JP2011171328A - Solid-state image pickup element and method of manufacturing the same - Google Patents

Solid-state image pickup element and method of manufacturing the same Download PDF

Info

Publication number
JP2011171328A
JP2011171328A JP2010030933A JP2010030933A JP2011171328A JP 2011171328 A JP2011171328 A JP 2011171328A JP 2010030933 A JP2010030933 A JP 2010030933A JP 2010030933 A JP2010030933 A JP 2010030933A JP 2011171328 A JP2011171328 A JP 2011171328A
Authority
JP
Japan
Prior art keywords
solid
transparent resin
pixel
layer
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010030933A
Other languages
Japanese (ja)
Inventor
Tomohito Kitamura
智史 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2010030933A priority Critical patent/JP2011171328A/en
Publication of JP2011171328A publication Critical patent/JP2011171328A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-state image pickup element widely ensuring a normal film forming area free from quality failures such as frame color unevenness and peeling in a later color filter forming process regardless of a structure with a pixel part forming area surface formed lower than an upper surface of a multilayer wiring part in the solid-state image pickup element having a pixel part with a plurality of photoelectric conversion elements arranged on a plane, and the multilayer wiring part laminated and arranged around the pixel part. <P>SOLUTION: In the solid-state image pickup element, a step is formed in the vicinity of a boundary between both parts that a front surface of a light receiving plane of the pixel part area is positioned lower than the upper surface of the multilayer wiring part area, and a sloped transparent resin layer whose surface protrudes downward is provided on a surface ranging from the step to the pixel part. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、CCDやCMOS等の光電変換素子を有する固体撮像素子とその製造方法に関する。   The present invention relates to a solid-state imaging device having a photoelectric conversion device such as a CCD or CMOS, and a manufacturing method thereof.

近年、撮像装置は画像の記録、通信、放送の内容の拡大に伴って広く用いられるようになっている。撮像装置として種々の形式のものが提案されているが、小型、軽量で高性能のものが安定して製造されるようになった固体撮像素子を組み込んだ撮像装置が、デジタルカメラやデジタルビデオとして普及してきている。   In recent years, imaging devices have been widely used with the expansion of the contents of image recording, communication, and broadcasting. Various types of image pickup devices have been proposed. An image pickup device incorporating a solid-state image pickup device that has been stably manufactured with a small size, light weight, and high performance can be used as a digital camera or digital video. It has become widespread.

固体撮像素子は、撮影対象物からの光学像を受け、入射した光を電気信号に変換する複数の光電変換素子を有する。光電変換素子の種類はCCD(電荷結合素子)タイプとCMOS(相補型金属酸化物半導体)タイプとに大別される。また、光電変換素子の配列形態から、光電変換素子を1列に配置したリニアセンサー(ラインセンサー)と、光電変換素子を縦横に2次元的に配列させたエリアセンサー(面センサー)との2種類に大別される。いずれのセンサにおいても光電変換素子の数(画素数)が多いほど撮影された画像は精密になる。   The solid-state imaging device has a plurality of photoelectric conversion elements that receive an optical image from a subject and convert incident light into an electrical signal. The types of photoelectric conversion elements are roughly classified into CCD (charge coupled device) type and CMOS (complementary metal oxide semiconductor) type. In addition, there are two types of photoelectric conversion elements: linear sensors (line sensors) in which photoelectric conversion elements are arranged in a row, and area sensors (surface sensors) in which photoelectric conversion elements are two-dimensionally arranged vertically and horizontally. It is divided roughly into. In any sensor, the larger the number of photoelectric conversion elements (number of pixels), the more accurate the captured image.

また、光電変換素子に入射する光の経路に特定の波長の光を透過する各種のカラーフィルタを設けることで、対象物の色情報を得ることを可能とした単板式のカラーセンサーとしての固体撮像素子も普及している。カラーフィルタの色としては、赤色(R)、青色(B)、緑色(G)の3色からなる3原色系、あるいは、シアン色(C)、マゼンタ色(M)、イエロー色(Y)からなる補色系が一般的であり、特に3原色系が多く使われている。   In addition, by providing various color filters that transmit light of a specific wavelength in the path of light incident on the photoelectric conversion element, solid-state imaging as a single-plate color sensor that makes it possible to obtain color information of an object Elements are also widespread. As the color of the color filter, three primary colors consisting of three colors of red (R), blue (B), and green (G), or cyan (C), magenta (M), and yellow (Y) are used. Complementary color systems are generally used, and in particular, the three primary color systems are often used.

カラーフィルタは、フォトリソグラフィ法を用いて形成することが主流となっている。すなわち、基板上に所定の色の感光性着色樹脂を塗布した後、所定のパターンを有する露光用フォトマスクを介して感光性着色樹脂にパターン露光、現像を行い、所定の部位に着色樹脂からなるカラーフィルタを形成する。また、基板上への感光性着色樹脂の塗布としては、回転塗布法を用いることが多い。すなわち、基板上に感光性着色樹脂を滴下した後、基板を回転することで滴下した感光性着色樹脂を基板上に塗り広げる方法である。   The color filter is mainly formed using a photolithography method. That is, after applying a photosensitive colored resin of a predetermined color on a substrate, pattern exposure and development are performed on the photosensitive colored resin through an exposure photomask having a predetermined pattern, and the predetermined portion is made of a colored resin. A color filter is formed. In addition, spin coating is often used as the application of the photosensitive colored resin on the substrate. In other words, after the photosensitive colored resin is dropped on the substrate, the dropped photosensitive colored resin is spread on the substrate by rotating the substrate.

固体撮像素子に要求される性能で重要な課題の一つに、入射する光への感度を向上させることが挙げられる。小型化した固体撮像素子で撮影した画像の情報量を多くするためには受光部となる光電変換素子を微細化して高集積化する必要がある。しかし、光電変換素子を微細化した場合、各光電変換素子の面積が小さくなり、受光部として利用できる面積割合も減るので、光を取り込む面積が小さくなるため、光電変換素子の受光部に取り込める光の量が少なくなり、実効的な感度は低下する。   One of the important issues in performance required for a solid-state imaging device is to improve the sensitivity to incident light. In order to increase the amount of information of an image photographed with a miniaturized solid-state imaging device, it is necessary to miniaturize and highly integrate a photoelectric conversion device serving as a light receiving unit. However, when the photoelectric conversion element is miniaturized, the area of each photoelectric conversion element is reduced, and the area ratio that can be used as the light receiving unit is also reduced. And the effective sensitivity decreases.

このような、微細化した固体撮像素子の感度の低下を防止するための手段として、光電変換素子の受光部に効率良く光を取り込むために、対象物から入射される光を集光して光電変換素子の受光部に導くマイクロレンズを光電変換素子上に形成する技術が提案されている。マイクロレンズで光を集光して光電変換素子の受光部に導くことで、受光部の見かけ上の開口率(面積)を大きくすることが可能になり、固体撮像素子の感度の向上が可能になる。また、マイクロレンズと光電変換素子の受光部との距離を短くして、光の取り込み角度を大きくすることで更なる高感度化を図る技術も提案されている(特許文献1参照)。   As a means for preventing such a decrease in sensitivity of the miniaturized solid-state imaging device, in order to efficiently capture light into the light receiving portion of the photoelectric conversion device, the light incident from the object is condensed and photoelectrically A technique has been proposed in which a microlens that leads to a light receiving portion of a conversion element is formed on the photoelectric conversion element. By condensing the light with a microlens and guiding it to the light receiving part of the photoelectric conversion element, it becomes possible to increase the apparent aperture ratio (area) of the light receiving part and improve the sensitivity of the solid-state image sensor Become. In addition, a technique for further increasing sensitivity by shortening the distance between the microlens and the light receiving portion of the photoelectric conversion element and increasing the light capturing angle has been proposed (see Patent Document 1).

