JP2011176675A - Indoor power line, and method of improving transmission characteristic of the same - Google Patents

Indoor power line, and method of improving transmission characteristic of the same Download PDF

Info

Publication number
JP2011176675A
JP2011176675A JP2010040012A JP2010040012A JP2011176675A JP 2011176675 A JP2011176675 A JP 2011176675A JP 2010040012 A JP2010040012 A JP 2010040012A JP 2010040012 A JP2010040012 A JP 2010040012A JP 2011176675 A JP2011176675 A JP 2011176675A
Authority
JP
Japan
Prior art keywords
power line
line
pair
switch
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010040012A
Other languages
Japanese (ja)
Inventor
Kazuhiro Nakai
和広 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010040012A priority Critical patent/JP2011176675A/en
Publication of JP2011176675A publication Critical patent/JP2011176675A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent degradation of communication quality by suppressing degradation of balancing of a transmission path caused by installation of a switch in one-side wire line of a branch power line, in power-line carrier communication using an indoor power line. <P>SOLUTION: An opening-closing switch SW for switching turning-on/off of current between two terminals is interposed in an intermediate part on one side of a pair of wire lines WL1, WL2 of a branch power line BL3; and, when a line length from one-side core power line ML of the pair of wire lines to a power load LD is larger than that on the other side when the opening-closing switch SW is on, a balancing element 3 for suppressing a phase difference due to a line difference between the pair of wire lines WL1, WL2 at a carrier frequency used for power line carrier communication is serially inserted on the other side of the pair of wire lines WL1, WL2. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、基幹電力線から分岐して電力負荷に電力を供給する分岐電力線を備えた電力線搬送通信用のネットワークとして使用する屋内電力線、及び、その伝送特性改善方法に関する。   The present invention relates to an indoor power line used as a network for power line carrier communication provided with a branch power line that branches from a main power line and supplies power to a power load, and a transmission characteristic improving method thereof.

電力線搬送通信では、既存の電力線を使用することにより容易にネットワークを構築し、通信を行うことができる。屋内配電系の電力線を使用した電力線搬送通信では、2つのモデム装置間における通信を確立するために、通常1対のワイヤ線路を用いて差動送信を行う。差動送信では、1対のワイヤ線路は、夫々位相の反転した2つの信号、つまり、両信号の信号出力の和がゼロとなる信号で各別に駆動される。差動送信は、1本のワイヤ線路を用いる送信方式と比べて幾つかの利点を有する。その1つに、ワイヤ線路が理想的な線路特性を有している場合に、放射エネルギがほぼ発生しない状態となる点である。しかしながら、実際の線路特性は決して理想的ではなく、線路対毎に線路インピーダンスが変化する。   In power line carrier communication, a network can be easily constructed and communicated by using an existing power line. In power line carrier communication using an indoor power distribution system power line, differential transmission is usually performed using a pair of wire lines in order to establish communication between two modem devices. In differential transmission, a pair of wire lines are driven separately by two signals with inverted phases, that is, signals with the sum of the signal outputs of both signals being zero. Differential transmission has several advantages over transmission schemes that use a single wire line. One of them is that when the wire line has ideal line characteristics, almost no radiant energy is generated. However, the actual line characteristics are never ideal, and the line impedance changes for each line pair.

1対のワイヤ線路間の平衡度が悪いと、通信線路上にコモンモード電流が発生する。コモンモード電流による漏洩電波を十分に抑制できないと、周辺機器への影響が問題となる。また、コモンモード電流を低減するために、使用するモデム装置において、インピーダンス適合を図る、或いは、差動送信信号電力を減衰させる等の種々の対策が提案されている。   If the balance between the pair of wire lines is poor, a common mode current is generated on the communication line. If leakage radio waves due to the common mode current cannot be sufficiently suppressed, the influence on peripheral devices becomes a problem. In order to reduce the common mode current, various countermeasures such as impedance matching or attenuation of differential transmission signal power have been proposed in the modem device to be used.

「高速電力線搬送通信に関する研究会」報告書、p.22、総務省、平成17年12月Report on "Study Group on High-Speed Power Line Carrier Communications" 22, Ministry of Internal Affairs and Communications, December 2005

屋内配電系の電力線において、1対のワイヤ線路間の平衡度低下の要因として、基幹電力線から分岐して照明装置、換気扇等の電力負荷に電力を供給する分岐電力線の一方側のワイヤ線路に開閉スイッチ(片切りスイッチ)が設けられている場合において、片切りスイッチのオン時において、基幹電力線から電力負荷までの1対のワイヤ線路間の線路長に差が生じて反射波に不整合が発生する点、及び、片切りスイッチのオフ時において、基幹電力線から開放状態の片切りスイッチまでの1対のワイヤ線路間の線路長に差が生じて反射波に不整合が発生する点が挙げられる。   In a power line of an indoor distribution system, as a factor of a decrease in the balance between a pair of wire lines, it opens and closes on one side of the branch power line that branches from the main power line and supplies power to a power load such as a lighting device or a ventilation fan When a switch (one-sided switch) is provided, when the one-sided switch is turned on, a difference occurs in the line length between a pair of wire lines from the main power line to the power load, resulting in mismatch in the reflected wave And when the cut-off switch is turned off, there is a difference in line length between a pair of wire lines from the main power line to the open cut-off switch, resulting in mismatch in reflected waves. .

図1を参照して、上記平衡度低下について説明する。図1(a)は、基幹電力線MLから分岐した分岐電力線BLの先端に照明装置等の電力負荷LDが設けられ、一方側のワイヤ線路WL1が途中(中間点M)で切断され、その1対の開放端から1対のワイヤ線路WL3,WL4が延長して、その先端に片切りスイッチSWが接続している分岐電力線回路の典型例を示している。基幹電力線MLから、基幹電力線MLから中間点Mまでのワイヤ線路WL1、ワイヤ線路WL3、片切りスイッチSW、ワイヤ線路WL4、中間点Mから電力負荷LDまでのワイヤ線路WL1、電力負荷LD、ワイヤ線路WL2を順番に経由して、基幹電力線MLに戻るループ状の電流経路が形成され、片切りスイッチSWのオンオフによって、当該電流経路の通電が制御される。ここで、ワイヤ線路WL2の線路長を“L”、基幹電力線MLから中間点Mまでのワイヤ線路WL1の線路長を“mL”(0<m<1)、中間点Mから電力負荷LDまでのワイヤ線路WL1の線路長を“(1−m)L”、ワイヤ線路WL3,WL4の線路長を“nL”(n>0)とする。   With reference to FIG. 1, the above-described decrease in the degree of balance will be described. In FIG. 1A, a power load LD such as a lighting device is provided at the tip of a branch power line BL branched from the main power line ML, and one wire line WL1 is cut halfway (intermediate point M). 2 shows a typical example of a branch power line circuit in which a pair of wire lines WL3 and WL4 extend from the open ends of the two and a cut-off switch SW is connected to the tip of the wire lines WL3 and WL4. Wire line WL1, wire line WL3, cut-off switch SW, wire line WL4 from core power line ML to intermediate point M, wire line WL1, intermediate line M to power load LD, power load LD, wire line A loop-shaped current path that returns to the main power line ML through the WL2 in order is formed, and energization of the current path is controlled by turning on and off the one-side switch SW. Here, the line length of the wire line WL2 is “L”, the line length of the wire line WL1 from the main power line ML to the intermediate point M is “mL” (0 <m <1), and the intermediate point M to the power load LD. The line length of the wire line WL1 is “(1-m) L”, and the line lengths of the wire lines WL3 and WL4 are “nL” (n> 0).

片切りスイッチSWがオフ時には、片切りスイッチSWが開放端となり、基幹電力線ML側から入射した信号波は片切りスイッチSWで反射する。この場合、図1(b)に示すように、基幹電力線MLから片切りスイッチSWまでの2つの経路の内、ワイヤ線路WL3を通過する経路Aの線路長は“(m+n)L”、一方、ワイヤ線路WL4を通過する経路Bの線路長は“(2−m+n)L”となり、経路Bの線路長の方が長くなり、その差は“(2−2m)L”となる。また、経路A側は電力負荷LDを通過しないが、経路B側は電力負荷LDを通過するという差がある。これに対して、片切りスイッチSWがオン時には、片切りスイッチSWが開放端とはならないため、基幹電力線ML側から入射した信号波は電力負荷LDで反射する。この場合、図1(c)に示すように、基幹電力線MLから電力負荷LDまでの2つの経路の内、ワイヤ線路WL3を通過する経路Aの線路長は“(1+2n)L”、一方、ワイヤ線路WL3を通過しない経路Bの線路長は“L”となり、逆に経路Aの線路長の方が長くなり、その差は“2nL”となる。従って、片切りスイッチSWがオン時及びオフ時の何れにおいても、上記線路長の差が、差動送信される信号波間の位相のずれとなって現れ、1対のワイヤ線路間の平衡度が低下する。また、当該平衡度の低下は、ワイヤ線路WL1,WL2及びワイヤ線路WL3,WL4の線路長、中間点Mの位置に依存し、更に、片切りスイッチSWのオンオフにも依存する。   When the cut-off switch SW is turned off, the cut-off switch SW becomes an open end, and the signal wave incident from the main power line ML side is reflected by the cut-off switch SW. In this case, as shown in FIG. 1B, the line length of the path A passing through the wire line WL3 among the two paths from the main power line ML to the one-sided switch SW is “(m + n) L”, The line length of the path B passing through the wire line WL4 is “(2-m + n) L”, the line length of the path B is longer, and the difference is “(2-2m) L”. The route A side does not pass through the power load LD, but the route B side passes through the power load LD. On the other hand, when the cut-off switch SW is on, the cut-off switch SW does not become an open end, so that the signal wave incident from the main power line ML is reflected by the power load LD. In this case, as shown in FIG. 1C, the line length of the path A passing through the wire line WL3 among the two paths from the main power line ML to the power load LD is “(1 + 2n) L”, whereas the wire The line length of the path B that does not pass through the line WL3 is “L”, and conversely, the line length of the path A is longer, and the difference is “2 nL”. Therefore, regardless of whether the cut-off switch SW is on or off, the difference in the line length appears as a phase shift between the differentially transmitted signal waves, and the balance between the pair of wire lines is descend. Further, the decrease in the balance depends on the line lengths of the wire lines WL1 and WL2 and the wire lines WL3 and WL4 and the position of the intermediate point M, and further depends on the ON / OFF state of the one-side switch SW.

以上の問題点に関連して、「高速電力線搬送通信に関する研究会」の報告書(非特許文献1)の第5章、5.1.4「周波数特性に対するスイッチ分岐のON−OFF依存性」の項では、片切りスイッチのオンオフで漏洩電界の強度に差が生じる現象として報告されている。しかし、上記非特許文献1では、片切りスイッチのオンオフで漏洩電界の強度に差が生じる点の報告がなされているものの、具体的にどのような線路特性の変化として現れるのか、また、その解決方法については、何ら報告されていない。   In relation to the above problems, Chapter 5 and 5.1.4 “ON-OFF dependency of switch branching on frequency characteristics” of the “Study Group on High Speed Power Line Carrier Communication” (Non-Patent Document 1) In the section, it is reported as a phenomenon in which the intensity of the leakage electric field varies depending on whether the one-way switch is turned on or off. However, although the non-patent document 1 has reported that a difference occurs in the strength of the leakage electric field by turning on and off the one-way switch, what kind of line characteristic change appears and how to solve it? No method has been reported.

ここで、片切りスイッチのオンオフで線路特性が変化する問題点は、片切りスイッチを設けていることに起因するので、片切りスイッチを両切りスイッチに変更することで解消される。しかし、既設の片切りスイッチを両切りスイッチに変更するためには、片切りスイッチを両切りスイッチに交換した上で、片切りスイッチが設けられていない側のワイヤ線路(図1(a)では、ワイヤ線路WL2)を、両切りスイッチまで延長する配線工事が必要となる。また、新規に屋内電力線の敷設工事をするに当たっても、両切りスイッチを使用することでコスト高となる。   Here, the problem that the line characteristics change when the one-sided switch is turned on and off is due to the provision of the one-sided switch. Therefore, the problem is solved by changing the one-sided switch to a two-way switch. However, in order to change the existing single cut switch to the double cut switch, the single cut switch is replaced with a double cut switch, and the wire line on the side where the single cut switch is not provided (in FIG. Wiring work is required to extend the line WL2) to the double cut switch. In addition, even when constructing a new indoor power line, the use of the double switch increases the cost.

更に、廊下の両側、階段の上下等の複数箇所において、照明装置等の電力負荷を交互にオンオフするための3路スイッチ回路が設けられている場合がある。次に、図2を参照して、基幹電力線から分岐して照明装置等の電力負荷に電力を供給する分岐電力線の一方側のワイヤ線路に3路スイッチ回路が設けられている場合の1対のワイヤ線路間の非平衡度の変化について説明する。尚、以下に示す3路スイッチ回路に対しては、両切りスイッチに変更するという解消方法は、3路スイッチ回路を二重に構成する必要があり、現実的でない。   Further, there are cases where a three-way switch circuit for alternately turning on and off the power load of the lighting device or the like is provided at a plurality of locations such as both sides of the corridor and up and down the stairs. Next, referring to FIG. 2, a pair of switches in a case where a three-way switch circuit is provided on a wire line on one side of a branch power line that branches from the main power line and supplies power to a power load such as a lighting device. A change in the degree of unbalance between the wire lines will be described. For the three-way switch circuit shown below, the solution method of changing to the double switch is not practical because the three-way switch circuit needs to be configured in a double manner.

