透視下における視認性向上、及び耐食性、展延性向上の為であり、銀を用いる理由は、融点調整等の為であり、錫を用いる理由は、融点を低下させて芯線2、又はコイル体5との濡れ性を向上させる為であり、又インジウム、銅を用いる理由も濡れ性向上の為であり、そしてゲルマニウムを用いる理由は、金属間化合物の結晶粒粗大化を抑止して、接合強度の低下防止を図る為である。   Here, the reason for using gold as the bonding member 7 is to improve visibility under radioscopy, and to improve corrosion resistance and spreadability. The reason to use silver is to adjust the melting point and the reason to use tin. In order to improve the wettability with the core wire 2 or the coil body 5 by lowering the melting point, the reason for using indium and copper is to improve the wettability, and the reason for using germanium is an intermetallic compound This is to suppress the coarsening of the crystal grains and prevent a decrease in the bonding strength.

そして接合部材7の溶融温度が180℃から495℃、又は180℃から525℃としたのは、180℃を下回ると加工硬化させた各金属素線の引張破断強度を接合部材7の溶融温度を利用して向上させる効果は低く、そして495℃を超えると前記金属素線のオーステナイト系ステンレス鋼線の特質から、又は525℃を超えるとMoを含むオーステナイト系ステンレス鋼線の特質から、前記各オーステナイト系ステンレス鋼線を520℃、又は540℃を超える800℃に加熱すると鋭敏化現象を生じて、前述のように極端に引張破断強度特性等を低下させることとなり、この現象を防ぎ、各金属素線、及び金属素線を巻回成形、又は撚合構成したコイル体5の機械的強度特性を最大限に発揮させる為である。
そして、接合部材7の溶融熱により各接合部の金属素線の引張破断強度は増大し、この引張破断強度増大に伴い引張応力は増大し、その結果接合部での金属素線、及び医療用コイル構造体1〜4の耐曲げ疲労特性は向上する。
And the melting temperature of the joining member 7 was set to 180 ° C. to 495 ° C., or 180 ° C. to 525 ° C. The tensile breaking strength of each metal wire that was work-hardened below 180 ° C. was set to the melting temperature of the joining member 7. When the temperature exceeds 495 ° C., the austenitic stainless steel wire has characteristics that are higher than 495 ° C., and when the temperature exceeds 525 ° C. When a stainless steel wire is heated to 520 ° C. or 800 ° C. exceeding 540 ° C., a sensitization phenomenon occurs, and as described above, the tensile strength at break is extremely reduced. This is to maximize the mechanical strength characteristics of the coil body 5 formed by winding or twisting the wire and the metal element wire.
And the tensile breaking strength of the metal strand of each joining part increases with the fusion heat of the joining member 7, The tensile stress increases with this tensile breaking strength increase, As a result, the metallic strand in a joining part, and medical use The bending fatigue resistance of the coil structures 1 to 4 is improved.

尚、補足すれば、溶融温度が605℃から800℃の銀ろう、溶融温度が895℃から1030℃金ろうを用いた場合には、前述したように金属素線の鋭敏化現象による脆化、又は、なまし状態となって大幅に引張破断強度が低下し、そして引張破断強度及び曲げ応力の低下に伴い、コイル体5は座屈現象を生じ易くなる。
そして、溶融温度が約880℃の金74.5重量%から75.5重量%、銀12重量%から13重量%、その他亜鉛、鉄、鉛等0.15重量%以下の金ろうを用いた場合、又溶融温度が780℃の銀72重量%、銅28重量%の銀ろうを用いた場合にも、前記同様の問題が発生する。
In addition, if a silver solder having a melting temperature of 605 ° C. to 800 ° C. or a gold solder having a melting temperature of 895 ° C. to 1030 ° C. is used, as described above, embrittlement due to the sensitization phenomenon of the metal wire, Alternatively, the tensile rupture strength is greatly reduced due to the annealing state, and the coil body 5 is likely to be buckled as the tensile rupture strength and bending stress are reduced.
Then, a gold solder having a melting temperature of about 880 ° C. and having a gold content of 74.5% to 75.5% by weight, silver of 12% to 13% by weight, and other zinc, iron, lead, etc. of 0.15% by weight or less was used. In this case, the same problem as described above also occurs when a silver solder having a melting temperature of 780 ° C. of 72 wt% silver and 28 wt% copper is used.

そして医療用コイル構造体を用いた用途例として後述する医療用ガイドワイヤ、医療用内視鏡、医療用処置具等は手技前に生理食塩水に浸漬、又は手技後の生理食塩水を用いて洗浄する為、例えば接合部材7が銀系共晶合金を用いた場合には、浸漬約1時間以内で硫化銀等の形成により黒色化が始まり、時間の経過とともに黒色化がさらに進んで腐食が増大して接合強度が低下する。この為、腐食進行による接合強度の低下防止、及び黒色化の防止の為には金系共晶合金の接合部材7を用いることが望ましい。
そしてコイル体5と接合する相手部材が後述する接続口金、又はハウジング等が金、又は金成分を含む材料、並びに金めっきした材料であれば、接合部材7との濡れ性が向上し、より望ましい接合形態である。
As examples of applications using the medical coil structure, medical guidewires, medical endoscopes, medical treatment tools, etc., which will be described later, are immersed in physiological saline before the procedure, or physiological saline after the procedure is used. For cleaning, for example, when the joining member 7 uses a silver-based eutectic alloy, blackening starts due to the formation of silver sulfide or the like within about one hour of immersion, and the blackening further progresses over time, causing corrosion. Increases and decreases the bonding strength. For this reason, it is desirable to use a bonding member 7 made of a gold eutectic alloy in order to prevent a decrease in bonding strength due to the progress of corrosion and to prevent blackening.
If the mating member to be joined to the coil body 5 is a connection base, which will be described later, or the housing is gold, a material containing a gold component, and a gold-plated material, the wettability with the joining member 7 is improved, which is more desirable. It is a joining form.

そして、本発明の各実施例に用いる金属素線のオーステナイト系ステンレス鋼線の化学成分は、重量%でC:0.15%以下、Si:1%以下、Mn:2%以下、Ni:6%〜16%、Cr:16%〜20%、P:0.045%以下、S:0.030%以下、Mo:3%以下、残部が鉄及び不可避的不純物から成る。このように高珪素ステンレス鋼(Si:3.0%〜5.0%)、又析出硬化系ステンレス鋼線(SUS630等)を用いなくても前記工法を用いることにより、高強度のオーステナイト系ステンレス鋼線の金属素線を得ることができる。尚、Cは引張破断強度向上の為には、0.005%以上が望ましく、粒界腐食抑制の観点から0.15%以下が望ましい。   And the chemical composition of the austenitic stainless steel wire of the metal strand used for each Example of this invention is C: 0.15% or less, Si: 1% or less, Mn: 2% or less, Ni: 6 by weight%. %: 16%, Cr: 16% -20%, P: 0.045% or less, S: 0.030% or less, Mo: 3% or less, the balance being iron and inevitable impurities. Thus, high strength austenitic stainless steel can be obtained by using the above method without using high silicon stainless steel (Si: 3.0% to 5.0%) or precipitation hardening stainless steel wire (SUS630 or the like). A metal wire of a steel wire can be obtained. C is preferably 0.005% or more for improving the tensile strength at break, and is preferably 0.15% or less from the viewpoint of suppressing intergranular corrosion.

本発明の各実施例に用いる金属素線は、素線直径が0.014mmから0.300mmのオーステナイト系ステンレス鋼線で、特に金属素線の素線直径が0.100mm以下の細線・極細線で総減面率94%以上の伸線加工をより高い生産性をより高めながら伸線可能とする為には、再溶解材を用いたSUS304材、又はSUS316材が望ましい。
この理由は、ステンレス鋼線の伸線時の断線原因は、表面疵もさることながら酸化物系介在物であることが最も多く、細線・極細線化するほどこの傾向が著しい。
そしてその化学成分は、介在物生成元素であるAl,Ti,Ca,Oの成分は低く、又硫化物の作用で伸線低下を引き起こすSも低く抑える。具体的なオーステナイト系ステンレス鋼線の化学成分は、重量%で、C:0.08%以下、Si:0.10%以下、Mn:2%以下、P:0.045%以下、S:0.010%以下、Ni:8%〜12%、Cr:16%〜20%、Mo:3%以下、Al:0.0020%以下、Ti:0.10%以下、Ca:0.005%以下、O:0.0020%以下、で残部がFeと不可避的不純物から成る。そして再溶解材の製造方法としては、ステンレス鋼の溶製後のインゴットにフラックスを用いたエレクトロスラグ再溶解の製造方法等である。トリプル溶解材を用いても前記同様の効果が得られる。
The metal wire used in each embodiment of the present invention is an austenitic stainless steel wire having a wire diameter of 0.014 mm to 0.300 mm, and in particular, a fine wire / extra fine wire having a wire diameter of 0.100 mm or less. Therefore, in order to enable wire drawing with a total area reduction of 94% or more while further improving high productivity, SUS304 material or SUS316 material using a remelting material is desirable.
The reason for this is that the cause of disconnection when drawing a stainless steel wire is most often oxide inclusions as well as surface flaws, and this tendency becomes more prominent as the wire becomes finer and finer.
And the chemical component is low in the components of Al, Ti, Ca, O, which are inclusion generation elements, and also suppresses S that causes a reduction in wire drawing due to the action of sulfide. The specific chemical components of the austenitic stainless steel wire are, by weight, C: 0.08% or less, Si: 0.10% or less, Mn: 2% or less, P: 0.045% or less, S: 0 0.010% or less, Ni: 8% to 12%, Cr: 16% to 20%, Mo: 3% or less, Al: 0.0020% or less, Ti: 0.10% or less, Ca: 0.005% or less , O: 0.0020% or less, with the balance being Fe and inevitable impurities. And as a manufacturing method of a remelting material, it is the manufacturing method etc. of the electroslag remelting which used the flux for the ingot after melting of stainless steel. Even when a triple melting material is used, the same effect as described above can be obtained.

次に、前記金属素線a〜iと接合部材7から成る医療用コイル構造体を用いた用途例の医療用ガイドワイヤ、医療用内視鏡、医療用鉗子等の医療用処置具、及び診断医療用カテーテルについて以下順に説明する。   Next, a medical treatment instrument such as a medical guide wire, a medical endoscope, a medical forceps, and a diagnosis for an application example using the medical coil structure including the metal wires a to i and the joining member 7 and diagnosis The medical catheter will be described in the following order.

図4は、医療用コイル構造体1を備えた用途例の医療用ガイドワイヤ100を示し、芯線1aの芯線先端部11aは、手元側から先端側へ徐変縮径形状で、同軸的に外嵌めされたコイルスプリング体3aを形成し、先端側は金、白金、タングステン等の放射線不透過材コイル4aと、後端側が放射線透過材コイル体5aから成り、放射線不透過材コイル4aの先端端部には接合部材7を用いて部分的に接合した、先端が先丸形状の先導栓63が形成され、又コイルスプリング体3aの外周部と芯線手元部12aの外周部には、ふっ素樹脂、又はポリウレタン樹脂等の樹脂被膜8aが形成され、その外周部には湿潤時には潤滑特性を示す親水性被膜9aが被膜形成されている。   FIG. 4 shows a medical guide wire 100 of the application example provided with the medical coil structure 1, and the core wire tip 11 a of the core wire 1 a has a gradually changing diameter shape from the proximal side to the tip side, and is coaxially arranged outside. The fitted coil spring body 3a is formed, the front end side is composed of a radiopaque material coil 4a such as gold, platinum, tungsten, and the like, and the rear end side is composed of a radiolucent material coil body 5a, and the front end of the radiopaque material coil 4a A leading plug 63 having a rounded tip is formed at the portion, which is partially bonded using the bonding member 7, and the outer peripheral portion of the coil spring body 3a and the outer peripheral portion of the core wire proximal portion 12a include fluorine resin, Alternatively, a resin film 8a such as a polyurethane resin is formed, and a hydrophilic film 9a exhibiting lubricating characteristics when wet is formed on the outer periphery thereof.