特開2008−270500号公報JP 2008-270500 A

上述のように、マイクロレンズと光電変換素子の受光部との距離を短くして、光の取り込み角度を大きくすることで高感度化を図ることは可能である。図2は、第1色目のカラーフィルタ11まで形成した従来の固体撮像素子の主要部について説明するための部分断面模式図である。基板2は、多層配線が設けられていない画素部Aの上部を掘り込んでおり、基板2の画素部Aにおける厚さをその外周の多層配線部Bより薄くしている。これにより、光電変換素子3とその上方に第1色目のカラーフィルタ11や他色のカラーフィルタを介して画素部Aの上方に形成することになるマイクロレンズとの距離を短くできる。ここで、多層配線部Bには、複数の配線層4が各配線層間の層間絶縁膜5を介して積層配置されている。また、カラーフィルタは、画素部Aを越えて外周部にも形成される。   As described above, it is possible to increase the sensitivity by shortening the distance between the microlens and the light receiving portion of the photoelectric conversion element and increasing the light capturing angle. FIG. 2 is a partial cross-sectional schematic diagram for explaining the main part of a conventional solid-state imaging device formed up to the color filter 11 of the first color. The substrate 2 is dug in the upper part of the pixel portion A where the multilayer wiring is not provided, and the thickness of the pixel portion A of the substrate 2 is made thinner than the multilayer wiring portion B on the outer periphery thereof. Thereby, the distance between the photoelectric conversion element 3 and the microlens to be formed above the pixel portion A via the first color filter 11 and other color filters can be shortened. Here, in the multilayer wiring portion B, a plurality of wiring layers 4 are laminated and disposed via an interlayer insulating film 5 between the wiring layers. The color filter is also formed on the outer peripheral portion beyond the pixel portion A.

然るに、表面位置の低い画素部表面と表面位置の高い多層配線部上面との境界付近には段差が生じるため、マイクロレンズの形成に先立ってカラーフィルタを画素部に形成する際に、塗布状態を示す簡略化した部分断面模式図である図6に示すように、段差D近傍のカラーフィルタ層の厚さが部分的に画素部Aの中央付近より厚くなる傾向がある。これは、カラーフィルタを構成する着色樹脂30の塗布工程で段差部Cに液溜まりができるためである。この傾向は、回転塗布法で着色樹脂を塗布した際に顕著となる。図2において、段差近傍のカラーフィルタ層の厚さが部分的に厚くなる領域である段差部Cは、画素部Aと重なる領域を生じ、カラーフィルタが均一厚さに形成される部分は、段差部Cより内側の画素部Aの中でも基板の外周から離れた基板の中央寄りの部分に限定される。   However, since there is a step near the boundary between the surface of the pixel portion having a low surface position and the upper surface of the multilayer wiring portion having a high surface position, when the color filter is formed on the pixel portion prior to the formation of the microlens, As shown in FIG. 6, which is a simplified schematic partial sectional view, the thickness of the color filter layer in the vicinity of the step D tends to be partially thicker than the vicinity of the center of the pixel portion A. This is because a liquid pool is formed in the stepped portion C in the coating process of the colored resin 30 constituting the color filter. This tendency becomes prominent when a colored resin is applied by a spin coating method. In FIG. 2, a stepped portion C, which is a region where the thickness of the color filter layer in the vicinity of the step is partially thick, generates a region overlapping with the pixel portion A, and a portion where the color filter is formed with a uniform thickness is a stepped portion. The pixel portion A inside the portion C is limited to a portion near the center of the substrate far from the outer periphery of the substrate.

固体撮像素子1周辺部である段差部Cの近傍に形成されたカラーフィルタ着色層の厚さが、均一厚さの画素部Aの中央部と較べて部分的に厚くなることにより、段差部近傍のカラーフィルタと、中央部のカラーフィルタとの光の透過率の変化がムラとなって現れ、固体撮像素子1の品質不良となる「枠色ムラ」を引き起こす。また、光硬化タイプの着色樹脂を用いて、フォトリソグラフィー法でカラーフィルタのパターンを形成する一般的な製法では、着色層の局部的に厚い部分は他の部分に較べて主要な露光スペクトルであるi線(波長365nm)の透過光量が減少して硬化度が不足する上、膜内部のストレスも大きくなるので、段差直下部分を含めた段差部Cでカラーフィルタパターンの剥がれを生じ易い。また、着色層の局部的に厚い部分をベタ膜として形成することにより、段差部Cでの剥がれを防ぐことはできるが、画素部Aの中でカラーフィルタ着色層が均一厚さとなる有効画素領域が狭まる問題は依然として残る。   The thickness of the color filter coloring layer formed in the vicinity of the stepped portion C that is the peripheral portion of the solid-state imaging device 1 is partially thicker than the central portion of the pixel portion A having a uniform thickness, thereby the vicinity of the stepped portion. The change in light transmittance between the color filter and the color filter in the center appears as unevenness, which causes “frame color unevenness” that results in poor quality of the solid-state imaging device 1. Further, in a general manufacturing method in which a color filter pattern is formed by a photolithographic method using a photo-curing type colored resin, a locally thick portion of the colored layer is a main exposure spectrum compared to other portions. Since the amount of transmitted light of i-line (wavelength 365 nm) decreases and the degree of curing becomes insufficient, and the stress inside the film also increases, the color filter pattern easily peels off at the stepped portion C including the portion immediately below the stepped portion. Further, by forming a locally thick portion of the colored layer as a solid film, peeling at the stepped portion C can be prevented, but the effective pixel region in which the color filter colored layer has a uniform thickness in the pixel portion A The problem of narrowing remains.

本発明は、前記の問題点に鑑みて提案するものであり、本発明が解決しようとする課題は、複数の光電変換素子を平面配置した画素部と、画素部周辺に積層配置した多層配線部とを有する固体撮像素子において、画素部を形成した領域面を多層配線部の上面より低く形成した構造であっても、後のカラーフィルタ形成工程で枠色ムラや剥がれ等の品質不良の生じない正常な膜形成領域を広く確保する固体撮像素子を提供するものである。   The present invention is proposed in view of the above-mentioned problems, and the problem to be solved by the present invention is that a pixel portion in which a plurality of photoelectric conversion elements are arranged in a plane and a multilayer wiring portion in which a plurality of photoelectric conversion elements are laminated around the pixel portion. In the solid-state imaging device having the above, even if the area surface on which the pixel portion is formed is formed lower than the upper surface of the multilayer wiring portion, there is no quality defect such as uneven frame color or peeling in the subsequent color filter forming process It is an object of the present invention to provide a solid-state imaging device that ensures a wide normal film formation region.

上記の課題を解決するための手段として、請求項1に記載の発明は、複数の光電変換素子を平面配置した画素部領域と、画素部領域外周にあって画素部と電気的に接続する複数の配線層を各配線層間の層間絶縁膜を介して積層配置した多層配線部領域と、を有する固体撮像素子において、画素部領域の受光面表面が多層配線部領域の上面より低い位置とな
るように両部の境界付近に段差が形成され、段差から画素部にいたる表面上に、その表面が下に凸なスロープ状の透明樹脂層を設けたことを特徴とする固体撮像素子である。
As means for solving the above-mentioned problems, the invention according to claim 1 is a pixel unit region in which a plurality of photoelectric conversion elements are arranged in a plane, and a plurality of pixels electrically connected to the pixel unit on the outer periphery of the pixel unit region. In a solid-state imaging device having a multilayer wiring portion region in which wiring layers are laminated via an interlayer insulating film between each wiring layer, the light receiving surface of the pixel portion region is positioned lower than the upper surface of the multilayer wiring portion region A solid-state imaging device is characterized in that a step is formed in the vicinity of the boundary between the two portions, and a slope-shaped transparent resin layer having a convex downward surface is provided on the surface from the step to the pixel portion.