図2(a)は、基幹電力線MLから分岐した分岐電力線BLの先端に照明装置等の電力負荷LDが設けられ、一方側のワイヤ線路WL1が途中(中間点M,N)で切断され、中間点Mに第1の3路スイッチSW1の第1端子が接続し、中間点Nに第2の3路スイッチSW2の第1端子が夫々接続し、第1の3路スイッチSW1の第2及び第3端子と4路スイッチSW3の第1及び第2端子が夫々接続し、第2の3路スイッチSW1の第2及び第3端子と4路スイッチSW3の第3及び第4端子が夫々接続している、3路スイッチを用いた分岐電力線回路の典型例を示している。尚、本明細書では、2つの3路スイッチSW1,SW2を含む中間点M,N間の回路を3路スイッチ回路と称する。   In FIG. 2A, a power load LD such as a lighting device is provided at the tip of a branch power line BL branched from the main power line ML, and the wire line WL1 on one side is cut halfway (intermediate points M and N). The first terminal of the first three-way switch SW1 is connected to the point M, the first terminal of the second three-way switch SW2 is connected to the intermediate point N, and the second and second terminals of the first three-way switch SW1 are connected. The third terminal and the first and second terminals of the four-way switch SW3 are respectively connected, and the second and third terminals of the second three-way switch SW1 and the third and fourth terminals of the four-way switch SW3 are respectively connected. A typical example of a branch power line circuit using a three-way switch is shown. In this specification, a circuit between the intermediate points M and N including the two three-way switches SW1 and SW2 is referred to as a three-way switch circuit.

図2(a)の3路スイッチ回路では、スイッチSW1〜SW3の内の何れか1つのスイッチを切り替えるだけで、中間点M,N間の導通非道通が交互に切り替わる。ここで、3路スイッチSW1,SW2は、第1端子と第2端子間の導通非道通と前記第1端子と第3端子間の導通非道通を一方が導通で他方が非道通となるように切り替わり、4路スイッチSW3は、第1端子と第3端子間及び第2端子と第4端子間が導通の状態と、第1端子と第4端子間及び第2端子と第3端子間が導通の状態が、交互に切り替わる。3路スイッチ回路内に設ける4路スイッチSW3の個数は、0、または2以上でも構わない。基幹電力線MLから、基幹電力線MLから中間点Mまでのワイヤ線路WL1、3路スイッチSW1、4路スイッチSW3、3路スイッチSW2、中間点Nから電力負荷LDまでのワイヤ線路WL1、電力負荷LD、ワイヤ線路WL2を順番に経由して、基幹電力線MLに戻るループ状の電流経路が形成され、スイッチSW1〜SW3の切り替えによって、当該電流経路の通電が制御される。ここで、一例として、基幹電力線MLから中間点Mまでのワイヤ線路WL1の線路長と中間点Nから電力負荷LDまでのワイヤ線路WL1の線路長を夫々“L”、3路スイッチSW1から4路スイッチSW3を経由して3路スイッチSW2までの線路長を“mL”、ワイヤ線路WL2の線路長を“nL”とする。   In the three-way switch circuit shown in FIG. 2A, only one of the switches SW1 to SW3 is switched, so that conduction between the intermediate points M and N is alternately switched. Here, the three-way switches SW1 and SW2 are configured such that one is conductive while the other is non-conductive and the other is non-conductive between the first terminal and the third terminal. The four-way switch SW3 is switched between the first terminal and the third terminal, between the second terminal and the fourth terminal, and between the first terminal and the fourth terminal and between the second terminal and the third terminal. The state is switched alternately. The number of four-way switches SW3 provided in the three-way switch circuit may be 0 or 2 or more. Wire line WL1, from main power line ML to intermediate point M, three-way switch SW1, four-way switch SW3, three-way switch SW2, wire line WL1 from intermediate point N to power load LD, power load LD, A loop-like current path that returns to the main power line ML is formed via the wire line WL2 in order, and the energization of the current path is controlled by switching the switches SW1 to SW3. Here, as an example, the line length of the wire line WL1 from the main power line ML to the intermediate point M and the line length of the wire line WL1 from the intermediate point N to the power load LD are respectively “L”, and four lines from the three-way switch SW1. The line length from the switch SW3 to the three-way switch SW2 is “mL”, and the line length of the wire line WL2 is “nL”.

図2(a)に例示する回路構成では、スイッチSW1〜SW3の夫々で導通している側の端子対が、途中のワイヤ線路を介して連続すると、中間点M,N間が導通するが、スイッチSW1〜SW3の何れかで導通する端子対が切り替わると、基幹電力線MLから中間点Mを通過する経路Aは3路スイッチSW2の第2または第3端子で中間点Nと遮断され、基幹電力線MLからワイヤ線路WL2、電力負荷LD及び中間点Nを通過する経路Bは、3路スイッチSW1の第2または第3端子で中間点Mと遮断される。従って、スイッチSW1〜SW3の何れが切り替わっても、分岐電力線BLの開放端は中間点M,Nとなり、基幹電力線ML側から入射した信号波は中間点M,Nで反射する。この場合、図2(b)に示すように、基幹電力線MLから上記開放端までの2つの経路の内、経路Aの線路長は“(1+m)L”、一方、経路Bの線路長は“(1+m+n)L”となり、経路Bの線路長の方が長くなり、その差は“nL”となる。また、経路A側は電力負荷LDを通過しないが、経路B側は電力負荷LDを通過するという差がある。これに対して、中間点M,N間が導通している場合は、中間点M,N間が開放端とはならないため、基幹電力線ML側から入射した信号波は電力負荷LDで反射する。この場合、図2(c)に示すように、基幹電力線MLから電力負荷LDまでの2つの経路の内、スイッチSW1〜SW3を通過する経路Aの線路長は“(2+m)L”、一方、ワイヤ線路WL2を通過する経路Bの線路長は“nL”となり、(2+m)とnの大小関係に応じて、経路Aと経路Bの線路長の大小関係が定まり、その差は“|(2+m−n)L|”となる。従って、中間点M,Nが導通時と非導通時の何れにおいても、上記線路長の差が、差動送信される信号波間の位相のずれとなって現れ、1対のワイヤ線路間の平衡度が低下する。また、当該平衡度の低下は、ワイヤ線路WL1,WL2及び中間点M,N間の線路長、中間点M,Nの位置に依存し、更に、中間点M,N間の導通非導通、つまり、3路スイッチSW1,SW2等の状態にも依存する。   In the circuit configuration illustrated in FIG. 2A, when the terminal pair on the side that is conductive in each of the switches SW1 to SW3 is continuous through the intermediate wire line, the intermediate points M and N are electrically connected. When the terminal pair that is conducted by any of the switches SW1 to SW3 is switched, the path A passing through the intermediate point M from the main power line ML is cut off from the intermediate point N at the second or third terminal of the three-way switch SW2, and the main power line A path B that passes from ML through the wire line WL2, the power load LD, and the intermediate point N is disconnected from the intermediate point M at the second or third terminal of the three-way switch SW1. Therefore, regardless of which of the switches SW1 to SW3 is switched, the open end of the branch power line BL becomes the intermediate points M and N, and the signal wave incident from the main power line ML side is reflected at the intermediate points M and N. In this case, as shown in FIG. 2B, of the two routes from the main power line ML to the open end, the line length of the route A is “(1 + m) L”, while the line length of the route B is “ (1 + m + n) L ”, the line length of the path B becomes longer, and the difference is“ nL ”. The route A side does not pass through the power load LD, but the route B side passes through the power load LD. On the other hand, when the intermediate points M and N are conducting, the intermediate point M and N is not an open end, so that the signal wave incident from the main power line ML is reflected by the power load LD. In this case, as shown in FIG. 2C, the line length of the path A passing through the switches SW1 to SW3 among the two paths from the main power line ML to the power load LD is “(2 + m) L”, The line length of the path B passing through the wire line WL2 is “nL”, and the magnitude relation between the line lengths of the path A and the path B is determined according to the magnitude relation between (2 + m) and n, and the difference is “| (2 + m -N) L | " Therefore, regardless of whether the intermediate points M and N are conductive or non-conductive, the difference in the line length appears as a phase shift between the differentially transmitted signal waves, and the balance between the pair of wire lines. The degree decreases. Further, the decrease in the balance depends on the wire length between the wire lines WL1 and WL2 and the intermediate points M and N, the position of the intermediate points M and N, and further, the conduction and non-conduction between the intermediate points M and N, that is, It also depends on the state of the three-way switches SW1, SW2, etc.

以上より、基幹電力線から分岐して照明装置等の電力負荷に電力を供給する分岐電力線の一方側のワイヤ線路に片切りスイッチ或いは3路スイッチ等が設けられている場合、当該スイッチの状態に応じて、分岐電力線を構成する1対のワイヤ線路間の基幹電力線から電力負荷まで、或いは、基幹電力線から開放端までの線路長に差が生じて反射波に不整合が発生し、分岐電力線の伝送特性が低下する。従って、屋内電力線を使用した電力線搬送通信において、分岐電力線に設けられたスイッチに状態によって伝送路の平衡度が低下することによる通信品質の劣化が懸念される。   As described above, when a cut-off switch or a three-way switch is provided on a wire line on one side of a branch power line that branches from the main power line and supplies power to a power load such as a lighting device, depending on the state of the switch As a result, a difference occurs in the line length from the main power line to the power load between the pair of wire lines constituting the branch power line or from the main power line to the open end, resulting in mismatch in the reflected wave, and transmission of the branch power line Characteristics are degraded. Therefore, in power line carrier communication using an indoor power line, there is a concern about deterioration in communication quality due to a decrease in the balance of the transmission path depending on the state of the switch provided in the branch power line.

本発明は、上記の問題点に鑑みてなされたもので、その目的は、屋内電力線を使用した電力線搬送通信において、分岐電力線の一方側のワイヤ線路にスイッチを設けることに起因する伝送路の平衡度の低下を抑制して、通信品質の低下を防止する点にある。   The present invention has been made in view of the above problems, and its purpose is to balance transmission lines caused by providing a switch on a wire line on one side of a branch power line in power line carrier communication using an indoor power line. It is in the point which suppresses the fall of communication quality by suppressing the fall of a degree.

上記目的を達成するため、本発明は、電力線搬送通信用のネットワークとして使用する屋内電力線の伝送特性改善方法であって、前記屋内電力線が、基幹電力線から分岐して電力負荷に電力を供給する1対のワイヤ線路からなる分岐電力線を備え、前記分岐電力線の前記1対のワイヤ線路の一方側の途中に、2端子間の電流のオンオフを切り替える開閉スイッチ、或いは、第1端子と第2端子間の電流のオンオフと前記第1端子と第3端子間の電流のオンオフを一方がオンで他方がオフとなるように切り替える3路スイッチを両端に設けた3路スイッチ回路が介装され、前記開閉スイッチがオン時、或いは、前記3路スイッチ回路の両端間が導通時において、前記1対のワイヤ線路の一方側の前記基幹電力線から前記電力負荷に至る線路長が他方側の前記線路長より長い場合、前記電力線搬送通信に使用する搬送周波数における、前記1対のワイヤ線路の前記線路長の差による位相差を抑制する平衡化素子を、前記1対のワイヤ線路の他方側に直列に挿入することを第1の特徴とする伝送特性改善方法を提供する。   In order to achieve the above object, the present invention is a method for improving the transmission characteristics of an indoor power line used as a network for power line carrier communication, wherein the indoor power line branches from a main power line and supplies power to a power load 1 A branching power line comprising a pair of wire lines, and an opening / closing switch for switching on / off of a current between two terminals in the middle of one side of the pair of wire lines of the branching power line, or between the first terminal and the second terminal A three-way switch circuit provided at both ends for switching on / off of the current and on / off of the current between the first terminal and the third terminal so that one is on and the other is off. When the switch is on or when both ends of the three-way switch circuit are conductive, the line length from the main power line on one side of the pair of wire lines to the power load is A balancing element that suppresses a phase difference due to a difference in the line lengths of the pair of wire lines at a carrier frequency used for the power line carrier communication when the line length is longer than the line length on the side; A transmission characteristic improving method characterized in that it is inserted in series on the other side of the first is provided.

更に、本発明は、電力線搬送通信用のネットワークとして使用する屋内電力線であって、基幹電力線から分岐して電力負荷に電力を供給する1対のワイヤ線路からなる分岐電力線の一方側のワイヤ線路の途中に、2端子間の電流のオンオフを切り替える開閉スイッチ、或いは、第1端子と第2端子間の電流のオンオフと前記第1端子と第3端子間の電流のオンオフを一方がオンで他方がオフとなるように切り替える3路スイッチを両端に設けた3路スイッチ回路が介装され、前記開閉スイッチがオン時、或いは、前記3路スイッチ回路の両端間が導通時において、前記1対のワイヤ線路の一方側の前記基幹電力線から前記電力負荷に至る線路長が他方側の前記線路長より長くなり、前記電力線搬送通信に使用する搬送周波数における、前記1対のワイヤ線路の前記線路長の差による位相差を抑制する平衡化素子が、前記1対のワイヤ線路の他方側に直列に挿入されていることを第1の特徴とする屋内電力線を提供する。   Furthermore, the present invention is an indoor power line used as a network for power line carrier communication, which is a wire line on one side of a branch power line consisting of a pair of wire lines that branch from the main power line and supply power to a power load. On the way, an open / close switch that switches on / off of the current between the two terminals, or on / off of the current between the first terminal and the second terminal and on / off of the current between the first terminal and the third terminal. A pair of wires is provided when a three-way switch circuit provided with both ends of a three-way switch to be turned off is interposed and the open / close switch is on or between the two ends of the three-way switch circuit is conductive. The line length from the main power line on one side of the line to the power load is longer than the line length on the other side, and the carrier frequency used for the power line carrier communication is 1 Wire line of the line length difference suppressing balancing device the phase difference due to the provides the indoor power line to a first feature in that it is inserted in series to the other side of the pair of wire lines.