そしてコイル体5aのコイル平均径(D0)が0.275mmで線径(直径)が0.065mmで芯線先端部11aの手元側から先端側へ、後端接合部65と、2箇所の中間接合部64は、いずれも接合部材7を用いて芯線先端部11aとコイル体5aとを部分的に接合している。
そして後端接合部65は長手方向に幅(L6)がコイル体外径の1/20倍から30倍(本実施例では2mm)で手元側へ向かって先細りの略円錐形状で、又中間接合部64は長手方向に幅(L5)がコイル体外径の1/20倍から30倍(本実施例では0.5mmから1.5mm)の円環形状の接合部6から成る前記実施例1Aの医療用コイル構造体1を備えた医療用ガイドワイヤ100である。
この構成により、高強度の引張破断強度を有するコイル体5aの金属素線を用いて接合部材7の溶融熱を利用してさらに接合部での金属素線の引張破断強度を向上させることにより、医療用ガイドワイヤ100の回転操作によるコイル体5aの耐ねじれ特性、及び押込み操作によるコイル体5a耐繰り返し曲げ疲労特性を向上させることができる。
この理由は、耐繰り返し曲げ疲労特性等は、曲げ応力と引張応力との合成応力が高いほど向上し、コイル体に用いる金属素線は引張破断強度が高く、引張応力が向上しているからである。
The coil body 5a has a coil average diameter (D0) of 0.275 mm and a wire diameter (diameter) of 0.065 mm. From the proximal side of the core wire tip 11a to the tip side, the rear end joint 65 and two intermediate joints Each of the portions 64 partially joins the core wire tip portion 11a and the coil body 5a using the joining member 7.
The rear end joint portion 65 has a width (L6) of 1/20 to 30 times the outer diameter of the coil body in the longitudinal direction (in this embodiment, 2 mm) and has a substantially conical shape tapered toward the hand side. Reference numeral 64 denotes the medical device of Example 1A, which includes an annular joint 6 having a width (L5) of 1/20 to 30 times the outer diameter of the coil body (0.5 mm to 1.5 mm in this embodiment) in the longitudinal direction. 1 is a medical guide wire 100 including a coil structure 1 for medical use.
By this structure, by using the metal strand of the coil body 5a having a high strength tensile break strength, by utilizing the heat of fusion of the joining member 7, further improving the tensile break strength of the metal strand at the joint, It is possible to improve the torsional resistance characteristics of the coil body 5a due to the rotation operation of the medical guide wire 100 and the repeated bending fatigue resistance characteristics of the coil body 5a due to the pushing operation.
This is because the resistance to repeated bending fatigue is improved as the combined stress of bending stress and tensile stress increases, and the metal wire used for the coil body has high tensile breaking strength and improved tensile stress. is there.

そしてさらに、接合部材7を用いてコイル体5aの中間接合部64を設けることにより、前記引張破断強度を向上させることと併せて、手元側回転操作による先端側への回転伝達性能を飛躍的に向上させることができる。
この理由は、コイル体5をねじりばねとして考えると、ねじり力(ねじりモーメントM)は、コイル平均径(D0)とコイルの巻き数(N)に反比例(M∝1/D0×1/N)する為、例えば前記中間接合部64がコイル体5の長手方向に対して中央位置に1個存在すれば、コイル体5の巻き数Nは1/2となってねじりモーメントMは2倍となり、巻き数が少なくなった分、それに対する応分のねじりモーメントは増大する。
そして中間接合部64の増加に伴い接合部材7の溶融熱を利用する金属素線部分が増加して、その結果引張破断強度が向上したコイル体5と成り、この相乗効果により先端側への回転伝達性能を飛躍的に向上させることができるからである。
Further, by providing the intermediate joint portion 64 of the coil body 5a using the joining member 7, in addition to improving the tensile breaking strength, the rotation transmission performance to the distal end side by the hand side rotation operation is dramatically improved. Can be improved.
The reason for this is that when the coil body 5 is considered as a torsion spring, the torsional force (torsion moment M) is inversely proportional to the average coil diameter (D0) and the number of turns of the coil (N) (M1 / 1 / D0 × 1 / N). Therefore, for example, if there is one intermediate joint 64 at the central position with respect to the longitudinal direction of the coil body 5, the number N of turns of the coil body 5 is halved and the torsional moment M is doubled. As the number of turns decreases, the corresponding torsional moment increases.
As the intermediate joint 64 increases, the number of metal strands that utilize the heat of fusion of the joining member 7 increases, resulting in a coil body 5 with improved tensile breaking strength. This is because the transmission performance can be dramatically improved.

そして補足すれば、医療用ガイドワイヤ100は使用前に生理食塩水で満たした容器内へ浸漬される為、例えば接合部材7に銀系共晶合金を用いた場合には、前記したように硫化銀等の形成により黒色化が進行して腐食が増大し、時間の経過とともに接合強度が低下する。これを防ぐ為には、金系共晶合金の接合部材7を用いることが望ましい。   In addition, since the medical guide wire 100 is immersed in a container filled with physiological saline before use, for example, when a silver-based eutectic alloy is used for the joining member 7, as described above, the sulfide is used. Due to the formation of silver or the like, blackening proceeds and corrosion increases, and the bonding strength decreases with time. In order to prevent this, it is desirable to use a bonding member 7 made of a gold eutectic alloy.

そしてさらに補足すれば、前記医療用ガイドワイヤは、可とう性細長体から成る芯線と、前記芯線に先端部に前記芯線を貫挿した、先端側が放射線不透過材のコイル体と後端側が放射線透過材のコイル体を装着し、前記芯線と前記後端側のコイル体とは接合部材を用いて部分的に接合した接合部を形成した医療用ガイドワイヤにおいて、
前記後端側の放射線透過材のコイル体の金属素線は、オーステナイト系ステンレス鋼線を用いて固溶化処理した後に総減面率が80%から99.5%の伸線加工を行い、引張破断強度を200kgf/mm2 以上450kgf/mm2 以下とし、
前記接合部材は、180℃から495℃の溶融温度をもつ共晶合金を用い、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには、180℃から525℃の溶融温度をもつ共晶合金を用い、前記部分的に接合した接合部が、長手方向に前記後端側のコイル体外径の1/20倍から30倍の幅で隣接線同士を接合、又は隣接線同士と前記芯線とを接合したことを特徴とする医療用ガイドワイヤである。
Further, in addition, the medical guide wire includes a core wire made of a flexible elongated body, a coil body made of a radiopaque material on the front end side and a radiation body on the rear end side. In a medical guide wire in which a coil body of a permeable material is mounted, and the core wire and the coil body on the rear end side are partially bonded using a bonding member,
The metal element wire of the coil member of the radiation transmitting material on the rear end side is subjected to wire drawing with a total area reduction of 80% to 99.5% after being subjected to a solution treatment using an austenitic stainless steel wire. the breaking strength and 200 kgf / mm 2 or more 450 kgf / mm 2 or less,
The joining member uses a eutectic alloy having a melting temperature of 180 ° C. to 495 ° C., or an eutectic having a melting temperature of 180 ° C. to 525 ° C. when the metal strand is an austenitic stainless steel wire containing Mo. Using the alloy, the partially joined joint joins adjacent wires with a width of 1/20 to 30 times the outer diameter of the coil body on the rear end side in the longitudinal direction, or between adjacent wires and the core wire. It is a medical guide wire characterized by bonding.

図5は、医療用コイル構造体1、又は2を備えた用途例の医療用内視鏡101を示す。図示(イ)は、医療用内視鏡101の全体図を示し、先端側より湾曲部1bと、可とう性シース体2bと、手元操作部3bで構成される。又図示(ロ)は、湾曲部1bの内部構造を示し、第1操作用ロープ9bが貫挿された第1コイル体5は、手元側の接続口金8、又は湾曲駒11bと接合部材7を用いて部分的に接合して接合部6を形成し、前記第1操作用ロープ9bの先端は、先端の湾曲駒11bと接合されている。
そして第2操作用ロープ10bが貫挿された第2コイル体51は、前記同様に接合部材7を用いて接続口金8、又は湾曲部1bの中間位置の湾曲駒11bと接合部材7を用いて部分的に接合して接合部6を形成し、前記第2操作用ロープ10bの先端は、先端の湾曲駒11bと接合され、第1、又は第2操作用ロープ9b、10bを手元部で牽引操作することにより、第1、又は第2コイル体5、51が操作反力を受けてこの力を支えることにより、湾曲部1bを所望の位置へ湾曲変形させた構成となっている。
FIG. 5 shows a medical endoscope 101 of an application example including the medical coil structure 1 or 2. The illustration (a) shows an overall view of the medical endoscope 101, which is composed of a bending portion 1b, a flexible sheath body 2b, and a hand operation portion 3b from the distal end side. Also, (b) shows the internal structure of the bending portion 1b, and the first coil body 5 into which the first operation rope 9b is inserted has the connection base 8 on the hand side or the bending piece 11b and the joining member 7 as shown. The first operation rope 9b is joined to the bending piece 11b at the distal end.
And the 2nd coil body 51 in which the rope 10b for 2nd operation was penetrated uses the connecting piece 8, the bending piece 11b of the intermediate position of the bending part 1b, and the joining member 7 using the joining member 7 similarly to the above. Partially joined to form the joined portion 6, the tip of the second operation rope 10b is joined to the bending piece 11b at the tip, and the first or second operation rope 9b, 10b is pulled by the hand portion. By operating, the first or second coil body 5, 51 receives an operation reaction force and supports this force, whereby the bending portion 1b is bent and deformed to a desired position.

そして第1コイル体5、及び第2コイル体51は、コイル平均径が0.74mmでコイル平均径(D0)が0.74mmで線径(直径)が0.26mmの1本の線材を巻回成形し長手方向の接合部6に幅は、コイル体外径の1/20倍から30倍(本実施例では5mm)の前記実施例1Dの構成、又はコイル平均径(D0)が0.74mmで線径(直径)が0.26mmで26本の線材を巻回成形、又は撚合構成し、接合部6の長手方向の幅は前記同様とし、前記実施例2Bの構成から成る医療用コイル構造体1、又は2を用いて成り、又は接合部材7を用いて接合する医療用コイル構造体1、又は2を形成して成る医療用内視鏡101である。   The first coil body 5 and the second coil body 51 are each formed by winding one wire having an average coil diameter of 0.74 mm, an average coil diameter (D0) of 0.74 mm, and a wire diameter (diameter) of 0.26 mm. The width of the joint 6 in the longitudinal direction is 1/20 to 30 times the coil body outer diameter (5 mm in this embodiment), or the coil average diameter (D0) is 0.74 mm. In the medical coil, the wire diameter (diameter) is 0.26 mm and 26 wire rods are formed by winding or twisting, and the width of the joint portion 6 in the longitudinal direction is the same as described above, and has the configuration of Example 2B. This is a medical endoscope 101 formed by using the structure 1 or 2 or forming the medical coil structure 1 or 2 to be joined using the joining member 7.

この構成により、高強度の引張破断強度を有する金属素線から成るコイル体5、51の金属素線を用いて接合部材7の溶融熱を利用して、さらに接合部6での金属素線の引張破断強度を向上させることにより、操作用ロープの操作力を受けて圧縮力を受ける第1、第2コイル体5、51の圧縮による縮み量を少なくさせて操作量のロスを低減し、その結果少しの操作量で湾曲部1bの湾曲変形を容易にさせ、手元操作部の湾曲部への応答性を向上させることができる。
この理由は、第1、第2コイル体5、51を構成する金属素線の引張破断強度が向上している為に耐圧縮荷重特性が向上しているからである。
そしてさらに、前記実施例2Bの多条線から成る医療用コイル構造体2とすることにより、さらに手元操作による湾曲部への応答性をより向上させることができる。
この理由は、前記実施例1Dのような単条線から成るコイル体は、体内へ挿入して屈曲変形させたとき、屈曲変形の曲率半径の小なる側(コイル体の内側)のコイル体の隣接線間が密着しているのに対して、曲率半径の大なる側(コイル体の外側)のコイル体の隣接線間は隙間が開いている。これに対して、前記実施例2Bの多条線から成るコイル体を用いれば、屈曲変形させたとき多数本(本実施例では26本)から成るコイル体の各金属素線はそれぞれ隣接線間で微小に滑り移動し、前記曲率半径の大なる側(コイル体の外側)のコイル体の隣接線間は前記単条線のような大きな隙間は開かない。このことにより操作用ロープの操作力による圧縮力を受けても、前記隣接線間の隙間の存在による操作量のロスを少なくして手元操作部の湾曲部への応答性をより向上させることができるからである。
With this configuration, the metal strands of the coil members 5 and 51 made of a metal strand having a high strength tensile breaking strength are used to utilize the heat of fusion of the joining member 7, and further the metal strands at the joint 6. By improving the tensile breaking strength, the amount of contraction due to the compression of the first and second coil bodies 5 and 51 receiving the compressive force by receiving the operating force of the operating rope is reduced, and the loss of the operating amount is reduced. As a result, the bending deformation of the bending portion 1b can be facilitated with a small amount of operation, and the responsiveness of the hand operating portion to the bending portion can be improved.
This is because the compression load resistance is improved because the tensile breaking strength of the metal wires constituting the first and second coil bodies 5 and 51 is improved.
Furthermore, by using the medical coil structure 2 composed of the multi-strands of Example 2B, it is possible to further improve the responsiveness to the bending portion by the hand operation.
The reason for this is that when the coil body made of a single wire as in Example 1D is inserted into the body and bent and deformed, the coil body on the side where the radius of curvature of bending deformation is smaller (inside the coil body) While the adjacent lines are in close contact with each other, there is a gap between adjacent lines of the coil body on the side with the larger radius of curvature (outside the coil body). On the other hand, when the coil body comprising the multi-strands of Example 2B is used, each metal element wire of the coil body comprising a large number (26 in this embodiment) when bent is deformed between adjacent lines. Thus, the gap between adjacent lines of the coil body on the side with the larger curvature radius (outside of the coil body) does not open a large gap like the single filament. Accordingly, even when the compression force due to the operation force of the operation rope is received, the loss of the operation amount due to the existence of the gap between the adjacent lines can be reduced, and the responsiveness of the hand operation unit to the curved portion can be further improved. Because it can.