また、請求項2に記載の発明は、前記スロープ状の透明樹脂層上の画素部領域に、カラーフィルタ着色層と平坦化層とマイクロレンズとを光電変換素子の受光面に近い側からこの順に積層形成することを特徴とする請求項1に記載の固体撮像素子である。   According to a second aspect of the present invention, in the pixel region on the slope-shaped transparent resin layer, a color filter coloring layer, a planarizing layer, and a microlens are arranged in this order from the side closer to the light receiving surface of the photoelectric conversion element. The solid-state imaging device according to claim 1, wherein the solid-state imaging device is formed by stacking.

また、請求項3に記載の発明は、前記スロープ状の透明樹脂層の形成方法として、前記透明樹脂層形成前の複数の固体撮像素子が形成されたウェハデバイスの受光面側表面に感光性の透明樹脂液を塗布する工程、透過率階調を有するフォトマスクを用いて露光する工程、アルカリ溶液により現像する工程、熱処理による樹脂硬化工程を順次行うことを特徴とする請求項1または2に記載の固体撮像素子の製造方法である。   According to a third aspect of the present invention, as a method of forming the slope-shaped transparent resin layer, a photosensitive surface side surface of a wafer device on which a plurality of solid-state imaging elements before forming the transparent resin layer is formed is photosensitive. The step of applying a transparent resin solution, the step of exposing using a photomask having a transmittance gradation, the step of developing with an alkaline solution, and the step of curing the resin by heat treatment are sequentially performed. This is a method for manufacturing a solid-state imaging device.

また、請求項4に記載の発明は、前記感光性の透明樹脂液がポジ型レジストであって、透過率階調を有するフォトマスクの透過率が段差直下に対応する位置で極小値を有し、かつ、段差部から画素部にいたる領域に対応する位置で増加傾向を有することを特徴とする請求項3に記載の固体撮像素子の製造方法である。   According to a fourth aspect of the present invention, the photosensitive transparent resin liquid is a positive resist, and the transmittance of a photomask having a transmittance gradation has a minimum value at a position corresponding to immediately below the step. The solid-state imaging device manufacturing method according to claim 3, wherein the solid-state imaging device has an increasing tendency at a position corresponding to a region from the step portion to the pixel portion.

本発明による固体撮像素子は、画素部と多層配線部との段差に起因してカラーフィルタの膜厚が部分的に大きくなり易い段差部の下地断面形状を制御するために、予めカラーフィルタ着色層の下地として、断面形状を制御した透明樹脂層を設けることにより、画素部の受光面側表面を多層配線部の上面より低く形成した構造であっても、枠色ムラや剥がれ等の品質不良の生じないカラーフィルタ着色層の正常な膜形成領域を広く確保することができ、良好な品質の固体撮像素子を提供できる。さらに、カラーフィルタ着色層と密着性の良い透明樹脂層を画素部の均質な下地として形成できるため、画素部におけるカラーフィルタの欠けやピンホール等の一般的な欠陥も減らせるという副次的な効果を有する。   The solid-state imaging device according to the present invention has a color filter coloring layer in advance in order to control the base cross-sectional shape of the step portion where the film thickness of the color filter tends to be partially increased due to the step between the pixel portion and the multilayer wiring portion. By providing a transparent resin layer with a controlled cross-sectional shape as the underlayer, even if the light receiving surface side surface of the pixel part is formed lower than the upper surface of the multilayer wiring part, quality defects such as frame color unevenness and peeling may occur. A normal film formation region of the color filter coloring layer that does not occur can be secured widely, and a solid-state imaging device of good quality can be provided. In addition, since a transparent resin layer having good adhesion to the color filter coloring layer can be formed as a uniform base of the pixel portion, it is possible to reduce general defects such as chipping of color filters and pinholes in the pixel portion. Has an effect.

本発明の固体撮像素子の構成を工程途中の主要部について説明するための部分断面模式図である。It is a partial cross section schematic diagram for demonstrating the structure of the solid-state image sensor of this invention about the principal part in the middle of a process. 従来の固体撮像素子の構成を工程途中の主要部について説明するための部分断面模式図である。It is a partial cross-sectional schematic diagram for demonstrating the structure of the conventional solid-state image sensor about the principal part in the middle of a process. 本発明の固体撮像素子の製造方法において、スロープ状の透明樹脂層を形成する方法について説明するための模式図であって、(a)は、スロープ状の透明樹脂層を形成した部分断面模式図、(b)は、スロープ状の透明樹脂層を形成する際に露光工程で用いるフォトマスクの部分平面模式図、(c)は、(b)のフォトマスクの各部に対応する部位のフォトマスクの光透過率の一例を示す。BRIEF DESCRIPTION OF THE DRAWINGS In the manufacturing method of the solid-state image sensor of this invention, it is a schematic diagram for demonstrating the method of forming a slope-shaped transparent resin layer, Comprising: (a) is a partial cross-section schematic diagram in which the slope-shaped transparent resin layer was formed. (B) is a partial schematic plan view of a photomask used in an exposure process when forming a slope-shaped transparent resin layer, and (c) is a photomask of a portion corresponding to each part of the photomask in (b). An example of the light transmittance is shown. 本発明の固体撮像素子の一例を説明するための部分断面模式図である。It is a partial cross-sectional schematic diagram for demonstrating an example of the solid-state image sensor of this invention. 本発明の固体撮像素子におけるカラーフィルタ各色の平面配列の一例を説明するための部分平面模式図である。It is a partial plane schematic diagram for demonstrating an example of the plane arrangement | sequence of each color filter color in the solid-state image sensor of this invention. 従来の塗布工程における着色樹脂の塗布状態を示す簡略化した部分断面模式図である。It is the simplified partial cross-section schematic diagram which shows the application | coating state of colored resin in the conventional application | coating process.

以下、図面に従って、本発明を実施するための形態を説明する。
図1は、工程途中(複数色のカラーフィルタのうち第1色目のカラーフィルタを形成した時点)の、本発明の固体撮像素子の主要部について説明するための部分断面模式図である。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is a partial cross-sectional schematic diagram for explaining the main part of the solid-state imaging device of the present invention during the process (when a first color filter among a plurality of color filters is formed).

図1に示すように、複数の光電変換素子3を平面配置した画素部Aと、画素部の外周周辺にあって画素部と電気的に接続する複数の配線層4を各配線層間の層間絶縁膜5を介して積層配置した多層配線部Bと、を有する固体撮像素子1において、画素部Aを形成する領域の表面が多層配線部の上面より低い位置となっており、両部の境界付近に段差が形成されている。   As shown in FIG. 1, a pixel portion A in which a plurality of photoelectric conversion elements 3 are arranged in a plane and a plurality of wiring layers 4 around the outer periphery of the pixel portion and electrically connected to the pixel portions are provided with interlayer insulation between the wiring layers. In the solid-state imaging device 1 having the multilayer wiring portion B laminated via the film 5, the surface of the region where the pixel portion A is formed is lower than the upper surface of the multilayer wiring portion, and near the boundary between both portions Are stepped.

多層配線が設けられていない画素部Aの上部を約1〜2μmの深さに掘り込んでいるため、従来の固体撮像素子と同様に、画素部Aの領域での基板2の厚さをその周囲の多層配線部Bの領域より薄くすることにより、光電変換素子3とその上方に第1色目のカラーフィルタ11や他色のカラーフィルタを介して形成することになるマイクロレンズとの距離を短くできる。   Since the upper portion of the pixel portion A where the multilayer wiring is not provided is dug to a depth of about 1 to 2 μm, the thickness of the substrate 2 in the region of the pixel portion A can be set as in the conventional solid-state imaging device. By making it thinner than the area of the surrounding multilayer wiring part B, the distance between the photoelectric conversion element 3 and the microlens to be formed thereon via the first color filter 11 and other color filters is shortened. it can.