更に、上記第1の特徴の伝送特性改善方法または屋内電力線において、前記平衡化素子として、前記1対のワイヤ線路と同じ素材及び構造で、前記線路長の差と同じ長さのワイヤ線路を用いること、或いは、インダクタ素子を用いることが好ましく、更には、前記平衡化素子を、前記他方側のワイヤ線路の前記電力負荷に近い側の端部または端部近傍に挿入することが好ましい。   Further, in the transmission characteristic improving method of the first feature or the indoor power line, a wire line having the same material and structure as the pair of wire lines and having the same length as the difference in the line length is used as the balancing element. Alternatively, it is preferable to use an inductor element, and it is more preferable that the balancing element is inserted into an end portion of the other wire line on the side close to the power load or in the vicinity of the end portion.

更に、上記第1の特徴の伝送特性改善方法または屋内電力線において、前記分岐電力線の前記1対のワイヤ線路の一方側の途中に、前記開閉スイッチが介装されている場合に、前記開閉スイッチに対して、電気容量が1nF以上100nF以下のコンデンサを並列に接続することを第2の特徴とする。   Furthermore, in the transmission characteristic improving method of the first feature or the indoor power line, when the open / close switch is interposed in the middle of one side of the pair of wire lines of the branch power line, the open / close switch On the other hand, the second feature is that capacitors having an electric capacity of 1 nF to 100 nF are connected in parallel.

更に、上記第1の特徴の伝送特性改善方法または屋内電力線において、前記分岐電力線の前記1対のワイヤ線路の一方側の途中に、前記3路スイッチ回路が介装されている場合に、前記3路スイッチ回路の何れか一方の前記3路スイッチに対して、前記第1端子と前記第2端子間に、電気容量が1nF以上100nF以下の第1コンデンサを接続し、前記第1端子と前記第3端子間に、電気容量が1nF以上100nF以下の第2コンデンサを接続することを第3の特徴とする。   Furthermore, in the transmission characteristic improving method of the first feature or the indoor power line, when the three-way switch circuit is interposed in the middle of one side of the pair of wire lines of the branch power line, the 3 A first capacitor having an electric capacity of 1 nF to 100 nF is connected between the first terminal and the second terminal with respect to any one of the three-way switches of the path switch circuit, and the first terminal and the first switch A third feature is that a second capacitor having an electric capacitance of 1 nF to 100 nF is connected between the three terminals.

上記第1特徴の伝送特性改善方法または屋内電力線によれば、分岐電力線の開閉スイッチ或いは3路スイッチ回路の設けられていない側のワイヤ線路に、平衡化素子を設けることで、開閉スイッチ或いは3路スイッチ回路がオンまたは導通時において、基幹電力線から電力負荷までの線路長の差が是正され、基幹電力線から電力負荷へ至る1対のワイヤ線路間の平衡度が改善されるため、通信品質の向上が図れる。   According to the transmission characteristic improving method of the first feature or the indoor power line, by providing a balancing element on the wire line on the side where the open / close switch of the branch power line or the 3-way switch circuit is not provided, the open / close switch or 3-way When the switch circuit is on or conducting, the difference in line length from the main power line to the power load is corrected, and the balance between the pair of wire lines from the main power line to the power load is improved, improving communication quality Can be planned.

更に、上記第2または第3の特徴の伝送特性改善方法または屋内電力線によれば、HomePlugの1.0仕様或いはAV仕様等の高速電力線搬送通信に使用される高周波帯域(2MHz〜30MHz)以上の高周波信号波が、開閉スイッチ或いは3路スイッチに設けられた電気容量が1nF以上100nF以下のコンデンサを通過するため、開閉スイッチ或いは3路スイッチが開放端とならず、当該箇所での反射が生じないため、分岐電力線の一方側のワイヤ線路に設けられスイッチの状態変化による分岐電力線の伝送特性の変化が無くなるか、大幅に抑制される。この結果、開閉スイッチ或いは3路スイッチ回路がオフまたは非導通時においても、基幹電力線から電力負荷へ至る1対のワイヤ線路間の平衡度が改善されるため、通信品質の向上が図れる。また、電気容量が1nF以上100nF以下のコンデンサは、直流から商用交流電源周波数(50Hzまたは60Hz)の周波数帯域の通過を遮断するため、分岐電力線の一方側のワイヤ線路に設けられスイッチによって、基幹電力線から電力負荷への電力供給のオンオフは、コンデンサを設けない場合と同様に制御できる。   Furthermore, according to the transmission characteristic improving method or the indoor power line of the second or third feature, a high frequency band (2 MHz to 30 MHz) or more used for high-speed power line carrier communication such as HomePlug 1.0 specification or AV specification. Since the high-frequency signal wave passes through a capacitor having an electrical capacitance of 1 nF or more and 100 nF or less provided in the open / close switch or the 3-way switch, the open / close switch or the 3-way switch does not become an open end, and reflection does not occur at the location. Therefore, a change in transmission characteristics of the branch power line due to a change in the state of the switch provided on the wire line on one side of the branch power line is eliminated or greatly suppressed. As a result, even when the open / close switch or the three-way switch circuit is off or non-conductive, the balance between the pair of wire lines from the main power line to the power load is improved, so that the communication quality can be improved. In addition, a capacitor having an electric capacity of 1 nF or more and 100 nF or less is provided on a wire line on one side of the branch power line in order to block the passage of the frequency band from DC to the commercial AC power supply frequency (50 Hz or 60 Hz). ON / OFF of the power supply from the power supply to the power load can be controlled in the same manner as when no capacitor is provided.

屋内配電系の分岐電力線における片切りスイッチが平衡度低下に与える影響を説明する回路図と線路長の差を模式的に説明する図A schematic diagram explaining the difference between the line length and the circuit diagram explaining the effect of the cut-off switch on the branch power line of the indoor power distribution system on the decrease in balance 屋内配電系の分岐電力線における3路スイッチ回路が平衡度低下に与える影響を説明する回路図と線路長の差を模式的に説明する図A schematic diagram for explaining the difference between the line length and a circuit diagram for explaining the influence of the three-way switch circuit on the branch power line of the indoor power distribution system on the decrease in balance. 本発明の適用対象となる片切りスイッチを有する分岐電力線を備えた屋内電力線の典型例を模式的に示す回路図The circuit diagram which shows typically the typical example of the indoor power line provided with the branch power line which has the cut-off switch used as the application object of this invention 本発明の第1実施形態における片切りスイッチを有する分岐電力線を備えた屋内電力線を模式的に示す回路図と要部拡大図The circuit diagram and principal part enlarged view which show typically the indoor power line provided with the branch power line which has the cut-off switch in 1st Embodiment of this invention 図4に示す屋内電力線、及び、図3に示す屋内電力線を夫々モデル化した2種類の測定用回路を示す回路図4 is a circuit diagram showing two types of measurement circuits each modeling the indoor power line shown in FIG. 4 and the indoor power line shown in FIG. 図5及び図13に示す測定用回路のコモン電流を測定する測定回路の構成図Configuration diagram of a measurement circuit for measuring the common current of the measurement circuit shown in FIGS. 第1実施形態の対策を適用した測定用回路のコモン電流測定結果を片切りスイッチのオンオフ別に示す図The figure which shows the common current measurement result of the circuit for a measurement which applied the countermeasure of 1st Embodiment according to ON / OFF of a single-sided switch 第1実施形態の対策を適用していない測定用回路のコモン電流測定結果を片切りスイッチのオンオフ別に示す図The figure which shows the common current measurement result of the circuit for a measurement which does not apply the countermeasure of 1st Embodiment according to ON / OFF of a cut-off switch 本発明の適用対象となる3路スイッチ回路を有する分岐電力線を備えた屋内電力線の典型例を模式的に示す回路図The circuit diagram which shows typically the typical example of the indoor power line provided with the branch power line which has the three-way switch circuit which becomes the application object of this invention 本発明の第2実施形態における3路スイッチ回路を有する分岐電力線を備えた屋内電力線を模式的に示す回路図と要部拡大図The circuit diagram and principal part enlarged view which show typically the indoor power line provided with the branch power line which has the three-way switch circuit in 2nd Embodiment of this invention 本発明の第3実施形態における片切りスイッチを有する分岐電力線を備えた屋内電力線を模式的に示す回路図The circuit diagram which shows typically the indoor power line provided with the branch power line which has the one-piece switch in 3rd Embodiment of this invention コンデンサの電気容量の選択範囲について検証したシミュレーション結果を示す図The figure which shows the simulation result which verified the selection range of the electric capacity of the capacitor 図11に示す屋内電力線をモデル化した測定用回路を示す回路図The circuit diagram which shows the circuit for a measurement which modeled the indoor power line shown in FIG. 図5及び図13に示す測定用回路の伝送特性を測定する測定回路の構成図Configuration diagram of a measurement circuit for measuring the transmission characteristics of the measurement circuit shown in FIGS. 第1及び第3実施形態の対策を適用した測定用回路のコモン電流測定結果を片切りスイッチのオンオフ別に示す図The figure which shows the common current measurement result of the circuit for a measurement which applied the countermeasure of 1st and 3rd embodiment according to ON / OFF of a cut-off switch 第1及び第3実施形態の対策を適用した測定用回路の反射特性(S11)を示すスミスチャートと減衰特性(S21)を片切りスイッチのオンオフ別に示す図The figure which shows the Smith chart which shows the reflective characteristic (S11) of the circuit for a measurement to which the countermeasure of 1st and 3rd Embodiment is applied, and attenuation | damping characteristic (S21) according to ON / OFF of a single cut-off switch. 第1実施形態の対策だけを適用した測定用回路の反射特性(S11)を示すスミスチャートと減衰特性(S21)を片切りスイッチのオンオフ別に示す図The figure which shows the reflection characteristic (S11) of the circuit for a measurement which applied only the countermeasure of 1st Embodiment, and the attenuation | damping characteristic (S21) according to ON / OFF of a one-way switch. 本発明の第4実施形態における3路スイッチ回路を有する分岐電力線を備えた屋内電力線を模式的に示す回路図The circuit diagram which shows typically the indoor power line provided with the branch power line which has the three-way switch circuit in 4th Embodiment of this invention

本発明に係る屋内電力線、及び、屋内電力線の伝送特性改善方法の実施形態につき、図面を参照して説明する。   An embodiment of an indoor power line and a method for improving the transmission characteristics of the indoor power line according to the present invention will be described with reference to the drawings.

[第1実施形態]
図3に、本発明を適用する前の、即ち本発明の適用対象となる、屋内電力線1の典型例を模式的に示す。電力メータ(図示せず)から分電盤(図示せず)を経由して屋内に配線された基幹電力線MLの3か所から、分岐電力線BL1〜BL3が夫々分岐している。分岐電力線BL1,BL2の先端にはコンセントCT1,CT2が接続しており、未使用時は開放端となっており、使用時には電力負荷が接続される。各分岐電力線BL1,BL2を構成する1対のワイヤ線路には片切りスイッチ、3路スイッチ等は設けられていない。従って、分岐電力線BL1,BL2については、電力負荷の接続・非接続に関係なく、1対のワイヤ線路の基幹電力線MLからコンセントまたは電力負荷までの線路長は等しい。分岐電力線BL3の先端には電力負荷LD(例えば、照明装置、換気扇等)が接続しており、分岐電力線BL3を構成する1対のワイヤ線路WL1,WL2の一方側のワイヤ線路WL1が途中(中間点M)で切断され、その1対の開放端から1対のワイヤ線路WL3,WL4が延長して、その先端に片切りスイッチ(開閉スイッチ)SWが接続している。片切りスイッチSWが接続している分岐電力線BL3の詳細は、例えば、図1(a)で説明したものと同じになる。一典型例として、コンセントCT1,CT2は、夫々異なる部屋の壁に取り付けられ、電力負荷LDは、或る部屋の天井に取り付けられ、片切りスイッチSWは電力負荷LDと同じ部屋の壁に取り付けられている場合を想定する。これにより、コンセントCT1,CT2に夫々、市販されている高速電力線搬送通信用のPLC(Power Line Communication)アダプタ(モデム装置)を接続すれば、コンセントCT1,CT2間(2つの異なる部屋間)で高速電力線搬送通信が可能となる。また、基幹電力線MLは、一典型例として、単相3線200Vの商用交流電源の中性線と2本の電圧線の一方側を1対として構成される。
[First Embodiment]
FIG. 3 schematically shows a typical example of the indoor power line 1 before applying the present invention, that is, to which the present invention is applied. Branch power lines BL <b> 1 to BL <b> 3 are branched from three locations of the main power line ML that is wired indoors from a power meter (not shown) via a distribution board (not shown). Outlets CT1 and CT2 are connected to the ends of the branch power lines BL1 and BL2, open when not in use, and connected to a power load when in use. A pair of wire lines constituting each branch power line BL1, BL2 is not provided with a one-way switch, a three-way switch, or the like. Accordingly, the branch power lines BL1 and BL2 have the same line length from the main power line ML of the pair of wire lines to the outlet or the power load regardless of connection / disconnection of the power load. A power load LD (for example, a lighting device or a ventilation fan) is connected to the tip of the branch power line BL3, and the wire line WL1 on one side of the pair of wire lines WL1 and WL2 constituting the branch power line BL3 is in the middle (intermediate) A pair of wire lines WL3, WL4 extend from the pair of open ends, and a one-side switch (open / close switch) SW is connected to the tip. The details of the branch power line BL3 to which the one-side switch SW is connected are the same as those described with reference to FIG. As a typical example, the outlets CT1 and CT2 are attached to the walls of different rooms, the power load LD is attached to the ceiling of a room, and the cut-off switch SW is attached to the wall of the same room as the power load LD. Assuming that As a result, if a commercially available PLC (Power Line Communication) adapter (modem device) for high-speed power line carrier communication is connected to the outlets CT1 and CT2, respectively, the outlets CT1 and CT2 (between two different rooms) can be operated at high speed. Power line carrier communication is possible. In addition, as a typical example, the main power line ML is configured with a pair of a neutral line of a commercial AC power source of a single-phase three-wire 200V and two voltage lines.