そして補足すれば、医療用内視鏡101は、使用後に可とう性シース体内へ生理食塩水を用いて洗浄する為、例えば接合部材7に銀系共晶合金を用いた場合には、前記したように硫化銀等の生成により黒色化が進行して腐食が増大し、時間の経過とともに接合強度が低下する。これを防止する為には、金系共晶合金の接合部材7を用いることが望ましい。 そして接続口金8、又は湾曲部11bがコイル体5と同一、又は同種材料であれば接合時に接合部材間で熱膨張による差を生じなく、濡れ性を接合部材間で均一にさせ、その結果、強固固着接合が可能となり、より望ましい形態である。ここでいう同種材料とは、JIS表示でいう鋼種記号のいずれかを問わず(SUS304かSUS403のいずれかを問わず)、前置記号が同一材料であれば同種材料のことをいう。   In addition, since the medical endoscope 101 is washed with physiological saline into the flexible sheath after use, for example, when a silver-based eutectic alloy is used for the bonding member 7, the medical endoscope 101 is described above. Thus, blackening progresses due to the formation of silver sulfide and the like, and corrosion increases, and the bonding strength decreases with time. In order to prevent this, it is desirable to use a bonding member 7 made of a gold-based eutectic alloy. And if the connection base 8 or the curved portion 11b is the same as the coil body 5 or the same kind of material, no difference due to thermal expansion occurs between the joining members at the time of joining, and the wettability is made uniform between the joining members. This is a more desirable form because it can be firmly bonded. The same kind of material here refers to the same kind of material as long as the prefix is the same material regardless of any of the steel type symbols in the JIS display (whether SUS304 or SUS403).

次に図6、7は医療用コイル構造体1〜3のいずれか一つを備えた用途例の医療用処置具102を示す。
図6は、医療用処置具102である医療用鉗子102Aを示し、又図示(イ)は、先端処置部1cを示し、手元操作部3cと連結している操作用ロープ9cの先端部には一対の鉗子カップをパンタグラフ機構から成る生検鉗子2cと連結する略円筒状の連結部材である接続口金8が前記操作用ロープ9cを貫挿したコイル体5の一方の端部と接合部材7を用いて長手方向に一定の幅(L1)で接合されて接合部6を形成している。
又図示(ロ)は、手元操作部3cを示し、手元操作部3cはガイド溝と指かけリング(図示せず)を備えた操作部本体4cと、操作用ロープ9cの手元部と連結する略円筒状の連結部材10cを備えたスライダー11cから構成され、操作部本体4cの先端側には、接続口金8を設け、操作用ロープ9cを貫挿したコイル体5の他方の端部と前記接続口金8とが接合部材7を用いて長手方向に一定の幅(L1)で接合され接合部6を形成している。
Next, FIGS. 6 and 7 show a medical treatment instrument 102 of an application example including any one of the medical coil structures 1 to 3.
FIG. 6 shows a medical forceps 102A, which is a medical treatment instrument 102, and FIG. 6A shows a distal treatment section 1c, which is attached to the distal end portion of the operation rope 9c connected to the hand operation section 3c. A connection base 8, which is a substantially cylindrical connecting member for connecting a pair of forceps cups with a biopsy forceps 2 c having a pantograph mechanism, connects one end of the coil body 5 with the operation rope 9 c inserted thereinto and the joining member 7. It joins by the fixed width | variety (L1) in the longitudinal direction, and the junction part 6 is formed.
The figure (b) shows the hand operation part 3c, which is connected to the operation part main body 4c having a guide groove and a finger ring (not shown) and the hand part of the operation rope 9c. The slider 11c is provided with a cylindrical connecting member 10c. A connection base 8 is provided on the distal end side of the operation portion main body 4c, and the connection to the other end of the coil body 5 through which the operation rope 9c is inserted. The base 8 is joined with a constant width (L1) in the longitudinal direction using the joining member 7 to form the joint 6.

そしてスライダー11cをガイド溝に沿って前後方向(図示左右方向)へ移動させることにより、スライダー11cに連結されている操作用ロープ9cに操作力が加わり、この操作力を受けてコイル体5が操作反力として支えることにより生検鉗子2cの鉗子カップを開(スライダー11cを図示左側へ移動)閉(スライダー11cを図示右側へ移動)させ、患部を補足し、切除等の処置を図っている。尚、医療用鉗子と、高周波通電による医療用処置具である医療用ホットバイオプシー鉗子との差は、主に高周波装置に接合する端子の有無、及び絶縁性の有無等で本発明の構成要件は同じであり、本発明の医療用処置具には前記医療用ホットバイオプシー鉗子も含まれる。   Then, by moving the slider 11c in the front-rear direction (the left-right direction in the figure) along the guide groove, an operation force is applied to the operation rope 9c connected to the slider 11c, and the coil body 5 is operated by receiving this operation force. By supporting it as a reaction force, the forceps cup of the biopsy forceps 2c is opened (slider 11c is moved to the left side in the figure) and closed (slider 11c is moved to the right side in the figure) to supplement the affected area and perform treatment such as excision. The difference between the medical forceps and the medical hot biopsy forceps, which is a medical treatment instrument using high-frequency energization, is mainly due to the presence / absence of terminals to be joined to the high-frequency device and the presence / absence of insulation. The medical treatment tool of the present invention includes the medical hot biopsy forceps.

次に図7は、医療用処置具102である医療用クリップ装置102Bを示し、図示(イ)は先端処置部1dを示し、手元操作部3dと連結している操作用ロープ9dの先端部にはクリップ2dを収納して進退可能な接続口金8が設けられ、前記接続口金8は前記操作用ロープ9dを貫挿したコイル体5の一方の端部と接合部材7を用いて長手方向に一定の幅で接合されて接合部6を形成している。図示(ロ)は、手元操作部3dを示し、前記医療用鉗子102Aと同様で、コイル体5の他の端部は手元操作部3dの先端側に設けられた接続口金8(図示せず、図6(ロ)と同様)と接合部材7を用いて長手方向に一定の幅で接合され接合部6を形成している。   Next, FIG. 7 shows a medical clip device 102B, which is a medical treatment instrument 102. FIG. 7A shows a distal treatment section 1d, and is attached to the distal end portion of the operation rope 9d connected to the hand operation section 3d. Is provided with a connection base 8 which can accommodate the clip 2d and can be moved forward and backward. The connection base 8 is fixed in the longitudinal direction by using one end of the coil body 5 penetrating the operation rope 9d and the joining member 7. Are joined at a width of 5 mm to form a joint 6. The figure (b) shows the hand operation part 3d, which is the same as the medical forceps 102A, and the other end of the coil body 5 is a connection base 8 (not shown) provided on the front end side of the hand operation part 3d. The same as in FIG. 6B) and the joining member 7 are used to join in the longitudinal direction with a constant width to form the joined portion 6.

そして先端処置部1dのクリップ2dを導入管10d内へ収納させた状態で体内へ挿入し、その後手元操作部3dのスライダー部11dをガイド溝に沿って図示右方向へ移動させることにより、スライダー11d内の連結部材13dと接合されている操作用ロープ9dに操作力が加わり、この操作力を受けてコイル体5が操作反力を支えることにより操作用ロープ9dの先端部に連結されているフック状の連結部材12dへ力が伝わり、フック状の連結部材12dからクリップ2dが外れて離脱し、患部を補足して血管を閉じて止血処置を図っている。尚、図(ハ)は、クリップ2dによる血管14dのクリップ状態を示す縦断面図である。   Then, the clip 2d of the distal treatment section 1d is inserted into the body while being accommodated in the introduction tube 10d, and then the slider section 11d of the hand operation section 3d is moved in the right direction in the drawing along the guide groove, thereby moving the slider 11d. An operating force is applied to the operating rope 9d joined to the inner connecting member 13d, and the coil body 5 receives the operating force and supports the operating reaction force, whereby the hook connected to the distal end of the operating rope 9d. Force is transmitted to the connection member 12d in the shape of the hook, and the clip 2d is detached from the connection member 12d in the shape of the hook and detached, and the affected part is supplemented to close the blood vessel to perform hemostasis treatment. In addition, FIG. (C) is a longitudinal sectional view showing a clip state of the blood vessel 14d by the clip 2d.

そしてコイル体5は、前記医療用内視鏡101と同様の医療用コイル構造体1の実施例1Dの構成、又は医療用コイル構造体2の実施例2Bの構成とする。そして又、操作力が大きい場合には、コイル体が受ける操作反力の横断面積の面圧を低下させる為、コイル平均径を大きくして、コイル平均径が1.72mmで線径が0.26mmの1本の線材を巻回成形した構成の実施例1Eの医療用コイル構造体1、そして又コイル平均径が1.72mmで線径が0.26mmで18本の線材を巻回成形、又は撚合構成し、接合部材6の長手方向の幅は前記各実施例と同様の前記実施例2Cの医療用コイル構造体2の構成とする。   The coil body 5 has the same configuration as that of Example 1D of the medical coil structure 1 similar to that of the medical endoscope 101 or the configuration of Example 2B of the medical coil structure 2. In addition, when the operating force is large, the surface pressure of the cross-sectional area of the operating reaction force received by the coil body is decreased. Therefore, the coil average diameter is increased, the coil average diameter is 1.72 mm, and the wire diameter is 0.7. Example 1E medical coil structure 1 having a configuration in which one wire of 26 mm is wound and formed, and 18 wires having an average coil diameter of 1.72 mm and a wire diameter of 0.26 mm are wound and formed, Alternatively, the length of the joining member 6 in the longitudinal direction is the same as that of each of the embodiments described above, and the medical coil structure 2 of Example 2C is used.

この構成により、高強度の引張破断強度を有する金属素線から成るコイル体5は、接合部材7の溶融熱を利用して、さらに接合部6での金属素線の引張破断強度を向上させることとなり、操作用ロープの操作力を受けて、圧縮力を受けるコイル体5の圧縮による縮み量を少なくさせて操作量のロスを低減し、その結果少しの操作量で先端処置部1dの手元操作による応答性を高めることができる。そしてさらに、多条線から成る医療用コイル構造体2を用いることにより、手元操作の先端処置部1dへの回転応答性をより向上させることができる。
この理由は、前記したとおりである。特に所望の位置へ導入して回転操作を必要とする生体組織採取の為の医療用鉗子、及び止血の為の医療用クリップ装置においては医療用コイル構造体2は好ましい態様である。
With this configuration, the coil body 5 made of a metal strand having a high strength tensile break strength can further improve the tensile break strength of the metal strand at the joint 6 by utilizing the heat of fusion of the joining member 7. In response to the operation force of the operation rope, the amount of contraction due to the compression of the coil body 5 that receives the compression force is reduced to reduce the loss of the operation amount, and as a result, the hand operation of the distal treatment section 1d with a small operation amount. Responsiveness can be improved. Furthermore, by using the medical coil structure 2 made of multi-strands, it is possible to further improve the rotational responsiveness to the distal treatment section 1d for hand operation.
The reason is as described above. In particular, the medical coil structure 2 is a preferred embodiment in the medical forceps for collecting a living tissue that needs to be rotated by being introduced to a desired position and the medical clip device for hemostasis.