固体撮像素子1は、前記複数の光電変換素子3を平面配置した画素部Aを予め形成して有する半導体基板2上に、前記複数の配線層4を各配線層間の層間絶縁膜5を介して積層配置した多層配線部Bを形成している。この多層配線部形成工程は、画素部と多層配線部との境界付近に段差を形成する段差形成工程とともに、フォトリソグラフィー法または印刷法に適宜エッチング法等の加工手段を加えるなど、一般的な方法を用いて可能であり、詳細な説明は省略する。   In the solid-state imaging device 1, the plurality of wiring layers 4 are disposed on a semiconductor substrate 2 having a pixel portion A in which the plurality of photoelectric conversion elements 3 are arranged in advance via an interlayer insulating film 5 between the wiring layers. A multilayer wiring portion B is formed in a stacked arrangement. This multilayer wiring portion forming step is a general method such as adding a processing means such as an etching method to a photolithography method or a printing method as well as a step forming step for forming a step near the boundary between the pixel portion and the multilayer wiring portion. The detailed description is omitted.

画素部Aの受光面側表面に複数色のカラーフィルタを色別の着色画素で順次平面配置してカラーフィルタ着色層を設けるが、それに先立って、透明樹脂層6を形成している。多層配線からの電気的接続を得るための接続端子部上や、複数の固体撮像素子を一括形成したウェハデバイスから個別のチップを分離するためのスクライブライン上など、透明樹脂層を形成すべきでない箇所があるものの、透明樹脂層6は、一旦、ウェハデバイス上に一様に広く形成している。   A color filter colored layer is provided by sequentially arranging a plurality of color filters on the surface of the light receiving surface of the pixel portion A with colored pixels for each color, and prior to that, a transparent resin layer 6 is formed. Transparent resin layers should not be formed on connection terminals to obtain electrical connections from multilayer wiring or on scribe lines to separate individual chips from a wafer device on which a plurality of solid-state image sensors are collectively formed Although there are places, the transparent resin layer 6 is once and uniformly formed on the wafer device.

第1色目のカラーフィルタ11は、所望の色特性を保持するために一定の膜厚を必要とするが、従来のように画素部Aの受光面側表面にいきなりカラーフィルタを形成しようとすると、前述した図2に示すように、カラーフィルタを構成する着色樹脂の塗布工程で段差部近傍に液溜まりができるため、段差部Cでカラーフィルタ層の厚さが所望する厚さより厚くなる領域が広くなり、カラーフィルタが所望する厚さで均一厚さに形成される部分は、画素部Aの中で基板の中央寄りの部分に狭く限定される。   The color filter 11 of the first color needs a certain film thickness in order to maintain desired color characteristics. However, when a color filter is suddenly formed on the light receiving surface side surface of the pixel portion A as in the prior art, As shown in FIG. 2 described above, since a liquid pool can be formed in the vicinity of the step portion in the step of applying the colored resin constituting the color filter, the region where the thickness of the color filter layer is larger than the desired thickness at the step portion C is wide. Thus, a portion where the color filter is formed to have a desired thickness and a uniform thickness is narrowly limited to a portion near the center of the substrate in the pixel portion A.

これに対して、本発明では、カラーフィルタ第1色11の形成に先立って、段差から画素部Aにいたる表面上に、その表面が下に凸なスロープ状の透明樹脂層6を設けることにより、前記着色樹脂の塗布工程での段差部での液溜まりの程度を軽減でき、従って、段差部Cでのカラーフィルタ層の厚さが部分的に厚くなる領域を小さくすることができる。すなわち、画素部のカラーフィルタを広い領域で正常な所望する均一厚さに得ることができ、その結果、枠色ムラや剥がれの少ない良好な品質の固体撮像素子を提供できる。   On the other hand, in the present invention, prior to the formation of the color filter first color 11, the slope-shaped transparent resin layer 6 whose surface is convex downward is provided on the surface from the step to the pixel portion A. Thus, the degree of liquid pooling at the step portion in the colored resin application process can be reduced, and accordingly, the region where the thickness of the color filter layer at the step portion C is partially increased can be reduced. That is, the color filter of the pixel portion can be obtained in a normal desired uniform thickness in a wide area, and as a result, a solid-state imaging device with good quality with little frame color unevenness and peeling can be provided.

図3は、本発明の固体撮像素子の製造方法において、スロープ状の透明樹脂層を形成する方法について説明するための模式図であって、(a)は、スロープ状の透明樹脂層を形成した部分断面模式図、(b)は、スロープ状の透明樹脂層を形成する際に露光工程で用いるフォトマスクの部分平面模式図、(c)は、(b)のフォトマスクの各部に対応する部位のフォトマスクの光透過率の一例を示す。   FIG. 3 is a schematic diagram for explaining a method of forming a slope-shaped transparent resin layer in the method for manufacturing a solid-state imaging device of the present invention, and (a) shows a slope-shaped transparent resin layer formed. Partial cross-sectional schematic view, (b) is a schematic partial plan view of a photomask used in the exposure process when forming a slope-shaped transparent resin layer, and (c) is a portion corresponding to each part of the photomask in (b). An example of the light transmittance of the photomask is shown.

本発明では、カラーフィルタの形成に先立って、透明樹脂層6を受光面側に形成する。透明樹脂層6はスロープ状として形成するが、前記スロープ状の透明樹脂層の形成方法として、(1)前記透明樹脂層形成前の複数の固体撮像素子が形成されたウェハデバイスの受光面側表面に感光性の透明樹脂液を塗布する工程、(2)前述した透過率階調を有する
フォトマスクを用いて露光する工程、(3)アルカリ溶液により現像する工程、熱処理による樹脂硬化工程を順次行うものである。
In the present invention, prior to the formation of the color filter, the transparent resin layer 6 is formed on the light receiving surface side. The transparent resin layer 6 is formed in a slope shape. As a method for forming the slope-shaped transparent resin layer, (1) a light receiving surface side surface of a wafer device on which a plurality of solid-state imaging elements before the transparent resin layer is formed is formed. A step of applying a photosensitive transparent resin solution to the substrate, (2) a step of exposing using a photomask having the above-described transmittance gradation, (3) a step of developing with an alkali solution, and a step of curing the resin by heat treatment. Is.

透明樹脂層6の形成にあたっては、前記感光性の透明樹脂液をポジ型レジストとし、透過率階調を有するフォトマスクの透過率が段差直下に対応する位置で極小値を有し、かつ、段差部から画素部にいたる領域に対応する位置で増加傾向を有することが好ましい。   In forming the transparent resin layer 6, the photosensitive transparent resin liquid is a positive resist, the transmittance of the photomask having a transmittance gradation has a minimum value at a position corresponding to the level immediately below the level difference, and the level difference It is preferable to have an increasing tendency at a position corresponding to a region from the portion to the pixel portion.