次に、図3に示す屋内電力線1に対して、本発明を適用した屋内電力線2を、図4に示す。図3に示す屋内電力線1と図4に示す屋内電力線2の相違点は、図4に示す屋内電力線2において、分岐電力線BL3の1対のワイヤ線路WL3,WL4が接続していない側のワイヤ線路WL2を途中(中間点Q)で切断した開放端に平衡化素子3を接続している点である。本第1実施形態では、平衡化素子3として、ワイヤ線路WL3,WL4と同じ素材及び構造のケーブルで同じ長さの1対のワイヤ線路WL5,WL6の先端を短絡したものを使用する。これにより、基幹電力線MLから電力負荷LDに至る分岐電力線BL3の1対のワイヤ線路は、一方側がワイヤ線路BL1,BL3,BL4で構成され、他方側がワイヤ線路BL2,BL5,BL6で構成され、夫々の線路長が等しくなり、線路長の差に起因する平衡度の低下が抑制される。   Next, FIG. 4 shows an indoor power line 2 in which the present invention is applied to the indoor power line 1 shown in FIG. The difference between the indoor power line 1 shown in FIG. 3 and the indoor power line 2 shown in FIG. 4 is that the pair of wire lines WL3 and WL4 of the branch power line BL3 is not connected to the indoor power line 2 shown in FIG. This is the point that the balancing element 3 is connected to the open end where WL2 is cut halfway (intermediate point Q). In the first embodiment, as the balancing element 3, a cable having the same material and structure as the wire lines WL <b> 3 and WL <b> 4 and having a pair of wire lines WL <b> 5 and WL <b> 6 having the same length short-circuited is used. Accordingly, a pair of wire lines of the branch power line BL3 extending from the main power line ML to the power load LD has one side constituted by the wire lines BL1, BL3, BL4, and the other side constituted by the wire lines BL2, BL5, BL6, respectively. The line lengths of the lines are equal, and the decrease in the balance due to the difference in line length is suppressed.

ワイヤ線路WL2上の中間点Qの位置に関係なく、他方側のワイヤ線路BL2,BL5,BL6の線路長は同じであるため、中間点Qの位置は、電力負荷LDの近傍、或いは、ワイヤ線路WL2の電力負荷LD側の末端としても良い。この場合、平衡化素子3を中間点Qに接続する作業が、電力負荷LDを取り付けている天井や壁面から容易に行えるという利点がある。   Regardless of the position of the intermediate point Q on the wire line WL2, the line lengths of the other wire lines BL2, BL5, BL6 are the same, so the position of the intermediate point Q is near the power load LD or the wire line The end of the power load LD side of WL2 may be used. In this case, there is an advantage that the work of connecting the balancing element 3 to the intermediate point Q can be easily performed from the ceiling or wall surface to which the power load LD is attached.

図1を用いた上述の説明にあるように、片切りスイッチSWがオフ時には、基幹電力線MLから片切りスイッチSWまでの2つの経路の線路長の差は、“(2−2m)L”となり、オン時には、基幹電力線MLから電力負荷LDまでの2つの経路線路長の差は、“2nL”となる。ここで、図1の分岐電力線BLを、図3及び図4に示す屋内電力線1,2に当てはめると、図3に示す屋内電力線1では、図1の分岐電力線BLから変化はないが、図4に示す屋内電力線2では、片切りスイッチSWがオフ時には、基幹電力線MLから片切りスイッチSWまでの2つの経路の線路長の差は、“(2−2m+2n)L”となり、オン時には、基幹電力線MLから電力負荷LDまでの2つの経路の線路長の差は、“0”となる。つまり、オン時の線路長の差が、オフ時に追加された結果となる。従って、本発明を適用した屋内電力線2では、片切りスイッチSWがオン時には明らかに平衡度は改善される。一方、片切りスイッチSWがオフ時には、線路長の差が更に“2nL”だけ増加するが、当該増加によって、オフ時の平衡度が必ずしも低下するとは限らない。基幹電力線MLと片切りスイッチSW間を信号波が往復する場合に生じる上述した位相のずれは、線路長の差の2倍を波長で除した値によって定まるため、オフ時の線路長の差が変化することで、一定の周波数範囲において平衡度が既に低下している周波数においては、逆に改善される可能性があると言える。従って、一定の周波数範囲の全体で見れば、片切りスイッチSWがオフ時の平衡度は平均的には悪化することがなく、片切りスイッチSWがオン時の平衡度は確実に改善されることになる。   As described above with reference to FIG. 1, when the cut-off switch SW is off, the difference in line length between the two paths from the main power line ML to the cut-off switch SW is “(2-2m) L”. When turned on, the difference between the lengths of the two route lines from the main power line ML to the power load LD is “2 nL”. Here, when the branch power line BL of FIG. 1 is applied to the indoor power lines 1 and 2 shown in FIGS. 3 and 4, the indoor power line 1 shown in FIG. 3 is not changed from the branch power line BL of FIG. In the indoor power line 2 shown in FIG. 2, when the cut-off switch SW is off, the difference in line length between the two paths from the main power line ML to the cut-off switch SW is “(2-2m + 2n) L”. The difference between the line lengths of the two paths from the ML to the power load LD is “0”. That is, the difference in line length at the time of on is a result of being added at the time of off. Therefore, in the indoor power line 2 to which the present invention is applied, the balance is obviously improved when the cut-off switch SW is turned on. On the other hand, when the cut-off switch SW is off, the line length difference is further increased by “2 nL”, but this increase does not necessarily reduce the off-state balance. The above-described phase shift that occurs when a signal wave reciprocates between the main power line ML and the one-sided switch SW is determined by a value obtained by dividing twice the difference in line length by the wavelength. By changing, it can be said that there is a possibility that the frequency may be improved at a frequency where the degree of balance has already decreased in a certain frequency range. Therefore, when viewed over the entire frequency range, the balance when the cut-off switch SW is off is not deteriorated on average, and the balance when the cut-off switch SW is on is reliably improved. become.

次に、本発明を適用した場合の効果について、具体的な測定データに基づいて検証する。図5は、図3及び図4に示す屋内電力線1,2を実験用にモデル化した測定用回路(被測定回路)を示している。電力線PL1が、分岐電力線BL1,BL3間の基幹電力線MLと分岐電力線BL1を統合したもので、電力線PL2が、分岐電力線BL2,BL3間の基幹電力線MLと分岐電力線BL2を統合したもので、夫々の先端にコンセントCT1,CT2が接続してある。電力線PL1,PL2と分岐電力線BL3は夫々分岐点Pで並列に接続されている。図5(a)は、図4に示す本発明適用後の屋内電力線2に対応し、中間点M,Qは、夫々ワイヤ線路WL1,WL2の2分の1の位置に設定している。図5(b)は、図3に示す本発明適用前の屋内電力線1に対応し、中間点Mは、ワイヤ線路WL1の2分の1の位置に設定している。図5(a),(b)の各測定用回路において、電力線PL1,PL2、分岐電力線BL3、及び、1対のワイヤ線路WL3,WL4に、昭和電線ケーブルシステム(株)製の2芯ビニル絶縁ビニルシースケーブル(平形2mm径)を用い、電力線PL1,PL2の線路長を夫々2m、分岐電力線BL3の分岐点Pから中間点M,Qまでの線路長と中間点M,Qから電力負荷LDまでの線路長、中間点Mから片切りスイッチSWまでのワイヤ線路WL3,WL4の線路長、及び、中間点Qから延長するワイヤ線路WL5,WL6の線路長を夫々3mとしている。尚、測定用回路に用いた上記ケーブルは、本発明の屋内電力線2を構成する基幹電力線や分岐電力線に使用するケーブルの仕様等を限定するものではない。   Next, the effect when the present invention is applied will be verified based on specific measurement data. FIG. 5 shows a measurement circuit (circuit to be measured) in which the indoor power lines 1 and 2 shown in FIGS. 3 and 4 are modeled for experiments. The power line PL1 is obtained by integrating the main power line ML and the branch power line BL1 between the branch power lines BL1 and BL3, and the power line PL2 is obtained by integrating the main power line ML and the branch power line BL2 between the branch power lines BL2 and BL3. Outlets CT1 and CT2 are connected to the tip. Power lines PL1 and PL2 and branch power line BL3 are connected in parallel at branch point P, respectively. FIG. 5A corresponds to the indoor power line 2 after application of the present invention shown in FIG. 4, and the intermediate points M and Q are set at half the positions of the wire lines WL 1 and WL 2, respectively. FIG. 5 (b) corresponds to the indoor power line 1 before application of the present invention shown in FIG. 3, and the intermediate point M is set at a half position of the wire line WL1. In each of the measurement circuits shown in FIGS. 5A and 5B, two-core vinyl insulation manufactured by Showa Electric Cable System Co., Ltd. is connected to the power lines PL1 and PL2, the branch power line BL3, and the pair of wire lines WL3 and WL4. Using a vinyl sheath cable (flat 2 mm diameter), the power lines PL1 and PL2 each have a line length of 2 m, the branch power line BL3 from the branch point P to the intermediate points M and Q, and the intermediate points M and Q to the power load LD. The line length, the line lengths of the wire lines WL3, WL4 from the intermediate point M to the cut-off switch SW, and the line lengths of the wire lines WL5, WL6 extending from the intermediate point Q are each 3 m. In addition, the said cable used for the circuit for a measurement does not limit the specification etc. of the cable used for the main power line and branch power line which comprise the indoor power line 2 of this invention.

図6は、図5(a),(b)の各測定用回路におけるコンセントCT1,CT2間のコモン電流の測定回路の構成図を示す。図6に示す測定回路は、図5(a),(b)に対して共通に使用される。図6に示す測定回路は、PLCアダプタ12を介して第1のパーソナルコンピュータ10とコンセントCT1を接続し、PLCアダプタ13を介して第2のパーソナルコンピュータ11とコンセントCT2を接続し、コンセントCT2の手前の測定点Pに電流プローブ14を設け、電流プローブ14をリアルタイムスペクトルアナライザ15の入力ポートP0に接続して構成される。第1のパーソナルコンピュータ10とPLCアダプタ12間、第2のパーソナルコンピュータ11とPLCアダプタ13間は、夫々イーサネットケーブル(イーサネットは登録商標)で接続される。PLCアダプタ12,13は、HomePlugのAV仕様に準拠した出願人が市販しているものを使用した。尚、パーソナルコンピュータ10,11間のデータ送信には、UDP(User Datagram Protocol)スループット測定用の自作ソフトウェアを用いて、パーソナルコンピュータ10からパーソナルコンピュータ11に向けてデータ送信を行った。   6 shows a configuration diagram of a circuit for measuring a common current between the outlets CT1 and CT2 in each of the circuits for measurement shown in FIGS. 5 (a) and 5 (b). The measurement circuit shown in FIG. 6 is commonly used for FIGS. 5 (a) and 5 (b). The measurement circuit shown in FIG. 6 connects the first personal computer 10 and the outlet CT1 via the PLC adapter 12, and connects the second personal computer 11 and the outlet CT2 via the PLC adapter 13, and before the outlet CT2. The current probe 14 is provided at the measurement point P, and the current probe 14 is connected to the input port P 0 of the real-time spectrum analyzer 15. The first personal computer 10 and the PLC adapter 12 and the second personal computer 11 and the PLC adapter 13 are connected by an Ethernet cable (Ethernet is a registered trademark), respectively. As the PLC adapters 12 and 13, those commercially available by the applicant based on the HomePlug AV specification were used. For data transmission between the personal computers 10 and 11, data was transmitted from the personal computer 10 to the personal computer 11 using self-made software for measuring UDP (User Datagram Protocol) throughput.

図7及び図8に、図5(a)及び図5(b)に示す測定用回路の片切りスイッチSWがオン時とオフ時のコモン電流の測定結果を示す。図7と図8を比較すれば、4〜5MHz、10〜14Mz、20〜24Mz辺りの周波数範囲において、オフ時の平衡度が低下せずにオン時の平衡度が改善され、2〜30Mzの周波数範囲の全体として平衡度の改善が図られていることが分かる。   FIGS. 7 and 8 show the measurement results of the common current when the cut-off switch SW of the measurement circuit shown in FIGS. 5A and 5B is on and off. Comparing FIG. 7 and FIG. 8, in the frequency range around 4 to 5 MHz, 10 to 14 Mz, and 20 to 24 Mz, the off-state balance is not lowered and the on-state balance is improved. It can be seen that the balance is improved over the entire frequency range.