図8、9は、医療用コイル構造体1〜4のいずれか一つを備えた用途例の超音波診断医療用カテーテル103、及び光干渉診断医療用カテーテル104を示す。
図8は、診断装置1fの全体図を示し、診断医療用カテーテル103、104と、スキャナー・プルバック部3fと、LCDモニター、操作パネル、本体制御部等から成る操作制御装置2fを備え、スキャナー・プルバック部3fと操作制御装置2fとは信号線4fにより接続されている。
8 and 9 show an ultrasonic diagnostic medical catheter 103 and an optical interference diagnostic medical catheter 104 of an application example including any one of the medical coil structures 1 to 4.
FIG. 8 shows an overall view of the diagnostic apparatus 1f, which includes diagnostic medical catheters 103 and 104, a scanner / pullback section 3f, and an operation control apparatus 2f including an LCD monitor, an operation panel, a main body control section, and the like. The pullback unit 3f and the operation control device 2f are connected by a signal line 4f.

図9は、診断医療用カテーテル103、104を示し、図示(イ)は、診断医療用カテーテル103、104の全体図で、先端側よりガイドワイヤルーメンを備えた先端部1eと、カテーテルシース2eと、手元側はカテーテルシース2eと一体化されたシースコネクタ31eと、駆動シャフト5eを回転可能に保持する駆動シャフトコネクタ32eから成るコネクタ部3eで構成されている。
図示(ロ)は、超音波診断医療用カテーテル103のカテーテルシース2eの管体内の先端側の縦断面図を示し、先端部は超音波を送受信する超音波振動子ユニットとして機能する超音波振動子81eが収納、保持されたハウジング8eから成り、前記ハウジング8eは超音波振動子81eを回転する為の駆動力を伝達する駆動シャフト5eの端部で接合部材7を用いて部分的に接合する接合部6を形成し、駆動シャフト5e内には信号線9eが配設され、超音波振動子81eからコネクタ部3eまで延びている構成となっている。
FIG. 9 shows the diagnostic medical catheters 103 and 104. FIG. 9A is an overall view of the diagnostic medical catheters 103 and 104. A distal end portion 1e having a guide wire lumen from the distal end side, a catheter sheath 2e, and the like. The proximal side includes a connector portion 3e including a sheath connector 31e integrated with the catheter sheath 2e and a drive shaft connector 32e that rotatably holds the drive shaft 5e.
FIG. 2B is a longitudinal sectional view of the distal end side of the catheter sheath 2e of the ultrasonic diagnostic medical catheter 103, and the distal end portion is an ultrasonic transducer that functions as an ultrasonic transducer unit that transmits and receives ultrasonic waves. 81e is comprised of a housing 8e that is housed and held, and the housing 8e is joined by using a joining member 7 at the end of a drive shaft 5e that transmits a driving force for rotating the ultrasonic transducer 81e. A portion 6 is formed, and a signal line 9e is disposed in the drive shaft 5e and extends from the ultrasonic transducer 81e to the connector portion 3e.

そして駆動シャフト5eは、本発明の医療用コイル構造体1〜4のいずれかの構造体から成っている。そして又、前記各実施例1A〜1E等のコイル体5を接合部材7を用いてハウジング5eの端部と部分的に接合して接合部6を設けて医療用コイル構造体1〜4のいずれかの構造体と成して用いてもよい。
そして医療用コイル構造体1としては、コイル平均径が1.72mmで線径が0.26mmの単条線を巻回成形した前記実施例1Eである。そして又、先端部への回転伝達性を向上させる為には、コイル平均径が1.72mmで線径が0.26mmで18本の多条線から成る医療用コイル構造体2の実施例2Cである。
そして左右の回転ムラを生じない均一な回転性能を得る為には、外層コイル体51が、コイル平均径が0.96mmで線径が0.16mmで16本の巻回成形、又は撚合構成して成り、内層コイル体52が、コイル平均径が0.64mmで線径が0.16mmで11本の外層コイル体51とは逆方向に巻回成形、又は撚合構成した二層構造の医療用コイル構造体3の実施例3Aである。
そしてさらに左右の回転が均一でより高度な回転性能を得る為には、三層構造から成る医療用コイル構造体4の実施例4Aである。
And the drive shaft 5e consists of the structure in any one of the medical coil structures 1-4 of this invention. Further, the coil body 5 of each of the embodiments 1A to 1E or the like is partially joined to the end portion of the housing 5e by using the joining member 7 to provide the joint portion 6, and any of the medical coil structures 1 to 4. These structures may be used.
The medical coil structure 1 is Example 1E in which a single wire having an average coil diameter of 1.72 mm and a wire diameter of 0.26 mm is wound and formed. In addition, in order to improve the rotation transmission property to the tip portion, Example 2C of the medical coil structure 2 comprising 18 multi-strand wires having an average coil diameter of 1.72 mm and a wire diameter of 0.26 mm. It is.
And in order to obtain uniform rotation performance without causing left and right rotation unevenness, the outer layer coil body 51 has a coil average diameter of 0.96 mm, a wire diameter of 0.16 mm, and 16 winding forming or twisting configurations. The inner layer coil body 52 has a two-layer structure in which the coil average diameter is 0.64 mm, the wire diameter is 0.16 mm, and the 11 outer layer coil bodies 51 are wound or twisted in the opposite direction. It is Example 3A of the medical coil structure 3. FIG.
Further, in order to obtain higher rotation performance with uniform left and right rotation, Example 4A of the medical coil structure 4 having a three-layer structure is shown.

そして超音波診断医療用カテーテルと光干渉診断医療用カテーテルとの差は、図示(ロ)において、超音波診断医療用カテーテルの先端部が、超音波を送受信する超音波振動子ユニットとして機能する超音波振動子81eが収納、保持されたハウジング8eの構成であるのに対して、光干渉診断医療用カテーテルの先端部は、低干渉光を照射、受光する光プローブとして機能するプリズム、又はミラー(図示せず)を収納、保持されたハウジングとの差であり、他の構成は超音波診断医療用カテーテルと同様である。
つまり、可とう性管体の手元側は、診断装置の操作制御装置と信号線で連結されて駆動シャフトコネクタから成るコネクタを備え、先端側は、中空管体のカテーテルシースから成り、前記カテーテルシース内に、先端部が断層画像を描出する機器を収納、保持するハウジングから成り、手元側は前記コネクタまで延びてコイル状に形成された駆動シャフトを備え、前記駆動シャフトの回転により体腔内組織画像を描出する診断医療用カテーテルにおいて、前記駆動シャフトが、請求項1〜6のいずれか一つに記載の医療用コイル構造体を用いて成り、又は前記接合部材を用いて前記ハウジング、又は前記駆動シャフトコネクタ部に部分的に接合した接合部を有する請求項1〜6のいずれか一つに記載の医療用コイル構造体を形成して成ることを特徴とする診断医療用カテーテルであって、断層画像を描出する機器を収納、保持したハウジングが超音波を送受信するユニットとして機能する超音波振動子が収納、保持されたハウジングから成る場合は、超音波診断医療用カテーテルであり、又低干渉光を照射、受光する光プローブとして機能するプリズム、又はミラーを収納、保持されたハウジングから成る場合は、光干渉診断医療用カテーテルである。
The difference between the ultrasonic diagnostic medical catheter and the optical interference diagnostic medical catheter is shown in FIG. 2B in which the tip of the ultrasonic diagnostic medical catheter functions as an ultrasonic transducer unit that transmits and receives ultrasonic waves. In contrast to the configuration of the housing 8e in which the acoustic wave oscillator 81e is housed and held, the distal end portion of the optical interference diagnostic medical catheter is a prism or mirror that functions as an optical probe that emits and receives low interference light ( This is the difference from the housing that houses and holds the other (not shown), and other configurations are the same as those of the ultrasonic diagnostic medical catheter.
That is, the proximal side of the flexible tube body is provided with a connector comprising a drive shaft connector connected to the operation control device of the diagnostic device, and the distal end side comprises a catheter sheath of a hollow tube body, and the catheter The sheath comprises a housing for storing and holding a device for drawing a tomographic image at the distal end, and the proximal side is provided with a drive shaft formed in a coil shape extending to the connector. In a diagnostic medical catheter for rendering an image, the drive shaft is formed using the medical coil structure according to any one of claims 1 to 6, or the housing or The medical coil structure according to any one of claims 1 to 6, wherein the medical coil structure has a joint part that is partly joined to the drive shaft connector part. A diagnostic medical catheter characterized by comprising a housing that holds and holds a device that renders tomographic images, and the housing that holds and holds an ultrasonic transducer that functions as a unit that transmits and receives ultrasound. In the case of a catheter for ultrasonic diagnostic medical use, or a housing that houses and holds a prism or mirror that functions as an optical probe for irradiating and receiving low interference light, it is an optical diagnostic medical catheter.

そして次に、前記医療用コイル構造体1〜4において、前記診断医療用カテーテル103、104を、屈曲状態においても手元側から先端側への回転伝達性の高い、回転ムラの発生しない医療用コイル構造体について説明する。
図10は、本発明の医療用コイル構造体の捻回装置10を示し、又図11は、前記各実施例のコイル体5を製造する為の1次から3次成形体の工程図を示し、芯線17の外周部に前記金属線を複数本用いてワイヤロープの撚り線機でロープ状に撚合構成した後、所定長に切断した1次成形体16aの一端を捻回装置10の回転作動チェック11に固定セットし、他端を前記1次成形体16aの長手方向にスライド自在にして、所定重量の静荷重ウエイト13を吊設したスライド型固定チェック12間に、前記1次成形体16aに引張力を加えた状態のまま固定する。そして回転作動チャック11とスライド型固定チャック12は電流発生装置14より導通線15で結ばれて、前記1次成形体16aの各金属素線へ電気抵抗加熱による熱処理可能な状態に設定する。
Next, in the medical coil structures 1 to 4, the diagnostic medical catheters 103 and 104 are medical coils that have high rotational transmission from the proximal side to the distal end side even in a bent state and do not cause rotational unevenness. The structure will be described.
FIG. 10 shows a medical coil structure twisting apparatus 10 according to the present invention, and FIG. 11 shows a process diagram of primary to tertiary molded bodies for manufacturing the coil body 5 of each of the above embodiments. Rotating the twisting device 10 at one end of the primary molded body 16a cut into a predetermined length after a plurality of metal wires are used on the outer periphery of the core wire 17 and twisted in a rope shape with a wire rope twisting machine. The primary molded body is fixedly set to the operation check 11 and the other end is slidable in the longitudinal direction of the primary molded body 16a, and a static load weight 13 having a predetermined weight is suspended between the slide type fixed checks 12. It fixes with the state which applied the tensile force to 16a. Then, the rotary operation chuck 11 and the slide type fixed chuck 12 are connected to each other by a conductive wire 15 from the current generator 14 so that each metal wire of the primary molded body 16a can be heat-treated by electric resistance heating.

そして後述する所定量の静荷重ウエイト13を吊設して前記1次成形体16aに引張力を加えた状態のまま回転作動チャック11を前記1次成形体16aの撚合方向と同一方向へ(図11、図示(イ)符号a)20回/mから200回/m、好ましくは25回/mから180回/m、より好ましくは30回/mから150回/m捻回加工を行う。その後撚合方向と逆方向へ前記捻回加工の10%から30%、より好ましくは15%から25%、より望ましくは20%逆捻回(図11、図示(イ)符号b)させることが最も望ましい形態である。   Then, a static load weight 13 of a predetermined amount to be described later is hung and the rotary chuck 11 is moved in the same direction as the twisting direction of the primary molded body 16a in a state where a tensile force is applied to the primary molded body 16a ( In FIG. 11, (a) symbol a) 20 times / m to 200 times / m, preferably 25 times / m to 180 times / m, more preferably 30 times / m to 150 times / m. Thereafter, 10% to 30%, more preferably 15% to 25%, and more preferably 20% of the twisting process in the direction opposite to the twisting direction (20 b in FIG. 11, (b) in the figure). This is the most desirable form.