透明樹脂層6は、段差から画素部Aにいたる段差部Cを主とした表面上に、下に凸なスロープ状の断面形状を形成するとともに、画素部Aおよび多層配線部Bの表面を平坦にする役目も有する。但し、透明樹脂層6を単に厚く形成して、受光部の光電変換素子3と入光部のマイクロレンズ8との距離を遠ざけて段差部Cの段差を埋める方向にした場合、マイクロレンズと受光部との距離が遠くなり、固体撮像素子の高感度化と相反する方向となるので望ましくない。透明樹脂層6としては、例えば、無色透明なアクリル樹脂溶液を画素部A上および多層配線部B上では薄く形成し、段差部C上では表面が下に凸なスロープ状の断面形状となるように厚さに変化を与える方法で形成し、その後熱処理して硬化させることにより形成できる。   The transparent resin layer 6 forms a downward sloped cross-sectional shape on the surface mainly including the stepped portion C from the stepped portion to the pixel portion A, and the surfaces of the pixel portion A and the multilayer wiring portion B are flattened. Also has a role to make. However, when the transparent resin layer 6 is simply formed thick and the distance between the photoelectric conversion element 3 of the light receiving portion and the microlens 8 of the light receiving portion is increased to fill the stepped portion C, the microlens and the light receiving portion are received. This is not desirable because the distance to the part increases and the direction is in conflict with the increase in sensitivity of the solid-state imaging device. As the transparent resin layer 6, for example, a colorless and transparent acrylic resin solution is formed thinly on the pixel portion A and the multilayer wiring portion B, and on the stepped portion C, the surface has a slope-like cross-sectional shape that protrudes downward. The film can be formed by a method of changing the thickness of the film, and then cured by heat treatment.

前述したように、表面が下に凸なスロープ状の断面形状を透明樹脂で形成する方法としては、感光性の透明樹脂液を用いたフォトリソグラフィ法において、露光用のフォトマスクに透過率階調を与えた中間濃度の領域を有するグレートーンマスクまたはハーフトーンマスクのいわゆるグレーマスクと呼ばれるフォトマスクを用いることができる。   As described above, as a method of forming a slope-shaped cross-sectional shape with a convex surface downward with a transparent resin, a photolithography method using a photosensitive transparent resin liquid is used to form a transmittance gradation on a photomask for exposure. A so-called gray mask of a gray tone mask or a half tone mask having an intermediate density region provided with a so-called gray mask can be used.

すなわち、フォトマスク上に中間濃度の領域を作る方法としては、ドット(網点)配列やライン・アンド・スペースのような遮光膜の微細パターンの集合により、微細パターン領域全体の平均として、半透光部を形成する一般的なグレートーンマスクのタイプと、半透過性の膜の直接成膜とパターニング手段で半透光部を形成するハーフトーンマスクのタイプがある。真空成膜を、遮光膜材料と半透過性膜材料の少なくとも2種類に分けて実施する必要のある後者より、遮光膜1種類のみの真空成膜を行えば良い前者のグレートーンマスクのタイプの方が、製造工程上は簡便である。但し、パターン周縁部での光の回折干渉効果によりグレートーンマスクのタイプでは光の強度のバラツキが大きく、特に膜厚の大きな部分の形状品質を良好に保つことが困難な場合があるので、形成したいスロープの形状に応じて適宜タイプを選択する必要がある。   That is, as a method of creating an intermediate density region on a photomask, a semi-transparent layer is obtained as an average of the entire fine pattern region by a collection of fine patterns of a light shielding film such as dot (halftone dot) arrangement and line and space. There are a general gray-tone mask type that forms a light part and a half-tone mask type that forms a semi-transparent part by directly forming a semi-transparent film and patterning means. The former gray-tone mask type, in which only one type of light-shielding film needs to be vacuum-deposited, is the latter, which requires vacuum film-forming to be carried out in at least two types of light-shielding film material and semi-transmissive film material. However, the manufacturing process is simpler. However, due to the diffraction interference effect of light at the periphery of the pattern, the gray-tone mask type has large variations in light intensity, and it may be difficult to maintain good shape quality especially in areas where the film thickness is large. It is necessary to select an appropriate type according to the shape of the slope that is desired.

フォトマスクの透明基板は、露光機からのレジスト感光用の照射光の内、少なくとも、使用する感光性樹脂の感光性を利用する領域の波長の光を通すものであり、溶融石英ガラス、無アルカリガラス等が挙げられる。また、フォトマスクの製造において、遮光部は、従来より主にスパッタリング法で形成されている金属クロム膜、または金属クロムに酸化クロムを積層した低反射膜の薄膜をフォトエッチング法によりパターン化するのが一般的であり、エッチング手段はウェット方式でもドライ方式でも良い。また、グレートーン部は、前記遮光部と同一の材料で、かつ遮光部形成と同時の工程で、スリット等のパターン上の工夫により形成することができる。   The transparent substrate of the photomask transmits at least the wavelength of the region utilizing the photosensitivity of the photosensitive resin used in the resist exposure light from the exposure machine. Glass etc. are mentioned. Also, in the manufacture of photomasks, the light-shielding portion is formed by patterning a metal chromium film that has been mainly formed by a sputtering method or a low-reflection film in which chromium oxide is laminated on metal chromium by a photo-etching method. However, the etching means may be a wet method or a dry method. Further, the gray tone portion can be formed of the same material as the light shielding portion, and can be formed by a device on the pattern such as a slit in the same process as the light shielding portion formation.

更に、ハーフトーン部には、酸化クロムの半透明膜を用いることが相応しく、分光透過率は可視域近辺でなるべくフラットであることが望ましく、膜厚を制御することにより、所望の透過率を得ることができる。薄膜材料としての酸化クロムはスパッタリング法での形成が一般的であり、酸化度によりその吸収係数を変えるが、後のパターニングにおけるエッチング適性と必要膜厚とから最適化すれば良い。ハーフトーン部のパターン化は前記遮光部のパターン化と同様の手段で可能である。また、ハーフトーンマスクと同様に半透過性を有する膜を用いるものの、一定膜厚で成膜した膜のエッチング量を制御して半透光部を任意の透過率でパターン形成する別法も可能である。   Further, it is appropriate to use a chromium oxide translucent film for the halftone portion, and it is desirable that the spectral transmittance be as flat as possible in the vicinity of the visible range, and a desired transmittance can be obtained by controlling the film thickness. be able to. Chromium oxide as a thin film material is generally formed by a sputtering method, and its absorption coefficient varies depending on the degree of oxidation, but it may be optimized from the etching suitability and the required film thickness in later patterning. The halftone part can be patterned by the same means as the patterning of the light shielding part. In addition, although a semi-transparent film is used in the same way as the halftone mask, another method of patterning the semi-transparent portion with an arbitrary transmittance by controlling the etching amount of the film formed with a constant film thickness is also possible. It is.

図3(b)に部分平面模式図で示す、スロープ状の透明樹脂層をポジ型レジストで形成する際に露光工程で用いるフォトマスクにおいて、例えば、多層配線部B上に対応するマスク領域20、段差部C上に対応するマスク領域21、22、23、画素部A上に対応するマスク領域24のそれぞれの領域のマスクの光透過率T(%)の一例を(c)に示す。   In a photomask used in an exposure process when forming a slope-shaped transparent resin layer with a positive resist, shown in a partial plan view in FIG. 3B, for example, a mask region 20 corresponding to the multilayer wiring portion B, An example of the light transmittance T (%) of the mask in each of the mask regions 21, 22, 23 corresponding to the stepped portion C and the mask region 24 corresponding to the pixel portion A is shown in (c).