尚、本第1実施形態では、平衡化素子3として、ワイヤ線路WL3,WL4と同じ素材及び構造のケーブルで同じ長さの1対のワイヤ線路WL5,WL6の先端を短絡したものを使用したが、平衡化素子3を接続する目的は、線路長の差に起因する位相のずれを補償することにあるので、接続することで位相のずれが生じ、且つ、直流電流も通電可能なインダクタ素子を平衡化素子3として使用することも可能である。ところで、線路長の差に起因する位相のずれは、実際に線路長の差、及び、搬送周波数に依存して変化するため、現場において、コモン電流の測定結果等が改善されるように、予め準備した数種類のインダクタンスのインダクタ素子の1以上を直列または並列に組み合わせて、平衡化素子3として使用するようにするのも好ましい。   In the first embodiment, the balancing element 3 is a cable having the same material and structure as that of the wire lines WL3 and WL4 and having a pair of wire lines WL5 and WL6 having the same length short-circuited. The purpose of connecting the balancing element 3 is to compensate for the phase shift caused by the difference in the line length. Therefore, an inductor element capable of causing a phase shift when connected and also capable of passing a direct current is provided. It can also be used as the balancing element 3. By the way, since the phase shift due to the difference in line length actually changes depending on the difference in line length and the carrier frequency, in order to improve the measurement result of the common current in the field in advance, It is also preferable to use one or more of the prepared several types of inductor elements having different inductances in series or in parallel as the balancing element 3.

[第2実施形態]
図9に、本発明を適用する前の、即ち本発明の適用対象となる、屋内電力線4の典型例を模式的に示す。電力メータ(図示せず)から分電盤(図示せず)を経由して屋内に配線された基幹電力線MLの3か所から、分岐電力線BL1〜BL3が夫々分岐している。分岐電力線BL1,BL2の先端にはコンセントCT1,CT2が接続しており、未使用時は開放端となっており、使用時には電力負荷が接続される。各分岐電力線BL1,BL2を構成する1対のワイヤ線路には片切りスイッチ、3路スイッチ等は設けられていない。従って、分岐電力線BL1,BL2については、電力負荷の接続・非接続に関係なく、1対のワイヤ線路の基幹電力線MLからコンセントまたは電力負荷までの線路長は等しい。分岐電力線BL3の先端には電力負荷LD(例えば、照明装置、換気扇等)が接続しており、分岐電力線BL3を構成する1対のワイヤ線路WL1,WL2の一方側のワイヤ線路WL1の途中の区間(中間点M,N間)に、2つの3路スイッチSW1,SW2と1対のワイヤ線路WL3,WL4からなる3路スイッチ回路が設けられている。中間点Mに第1の3路スイッチSW1の第1端子が接続し、中間点Nに第2の3路スイッチSW2の第1端子が夫々接続し、第1の3路スイッチSW1の第2端子と第2の3路スイッチSW2の第2端子がワイヤ線路WL3の両端に夫々接続し、第1の3路スイッチSW1の第3端子と第2の3路スイッチSW2の第3端子がワイヤ線路WL4の両端に夫々接続している。3路スイッチSW1,SW2は、第1端子と第2端子間の導通非道通と前記第1端子と第3端子間の導通非道通を一方が導通で他方が非道通となるように切り替わる。1対のワイヤ線路WL3,WL4の途中には、図2(a)に示すように、4路スイッチを設けることも可能であるが、ここでは説明の簡単のため、4路スイッチが無い場合を想定する。中間点M,N間が導通する場合は、1対のワイヤ線路WL3,WL4の一方側だけが使用される。2つの3路スイッチSW1,SW2が接続している分岐電力線BL3の詳細は、例えば、図2(a)で説明したものと同様である。一典型例として、コンセントCT1,CT2は、夫々異なる部屋の壁に取り付けられ、電力負荷LDは、階段や廊下の天井に取り付けられ、3路スイッチSW1,SW2は階段や廊下の互いに離れた位置の壁に取り付けられている場合を想定する。これにより、コンセントCT1,CT2に夫々、市販されている高速電力線搬送通信用のPLCアダプタ(モデム装置)を接続すれば、コンセントCT1,CT2間(2つの異なる部屋間)で高速電力線搬送通信が可能となる。尚、本第2実施形態では、図9に示す屋内電力線4において、基幹電力線MLから電力負荷LDに至る分岐電力線BL3の1対のワイヤ線路は、3路スイッチ回路を通過する側の線路長が、3路スイッチ回路を通過しないワイヤ線路WL2の線路長より長い場合を想定する。
[Second Embodiment]
FIG. 9 schematically shows a typical example of the indoor power line 4 before applying the present invention, that is, to which the present invention is applied. Branch power lines BL <b> 1 to BL <b> 3 are branched from three locations of the main power line ML that is wired indoors from a power meter (not shown) via a distribution board (not shown). Outlets CT1 and CT2 are connected to the ends of the branch power lines BL1 and BL2, open when not in use, and connected to a power load when in use. A pair of wire lines constituting each branch power line BL1, BL2 is not provided with a one-way switch, a three-way switch, or the like. Accordingly, the branch power lines BL1 and BL2 have the same line length from the main power line ML of the pair of wire lines to the outlet or the power load regardless of connection / disconnection of the power load. A power load LD (for example, a lighting device or a ventilation fan) is connected to the tip of the branch power line BL3, and a section in the middle of the wire line WL1 on one side of the pair of wire lines WL1 and WL2 constituting the branch power line BL3. A three-way switch circuit including two three-way switches SW1 and SW2 and a pair of wire lines WL3 and WL4 is provided (between the intermediate points M and N). The first terminal of the first three-way switch SW1 is connected to the intermediate point M, the first terminal of the second three-way switch SW2 is connected to the intermediate point N, and the second terminal of the first three-way switch SW1. And the second terminal of the second three-way switch SW2 are connected to both ends of the wire line WL3, respectively, and the third terminal of the first three-way switch SW1 and the third terminal of the second three-way switch SW2 are connected to the wire line WL4. Are connected to both ends. The three-way switches SW1 and SW2 are switched so that one is conductive while the other is non-conductive and the conductive non-conductive between the first terminal and the second terminal and the non-conductive between the first terminal and the third terminal. A four-way switch can be provided in the middle of the pair of wire lines WL3 and WL4 as shown in FIG. 2 (a). Suppose. When the intermediate points M and N are conductive, only one side of the pair of wire lines WL3 and WL4 is used. The details of the branch power line BL3 to which the two three-way switches SW1 and SW2 are connected are the same as those described with reference to FIG. As a typical example, the outlets CT1 and CT2 are attached to the walls of different rooms, the power load LD is attached to the ceiling of the staircase or the hallway, and the three-way switches SW1 and SW2 are located at positions separated from each other on the staircase or the hallway. Assume that it is attached to a wall. This enables high-speed power line communication between outlets CT1 and CT2 (between two different rooms) by connecting commercially available PLC adapters (modem devices) for high-speed power line communication to outlets CT1 and CT2, respectively. It becomes. In the second embodiment, in the indoor power line 4 shown in FIG. 9, the pair of wire lines of the branch power line BL3 extending from the main power line ML to the power load LD has a line length on the side passing through the three-way switch circuit. A case is assumed in which the length is longer than the length of the wire line WL2 that does not pass through the three-way switch circuit.

次に、図9に示す屋内電力線4に対して、本発明を適用した屋内電力線5を、図10に示す。図9に示す屋内電力線4と図10に示す屋内電力線5の相違点は、図10に示す屋内電力線5において、分岐電力線BL3の1対のワイヤ線路WL3,WL4が接続していない側のワイヤ線路WL2を途中(中間点Q)で切断した開放端に平衡化素子3を接続している点である。本第2実施形態では、平衡化素子3として、ワイヤ線路WL3,WL4と同じ素材及び構造の1対のワイヤ線路WL5,WL6の先端を短絡したものを使用する。1対のワイヤ線路WL5,WL6の各線路長は、図9に示す屋内電力線4の分岐電力線BL3における基幹電力線MLから電力負荷LDまでのワイヤ線路WL1側の経路の線路長とワイヤ線路WL2側の経路の線路長の差の2分の1とする。これにより、基幹電力線MLから電力負荷LDに至る分岐電力線BL3の1対のワイヤ線路は、一方側がワイヤ線路BL1とワイヤ線路BL3またはBL4で構成され、他方側がワイヤ線路BL2,BL5,BL6で構成され、夫々の線路長が等しくなり、線路長の差に起因する平衡度の低下が抑制される。   Next, FIG. 10 shows an indoor power line 5 to which the present invention is applied to the indoor power line 4 shown in FIG. The difference between the indoor power line 4 shown in FIG. 9 and the indoor power line 5 shown in FIG. 10 is that the pair of wire lines WL3 and WL4 of the branch power line BL3 in the indoor power line 5 shown in FIG. This is the point that the balancing element 3 is connected to the open end where WL2 is cut halfway (intermediate point Q). In the second embodiment, as the balancing element 3, a pair of wire lines WL5 and WL6 having the same material and structure as those of the wire lines WL3 and WL4 are short-circuited. The line lengths of the pair of wire lines WL5 and WL6 are the line length of the path on the wire line WL1 side from the main power line ML to the power load LD in the branch power line BL3 of the indoor power line 4 shown in FIG. Let it be one half of the difference in the line length of the route. As a result, a pair of wire lines of the branch power line BL3 extending from the main power line ML to the power load LD is configured with the wire line BL1 and the wire line BL3 or BL4 on one side and the wire lines BL2, BL5, and BL6 on the other side. The respective line lengths are equal, and a decrease in the balance due to the difference in the line lengths is suppressed.

ワイヤ線路WL2上の中間点Qの位置に関係なく、他方側のワイヤ線路BL2,BL5,BL6の線路長は同じであるため、中間点Qの位置は、上記第1実施形態と同様に、電力負荷LDの近傍、或いは、ワイヤ線路WL2の電力負荷LD側の末端としても良い。この場合、平衡化素子3を中間点Qに接続する作業が、電力負荷LDを取り付けている天井や壁面から容易に行えるという利点がある。   Regardless of the position of the intermediate point Q on the wire line WL2, the line lengths of the other wire lines BL2, BL5, and BL6 are the same, so the position of the intermediate point Q is the same as in the first embodiment. It may be the vicinity of the load LD or the end of the wire line WL2 on the power load LD side. In this case, there is an advantage that the work of connecting the balancing element 3 to the intermediate point Q can be easily performed from the ceiling or wall surface to which the power load LD is attached.

図2を用いた上述の説明にあるように、中間点M,N間の3路スイッチ回路が非導通時には、基幹電力線MLから中間点M,Nまでの2つの経路の線路長の差は、“nL”となり、導通時には、基幹電力線MLから電力負荷LDまでの2つの経路線路長の差は、“|(2+m−n)L|”となる。ここで、図2の分岐電力線BLを、図9及び図10に示す屋内電力線4,5に当てはめると、図9に示す屋内電力線4では、図2の分岐電力線BLから変化はないが、図10に示す屋内電力線5では、3路スイッチ回路が非導通時には、基幹電力線MLから中間点M,Nまでの2つの経路の線路長の差は、“(2+m)L”となり、オン時には、基幹電力線MLから電力負荷LDまでの2つの経路の線路長の差は、“0”となる。つまり、オン時の線路長の差が、オフ時に追加された結果となる。従って、本発明を適用した屋内電力線2では、片切りスイッチSWがオン時には明らかに平衡度は改善される。一方、片切りスイッチSWがオフ時には、線路長の差が更に“2nL”だけ増加するが、当該増加によって、オフ時の平衡度が必ずしも低下するとは限らない。基幹電力線MLと片切りスイッチSW間を信号波が往復する場合に生じる上述した位相のずれは、線路長の差の2倍を波長で除した値によって定まるため、オフ時の線路長の差が変化することで、一定の周波数範囲において平衡度が既に低下している周波数においては、逆に改善される可能性があると言える。従って、一定の周波数範囲の全体で見れば、片切りスイッチSWがオフ時の平衡度は平均的には悪化することがなく、片切りスイッチSWがオン時の平衡度は確実に改善されることになる。   As described above with reference to FIG. 2, when the three-way switch circuit between the intermediate points M and N is non-conductive, the difference between the line lengths of the two paths from the main power line ML to the intermediate points M and N is At the time of conduction, the difference between the two path line lengths from the main power line ML to the power load LD is “| (2 + mn) L |”. Here, when the branch power line BL of FIG. 2 is applied to the indoor power lines 4 and 5 shown in FIGS. 9 and 10, the indoor power line 4 shown in FIG. 9 is not changed from the branch power line BL of FIG. In the indoor power line 5 shown in FIG. 3, when the three-way switch circuit is non-conducting, the difference between the line lengths of the two paths from the main power line ML to the intermediate points M and N is “(2 + m) L”. The difference between the line lengths of the two paths from the ML to the power load LD is “0”. That is, the difference in line length at the time of on is a result of being added at the time of off. Therefore, in the indoor power line 2 to which the present invention is applied, the balance is obviously improved when the cut-off switch SW is turned on. On the other hand, when the cut-off switch SW is off, the line length difference is further increased by “2 nL”, but this increase does not necessarily reduce the off-state balance. The above-described phase shift that occurs when a signal wave reciprocates between the main power line ML and the one-sided switch SW is determined by a value obtained by dividing twice the difference in line length by the wavelength. By changing, it can be said that there is a possibility that the frequency may be improved at a frequency where the degree of balance has already decreased in a certain frequency range. Therefore, when viewed over the entire frequency range, the balance when the cut-off switch SW is off is not deteriorated on average, and the balance when the cut-off switch SW is on is reliably improved. become.