そして1次成形体16aの撚合方向と同一の捻回加工の捻回数を前記範囲としたのは、前記範囲内であれば後述する静荷重ウエイト13の設定範囲と合致する条件において、回転ムラを発生しない高度の回転伝達性を有する医療用コイル構造体を得るからである。
そして撚合方向と同一方向の捻回加工のみでもよいが、前記逆捻回を加えることが最も望ましい形態としたのは、1次成形体16aの撚合構成した金属素線の隣接線との局部的に発生した圧縮応力を均質化させて高度の回転伝達性の高い医療用コイル構造体を得る為である。
The number of twists of the same twisting process as the twisting direction of the primary molded body 16a is set as the above range, and if it is within the above range, rotation unevenness is achieved under the condition that matches the setting range of the static load weight 13 described later. This is because a medical coil structure having a high degree of rotational transmission that does not generate the problem is obtained.
And although only twisting in the same direction as the twisting direction may be used, it is most preferable to apply the reverse twisting with the adjacent wire of the metal strand formed by twisting the primary molded body 16a. This is because the compressive stress generated locally is homogenized to obtain a medical coil structure with a high degree of rotational transmission.

そしてその後、前記捻回加工と同時、又は捻回加工中、又は捻回加工後に180℃から495℃の温度範囲、又は1次成形体16aの金属素線がMoを含むオーステナイト系ステンレス鋼線のときには180℃から525℃の温度範囲で電気抵抗加熱処理を施す。
ここで捻回加工と同時、又は捻回加工中としたのは、前記捻回加工の捻回時に金属素線の断線発生を抑制する効果が高いからであり、特に金属素線の総減面率が90%を超えて94%から99.5%の高い引張破断強度を有する場合に好適であり、いずれを選択するかは要求される医療用コイル構造体の金属素線の引張破断強度特性等により任意選択する。
And after that, during the twisting process, during the twisting process or after the twisting process, the temperature range of 180 ° C. to 495 ° C., or the metal strand of the primary molded body 16a of the austenitic stainless steel wire containing Mo Sometimes, an electrical resistance heating process is performed in a temperature range of 180 ° C. to 525 ° C.
The reason why the twisting process is performed simultaneously with or during the twisting process is that the effect of suppressing the occurrence of disconnection of the metal element wire is high at the time of the twisting process. It is suitable when the rate exceeds 90% and has a high tensile breaking strength of 94% to 99.5%, and which one is selected depends on the required tensile breaking strength characteristics of the metal wire of the medical coil structure It is arbitrarily selected by etc.

そして次に、1次成形体16aの芯材17を抜き出して(図11、図示(ロ))2次成形体16bのコイル体5とした後、前記実施例と同様に接合部材7を用いて部分的に接合部6を有する医療用コイル構造体とする。かかる場合において、芯材17を抜き出した後、溶融温度が180℃から420℃の溶融温度をもつポリウレタン樹脂、ポリアミド樹脂、ポリイミド樹脂、ふっ素樹脂等の合成樹脂で樹脂被膜19成形した小ピース体18を2次成形体16b内へ挿入(図11、図示(ハ))し、前記接合部材7を溶融させて接合部6を形成してもよい。樹脂被膜19を形成した小ピース体18を用いる理由は、接合部6での接合部材7と芯材との離型性が向上し、かつ3次成形体16cの内側表面が平滑に形成できるからである。
そして、又接合部7での接合方法は、棒状の接合部材7を2次成形体16bの外周部の長手方向に置いた後、レーザー光等を照射させて長手方向に狭小範囲の接合部6を形成した後、小ピース体18を抜き出して医療用コイル構造体としてもよい。
そして又、前記小ピース体18と同様に1次成形体16aの芯材17の外周部に樹脂被膜を形成した樹脂被膜付きの芯材を用いて、その芯材の外周部に巻回成形、又は撚合構成した1次成形体16aを捻回加工と電気抵抗加熱処理後に前記接合部材7を用いて部分的に接合部6を形成した後、前記樹脂被膜付き芯材を抜き出す工程としてもよい。
Then, after the core material 17 of the primary molded body 16a is extracted (FIG. 11, illustrated (B)) to form the coil body 5 of the secondary molded body 16b, the joining member 7 is used in the same manner as in the above embodiment. A medical coil structure partially having a joint 6 is provided. In such a case, after the core material 17 is extracted, the small piece body 18 formed by molding the resin film 19 with a synthetic resin such as polyurethane resin, polyamide resin, polyimide resin, fluorine resin having a melting temperature of 180 ° C. to 420 ° C. May be inserted into the secondary molded body 16 b (FIG. 11, illustrated (C)), and the joint member 7 may be melted to form the joint portion 6. The reason for using the small piece body 18 on which the resin coating 19 is formed is that the releasability between the joining member 7 and the core material at the joining portion 6 is improved, and the inner surface of the tertiary molded body 16c can be formed smoothly. It is.
In addition, the joining method in the joining portion 7 is that the rod-like joining member 7 is placed in the longitudinal direction of the outer peripheral portion of the secondary molded body 16b and then irradiated with a laser beam or the like to join the joining portion 6 in a narrow range in the longitudinal direction. After forming, the small piece body 18 may be extracted to form a medical coil structure.
In addition, similarly to the small piece body 18, using a core material with a resin coating formed on the outer periphery of the core material 17 of the primary molded body 16a, the outer periphery of the core material is wound and formed. Alternatively, the twisted primary molded body 16a may be formed by partially forming the joint portion 6 using the joining member 7 after twisting and electrical resistance heating, and then extracting the core material with the resin coating. .

そして次に、図12(イ)は、本発明の医療用コイル構造体を図示(ハ)に示す取り回し状態において回転性能試験結果を示す図で、横軸に手元側を90度毎回転したときの回転数と、縦軸に先端側追従回転角度を示し、符号bは手元側90度毎の回転に対する応答性が遅く、かつ回転ムラが多く発生している場合を示し、又図示aは、これとは逆に応答性が早く、かつ回転ムラの発生が少ない場合を示す。尚、ここでいう回転ムラとは、例えばガイドパイプ内(図示(ハ))で医療用コイル構造体を回転させると屈曲部での抵抗により回転し難くなって回転による捩り溜まりがコイル体に発生し、そしてさらに手元側を回転させるとこの捩り溜まりが一時に開放されて先端側の先端側追従回転角度が手元側の回転角度(90度)を大きく越えて回転し、一定の均一な回転性能が得られない現象のことをいう。そして図示(ロ)は、横軸に後述する捻回加工前の芯材17を含む医療用コイル構造体の引張破断力P(kgf)に対する静荷重ウエイトW(kgw)の割合の静荷重比(%)を示し、又静荷重比(%)はW/P×100の関係があり、そして縦軸に応答比を示したものである。尚、ここでいう応答比とは、先端側追従回転角度が90度のときの手元側の総回転角度を前記先端側追従回転角度の90度で除した値のことをいい、例えば、図示符号aのとき、手元側の総回転角度は3×90度を示して応答比は3(3×90÷90)となり、応答比が1に近づくほど応答性が高く、回転追従性(又は回転伝達性)が高いこととなる。   Next, FIG. 12 (a) is a diagram showing the results of the rotational performance test in the handling state shown in FIG. 12 (c) of the medical coil structure of the present invention, and when the proximal side is rotated every 90 degrees on the horizontal axis. , The vertical axis indicates the tip side following rotation angle, the symbol b indicates a case where the response to the rotation every 90 degrees on the hand side is slow and a lot of rotation unevenness occurs, On the contrary, the case where the response is fast and the occurrence of rotation unevenness is small is shown. The rotation unevenness referred to here is, for example, that when the medical coil structure is rotated in the guide pipe (illustrated (C)), it becomes difficult to rotate due to the resistance at the bent portion, and a torsion pool due to the rotation occurs in the coil body. When the hand side is further rotated, the twist pool is released at a time, and the tip side follow-up rotation angle greatly exceeds the hand side rotation angle (90 degrees), so that a uniform and uniform rotation performance is achieved. This is a phenomenon that cannot be obtained. And (b) shows the static load ratio (ratio of the static load weight W (kgw) to the tensile breaking force P (kgf) of the medical coil structure including the core material 17 before twisting to be described later on the horizontal axis ( %), The static load ratio (%) has a relationship of W / P × 100, and the vertical axis shows the response ratio. Here, the response ratio means a value obtained by dividing the total rotation angle on the hand side when the tip side following rotation angle is 90 degrees by 90 degrees of the tip side following rotation angle. When a, the total rotation angle on the hand side is 3 × 90 degrees and the response ratio is 3 (3 × 90 ÷ 90). The closer the response ratio is to 1, the higher the response and the rotation follow-up (or rotation transmission) Property) is high.

図示(ロ)によれば、静荷重比の値により応答性が変化することが判明し、この応答性が高いときの静荷重比は3%から40%で、好ましくは5%から35%で、最も好ましくは7%から30%である。
この理由は、静荷重比が前記下限を下回れば、金属素線の撚合時に金属素線個々に生じている引張力、せん断応力と隣接線の接触による圧縮応力とが複雑に生じて長手方向に曲がりくねる「うねり」を前記捻回加工と低温加熱処理によって解消することは困難となり、又静荷重比が前記上限を上回れば過大な引張力を生じて隣接線相互の接触による圧縮応力の高い部位と低い部位の存在が顕著となり、又隣接線間の隙間が大なる部分と小なる部分とがランダムに生じて、回転追従性を低下させ、つまり応答性を低くさせるもの、と考えることができるからである。そして静荷重比の選択は、捻回加工と低温熱処理の工法において重要項目である。
According to the figure (b), it is found that the responsiveness changes depending on the value of the static load ratio, and the static load ratio when the responsiveness is high is 3% to 40%, preferably 5% to 35%. Most preferably, it is 7% to 30%.
The reason for this is that if the static load ratio falls below the lower limit, the tensile force, shear stress, and compressive stress caused by the contact of adjacent wires are generated in a complicated manner in the longitudinal direction when the metal wires are twisted. It is difficult to eliminate the “undulation” that twists and turns by the twisting process and the low-temperature heat treatment, and if the static load ratio exceeds the upper limit, an excessive tensile force is generated and the compressive stress due to the contact between adjacent lines is high. It can be considered that the existence of the part and the low part becomes remarkable, and the part where the gap between the adjacent lines is large and the part is randomly generated to reduce the rotational follow-up, that is, to reduce the responsiveness. Because it can. The selection of the static load ratio is an important item in the twisting and low temperature heat treatment methods.

そして補足すれば、本発明の捻回数の範囲(20回/mから200回/m)と静荷重比の範囲(引張破断力の3%から40%)との関係は、静荷重比の範囲が3%から10%の低荷重域のAゾーン(図示符号A)においては、100回/mから200回/m程度の前記捻回加工数の上限範囲が望ましく、又静荷重比の範囲が30%から40%の高荷重域のBゾーン(図示符号B)においては、20回/mから100回/m程度前記捻回加工数の下限範囲が望ましい。いずれを選択するかは医療用コイル構造体に要求される特性により任意選択する。そして前記工法に基づく二次成形体16b、又は3次成形体16cを二層構造、三層構造とすることにより、前記医療用コイル構造体3、4を得ることとができる。尚、二層、三層構造のコイル体は、二層構造、又は三層構造とした後に接合部材7を用いて部分的に接合して接合部6を形成することが望ましい形態である。   In addition, the relationship between the range of the number of twists of the present invention (from 20 times / m to 200 times / m) and the range of the static load ratio (from 3% to 40% of the tensile breaking force) is the range of the static load ratio. In the A zone (indicated by the reference symbol A) in the low load range of 3% to 10%, the upper limit range of the number of twisting operations is preferably about 100 times / m to 200 times / m, and the range of the static load ratio is In the B zone (reference symbol B) in the high load region of 30% to 40%, the lower limit range of the number of twisting processes is preferably about 20 times / m to 100 times / m. Which is selected is arbitrarily selected according to the characteristics required for the medical coil structure. And the said medical coil structures 3 and 4 can be obtained by making the secondary molded object 16b or the tertiary molded object 16c based on the said construction method into a 2 layer structure and a 3 layer structure. In addition, it is desirable that the coil body having a two-layer or three-layer structure is formed into a two-layer structure or a three-layer structure and then partially joined using the joining member 7 to form the joint portion 6.