多層配線部B上に対応するマスク領域20および画素部A上に対応するマスク領域24では、Tが80%と高く、透明樹脂層の材質としてポジ型のレジストを使用した場合、この領域の透明樹脂は露光後の現像により約0.1μm程度の僅かな厚さ分を残して大部分が溶解除去される。一方、段差部C上に対応するマスク領域の内、段差直下に対応する領域21でTが30%と低く、画素部に接近していく位置に対応する領域22、23でTがそれぞれ50%、70%と増加傾向を示すようにすれば、対応する領域の透明樹脂の膜厚が、段差直下で極大の残存率を示し、画素部に向かって膜厚の残存率は減少していく。段差部での透明樹脂の塗布厚が画素部に向かって減少する一定の傾斜を有するので、上記のような露光、現像による透明樹脂の残存率の減少が加わると、透明樹脂層6の断面形状を下に凸なスロープ状にし、スロープの下降角度を急激に減少させていくことができる。   In the mask region 20 corresponding to the multilayer wiring portion B and the mask region 24 corresponding to the pixel portion A, T is as high as 80%, and when a positive resist is used as the material of the transparent resin layer, the transparent region in this region is transparent. Most of the resin is dissolved and removed by development after exposure, leaving a slight thickness of about 0.1 μm. On the other hand, of the mask regions corresponding to the stepped portion C, T is as low as 30% in the region 21 directly below the step, and T is 50% in the regions 22 and 23 corresponding to the positions approaching the pixel portion. 70%, the film thickness of the transparent resin in the corresponding region shows a maximum residual ratio immediately below the step, and the film thickness residual ratio decreases toward the pixel portion. Since the coating thickness of the transparent resin at the stepped portion has a certain slope that decreases toward the pixel portion, the cross-sectional shape of the transparent resin layer 6 is applied when the reduction in the residual ratio of the transparent resin due to exposure and development as described above is added. Can be formed into a slope that is convex downward, and the descending angle of the slope can be rapidly reduced.

図4は、本発明の固体撮像素子の一例を説明するための部分断面模式図である。
前記スロープ状の透明樹脂層6が延在した画素部領域に、カラーフィルタ着色層11、12と平坦化層7とマイクロレンズ8とを光電変換素子3の受光面に近い側からこの順に積層形成することにより、高感度のカラー固体撮像素子を得ることができる。
FIG. 4 is a partial cross-sectional schematic diagram for explaining an example of the solid-state imaging device of the present invention.
The color filter coloring layers 11, 12, the flattening layer 7, and the microlens 8 are stacked in this order from the side close to the light receiving surface of the photoelectric conversion element 3 in the pixel portion region where the transparent transparent resin layer 6 extends. By doing so, a highly sensitive color solid-state imaging device can be obtained.

第1色目のカラーフィルタ11として、例えば、緑色の顔料分散樹脂である感光性ネガ型レジストを塗布する。ここで、段差部Cによる影響が充分に狭い領域に限定されることにより、画素部A上の画素膜厚が均一になり、かつ、所望する膜厚となったカラーフィルタを形成できる領域が広くなる。レジスト塗布後、プレベイク、選択的露光、現像、熱処理の各工程を経て、第1色目のカラーフィルタ11が例えば0.9μmの厚さにパターン形成される。選択的露光においては、下に設けた光電変換素子3との位置合わせが重要となり、微細化した固体撮像素子の品質を支配する。   As the color filter 11 of the first color, for example, a photosensitive negative resist that is a green pigment dispersion resin is applied. Here, since the influence of the stepped portion C is limited to a sufficiently narrow region, the pixel film thickness on the pixel portion A becomes uniform, and a region where a color filter having a desired film thickness can be formed is wide. Become. After applying the resist, the first color filter 11 is patterned to a thickness of, for example, 0.9 μm through prebaking, selective exposure, development, and heat treatment. In the selective exposure, alignment with the photoelectric conversion element 3 provided below is important, and governs the quality of the miniaturized solid-state imaging element.

次に、第2色目のカラーフィルタおよびそれ以降の色を含めた残りの色層を形成する。選択した色の顔料分散樹脂である感光性ネガ型レジストを塗布し、プレベイク、選択的露光、現像、熱処理の各工程を経て形成することは、上記と同様である。後述のように、第2色以降は、第1色の場合より画素膜厚を薄くした方が好ましいので、必要とする色特性を考慮して顔料の材質および含有比率、ならびに分散樹脂としての処方を適宜選択する。   Next, the remaining color layers including the second color filter and the subsequent colors are formed. A photosensitive negative resist, which is a pigment-dispersed resin of a selected color, is applied and formed through prebaking, selective exposure, development, and heat treatment steps as described above. As will be described later, since it is preferable to make the pixel film thickness thinner for the second and subsequent colors than for the first color, the material and content ratio of the pigment and the prescription as a dispersion resin in consideration of the required color characteristics. Is appropriately selected.

以上で、画素部の受光面表面に複数色のカラーフィルタを色別に順次平面配置するカラーフィルタ形成工程を終え、次に、カラーフィルタ各色上に設ける平坦化層7を介して、マイクロレンズ8を平面配置するマイクロレンズ形成工程を行う。   This completes the color filter forming step of sequentially arranging a plurality of color filters on the surface of the light receiving surface of the pixel portion by color, and then the microlens 8 is mounted via the planarizing layer 7 provided on each color filter color. A microlens forming step for planar arrangement is performed.

平坦化層7は、画素部Aにおけるカラーフィルタ各色の厚さの不均一さや微小な凹凸を覆い、マイクロレンズ形成のための平坦で均一な下地を提供するものであり、例えば、無色透明なアクリル樹脂溶液を0.2μmの厚さで塗布形成し、熱処理する。
平坦化層7を形成後、レンズ材料となる透明樹脂である感光性ポジ型レジストを平坦化層上に塗布形成し、プレベイク、選択的露光後、有機アルカリ現像水溶液にて現像し、熱処理工程を加えて熱リフロー挙動を利用することにより、同一単位の繰り返しで平面配置されるマイクロレンズ8を、画素部Aの上方領域に画素ピッチと一致させて高さ0.5μmの凸レンズ形状の微小レンズを複数整列させて形成する。
The flattening layer 7 covers the uneven thickness of each color of the color filter in the pixel portion A and minute unevenness, and provides a flat and uniform base for forming a microlens. A resin solution is applied and formed to a thickness of 0.2 μm and heat-treated.
After the planarization layer 7 is formed, a photosensitive positive resist, which is a transparent resin as a lens material, is applied and formed on the planarization layer, prebaked, selectively exposed, developed with an organic alkali developing aqueous solution, and a heat treatment step is performed. In addition, by utilizing the thermal reflow behavior, a microlens 8 arranged in a plane by repeating the same unit is made a microlens having a convex lens shape with a height of 0.5 μm so as to coincide with the pixel pitch in the upper region of the pixel portion A. A plurality of lines are aligned.

最後に、接続端子部形成工程およびウェハデバイス上の多数の固体撮像素子を断裁分離
して各チップを実装するための工程を経て固体撮像素子が完成する。
Finally, the solid-state imaging device is completed through a connection terminal portion forming step and a step for cutting and separating a large number of solid-state imaging devices on the wafer device and mounting each chip.

カラーフィルタの平面配列に関して、図5により、一例を説明する。固体撮像素子1枚による単板式カラー撮影を行うのに適したカラーフィルタ画素のベイヤ(Bayer)配列の例である。人間の視感度に合わせて、緑色着色層31の着色画素数を青色着色層32や赤色着色層33の着色画素数より多く配置する。   An example of the color filter planar arrangement will be described with reference to FIG. It is an example of a Bayer array of color filter pixels suitable for performing single-plate color imaging with a single solid-state imaging device. In accordance with human visibility, the number of colored pixels of the green colored layer 31 is larger than the number of colored pixels of the blue colored layer 32 and the red colored layer 33.

上記のベイヤ配列の例では、緑色着色層31をカラーフィルタ第1色11とし、第2色以降に青色着色層32や赤色着色層33を形成することが望ましい。緑色着色層31の占める面積が相対的に大きく、対角に位置する同色の着色画素と連なることによって、さらに密着性が高まるからである。   In the example of the Bayer arrangement, it is desirable that the green coloring layer 31 is the color filter first color 11 and the blue coloring layer 32 and the red coloring layer 33 are formed after the second color. This is because the area occupied by the green colored layer 31 is relatively large, and the adhesion is further enhanced by connecting to the colored pixels of the same color located on the diagonal.