本発明を適用した場合の効果については、第1実施形態と同様であるので、具体的な測定データに基づく検証及び説明は割愛する。また、インダクタ素子を平衡化素子3として使用することも、第1実施形態と同様に可能である。   Since the effect when the present invention is applied is the same as that of the first embodiment, verification and explanation based on specific measurement data are omitted. In addition, it is possible to use an inductor element as the balancing element 3 as in the first embodiment.

[第3実施形態]
上記第1実施形態では、図4(a)に示す屋内電力線2において、分岐電力線BL3のワイヤ線路WL2を途中(中間点Q)で切断した開放端に平衡化素子3を接続し、片切りスイッチSWのオフ時の屋内電力線の平衡度を平均的には悪化させずに、片切りスイッチSWのオン時における屋内電力線の平衡度の改善を実現した。しかし、上述の如く、平衡化素子3を接続した後においても、片切りスイッチSWのオフ時における基幹電力線MLから片切りスイッチSWまでの2つの経路の線路長の差は、“(2−2m+2n)L”として依然として存在するため、片切りスイッチSWがない場合と比較して平衡度が低下している。一方、オン時には、基幹電力線MLから電力負荷LDまでの2つの経路の線路長の差は、“0”となっている。第3実施形態では、片切りスイッチSWがオフ時における当該平衡度の低下を改善するための対策を施す。
[Third Embodiment]
In the first embodiment, in the indoor power line 2 shown in FIG. 4A, the balancing element 3 is connected to the open end where the wire line WL2 of the branch power line BL3 is cut halfway (intermediate point Q), and the one-way switch An improvement in the balance of the indoor power line when the cut-off switch SW is on was achieved without degrading the balance of the indoor power line when the SW was off on average. However, as described above, even after the balancing element 3 is connected, the difference between the line lengths of the two paths from the main power line ML to the cut-off switch SW when the cut-off switch SW is turned off is “(2-2m + 2n). ) L ″ still exists, and the degree of balance is reduced as compared with the case where there is no cut-off switch SW. On the other hand, at the time of ON, the difference between the line lengths of the two paths from the main power line ML to the power load LD is “0”. In the third embodiment, measures are taken to improve the decrease in the balance when the cut-off switch SW is off.

図11に、図4に示す平衡化素子3を適用した屋内電力線2に対して、片切りスイッチSWがオフ時における平衡度の改善対策を施した屋内電力線6を示す。図4に示す屋内電力線2と図11に示す屋内電力線6の相違点は、図11(a)に示す屋内電力線6において、破線で囲って表示しているように、片切りスイッチSWの2つの端子間にスイッチSWと並列にコンデンサC1が接続され、片切りスイッチユニット7が構成されている点である。尚、図11(b)に、破線で囲った要部を拡大して表示する。   FIG. 11 shows an indoor power line 6 in which a measure for improving the balance when the cut-off switch SW is turned off is applied to the indoor power line 2 to which the balancing element 3 shown in FIG. 4 is applied. The difference between the indoor power line 2 shown in FIG. 4 and the indoor power line 6 shown in FIG. 11 is that the indoor power line 6 shown in FIG. A capacitor C1 is connected between the terminals in parallel with the switch SW, and the one-sided switch unit 7 is configured. In FIG. 11B, the main part surrounded by a broken line is enlarged and displayed.

コンデンサC1は、スイッチSWの開放(オフ)時に、基幹電力線MLに供給される交流または直流電圧のピーク電圧が、その両端に印加されるため、当該ピーク電圧を越える耐電圧が必要であり、基幹電力線MLに供給される電源電圧が単相3線200Vの商用交流電源の場合には、250V以上の耐電圧、直流電源の場合には、例えば630V以上の耐電圧を有するものを使用する。また、高速電力線搬送通信の搬送周波数帯域として、2〜30MHzを想定した場合には、コンデンサC1のインピーダンスが、1/2πfc(fは搬送周波数、cはコンデンサC1の電気容量)で与えられるため、電気容量は、1nF以上100nF以下であることが好ましい。これにより、上記周波数帯域では、高速電力線搬送通信の信号波は通過するが、直流から60Hzまでの周波数帯域ではインピーダンスが高くなり、電源電圧の供給は遮断される。上記条件を満たすコンデンサとして、例えば、村田製作所製の中高耐圧セラミックコンデンサ(耐圧630V、電気容量10nF)等が使用できる。   The capacitor C1 is required to have a withstand voltage exceeding the peak voltage because the peak voltage of the AC or DC voltage supplied to the main power line ML is applied to both ends when the switch SW is opened (off). In the case of a commercial AC power supply with a single-phase three-wire 200V power supply voltage supplied to the power line ML, a withstand voltage of 250V or higher is used, and in the case of a DC power supply, for example, one having a withstand voltage of 630V or higher is used. In addition, when 2 to 30 MHz is assumed as the carrier frequency band of the high-speed power line carrier communication, the impedance of the capacitor C1 is given by 1 / 2πfc (f is the carrier frequency and c is the electric capacity of the capacitor C1). The electric capacity is preferably 1 nF or more and 100 nF or less. As a result, the signal wave of the high-speed power line carrier communication passes in the frequency band, but the impedance increases in the frequency band from DC to 60 Hz, and the supply of the power supply voltage is cut off. As a capacitor satisfying the above conditions, for example, a medium and high voltage ceramic capacitor (withstand voltage of 630 V, electric capacity of 10 nF) manufactured by Murata Manufacturing Co., Ltd. can be used.

図12に、コンデンサC1の電気容量の選択範囲について検証した回路シミュレーション結果を示す。基幹電力線MLに供給される電源電圧を振幅50Vの交流電源で周波数を10Hzから100MHzまで遷移させ、コンデンサC1の電気容量が、0.1nF,1nF,5nF,10nF,100nF,1000nFの6通りに対して、基幹電力線MLの寄生容量が0.5nF、電力負荷LDが100Ωの抵抗負荷の場合を想定して、電力負荷LDに流れる電流とコンデンサC1のインピーダンスを計算した。図12より、周波数が60HzでコンデンサC1の電気容量が100nFを超えると電流が増加するのが分かる。また、1nF以下では、インピーダンスの増加が顕著となり、2MHz以上において明らかな電流の減少が見られる。従って、コンデンサC1の電気容量としては、1nF以上100nF以下であることが好ましいが、2〜30MHzの高周波帯域に対するインピーダンスの増加を抑制するには、5nF以上100nF以下であることが、より好ましい。更に、商用交流電源周波数である60Hzでの電流の増加をより良く抑制するには、コンデンサC1の電気容量の上限は、100nFより小さくするのが好ましい。従って、より好適には、例えば、5nF〜50nF、更に好適には、5nF〜20nFの範囲で、コンデンサC1の電気容量を設定するのが良い。尚、基幹電力線MLに直流電源が供給される場合は、コンデンサC1の電気容量としては、100nF以上であっても良いが、片切りスイッチユニット7としての汎用性を考慮すると、100nF以下であることが好ましい。   FIG. 12 shows a circuit simulation result verified with respect to the selection range of the capacitance of the capacitor C1. The power supply voltage supplied to the main power line ML is changed from 10 Hz to 100 MHz with an AC power supply having an amplitude of 50 V, and the electric capacity of the capacitor C1 is 6 types of 0.1 nF, 1 nF, 5 nF, 10 nF, 100 nF, and 1000 nF. Assuming the case where the parasitic capacitance of the main power line ML is 0.5 nF and the power load LD is a resistance load of 100Ω, the current flowing through the power load LD and the impedance of the capacitor C1 are calculated. From FIG. 12, it can be seen that the current increases when the frequency is 60 Hz and the capacitance of the capacitor C1 exceeds 100 nF. In addition, at 1 nF or less, the increase in impedance is significant, and a clear decrease in current is observed at 2 MHz or more. Therefore, the electric capacity of the capacitor C1 is preferably 1 nF or more and 100 nF or less, but more preferably 5 nF or more and 100 nF or less in order to suppress an increase in impedance with respect to a high frequency band of 2 to 30 MHz. Furthermore, in order to better suppress the increase in current at the commercial AC power supply frequency of 60 Hz, the upper limit of the electric capacity of the capacitor C1 is preferably set to be smaller than 100 nF. Therefore, more preferably, the electric capacity of the capacitor C1 is set in the range of, for example, 5 nF to 50 nF, and more preferably 5 nF to 20 nF. When the DC power is supplied to the main power line ML, the electric capacity of the capacitor C1 may be 100 nF or more, but considering the versatility as the one-side switch unit 7, it is 100 nF or less. Is preferred.

ここで、図4に示す第1実施形態の屋内電力線2に対して、片切りスイッチユニット7を適用する場合、既存の片切りスイッチSWに並列にコンデンサC1を追加する方法と、既存の片切りスイッチSWを、片切りスイッチSWとコンデンサC1が並列接続した片切りスイッチユニット7に置き換える方法の2通りがあり、何れの場合でも奏する効果は同じである。既存の屋内電力線が無く、新たに本発明を適用した本第3実施形態の屋内電力線6を敷設する場合には、片切りスイッチとして、片切りスイッチSWとコンデンサC1が並列接続した片切りスイッチユニット7を使用すれば良い。尚、この場合においても、片切りスイッチSWとコンデンサC1を個別に並列接続して、片切りスイッチユニット7を現場で構成するようにしても構わない。   Here, when the cut-off switch unit 7 is applied to the indoor power line 2 of the first embodiment shown in FIG. 4, a method of adding the capacitor C1 in parallel to the existing cut-off switch SW, There are two methods of replacing the switch SW with the one-piece switch unit 7 in which the one-piece switch SW and the capacitor C1 are connected in parallel, and the effect exerted in either case is the same. When there is no existing indoor power line and the indoor power line 6 of the third embodiment to which the present invention is newly applied is laid, a single-cut switch unit in which a single-cut switch SW and a capacitor C1 are connected in parallel as a single-cut switch. 7 may be used. In this case as well, the single-cut switch SW and the capacitor C1 may be individually connected in parallel to configure the single-cut switch unit 7 in the field.

次に、片切りスイッチSWに並列にコンデンサC1を追加した場合の効果について、具体的な測定データに基づいて検証する。図13は、図11に示す屋内電力線6を実験用にモデル化した測定用回路を示している。コンデンサC1の電気容量は10nFである。電力線PL1,PL2は、図5に示す測定用回路と同様であるので、重複する説明は割愛する。図14は、図5及び図13に示す測定用回路に対して、コンセントCT1,CT2間を4端子回路網とした場合のSパラメータ(S11:反射特性、S21:減衰特性)を測定する測定回路である。図14に示す測定回路は、ネットワークアナライザ16の第1ポートP1とコンセントCT1を、100Ω−50Ωインピーダンス変換用バラン17を介して接続し、ネットワークアナライザ16の第2ポートP2とコンセントCT2を、100Ω−50Ωインピーダンス変換用バラン18を介して接続して構成される。   Next, the effect of adding the capacitor C1 in parallel to the one-side switch SW will be verified based on specific measurement data. FIG. 13 shows a measurement circuit in which the indoor power line 6 shown in FIG. 11 is modeled for experiments. The electric capacity of the capacitor C1 is 10 nF. Since power lines PL1 and PL2 are the same as those in the measurement circuit shown in FIG. FIG. 14 shows a measurement circuit for measuring S parameters (S11: reflection characteristics, S21: attenuation characteristics) when the sockets CT1 and CT2 have a four-terminal network with respect to the measurement circuits shown in FIGS. It is. The measurement circuit shown in FIG. 14 connects the first port P1 of the network analyzer 16 and the outlet CT1 via a 100Ω-50Ω impedance conversion balun 17, and connects the second port P2 of the network analyzer 16 and the outlet CT2 to 100Ω−. It is configured to be connected via a 50Ω impedance conversion balun 18.

図15に、図13に示す測定用回路の片切りスイッチSWがオン時とオフ時のコモン電流の測定結果を示す。尚、コモン電流の測定は第1実施形態と同様に、図6に示す測定回路を使用した。図7と図15を比較すれば、2〜30MHzの全周波数範囲において、片切りスイッチSWがオン時とオフ時でコモン電流が略等しくなっていることが分かる。平衡化素子3を中間点Qに接続することでオン時の平衡度が改善され、更に、片切りスイッチSWにコンデンサC1を並列に接続することで、オフ時の平衡度がオン時と同等レベルまで改善されていることが分かる。   FIG. 15 shows the measurement results of the common current when the cut-off switch SW of the measurement circuit shown in FIG. 13 is on and off. The common current was measured using the measurement circuit shown in FIG. 6 as in the first embodiment. Comparing FIG. 7 and FIG. 15, it can be seen that the common current is substantially equal when the cut-off switch SW is on and off in the entire frequency range of 2 to 30 MHz. By connecting the balancing element 3 to the intermediate point Q, the balance at the time of on is improved, and further, by connecting the capacitor C1 in parallel to the one-side switch SW, the balance at the time of off is the same level as at the time of on. It can be seen that it has been improved.