そしてさらに補足すれば、特許文献3には、中空撚線コイル体の捻回工法が記載されているが、前記静荷重比と回転追従性との関係については相反する内容記載があって解析不充分であり、又捻回加工の際の中空撚線コイル体の捻回方向の開示もなく、これに対して本発明の捻回加工工法はこの点についても解明したものであり、そして又強加工の伸線加工した金属素線を用いて接合部材の溶融熱を利用して引張破断強度を向上させる本発明の技術思想については、特許文献3には記載されていない。   In addition, Patent Document 3 describes a twisting method for a hollow stranded wire coil body, but there is a conflicting description regarding the relationship between the static load ratio and the rotation followability, and analysis is not possible. This is sufficient, and there is no disclosure of the twisting direction of the hollow stranded wire coil body during twisting. On the other hand, the twisting method of the present invention has also clarified this point and is also strong. Patent Document 3 does not describe the technical idea of the present invention that improves the tensile strength at break by using the heat of fusion of a joining member using a drawn metal wire.

そして前記コイル体の工法は、一定の静荷重ウエイトで引張力を加えた状態で、所定量捻回加工をすることにより回転追従性等を向上させる最も好適な方法を述べたが、芯金の外周に巻回成形して芯金を内蔵したコイル体、又は芯材の外周に撚合構成した芯材を内蔵したコイル体、若しくは前記芯金、又は芯材を抜き出した中空状のコイル体に180℃から525℃の低温加熱処理を施しても、前記コイル体の金属素線の引張破断強度を向上させながら、かつ回転追従性等を向上させることができる。
この理由は、強加工の伸線加工したオーステナイト系ステンレス鋼線の前記温度と引張破断強度の特質(図3)から、及び巻回成形、又は撚合構成した各金属素線の局部的に発生した残留応力を平均化できるからである。
The coil body construction method has been described as the most suitable method for improving the rotational follow-up property by twisting a predetermined amount while applying a tensile force with a constant static load weight. To a coil body that is wound around the outer periphery and contains a core metal, or a coil body that contains a core material that is twisted around the outer periphery of the core material, or a hollow coil body that is extracted from the core metal or core material Even if a low-temperature heat treatment at 180 ° C. to 525 ° C. is performed, it is possible to improve the rotational followability and the like while improving the tensile breaking strength of the metal wire of the coil body.
This is due to the above-mentioned temperature and tensile fracture strength characteristics (Fig. 3) of the austenitic stainless steel wire that has been subjected to strong wire drawing, and locally in each metal wire that has been wound or twisted. This is because it is possible to average the residual stress.

そして本発明の医療用コイル構造体の製造方法は、素線直径が0.014mmから0.300mmの金属素線を用いてコイル体とした後、接合部材を用いて部分的に接合して接合部を設けた医療用コイル構造体の製造方法において、
前記金属素線は、オーステナイト系ステンレス鋼線を用いて固溶化処理した後に総減面率が80%から99.5%で引張破断強度を200kgf/mm2 以上450kgf/mm2 以下とする伸線工程と、又は伸線工程と低温加熱処理工程から成り、
芯材の外周に前記金属素線を撚合構成してロープ体とする撚合工程と、
前記ロープ体に電流導通させて電気抵抗加熱による加熱処理可能状態に設定する工程と、前記ロープ体に一端に前記ロープ体の引張破断力の3%から40%の静荷重ウエイトを吊設して引張力を加える工程と、
引張力を加えた状態で前記ロープ体の他端を、前記ロープ体の撚合方向と同一方向へ20回/mから200回/mの捻回加工工程と、
その後、前記捻回加工の捻回数の10%から30%逆方向へする逆捻回加工工程と、
前記捻回工程と同時、又は捻回加工中、又は捻回加工後に電気抵抗加熱による熱処理工程と、
前記ロープ体の芯材を抜き出して中空状のコイル体とする芯抜きコイル体工程とした後に溶融温度が180℃から495℃の前記接合部材を用いて、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには溶融温度が180℃から525℃の前記接合部材を用いて部分的に接合する接合工程から成ることを特徴、又は
前記電気抵抗加熱による熱処理工程の後に溶融温度が180℃から495℃の接合部材を用いて、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには、溶融温度が180℃から525℃の前記接合部材を用いて部分的に接合する接合工工程とした後に前記ロープ体の芯材を抜き出して中空状の医療用コイル構造体とする芯抜きコイル体工程から成ることを特徴とする医療用コイル構造体の製造方法である。
この製造方法により、高度の回転伝達性、回転追従性を有する医療用コイル構造体を得ることができ、特に回転性能が要求される医療用クリップ装置等の医療用コイル構造体をはじめとして回転ムラのない高度の回転伝達性が要求される駆動シャフトから成る超音波診断、又は光干渉診断医療用カテーテルには好適用途例である。
And the manufacturing method of the medical coil structure of this invention makes it a coil body using the metal strand with an element wire diameter of 0.014 mm to 0.300 mm, Then, it joins partially using a joining member, and is joined. In the method for manufacturing a medical coil structure provided with a portion,
The metal strands, drawing the whole cross sectional reduction ratio after processing solid solution is to the tensile strength at break 99.5% to 80% 200kgf / mm 2 or more 450 kgf / mm 2 or less by using the austenitic stainless steel wire Consisting of a process, or a wire drawing process and a low-temperature heat treatment process,
A twisting step in which the metal element wire is twisted on the outer periphery of the core material to form a rope body;
A step of conducting current through the rope body and setting it to a heat-treatable state by electric resistance heating; and a static load weight of 3% to 40% of the tensile breaking force of the rope body is suspended at one end of the rope body. Applying a tensile force;
A twisting process of 20 times / m to 200 times / m in the same direction as the twisting direction of the rope body, with the other end of the rope body applied with a tensile force;
Thereafter, a reverse twisting process of turning from 10% to 30% of the number of twists of the twisting process,
Simultaneously with the twisting process, during the twisting process, or after the twisting process, a heat treatment process by electrical resistance heating,
Using the joining member having a melting temperature of 180 ° C. to 495 ° C. after the core material of the rope body is extracted to form a hollow coil body, or austenite in which the metal strand contains Mo A stainless steel wire comprising a joining step of partially joining using the joining member having a melting temperature of 180 ° C. to 525 ° C., or a melting temperature of 180 ° C. after the heat treatment step by the electric resistance heating A bonding step of partially bonding using a bonding member having a melting temperature of 180 ° C. to 525 ° C. using a bonding member of 495 ° C. or when the metal strand is an austenitic stainless steel wire containing Mo; After that, the medical coil structure comprises a cored coil body process in which the core material of the rope body is extracted to form a hollow medical coil structure. It is a manufacturing method of a structure.
With this manufacturing method, a medical coil structure having a high degree of rotation transmission and rotation followability can be obtained. In particular, rotation unevenness including medical coil structures such as medical clip devices that require rotation performance is obtained. This is a preferred application example for an ultrasonic diagnostic or optical interference diagnostic medical catheter composed of a drive shaft that requires a high degree of rotational transmission without any interference.

そして又、前記医療用コイル構造体の製造方法の前記芯抜きコイル体工程において、前記芯材が、溶融温度が180℃から420℃の樹脂被膜を外周部に形成した芯材から成ることを特徴とし、又、前記芯抜きコイル体工程の後に、溶融温度が180℃から420℃の樹脂被膜を外周部に形成した芯材を前記中空状のコイル体内へ挿入した後、前記接合部材を用いて部分的に接合する工程と、その後、前記樹脂被膜を形成した芯材を抜き出す工程から成ることを特徴とする医療用コイル構造体の製造方法である。
この製造方法により、接合部6を形成する際の接合部材7の芯材17との離型性を高め、接合部6の内周面を平滑にして均等内径から成る医療用コイル構造体を製造することができる。
Further, in the cored coil body step of the method for manufacturing the medical coil structure, the core material is formed of a core material in which a resin film having a melting temperature of 180 ° C. to 420 ° C. is formed on an outer peripheral portion. In addition, after the cored coil body step, a core material having a resin film having a melting temperature of 180 ° C. to 420 ° C. formed on the outer peripheral portion is inserted into the hollow coil body, and then the joining member is used. A method for manufacturing a medical coil structure, comprising: a step of partially bonding, and a step of extracting a core material on which the resin film is formed.
By this manufacturing method, the releasability from the core member 17 of the joining member 7 when forming the joint portion 6 is enhanced, and the medical coil structure having a uniform inner diameter is produced by smoothing the inner peripheral surface of the joint portion 6. can do.

[発明の効果]
以上説明のとおり、本発明の医療用コイル構造体、及びそれを用いて成る医療用処置具等は、強加工の伸線加工した引張破断強度の高い金属素線を複数本用いて撚合構成し、引張破断強度の高い金属素線から成るコイル体を備え、そして強加工伸線により引張破断強度が向上する温度範囲と一致させた溶融温度範囲をもつ接合部材である共晶合金の溶融熱を利用して、前記コイル体の引張破断強度をより向上させながら、接合部、及び接続口金等との強固な接合を可能とするものである。
[The invention's effect]
As described above, the medical coil structure of the present invention, and the medical treatment instrument using the medical coil structure, are formed by twisting using a plurality of metal strands having high tensile strength at the time of strong wire drawing. The heat of fusion of the eutectic alloy, which is a joint member having a coil body made of a metal wire having a high tensile breaking strength and having a melting temperature range matched with a temperature range in which the tensile breaking strength is improved by strong work drawing By utilizing the above, it is possible to firmly join the joint portion, the connection base, and the like while further improving the tensile breaking strength of the coil body.

そして又、本発明の医療用コイル構造体を駆動シャフトとして用いて成る診断医療用カテーテルは、高速回転においても画像診断装置の良質な断層画像を提供することができ、迅速治療に大きく寄与することができる。以上の諸効果がある。   In addition, the diagnostic medical catheter using the medical coil structure of the present invention as a drive shaft can provide a high-quality tomographic image of the diagnostic imaging apparatus even at high speed rotation, and greatly contributes to rapid treatment. Can do. There are the above various effects.

1 医療用コイル構造体(実施例1A〜1E)
2 医療用コイル構造体(実施例2A〜2C)
3 医療用コイル構造体(実施例3A)
4 医療用コイル構造体(実施例4A)
5 コイル体
6 接合部
7 接合部材
8 接続口金
100 医療用ガイドワイヤ
101 医療用内視鏡
102A 医療用鉗子(医療用処置具)
102B 医療用クリップ装置(医療用処置具)
103 超音波診断医療用カテーテル
104 光干渉診断医療用カテーテル
1 Coil structure for medical use (Examples 1A to 1E)
2 Coil structure for medical use (Examples 2A to 2C)
3 Coil structure for medical use (Example 3A)
4 Coil structure for medical use (Example 4A)
DESCRIPTION OF SYMBOLS 5 Coil body 6 Junction part 7 Joining member 8 Connection cap 100 Medical guide wire 101 Medical endoscope 102A Medical forceps (medical treatment tool)
102B Medical clip device (medical treatment tool)
103 Ultrasonic diagnostic medical catheter 104 Optical interference diagnostic medical catheter

Claims (13)