また、一般に、画素部の有効領域におけるカラーフィルタの第2色以降の画素膜厚を、第1色の画素膜厚より薄くすることが望ましい。そうすることによって、カラーフィルタ第2色、第3色が、段差部Cでも第1色より薄い画素膜厚となり、既に第1色をパターン形成された抜け部分に沈没する形での薄い画素膜厚の形成となり、段差部の悪影響が軽減される。従って、カラーフィルタ第2色、第3色における枠色ムラや剥がれは問題にならない。さらに画素部Aの領域においても、ベイヤ配列で第1色を緑色とする場合、カラーフィルタ第2色、第3色の各画素は4辺を第1色の高い壁に囲まれて形成されるので、剥がれ等の欠陥が生じ難い。   In general, it is desirable to make the pixel film thickness of the second and subsequent colors of the color filter in the effective area of the pixel portion thinner than the pixel film thickness of the first color. By doing so, the color filter second color and the third color have a pixel film thickness that is thinner than the first color even in the stepped portion C, and the thin pixel film in the form in which the first color sinks into the already-patterned missing part. Thickness is formed, and the adverse effect of the step portion is reduced. Accordingly, the frame color unevenness and peeling in the second and third color filter colors do not matter. Further, in the area of the pixel portion A, when the first color is green in the Bayer array, each pixel of the color filter second color and third color is formed with four sides surrounded by a high wall of the first color. Therefore, it is difficult for defects such as peeling to occur.

本発明の固体撮像素子の実施例について、以下に説明する。
〈実施例1〉
〔工程〕
光電変換素子からなる受光素子が多数配置されたエリアがチップ上面に対して1μm程度掘り込まれた半導体デバイス上に、感光性のポジ型透明樹脂溶液を1μmの厚さでスピンコート法(回転塗布法)により塗布し、90℃、90秒のプレベイク処理をする。
次いで、透過率階調がついたフォトマスクを用いて、透明樹脂膜を露光した。透過率階調は、段差下近傍の透過率が低く、画素部に向かって高透過率とした。また、スクライブライン等の透明樹脂膜を除去すべき箇所に対応するフォトマスクの透過率は100%とし、接続端子部等の外部電極上は透過率0%として透明樹脂膜を保護膜として残すようにした。次いで、現像、熱処理し、段差部に、その表面が下に凸なスロープ状のパターンが形成された透明樹脂層を形成した。受光素子が多数配置された画素部の透明樹脂層の厚さは0.1μmであった。
次いで、カラーフィルタ第1色となる緑色着色層を緑色ネガ型カラーレジスト(顔料分散型)をスピン塗布、プレベイク(70℃、1分)し、選択的に露光、現像、熱処理して緑色画素のパターンを0.9μmの厚さに形成した。
次いで、青色、赤色の着色層についても、緑色着色層と同様に、各所定の配置にフォトリソグラフィー法により形成した。青色、赤色の着色層の画素膜厚は、緑色着色層の画素膜厚より薄く、それぞれ0.7μm、0.8μmであった。
次いで、カラーフィルタパターンの表面にアクリル樹脂溶液を0.2μmの厚さでスピンコート法により塗布形成し、熱処理した。
次いで、レンズとなるポジ型レジストを塗布形成し、プレベイク後、選択的に露光した。その後、有機アルカリ現像水溶液(TMAH系:0.5%)にて現像し、熱リフロー法により0.5μm高さのマイクロレンズを形成した。
次いで、ポジ型レジストとして透明樹脂を3μmの厚さで塗布形成し、100℃、120秒のプレベイクをかけた後、接続端子部やスクライブラインなど透明樹脂を除去したい箇所を選択的に露光する。その後、有機アルカリ現像水溶液(TMAH系:0.5%)にて現像した。
次いで、上記ポジ型レジストパターンをエッチングマスクとして、ドライエッチングにて開口部下層の樹脂をエッチング除去した。ドライエッチングは、アルバック社製NA1300にて出力500W、ガス圧50Pa、O流量600cm/min.(1hPa、0℃)、N流量10cm/min.(1hPa、0℃)、エッチングレート0.5μm/min.で2分間処理し、1μmエッチング除去した。
次いで、ドライエッチングされずに残ったポジ型レジスト約2μm厚を剥離液にて剥離除去した。
最後に、水分を除去するために100℃、2分の熱処理をかけた。
〔評価〕
得られた固体撮像素子は、枠色ムラが殆ど認められず、ウェハ段差近傍においてカラーフィルタ着色層の画素剥がれのない、高品質のカラー固体撮像素子であった。
また、緑色、青色、赤色の各色の画素感度もチップ内での均一性は良好で高感度であり、高品質のカラー固体撮像素子であった。
Examples of the solid-state imaging device of the present invention will be described below.
<Example 1>
[Process]
A photosensitive positive transparent resin solution is spin-coated at a thickness of 1 μm (rotary coating) on a semiconductor device in which an area where a large number of light receiving elements made of photoelectric conversion elements are arranged is dug by about 1 μm with respect to the upper surface of the chip. Method) and prebaking at 90 ° C. for 90 seconds.
Next, the transparent resin film was exposed using a photomask having a transmittance gradation. In the transmittance gradation, the transmittance near the step is low, and the transmittance is increased toward the pixel portion. Further, the transmittance of the photomask corresponding to the portion where the transparent resin film such as the scribe line should be removed is set to 100%, and the transmittance on the external electrode such as the connection terminal portion is set to 0% so that the transparent resin film is left as a protective film. I made it. Subsequently, it developed and heat-processed and the transparent resin layer in which the slope-like pattern in which the surface protruded below was formed in the level | step-difference part was formed. The thickness of the transparent resin layer in the pixel portion where a large number of light receiving elements are arranged was 0.1 μm.
Next, a green negative color resist (pigment dispersion type) is spin-coated and pre-baked (70 ° C., 1 minute) on the green colored layer, which is the first color of the color filter, and selectively exposed, developed, and heat-treated to form a green pixel. The pattern was formed to a thickness of 0.9 μm.
Subsequently, the blue and red colored layers were also formed in a predetermined arrangement by a photolithography method in the same manner as the green colored layer. The pixel thicknesses of the blue and red colored layers were thinner than the pixel thickness of the green colored layer, and were 0.7 μm and 0.8 μm, respectively.
Next, an acrylic resin solution was applied and formed on the surface of the color filter pattern with a thickness of 0.2 μm by a spin coating method, followed by heat treatment.
Next, a positive resist to be a lens was applied and formed, and after prebaking, selectively exposed. Thereafter, development was performed with an organic alkali developing aqueous solution (TMAH system: 0.5%), and a micro lens having a height of 0.5 μm was formed by a thermal reflow method.
Next, a transparent resin is applied and formed in a thickness of 3 μm as a positive resist, pre-baked at 100 ° C. for 120 seconds, and then selectively exposed to portions such as connection terminal portions and scribe lines where the transparent resin is to be removed. Then, it developed with organic alkali developing aqueous solution (TMAH type | system | group: 0.5%).
Next, using the positive resist pattern as an etching mask, the resin under the opening was etched away by dry etching. The dry etching is performed using an ULVAC NA1300 output of 500 W, a gas pressure of 50 Pa, and an O 2 flow rate of 600 cm 3 / min. (1 hPa, 0 ° C.), N 2 flow rate 10 cm 3 / min. (1 hPa, 0 ° C.), etching rate 0.5 μm / min. And then removed by 1 μm etching.
Next, about 2 μm thickness of the positive resist remaining without being dry-etched was stripped and removed with a stripping solution.
Finally, heat treatment was performed at 100 ° C. for 2 minutes in order to remove moisture.
[Evaluation]
The obtained solid-state image pickup device was a high-quality color solid-state image pickup device with almost no frame color unevenness and no color peeling of the color filter coloring layer in the vicinity of the wafer level difference.
Further, the pixel sensitivity of each color of green, blue, and red is good and uniform in the chip, and is a high-quality color solid-state imaging device.