図16及び図17に、図5(a)及び図13に示す測定用回路の片切りスイッチSWがオン時とオフ時のSパラメータ(S11:反射特性、S21:減衰特性)の測定結果を示す。図16が片切りスイッチユニット7を適用した場合(図13)、図17が片切りスイッチユニット7を適用していない場合(図5(a))の各特性を示し、各図(a)が、反射特性(S11)を示し、各図(b)が、減衰特性(S21)を示す。図17より、片切りスイッチユニット7を適用せず、平衡化素子3を中間点Qに接続しただけでは、片切りスイッチSWのオン時とオフ時で、コンセントCT1,CT2間の反射特性及び減衰特性が、オフ時において線路長に差があることの影響で大きく異なっていることが分かる。これに対して、図16に示すように、片切りスイッチSWと並列にコンデンサC1を設け、片切りスイッチユニット7を構成した本第3実施形態の場合、片切りスイッチSWのオン時とオフ時で、コンセントCT1,CT2間の反射特性及び減衰特性の差が大きく抑制され、両特性に殆ど差が無くなっている。このことは、図15に示すコモン電流の測定結果を裏付けるものである。   16 and 17 show measurement results of S parameters (S11: reflection characteristics, S21: attenuation characteristics) when the cut-off switch SW of the measurement circuit shown in FIGS. 5A and 13 is on and off. . FIG. 16 shows the characteristics when the cut-off switch unit 7 is applied (FIG. 13), and FIG. 17 shows the characteristics when the cut-off switch unit 7 is not applied (FIG. 5A). The reflection characteristic (S11) is shown, and each figure (b) shows the attenuation characteristic (S21). From FIG. 17, the reflection characteristics and attenuation between the outlets CT1 and CT2 are turned on and off when the cut-off switch SW is turned on and off only by connecting the balancing element 3 to the intermediate point Q without applying the cut-off switch unit 7. It can be seen that the characteristics are greatly different due to the influence of the difference in the line length at the off time. On the other hand, as shown in FIG. 16, in the case of the third embodiment in which the capacitor C1 is provided in parallel with the cut-off switch SW and the cut-off switch unit 7 is configured, the cut-off switch SW is turned on and off. Thus, the difference between the reflection characteristics and the attenuation characteristics between the outlets CT1 and CT2 is greatly suppressed, and there is almost no difference between the two characteristics. This confirms the measurement result of the common current shown in FIG.

[第4実施形態]
上記第2実施形態では、図10に示す屋内電力線5において、分岐電力線BL3のワイヤ線路WL2を途中(中間点Q)で切断した開放端に平衡化素子3を接続し、中間点M,N間の3路スイッチ回路が非導通時における屋内電力線の平衡度を平均的には悪化させずに、3路スイッチ回路が導通時における屋内電力線の平衡度の改善を実現した。しかし、上述の如く、平衡化素子3を接続した後においても、3路スイッチ回路が非導通時における基幹電力線MLから中間点M,Nまでの2つの経路の線路長の差は、“(2+m)L” として依然として存在するため、3路スイッチ回路がない場合と比較して平衡度が低下している。一方、3路スイッチ回路が導通時には、基幹電力線MLから電力負荷LDまでの2つの経路の線路長の差は、“0”となっている。第4実施形態では、3路スイッチ回路が非導通時における当該平衡度の低下を改善するための対策を施す。
[Fourth Embodiment]
In the second embodiment, in the indoor power line 5 shown in FIG. 10, the balancing element 3 is connected to the open end where the wire line WL2 of the branch power line BL3 is cut halfway (middle point Q), and between the middle points M and N On the other hand, the balance of the indoor power line when the three-way switch circuit is off is not deteriorated on average, and the balance of the indoor power line when the three-way switch circuit is on is improved. However, as described above, even after the balancing element 3 is connected, the difference between the line lengths of the two paths from the main power line ML to the intermediate points M and N when the three-way switch circuit is non-conductive is “(2 + m ) L ″ still exists, and the degree of balance is lower than when there is no three-way switch circuit. On the other hand, when the three-way switch circuit is conductive, the difference between the line lengths of the two paths from the main power line ML to the power load LD is “0”. In the fourth embodiment, measures are taken to improve the decrease in the balance when the three-way switch circuit is non-conductive.

図18に、図10に示す平衡化素子3を適用した屋内電力線5に対して、3路スイッチ回路が非導通時における平衡度の改善対策を施した屋内電力線8を示す。図10に示す屋内電力線5と図18に示す屋内電力線8の相違点は、図18(a)に示す屋内電力線8において、破線で囲って表示しているように、一方の3路スイッチSW1の第1及び第2端子間と第1及び第3端子間にコンデンサC2,C3が夫々並列に接続され、3路スイッチユニット9を構成している点である。尚、図18(b)に、破線で囲った3路スイッチユニット9を拡大して表示する。尚、コンデンサC2,C3を追加する3路スイッチは、中間点N側の第2の3路スイッチSW2であっても良い。2つの3路スイッチSW1,SW2の何れか一方に、コンデンサC2,C3が接続されていれば十分である。これは、中間点M,Nの両方で開放となっている3路スイッチSW1,SW2の何れか一方の2端子間をコンデンサで接続すれば、上記高周波帯域の信号に対して中間点M,Nが開放端とならないためである。以上のことは、2つの3路スイッチSW1,SW2の間に4路スイッチが追加されていても同様であり、4路スイッチに、3路スイッチSW1と同様にコンデンサを追加する必要はない。   FIG. 18 shows an indoor power line 8 in which a measure for improving the balance when the three-way switch circuit is non-conductive is applied to the indoor power line 5 to which the balancing element 3 shown in FIG. 10 is applied. The difference between the indoor power line 5 shown in FIG. 10 and the indoor power line 8 shown in FIG. 18 is that the indoor power line 8 shown in FIG. Capacitors C2 and C3 are connected in parallel between the first and second terminals and between the first and third terminals, respectively, thereby constituting a three-way switch unit 9. In FIG. 18B, the three-way switch unit 9 surrounded by a broken line is enlarged and displayed. The three-way switch to which the capacitors C2 and C3 are added may be the second three-way switch SW2 on the intermediate point N side. It is sufficient if the capacitors C2 and C3 are connected to one of the two three-way switches SW1 and SW2. This is because the intermediate points M and N with respect to the signal in the high frequency band can be obtained by connecting a capacitor between any two terminals of the three-way switches SW1 and SW2 that are open at both the intermediate points M and N. This is because is not an open end. The above is the same even if a four-way switch is added between the two three-way switches SW1 and SW2, and it is not necessary to add a capacitor to the four-way switch as in the case of the three-way switch SW1.

コンデンサC2,C3は、第3実施形態で説明したコンデンサC1と同様の仕様のものを使用する。従って、夫々の電気容量は、1nF以上100nF以下であることが好ましく、より好適には、例えば、5nF〜50nF、更に好適には、5nF〜20nFの範囲で、コンデンサC2,C3の電気容量を設定するのが良い。   The capacitors C2 and C3 have the same specifications as the capacitor C1 described in the third embodiment. Therefore, each capacitance is preferably 1 nF or more and 100 nF or less, more preferably, for example, the capacitance of the capacitors C2 and C3 is set in the range of 5 nF to 50 nF, and more preferably 5 nF to 20 nF. Good to do.

ここで、図10に示す平衡化素子3を適用した屋内電力線5に対して、上述の3路スイッチユニット9を適用する場合、既存の3路スイッチSW1,SW2の何れか一方にコンデンサC2,C3を追加する方法と、既存の3路スイッチSW,SW2の何れか一方1を、3路スイッチユニット9に置き換える方法の2通りがあり、何れの場合でも奏する効果は同じである。既存の屋内電力線が無く、新たに3路スイッチユニット9を適用した屋内電力線5を敷設する場合には、3路スイッチとして、3路スイッチSW1,SW2の何れか一方に代えて3路スイッチユニット9を使用すれば良い。尚、この場合においても、3路スイッチSW1,SW2の何れか一方にコンデンサC2,C3を個別に並列接続して、3路スイッチユニット9を現場で構成するようにしても構わない。   Here, when the above-described three-way switch unit 9 is applied to the indoor power line 5 to which the balancing element 3 shown in FIG. 10 is applied, capacitors C2, C3 are connected to any one of the existing three-way switches SW1, SW2. There are two methods, namely, a method of adding one of the existing three-way switches SW and SW2, and a method of replacing one of the existing three-way switches SW and SW2 with the three-way switch unit 9, and the same effects can be obtained in either case. When there is no existing indoor power line and the indoor power line 5 to which the three-way switch unit 9 is newly applied is laid, the three-way switch unit 9 is replaced with one of the three-way switches SW1 and SW2 as a three-way switch. Should be used. In this case as well, the capacitors C2 and C3 may be individually connected in parallel to one of the three-way switches SW1 and SW2, and the three-way switch unit 9 may be configured on site.

3路スイッチSW1,SW2の何れか一方を3路スイッチユニット9として構成する場合の効果については、第3実施形態において片切りスイッチSWに並列にコンデンサC1を追加した場合の効果と同様であるので、具体的な測定データに基づく検証及び説明は割愛する。   The effect when one of the three-way switches SW1 and SW2 is configured as the three-way switch unit 9 is the same as the effect when the capacitor C1 is added in parallel to the one-side switch SW in the third embodiment. Verification and explanation based on specific measurement data are omitted.

[別実施形態]
上記第1及び第3実施形態では、基幹電力線MLから分岐して電力負荷LDに電力供給する分岐電力線として、1対のワイヤ線路の一方側に片切りスイッチSWが設けられた場合(第1のタイプ)を想定し、上記第2及び第4実施形態では、基幹電力線MLから分岐して電力負荷LDに電力供給する分岐電力線として、1対のワイヤ線路の一方側に3路スイッチSW1、SW2が設けられた場合(第2のタイプ)を想定したが、基幹電力線MLから分岐して電力負荷LDに電力供給する分岐電力線としては、第1または第2のタイプの分岐電力線が一本に限定されるものではなく、第1または第2のタイプの分岐電力線を任意に組み合わせた複数の分岐電力線が基幹電力線MLから各別に分岐する構成であっても良く、その場合、夫々の分岐電力線に対して、第1のタイプの分岐電力線に対しては、上記第1または第3実施形態で示した本発明を適用し、第2のタイプの分岐電力線に対しては、上記第2または第4実施形態で示した本発明を適用すれば良い。また、第1または第2タイプの分岐電力線が複数の場合に、全ての当該分岐電力線に対して、上記タイプに応じた本発明を適用するのが好ましいが、一部の当該分岐電力線に対して本発明を適用しても、伝送特性の改善は図られる。
[Another embodiment]
In the first and third embodiments described above, when a cut-off switch SW is provided on one side of a pair of wire lines as a branch power line that branches from the main power line ML and supplies power to the power load LD (first In the second and fourth embodiments, three-way switches SW1 and SW2 are provided on one side of a pair of wire lines as branch power lines that branch from the main power line ML and supply power to the power load LD. Although assumed to be provided (second type), the branch power line that branches from the main power line ML and supplies power to the power load LD is limited to one or two branch power lines of the first or second type. Instead of this, a configuration may be adopted in which a plurality of branch power lines arbitrarily combining the first or second type of branch power lines are branched from the main power line ML. The present invention shown in the first or third embodiment is applied to the power line, the first type branch power line, and the second type branch power line. Alternatively, the present invention shown in the fourth embodiment may be applied. In addition, when there are a plurality of first or second type branch power lines, it is preferable to apply the present invention according to the above type to all the branch power lines, but for some of the branch power lines. Even if the present invention is applied, the transmission characteristics can be improved.

また、上記各実施形態では、特に明示しなかったが、片切りスイッチSW、3路スイッチSW1,SW2等は、オンオフ或いは導通経路を手動で切り替える手動式スイッチを想定したが、電磁式の遠隔操作可能なスイッチ、タイマ式のスイッチ、センサの検知信号に応じて切り替わるセンサ式スイッチ等の非手動式のスイッチであっても構わない。   In each of the above embodiments, although not clearly indicated, the one-way switch SW, the three-way switch SW1, SW2, and the like are assumed to be manual switches for manually switching on / off or conduction paths. It may be a non-manual switch such as a possible switch, a timer-type switch, or a sensor-type switch that switches according to the detection signal of the sensor.

また、上記各実施形態では、分岐電力線BL3の基幹電力線MLから電力負荷LDまでのワイヤ線路WL1を通過する線路長とワイヤ線路WL2を通過する線路長では、ワイヤ線路WL1側の線路長が長い場合を想定し、平衡化素子3をワイヤ線路WL2側に設ける場合を説明したが、ワイヤ線路WL2側の線路長が長い場合には、平衡化素子3をワイヤ線路WL1側に設けるようにしても良い。   Further, in each of the above embodiments, when the line length passing through the wire line WL1 from the main power line ML to the power load LD of the branch power line BL3 and the line length passing through the wire line WL2 are long on the wire line WL1 side. In the above description, the balancing element 3 is provided on the wire line WL2 side. However, when the line length on the wire line WL2 side is long, the balancing element 3 may be provided on the wire line WL1 side. .