素線直径が0.014mmから0.300mmの金属素線を用いてコイル体に成形した後、接合部材を用いて部分的に接合した接合部を設けた医療用コイル構造体において、
前記コイル体の金属素線は、オーステナイト系ステンレス鋼線を用いて固溶化処理した後に総減面率が80%から99.5%の伸線加工を行い、引張破断強度を200kgf/mm2 以上450kgf/mm2 以下とし、
前記接合部材は、180℃から495℃の溶融温度をもつ共晶合金を用い、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには、180℃から525℃の溶融温度をもつ共晶合金を用い、
前記部分的に接合した接合部が、前記コイル体の少なくとも一方の端部の長手方向に前記コイル体外径の1/20倍から30倍の幅で隣接線同士を接合したことを特徴とする医療用コイル構造体。
In a medical coil structure provided with a joint portion formed by forming a coil body using a metal strand having a strand diameter of 0.014 mm to 0.300 mm and then partially joining using a joining member,
The metal element wire of the coil body is subjected to a solid solution treatment using an austenitic stainless steel wire, followed by wire drawing with a total area reduction of 80% to 99.5%, and a tensile breaking strength of 200 kgf / mm 2 or more. 450 kgf / mm 2 or less,
The joining member uses a eutectic alloy having a melting temperature of 180 ° C. to 495 ° C., or an eutectic having a melting temperature of 180 ° C. to 525 ° C. when the metal strand is an austenitic stainless steel wire containing Mo. Using alloys,
The medical device characterized in that the partially joined joint joins adjacent lines with a width of 1/20 to 30 times the outer diameter of the coil body in the longitudinal direction of at least one end of the coil body. Coil structure.
請求項1に記載の医療用コイル体構造において、
前記コイル体の金属素線は、伸線と伸線後に180℃から495℃の低温加熱処理を設けて、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには180℃から525℃の低温加熱処理を設けて、前記伸線と前記低温加熱処理を1セットとして少なくとも1セット以上繰り返した後に最終伸線を設けて、前記最終伸線までの総減面率を90%から99.5%としたことを特徴とする医療用コイル構造体。
The medical coil body structure according to claim 1,
The metal wire of the coil body is provided with a low temperature heat treatment of 180 ° C. to 495 ° C. after drawing and drawing, or when the metal wire is an austenitic stainless steel wire containing Mo, 180 ° C. to 525 ° C. A low temperature heat treatment is provided, and the wire drawing and the low temperature heat treatment are repeated as at least one set, and then the final wire drawing is provided, and the total area reduction ratio until the final wire drawing is 90% to 99.5. A coil structure for medical use characterized by
前記医療用コイル構造体のコイル体が、
前記金属素線を2本から30本用いて芯金の外周に巻回成形した後に前記芯金を抜き取って中空状の多条線から成るコイル体、又は芯材の外周にロープを撚るようにして撚合構成してロープ体とした後に前記芯材を抜き取って中空状の多条線から成るコイル体であることを特徴とする請求項1〜2のいずれか一つに記載の医療用コイル構造体。
The coil body of the medical coil structure is
Using 2 to 30 metal strands, wound around the outer periphery of the core bar, then pulling out the core bar and twisting a rope around the outer periphery of the hollow core or a core material The medical device according to any one of claims 1 to 2, which is a coil body made of a hollow multi-filament after the core material is extracted after being twisted to form a rope body. Coil structure.
前記医療用コイル構造体のコイル体が、
内層と、前記内層の外周に密着して外層を設け、前記内層の巻回方向、又は撚合方向とが異なる、前記内層と前記外層の二層構造から成るコイル体、
又は中層と、前記中層の内周、及び外周に密着して内層と外層を設け、前記中層の巻回方向、又は撚合方向と前記内層及び前記外層の巻回方向、又は撚合方向とが異なる、前記内層と前記中層と前記外層の三層構造から成るコイル体であることを特徴とする請求項1〜3のいずれか一つに記載の医療用コイル構造体。
The coil body of the medical coil structure is
A coil body comprising a two-layer structure of the inner layer and the outer layer, wherein the inner layer and the outer layer are provided in close contact with the outer periphery of the inner layer, and the winding direction of the inner layer or the twisting direction is different;
Alternatively, the inner layer and the inner and outer peripheries of the middle layer are provided in close contact with the inner layer and the outer layer, and the winding direction of the middle layer, or the twisting direction, and the winding direction of the inner layer and the outer layer, or the twisting direction are The medical coil structure according to any one of claims 1 to 3, which is a coil body having a three-layer structure including different inner layers, middle layers, and outer layers.
前記医療用コイル構造体のコイル体が、180℃から525℃の低温加熱処理したコイル体であることを特徴とする請求項1〜4のいずれか一つに記載の医療用コイル構造体。   5. The medical coil structure according to claim 1, wherein the coil body of the medical coil structure is a coil body that has been heat-treated at a low temperature of 180 ° C. to 525 ° C. 6. 前記医療用コイル構造体のコイル体が、
芯材の外周に前記金属素線を撚合構成してロープ体とし、
前記ロープ体に電流を導通させて電気抵抗加熱による加熱処理可能状態に設定し、
前記ロープ体の一端に前記ロープ体の引張破断力の3%から40%の引張力を加えた状態で前記ロープ体の他端を、前記ロープ体の撚合方向と同一方向へ20回/mから200回/mの捻回加工をした後に、
前記捻回加工の10%から30%逆方向へ逆捻回加工を行い、かつ前記捻回加工と同時、又は捻回加工中、又は捻回加工後に180℃から525℃で電気抵抗加熱による熱処理を行い、その後前記ロープ体の芯材を抜き出して中空状の多条線から成るコイル体であることを特徴とする請求項1〜4のいずれか一つに記載の医療用コイル構造体。
The coil body of the medical coil structure is
A rope body is formed by twisting the metal strands around the outer periphery of the core material,
Set the heat treatment state by electric resistance heating by conducting current to the rope body,
The other end of the rope body is applied 20 times / m in the same direction as the twisting direction of the rope body with a tensile force of 3% to 40% of the tensile breaking force of the rope body applied to one end of the rope body. After twisting 200 times / m from
Heat treatment is performed by electric resistance heating at 180 ° C. to 525 ° C. at the same time as the twisting process, during the twisting process, or after the twisting process. 5. The medical coil structure according to any one of claims 1 to 4, wherein the coil body is a coil body made of a hollow multi-filament by extracting the core material of the rope body.
素線直径が0.014mmから0.300mmの金属素線を用いてコイル体とした後、接合部材を用いて部分的に接合して接合部を設けた医療用コイル構造体の製造方法において、
前記金属素線は、オーステナイト系ステンレス鋼線を用いて固溶化処理した後に総減面率が80%から99.5%で引張破断強度を200kgf/mm2 以上450kgf/mm2 以下とする伸線工程と、又は伸線工程と低温加熱処理工程から成り、
芯材の外周に前記金属素線を撚合構成してロープ体とする撚合工程と、
前記ロープ体に電流導通させて電気抵抗加熱による加熱処理可能状態に設定する工程と、前記ロープ体の一端に前記ロープ体の引張破断力の3%から40%の静荷重ウエイトを吊設して引張力を加える工程と、
引張力を加えた状態で前記ロープ体の他端を、前記ロープ体の撚合方向と同一方向へ20回/mから200回/mの捻回加工工程と、
その後、前記捻回加工の捻回数の10%から30%逆方向へする逆捻回加工工程と、
前記捻回工程と同時、又は捻回加工中、又は捻回加工後に電気抵抗加熱による熱処理工程と、
前記ロープ体の芯材を抜き出して中空状のコイル体とする芯抜きコイル体工程とした後に溶融温度が180℃から495℃の前記接合部材を用いて、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには溶融温度が180℃から525℃の前記接合部材を用いて部分的に接合する接合工程から成ることを特徴、又は
前記電気抵抗加熱による熱処理工程の後に溶融温度が180℃から495℃の接合部材を用いて、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには、溶融温度が180℃から525℃の前記接合部材を用いて部分的に接合する接合工工程とした後に前記ロープ体の芯材を抜き出して中空状の医療用コイル構造体とする芯抜きコイル体工程から成ることを特徴とする医療用コイル構造体の製造方法。
In the manufacturing method of the medical coil structure in which the wire diameter is 0.014 mm to 0.300 mm and the coil body is made into a coil body, and the joint member is partially joined using a joining member to provide a joint portion.
The metal strands, drawing the whole cross sectional reduction ratio after processing solid solution is to the tensile strength at break 99.5% to 80% 200kgf / mm 2 or more 450 kgf / mm 2 or less by using the austenitic stainless steel wire Consisting of a process, or a wire drawing process and a low-temperature heat treatment process,
A twisting step in which the metal element wire is twisted on the outer periphery of the core material to form a rope body;
A step of making the rope body conduct current and setting it to a heat-treatable state by electric resistance heating; and a static load weight of 3% to 40% of the tensile breaking force of the rope body is suspended from one end of the rope body. Applying a tensile force;
A twisting process of 20 times / m to 200 times / m in the same direction as the twisting direction of the rope body, with the other end of the rope body applied with a tensile force;
Thereafter, a reverse twisting process of turning from 10% to 30% of the number of twists of the twisting process,
Simultaneously with the twisting process, during the twisting process, or after the twisting process, a heat treatment process by electrical resistance heating,
Using the joining member having a melting temperature of 180 ° C. to 495 ° C. after the core material of the rope body is extracted to form a hollow coil body, or austenite in which the metal strand contains Mo A stainless steel wire comprising a joining step of partially joining using the joining member having a melting temperature of 180 ° C. to 525 ° C., or a melting temperature of 180 ° C. after the heat treatment step by the electric resistance heating A bonding step of partially bonding using a bonding member having a melting temperature of 180 ° C. to 525 ° C. using a bonding member of 495 ° C. or when the metal strand is an austenitic stainless steel wire containing Mo; After that, the medical coil structure comprises a cored coil body process in which the core material of the rope body is extracted to form a hollow medical coil structure. Manufacturing method of structure.
前記芯抜きコイル体工程において、
前記芯材が、溶融温度が180℃から420℃の樹脂被膜を外周部に形成した芯材から成ることを特徴とする請求項7記載の医療用コイル構造体の製造方法。
In the cored coil body process,
8. The method for manufacturing a medical coil structure according to claim 7, wherein the core material is formed of a core material having a resin film having a melting temperature of 180 ° C. to 420 ° C. formed on the outer peripheral portion.
前記芯抜きコイル体工程の後に、溶融温度が180℃から420℃の樹脂被膜を外周部に形成した芯材を前記中空状のコイル体内へ挿入した後、前記接合部材を用いて部分的に接合する工程と、その後、前記樹脂被膜を形成した芯材を抜き出す工程から成ることを特徴とする請求項7記載の医療用コイル構造体の製造方法。   After the cored coil body step, a core material having a resin film having a melting temperature of 180 ° C. to 420 ° C. formed on the outer peripheral portion is inserted into the hollow coil body, and then partially joined using the joining member. 8. The method for manufacturing a medical coil structure according to claim 7, further comprising: a step of performing, and thereafter a step of extracting the core material on which the resin film is formed. 可とう性シース体の先端側に先端処置部と、手元側に手元操作部を備え、前記可とう性シース体内に、前記先端処置部と前記手元操作部と連結した操作用ロープを貫挿したコイル体を備え、前記先端処置部は、湾曲駒を複数個連結し、先端側の前記湾曲駒と前記操作用ロープとの先端部を連結した湾曲部から成り、前記手元操作部を操作して前記操作用ロープの操作力の伝達作用により、前記湾曲部を湾曲変形させた医療用内視鏡において、
前記可とう性シース体内のコイル体が、請求項1〜6のいずれか一つに記載の医療用コイル構造体を用いて成り、又は前記接合部材を用いて前記コイル体の少なくとも一端と接合する接続口金、又は前記湾曲駒と部分的に接合した接合部を有する請求項1〜6のいずれか一つに記載の医療用コイル構造体を形成して成ることを特徴とする医療用内視鏡。
The flexible sheath body is provided with a distal treatment section on the distal end side and a hand operation section on the hand side, and an operation rope connected to the distal treatment section and the hand operation section is inserted through the flexible sheath body. The distal end treatment portion includes a bending portion that connects a plurality of bending pieces, and connects the bending piece on the distal end side and the distal end portion of the operation rope, and operates the hand operation portion. In the medical endoscope in which the bending portion is bent and deformed by the transmission action of the operation force of the operation rope,
The coil body in the flexible sheath body is formed using the medical coil structure according to any one of claims 1 to 6, or is bonded to at least one end of the coil body using the bonding member. A medical endoscope comprising a medical coil structure according to any one of claims 1 to 6, wherein the medical coil structure is formed to have a joint part or a joint part partially joined to the bending piece. .
コイル体から成る可とう性管体の先端側に先端処置部と、手元側に手元操作部を備え、前記コイル体内に貫挿した操作用ロープを前記先端処置部と手元操作部とに連結し、前記手元操作部を押し、引き、又は回転操作して前記操作用ロープの操作力の伝達作用により、前記先端処置部を動作させる医療用処置具において、
前記可とう性管体のコイル体が、請求項1〜6のいずれか一つに記載の医療用コイル構造体を用いて成り、又は前記接合部材を用いて前記コイル体の少なくとも一端と接合する接続口金と部分的に接合した接合部を有する請求項1〜6のいずれか一つに記載の医療用コイル構造体を形成して成ることを特徴とする医療用処置具。
A flexible tube having a coil body is provided with a distal treatment section on the distal side and a hand operation section on the hand side, and an operation rope inserted through the coil body is connected to the distal treatment section and the hand operation section. In the medical treatment instrument for operating the distal treatment section by transmitting the operation force of the operation rope by pushing, pulling, or rotating the hand operation section,
The coil body of the flexible tubular body is formed using the medical coil structure according to any one of claims 1 to 6, or is joined to at least one end of the coil body using the joining member. A medical treatment instrument comprising the medical coil structure according to any one of claims 1 to 6, which has a joint part that is partially joined to the connection base.
可とう性管体の手元側は、血管内超音波診断装置の操作制御装置と信号線で連結された駆動シャフトコネクタから成るコネクタを備え、先端側は、中空管体のカテーテルシースから成り、前記カテーテルシース内に、先端部が超音波を送受信する振動子として機能する超音波振動子を収納、保持するハウジングから成り、手元側は前記コネクタまで延びてコイル状に形成された駆動シャフトを備え、前記駆動シャフトの回転により体腔内組織画像を描出する超音波診断医療用カテーテルにおいて、
前記駆動シャフトが、請求項1〜6のいずれか一つに記載の医療用コイル構造体を用いて成り、又は前記接合部材を用いて前記ハウジング、又は前記駆動シャフトコネクタに部分的に接合した接合部を有する請求項1〜6のいずれか一つに記載の医療用コイル構造体を形成して成ることを特徴とする超音波診断医療用カテーテル。
The proximal side of the flexible tube is provided with a connector comprising a drive shaft connector connected to the operation control device of the intravascular ultrasonic diagnostic apparatus by a signal line, and the distal end side is constituted by a catheter sheath of a hollow tube, The catheter sheath includes a housing that houses and holds an ultrasonic transducer that functions as a transducer for transmitting and receiving ultrasonic waves, and a proximal side includes a drive shaft that extends to the connector and is formed in a coil shape. In the ultrasonic diagnostic medical catheter that renders a tissue image in the body cavity by rotating the drive shaft,
The said drive shaft is comprised using the medical coil structure as described in any one of Claims 1-6, or the joining partially joined to the said housing or the said drive shaft connector using the said joining member. An ultrasonic diagnostic medical catheter comprising the medical coil structure according to any one of claims 1 to 6 having a portion.
可とう性管体の手元側は、光干渉断層診断装置の操作制御装置と信号線で連結された駆動シャフトコネクタから成るコネクタを備え、先端側は、中空管体のカテーテルシースから成り、前記カテーテルシース内に、先端部が低干渉光を照射、受光する光プローブとして機能するプリズム、又はミラーを収納、保持するハウジングから成り、手元側は前記コネクタまで延びてコイル状に形成された駆動シャフトを備え、前記駆動シャフトの回転により体腔内組織画像を描出する光干渉診断医療用カテーテルにおいて、
前記駆動シャフトが、請求項1〜6のいずれか一つに記載の医療用コイル構造体を用いて成り、又は前記接合部材を用いて前記ハウジング、又は前記駆動シャフトコネクタに部分的に接合した接合部を有する請求項1〜6のいずれか一つに記載の医療用コイル構造体を形成して成ることを特徴とする光干渉診断医療用カテーテル。
The proximal side of the flexible tube is provided with a connector consisting of a drive shaft connector connected to the operation control device of the optical coherence tomography diagnostic apparatus by a signal line, and the distal end side is composed of a catheter sheath of a hollow tube, The catheter shaft has a housing that houses and holds a prism or mirror that functions as an optical probe for irradiating and receiving low-interference light within the catheter sheath, and the drive shaft is formed in a coil shape with the hand side extending to the connector An optical interference diagnostic medical catheter for rendering a tissue image in a body cavity by rotation of the drive shaft,
The said drive shaft is comprised using the medical coil structure as described in any one of Claims 1-6, or the joining partially joined to the said housing or the said drive shaft connector using the said joining member. An optical interference diagnostic medical catheter comprising the medical coil structure according to any one of claims 1 to 6 having a portion.
JP2010042380A 2010-02-26 2010-02-26 Medical coil structure, manufacturing method thereof, medical endoscope formed with medical coil structure, medical treatment instrument, ultrasonic diagnostic medical catheter, and optical interference diagnostic medical catheter Active JP5436266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010042380A JP5436266B2 (en) 2010-02-26 2010-02-26 Medical coil structure, manufacturing method thereof, medical endoscope formed with medical coil structure, medical treatment instrument, ultrasonic diagnostic medical catheter, and optical interference diagnostic medical catheter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010042380A JP5436266B2 (en) 2010-02-26 2010-02-26 Medical coil structure, manufacturing method thereof, medical endoscope formed with medical coil structure, medical treatment instrument, ultrasonic diagnostic medical catheter, and optical interference diagnostic medical catheter

Publications (2)

Publication Number Publication Date
JP2011177231A true JP2011177231A (en) 2011-09-15
JP5436266B2 JP5436266B2 (en) 2014-03-05

Family

ID=44689469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010042380A Active JP5436266B2 (en) 2010-02-26 2010-02-26 Medical coil structure, manufacturing method thereof, medical endoscope formed with medical coil structure, medical treatment instrument, ultrasonic diagnostic medical catheter, and optical interference diagnostic medical catheter

Country Status (1)

Country Link
JP (1) JP5436266B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061505A1 (en) * 2012-10-18 2014-04-24 オリンパスメディカルシステムズ株式会社 Treatment tool for endoscope
WO2017135131A1 (en) * 2016-02-05 2017-08-10 テルモ株式会社 Catheter
JP2018192375A (en) * 2018-08-24 2018-12-06 株式会社エフエムディ Medical guide wire
JP2020026021A (en) * 2018-08-14 2020-02-20 日本発條株式会社 Bending structure and joint function part using the same
US10912921B2 (en) 2016-10-13 2021-02-09 Asahi Intecc Co., Ltd. Multilayer body, multilayer hollow body, and catheter with multilayer hollow body
JP2022008498A (en) * 2013-05-17 2022-01-13 インタースコープ, インク. Insertable endoscopic instrument for tissue removal
US11284860B2 (en) 2017-09-15 2022-03-29 Infraredx, Inc. Imaging catheter
US11564670B2 (en) 2011-12-02 2023-01-31 Interscope, Inc. Methods and apparatus for removing material from within a mammalian cavity using an insertable endoscopic instrument
US11812933B2 (en) 2011-12-02 2023-11-14 Interscope, Inc. Endoscopic tool for deb riding and removing polyps

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394248U (en) * 1990-01-12 1991-09-26
JPH08246106A (en) * 1995-03-10 1996-09-24 Nippon Steel Corp Austenitic stainless steel wire, excellent in stress corrosion cracking resistance and having high strength and high proof stress, and its production
JP2004174233A (en) * 2002-11-13 2004-06-24 Nippon Cable Syst Inc Process for producing medical care guide wire
JP2005290538A (en) * 2004-03-08 2005-10-20 Nippon Steel & Sumikin Stainless Steel Corp High-strength stainless steel wire having excellent modulus of rigidity and its production method
JP2006271677A (en) * 2005-03-29 2006-10-12 Tokusen Kogyo Co Ltd Medical guidewire
JP4098613B2 (en) * 2002-12-11 2008-06-11 朝日インテック株式会社 Hollow stranded wire coil body, medical instrument using the same, and manufacturing method thereof
WO2009009799A1 (en) * 2007-07-12 2009-01-15 Volcano Corporation Catheter for in vivo imaging

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394248U (en) * 1990-01-12 1991-09-26
JPH08246106A (en) * 1995-03-10 1996-09-24 Nippon Steel Corp Austenitic stainless steel wire, excellent in stress corrosion cracking resistance and having high strength and high proof stress, and its production
JP2004174233A (en) * 2002-11-13 2004-06-24 Nippon Cable Syst Inc Process for producing medical care guide wire
JP4098613B2 (en) * 2002-12-11 2008-06-11 朝日インテック株式会社 Hollow stranded wire coil body, medical instrument using the same, and manufacturing method thereof
JP2005290538A (en) * 2004-03-08 2005-10-20 Nippon Steel & Sumikin Stainless Steel Corp High-strength stainless steel wire having excellent modulus of rigidity and its production method
JP2006271677A (en) * 2005-03-29 2006-10-12 Tokusen Kogyo Co Ltd Medical guidewire
WO2009009799A1 (en) * 2007-07-12 2009-01-15 Volcano Corporation Catheter for in vivo imaging

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11812933B2 (en) 2011-12-02 2023-11-14 Interscope, Inc. Endoscopic tool for deb riding and removing polyps
US11564670B2 (en) 2011-12-02 2023-01-31 Interscope, Inc. Methods and apparatus for removing material from within a mammalian cavity using an insertable endoscopic instrument
WO2014061505A1 (en) * 2012-10-18 2014-04-24 オリンパスメディカルシステムズ株式会社 Treatment tool for endoscope
JP2022008498A (en) * 2013-05-17 2022-01-13 インタースコープ, インク. Insertable endoscopic instrument for tissue removal
JP7232298B2 (en) 2013-05-17 2023-03-02 インタースコープ, インク. Insertable endoscopic instrument for tissue removal
US10994094B2 (en) 2016-02-05 2021-05-04 Terumo Kabushiki Kaisha Catheter
US20180344975A1 (en) * 2016-02-05 2018-12-06 Terumo Kabushiki Kaisha Catheter
JPWO2017135131A1 (en) * 2016-02-05 2018-11-29 テルモ株式会社 catheter
WO2017135131A1 (en) * 2016-02-05 2017-08-10 テルモ株式会社 Catheter
US11890428B2 (en) 2016-02-05 2024-02-06 Terumo Kabushiki Kaisha Catheter
US10912921B2 (en) 2016-10-13 2021-02-09 Asahi Intecc Co., Ltd. Multilayer body, multilayer hollow body, and catheter with multilayer hollow body
US11284860B2 (en) 2017-09-15 2022-03-29 Infraredx, Inc. Imaging catheter
US11331074B2 (en) 2017-09-15 2022-05-17 Infraredx, Inc. Method of using an imaging catheter with a reinforced section
JP7096179B2 (en) 2018-08-14 2022-07-05 日本発條株式会社 Flexion structure and joint function part using it
JP2020026021A (en) * 2018-08-14 2020-02-20 日本発條株式会社 Bending structure and joint function part using the same
JP7373613B2 (en) 2018-08-14 2023-11-02 日本発條株式会社 Bending structure and joint function part using the same
JP7472374B2 (en) 2018-08-14 2024-04-22 日本発條株式会社 Joint function area
JP2018192375A (en) * 2018-08-24 2018-12-06 株式会社エフエムディ Medical guide wire

Also Published As

Publication number Publication date
JP5436266B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP5436266B2 (en) Medical coil structure, manufacturing method thereof, medical endoscope formed with medical coil structure, medical treatment instrument, ultrasonic diagnostic medical catheter, and optical interference diagnostic medical catheter
JP4913198B2 (en) Medical guide wire, method for manufacturing medical guide wire, assembly of medical guide wire, microcatheter and guiding catheter, and assembly of medical guide wire, balloon catheter and guiding catheter
US8845551B2 (en) Medical guide wire, an assembly of microcatheter and guiding catheter combined with the medical guide wire, and an assembly of ballooncatheter and guiding catheter combined with the medical guide wire
JP4889062B2 (en) Guide wire
JP4913180B2 (en) Medical guide wire, method for manufacturing the same, and assembly of medical guide wire, balloon catheter, and guiding catheter
JP2004242973A (en) Tube body for medical instrument and catheter using it
JPWO2008139829A1 (en) Guidewire and stent
JP2000512691A (en) Improved linear elastic member
US20150094616A1 (en) Guide wire core with improved torsional ductility
JP2006174959A (en) Catheter and manufacturing method therefor
CN101642600A (en) Guide wire
JP5500924B2 (en) Medical guide wire and manufacturing method thereof
JP2011110384A (en) Medical guide wire, method of manufacturing the same, and assembly of medical guide wire and microcatheter or balloon catheter and guiding catheter
JP5437772B2 (en) Medical treatment tool
JP5497604B2 (en) Manufacturing method of medical guide wire
JP5437778B2 (en) Medical treatment tool
JP5481359B2 (en) Medical guidewire
JP5367503B2 (en) Medical guide wire, manufacturing method thereof, and assembly of medical guide wire and microcatheter, or balloon catheter and guiding catheter
JP5367518B2 (en) Medical endoscope, method for manufacturing medical endoscope, assembly of medical endoscope and treatment instrument for medical endoscope, and medical endoscope and medical endoscope image processing system
WO2022215613A1 (en) Guide wire and method of manufacturing guide wire
JP2895464B2 (en) Guide wire for catheter
WO2022158366A1 (en) Multilayer coil
JP4913249B2 (en) Medical guide wire and manufacturing method thereof
JP4913252B1 (en) Medical guide wire and manufacturing method thereof
JP2895463B2 (en) Guide wire for catheter

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120907

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130116

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131210

R150 Certificate of patent or registration of utility model

Ref document number: 5436266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250