1,4: 従来の屋内電力線
2,5,6,8: 本発明に係る屋内電力線
3: 平衡化素子
7: 片切りスイッチユニット
9: 3路スイッチユニット
10,11: パーソナルコンピュータ
12,13: PLCアダプタ
14: 電流プローブ
15: リアルタイムスペクトルアナライザ
16: ネットワークアナライザ
17,18: インピーダンス変換用バラン
A,B: 経路
BL: 分岐電力線
BL1〜BL3: 分岐電力線
C1〜C3: コンデンサ
CT1,CT2: コンセント
LD: 電力負荷
ML: 基幹電力線
M,N,Q: 中間点
P: 分岐点
P0: リアルタイムスペクトルアナライザのポート
P1,P2: ネットワークアナライザのポート
PL1,PL2: 電力線
SW: 片切りスイッチ(開閉スイッチ)
SW1,SW2: 3路スイッチ
SW3: 4路スイッチ
WL1〜WL6: ワイヤ線路
DESCRIPTION OF SYMBOLS 1,4: Conventional indoor power line 2,5,6,8: Indoor power line which concerns on this invention 3: Balancing element 7: One piece switch unit 9: Three-way switch unit 10,11: Personal computer 12,13: PLC Adapter 14: Current probe 15: Real-time spectrum analyzer 16: Network analyzer 17, 18: Impedance conversion balun A, B: Path BL: Branch power line BL1-BL3: Branch power line C1-C3: Capacitor CT1, CT2: Outlet LD: Power Load ML: Core power line M, N, Q: Intermediate point P: Branch point P0: Real-time spectrum analyzer port P1, P2: Network analyzer port PL1, PL2: Power line SW: Cut-off switch (open / close switch)
SW1, SW2: 3-way switch SW3: 4-way switch WL1-WL6: Wire line

Claims (12)

電力線搬送通信用のネットワークとして使用する屋内電力線の伝送特性改善方法であって、
前記屋内電力線が、基幹電力線から分岐して電力負荷に電力を供給する1対のワイヤ線路からなる分岐電力線を備え、
前記分岐電力線の前記1対のワイヤ線路の一方側の途中に、2端子間の電流のオンオフを切り替える開閉スイッチ、或いは、第1端子と第2端子間の電流のオンオフと前記第1端子と第3端子間の電流のオンオフを一方がオンで他方がオフとなるように切り替える3路スイッチを両端に設けた3路スイッチ回路が介装され、前記開閉スイッチがオン時、或いは、前記3路スイッチ回路の両端間が導通時において、前記1対のワイヤ線路の一方側の前記基幹電力線から前記電力負荷に至る線路長が他方側の前記線路長より長い場合、
前記電力線搬送通信に使用する搬送周波数における、前記1対のワイヤ線路の前記線路長の差による位相差を抑制する平衡化素子を、前記1対のワイヤ線路の他方側に直列に挿入することを特徴とする伝送特性改善方法。
A method for improving the transmission characteristics of an indoor power line used as a network for power line carrier communication,
The indoor power line includes a branch power line consisting of a pair of wire lines that branch from the main power line and supply power to a power load;
An open / close switch that switches on / off of current between two terminals in the middle of the one side of the pair of wire lines of the branch power line, or on / off of current between the first terminal and the second terminal, and the first terminal and the second A three-way switch circuit provided with a three-way switch that switches on and off the current between the three terminals so that one is on and the other is off is provided at both ends, and when the open / close switch is on, or the three-way switch When the line length from the main power line on one side of the pair of wire lines to the power load is longer than the line length on the other side when both ends of the circuit are conductive,
Inserting a balancing element that suppresses a phase difference caused by a difference in the line length of the pair of wire lines at a carrier frequency used for the power line carrier communication in series on the other side of the pair of wire lines. A characteristic transmission characteristic improvement method.
前記平衡化素子として、前記1対のワイヤ線路と同じ素材及び構造で、前記線路長の差と同じ長さのワイヤ線路を用いることを特徴とする請求項1に記載の伝送特性改善方法。   The transmission characteristic improving method according to claim 1, wherein a wire line having the same material and structure as the pair of wire lines and having the same length as the difference in the line length is used as the balancing element. 前記平衡化素子として、インダクタ素子を用いることを特徴とする請求項1に記載の伝送特性改善方法。   The transmission characteristic improving method according to claim 1, wherein an inductor element is used as the balancing element. 前記平衡化素子を、前記他方側のワイヤ線路の前記電力負荷に近い側の端部または端部近傍に挿入することを特徴とする請求項1〜3の何れか1項に記載の伝送特性改善方法。   The transmission characteristic improvement according to any one of claims 1 to 3, wherein the balancing element is inserted into an end portion of the other side of the wire line close to the power load or in the vicinity of the end portion. Method. 前記分岐電力線の前記1対のワイヤ線路の一方側の途中に、前記開閉スイッチが介装されている場合に、前記開閉スイッチに対して、電気容量が1nF以上100nF以下のコンデンサを並列に接続することを特徴とする請求項1〜4の何れか1項に記載の伝送特性改善方法。   When the opening / closing switch is interposed in the middle of the pair of wire lines of the branch power line, a capacitor having an electric capacity of 1 nF to 100 nF is connected in parallel to the opening / closing switch. The transmission characteristic improving method according to claim 1, wherein the transmission characteristic is improved. 前記分岐電力線の前記1対のワイヤ線路の一方側の途中に、前記3路スイッチ回路が介装されている場合に、前記3路スイッチ回路の何れか一方の前記3路スイッチに対して、前記第1端子と前記第2端子間に、電気容量が1nF以上100nF以下の第1コンデンサを接続し、前記第1端子と前記第3端子間に、電気容量が1nF以上100nF以下の第2コンデンサを接続することを特徴とする請求項1〜4の何れか1項に記載の伝送特性改善方法。   When the three-way switch circuit is interposed in the middle of the one side of the pair of wire lines of the branch power line, with respect to any one of the three-way switches of the three-way switch circuit, A first capacitor having a capacitance of 1 nF to 100 nF is connected between the first terminal and the second terminal, and a second capacitor having a capacitance of 1 nF to 100 nF is connected between the first terminal and the third terminal. The transmission characteristic improving method according to claim 1, wherein connection is performed. 電力線搬送通信用のネットワークとして使用する屋内電力線であって、
基幹電力線から分岐して電力負荷に電力を供給する1対のワイヤ線路からなる分岐電力線の一方側のワイヤ線路の途中に、2端子間の電流のオンオフを切り替える開閉スイッチ、或いは、第1端子と第2端子間の電流のオンオフと前記第1端子と第3端子間の電流のオンオフを一方がオンで他方がオフとなるように切り替える3路スイッチを両端に設けた3路スイッチ回路が介装され、前記開閉スイッチがオン時、或いは、前記3路スイッチ回路の両端間が導通時において、前記1対のワイヤ線路の一方側の前記基幹電力線から前記電力負荷に至る線路長が他方側の前記線路長より長くなり、
前記電力線搬送通信に使用する搬送周波数における、前記1対のワイヤ線路の前記線路長の差による位相差を抑制する平衡化素子が、前記1対のワイヤ線路の他方側に直列に挿入されていることを特徴とする屋内電力線。
An indoor power line used as a network for power line carrier communication,
An open / close switch that switches on / off of current between two terminals in the middle of a wire line on one side of a branch power line that is branched from a main power line and supplies power to a power load; or a first terminal A three-way switch circuit provided at both ends is provided with a three-way switch that switches on / off of the current between the second terminals and on / off of the current between the first terminal and the third terminal so that one is on and the other is off. When the open / close switch is turned on, or when both ends of the three-way switch circuit are conductive, the line length from the main power line on one side of the pair of wire lines to the power load is on the other side. Longer than the track length,
A balancing element that suppresses a phase difference due to a difference in the line length of the pair of wire lines at a carrier frequency used for the power line carrier communication is inserted in series on the other side of the pair of wire lines. An indoor power line characterized by that.
前記平衡化素子として、前記1対のワイヤ線路と同じ素材及び構造で、前記線路長の差と同じ長さのワイヤ線路が用いられていることを特徴とする請求項7に記載の屋内電力線。   The indoor power line according to claim 7, wherein a wire line having the same material and structure as the pair of wire lines and having the same length as the difference in the line length is used as the balancing element. 前記平衡化素子として、インダクタ素子が用いられていることを特徴とする請求項7に記載の屋内電力線。   The indoor power line according to claim 7, wherein an inductor element is used as the balancing element. 前記平衡化素子が、前記他方側のワイヤ線路の前記電力負荷に近い側の端部または端部近傍に挿入されていることを特徴とする請求項7〜9の何れか1項に記載の屋内電力線。   The indoor according to any one of claims 7 to 9, wherein the balancing element is inserted into an end portion of the other side of the wire line close to the power load or in the vicinity of the end portion. Power line. 前記分岐電力線の前記1対のワイヤ線路の一方側の途中に、前記開閉スイッチが介装され、前記開閉スイッチに対して、電気容量が1nF以上100nF以下のコンデンサが並列に接続していることを特徴とする請求項7〜10の何れか1項に記載の伝送特性改善方法。   The open / close switch is interposed in the middle of the pair of wire lines of the branch power line, and a capacitor having an electric capacity of 1 nF to 100 nF is connected in parallel to the open / close switch. The transmission characteristic improving method according to claim 7, wherein the transmission characteristic is improved. 前記分岐電力線の前記1対のワイヤ線路の一方側の途中に、前記3路スイッチ回路が介装され、前記3路スイッチ回路の何れか一方の前記3路スイッチに対して、前記第1端子と前記第2端子間に、電気容量が1nF以上100nF以下の第1コンデンサが接続し、前記第1端子と前記第3端子間に、電気容量が1nF以上100nF以下の第2コンデンサが接続していることを特徴とする請求項7〜10の何れか1項に記載の伝送特性改善方法。   The three-way switch circuit is interposed in the middle of the one side of the pair of wire lines of the branch power line, and the first terminal is connected to one of the three-way switches of the three-way switch circuit. A first capacitor having a capacitance of 1 nF to 100 nF is connected between the second terminals, and a second capacitor having a capacitance of 1 nF to 100 nF is connected between the first terminal and the third terminal. The transmission characteristic improving method according to claim 7, wherein the transmission characteristic is improved.
JP2010040012A 2010-02-25 2010-02-25 Indoor power line, and method of improving transmission characteristic of the same Pending JP2011176675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010040012A JP2011176675A (en) 2010-02-25 2010-02-25 Indoor power line, and method of improving transmission characteristic of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010040012A JP2011176675A (en) 2010-02-25 2010-02-25 Indoor power line, and method of improving transmission characteristic of the same

Publications (1)

Publication Number Publication Date
JP2011176675A true JP2011176675A (en) 2011-09-08

Family

ID=44689108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010040012A Pending JP2011176675A (en) 2010-02-25 2010-02-25 Indoor power line, and method of improving transmission characteristic of the same

Country Status (1)

Country Link
JP (1) JP2011176675A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176676A (en) * 2010-02-25 2011-09-08 Sharp Corp Switch circuit, indoor power line, and method of improving transmission characteristic of the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004080441A (en) * 2002-08-19 2004-03-11 Goto Ikueikai Transmitter apparatus and receiver apparatus
JP2007335811A (en) * 2006-06-19 2007-12-27 Matsushita Electric Ind Co Ltd Printed wiring board and electronic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004080441A (en) * 2002-08-19 2004-03-11 Goto Ikueikai Transmitter apparatus and receiver apparatus
JP2007335811A (en) * 2006-06-19 2007-12-27 Matsushita Electric Ind Co Ltd Printed wiring board and electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176676A (en) * 2010-02-25 2011-09-08 Sharp Corp Switch circuit, indoor power line, and method of improving transmission characteristic of the same

Similar Documents

Publication Publication Date Title
RU2488961C2 (en) Device for determination of in-phase signal within network of hf communication via power transmission line
Banwell et al. A novel approach to the modeling of the indoor power line channel part I: circuit analysis and companion model
JP5291252B2 (en) Impedance stabilization device
Sigle et al. On the impedance of the low-voltage distribution grid at frequencies up to 500 kHz
KR20040018247A (en) Inductive coupling of a data signal to a power transmission cable
Kosonen et al. Comparison of signal coupling methods for power line communication between a motor and an inverter
JP2006115481A (en) Distribution apparatus, distribution board and wiring method of the distribution apparatus
US7333003B1 (en) Power line coupler adapted for use with multiple electric power meters
JP2011176675A (en) Indoor power line, and method of improving transmission characteristic of the same
US7356086B1 (en) Power line coupler adapted for use with multiple service panels
Pinomaa et al. Applicability of narrowband power line communication in an LVDC distribution network
JP2011176676A (en) Switch circuit, indoor power line, and method of improving transmission characteristic of the same
JP4284317B2 (en) Power line communication method
Tsuzuki et al. Measurement of Japanese indoor power-line channel
D'Innocenzo et al. Domestic electrical standard system for power line communication tests
JP2010147520A (en) Filter for distribution switchboard, distribution switchboard, and distribution switchboard power line communication system
JP2009272918A (en) Power line communication system
JP2006191351A (en) Terminating circuit, terminating device, outlet and arrangement method of terminating circuit
Papagiannis et al. A PLC based energy consumption management system. Power line performance analysis: Field tests and simulation results
JP2007082124A (en) Apparatus for communication between different phase lines for indoor power line communication using single phase three-wire
La Manna CHARACTERISATION OF COMMUNICATION CHANNEL ON HIGH VOLTAGE ENERGY TRANSPORT AND DISTRIBUTION SYSTEMS
Guezgouz et al. Electromagnetic compatibility between power line communication and powers converters
JP2009159302A (en) Single-phase three-wire alternating power line plc signal gate device and distribution board and power meter having the same
Nilsson et al. A plc-based electrical energy consumption management system. preliminary field test results
JP4810664B2 (en) Inter-phase communication device using single-phase three-wire indoor power line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20130528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131001