本発明の固体撮像素子の比較例について、以下に説明する。
〈比較例1〉
〔工程〕
光電変換素子からなる受光素子が多数配置されたエリアがチップ上面に対して1μm程度掘り込まれた半導体デバイス上の受光素子が配置されたエリアに、アクリル樹脂溶液を0.1μmの厚さで塗布し、熱処理をする。
次いで、カラーフィルタ第1色となる緑色着色層を緑色ネガ型カラーレジスト(顔料分散型)をスピン塗布、プレベイク(70℃、1分)し、選択的に露光、現像、熱処理して緑色画素のパターンを0.9μmの厚さに形成した。
次いで、青色、赤色の着色層についても、緑色着色層と同様に、各所定の配置にフォトリソグラフィー法により形成した。この時、青色、赤色の画素膜厚は緑色の画素膜厚より厚くした。
以下、実施例1と同様に形成して、比較例1とした。
〔評価〕
得られた固体撮像素子は、段差部近傍において枠色ムラが発生した。高低差1μmの段差に対して、枠色ムラの平面範囲は段差から約30μmまで及んだ。また、段差近傍の緑色画素は画素剥がれや形状の歪みが生じた。
さらに、青色、赤色の画素膜厚も緑色同様に段差に対して厚さの影響を受け、青色については、画素剥がれが発生した。
また、緑色、青色、赤色の各色の画素感度もチップ内での均一性は劣る結果であった。
A comparative example of the solid-state imaging device of the present invention will be described below.
<Comparative example 1>
[Process]
An acrylic resin solution is applied in a thickness of 0.1 μm to an area where light receiving elements on a semiconductor device in which a large number of light receiving elements made of photoelectric conversion elements are arranged is dug by about 1 μm with respect to the upper surface of the chip And heat treatment.
Next, a green negative color resist (pigment dispersion type) is spin-coated and pre-baked (70 ° C., 1 minute) on the green colored layer, which is the first color of the color filter, and selectively exposed, developed, and heat-treated to form a green pixel. The pattern was formed to a thickness of 0.9 μm.
Subsequently, the blue and red colored layers were also formed in a predetermined arrangement by a photolithography method in the same manner as the green colored layer. At this time, the blue and red pixel thicknesses were made larger than the green pixel thickness.
Hereinafter, it was formed in the same manner as in Example 1 and was designated as Comparative Example 1.
[Evaluation]
In the obtained solid-state imaging device, frame color unevenness occurred in the vicinity of the stepped portion. For a step difference of 1 μm in height difference, the flat range of the frame color unevenness extends from the step to about 30 μm. In addition, the green pixels near the step were peeled off and the shape was distorted.
Further, the blue and red pixel thicknesses were also affected by the thickness of the step as in the case of the green color, and pixel peeling occurred for blue.
Further, the pixel sensitivity of each color of green, blue, and red was also inferior in uniformity within the chip.

1・・・固体撮像素子
2・・・基板
3・・・光電変換素子
4・・・配線層
5・・・層間絶縁膜
6・・・透明樹脂層
7・・・平坦化層
8・・・マイクロレンズ
11・・・第1色目のカラーフィルタ
12・・・第2色目のカラーフィルタ
20・・・多層配線部B上に対応するマスク領域
21、22、23・・・段差部C上に対応するマスク領域
24・・・画素部A上に対応するマスク領域
30・・・着色樹脂
31・・・緑色着色層
32・・・青色着色層
33・・・赤色着色層
A・・・・画素部
B・・・・多層配線部
C・・・・段差部
D・・・・段差
DESCRIPTION OF SYMBOLS 1 ... Solid-state image sensor 2 ... Board | substrate 3 ... Photoelectric conversion element 4 ... Wiring layer 5 ... Interlayer insulation film 6 ... Transparent resin layer 7 ... Flattening layer 8 ... Micro lens 11 ... first color filter 12 ... second color filter 20 ... corresponding to mask areas 21, 22, 23 ... on stepped portion C on multilayer wiring part B Mask area 24 to be applied ... Mask area 30 corresponding to the pixel part A ... Colored resin 31 ... Green colored layer 32 ... Blue colored layer 33 ... Red colored layer A ... Pixel part B ... multilayer wiring part C ... step part D ... step

Claims (4)

複数の光電変換素子を平面配置した画素部領域と、画素部領域外周にあって画素部と電気的に接続する複数の配線層を各配線層間の層間絶縁膜を介して積層配置した多層配線部領域と、を有する固体撮像素子において、画素部領域の受光面表面が多層配線部領域の上面より低い位置となるように両部の境界付近に段差が形成され、段差から画素部にいたる表面上に、その表面が下に凸なスロープ状の透明樹脂層を設けたことを特徴とする固体撮像素子。   A multi-layer wiring unit in which a plurality of photoelectric conversion elements are arranged in a plane, and a plurality of wiring layers that are electrically connected to the pixel unit on the outer periphery of the pixel unit region are stacked via an interlayer insulating film between each wiring layer A step is formed in the vicinity of the boundary between the two parts so that the light receiving surface of the pixel part region is lower than the upper surface of the multilayer wiring part region, and on the surface from the step to the pixel part. And a slope-shaped transparent resin layer having a convex downward surface. 前記スロープ状の透明樹脂層上の画素部領域に、カラーフィルタ着色層と平坦化層とマイクロレンズとを光電変換素子の受光面に近い側からこの順に積層形成することを特徴とする請求項1に記載の固体撮像素子。   2. A color filter coloring layer, a flattening layer, and a microlens are laminated and formed in this order from a side close to a light receiving surface of a photoelectric conversion element in a pixel portion region on the slope-shaped transparent resin layer. The solid-state image sensor described in 1. 前記スロープ状の透明樹脂層の形成方法として、前記透明樹脂層形成前の複数の固体撮像素子が形成されたウェハデバイスの受光面側表面に感光性の透明樹脂液を塗布する工程、透過率階調を有するフォトマスクを用いて露光する工程、アルカリ溶液により現像する工程、熱処理による樹脂硬化工程を順次行うことを特徴とする請求項1または2に記載の固体撮像素子の製造方法。   As a method for forming the slope-shaped transparent resin layer, a step of applying a photosensitive transparent resin liquid to a light-receiving surface side surface of a wafer device on which a plurality of solid-state imaging elements before forming the transparent resin layer is formed; The method for producing a solid-state imaging device according to claim 1, wherein a step of exposing using a photomask having a tone, a step of developing with an alkaline solution, and a resin curing step by heat treatment are sequentially performed. 前記感光性の透明樹脂液がポジ型レジストであって、透過率階調を有するフォトマスクの透過率が段差直下に対応する位置で極小値を有し、かつ、段差部から画素部にいたる領域に対応する位置で増加傾向を有することを特徴とする請求項3に記載の固体撮像素子の製造方法。   The photosensitive transparent resin liquid is a positive resist, the transmittance of a photomask having a transmittance gradation has a minimum value at a position corresponding to the level immediately below the step, and the region from the step to the pixel portion The method for manufacturing a solid-state imaging device according to claim 3, wherein the solid image pickup device has an increasing tendency at a position corresponding to.
JP2010030933A 2010-02-16 2010-02-16 Solid-state image pickup element and method of manufacturing the same Pending JP2011171328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010030933A JP2011171328A (en) 2010-02-16 2010-02-16 Solid-state image pickup element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010030933A JP2011171328A (en) 2010-02-16 2010-02-16 Solid-state image pickup element and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011171328A true JP2011171328A (en) 2011-09-01

Family

ID=44685171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010030933A Pending JP2011171328A (en) 2010-02-16 2010-02-16 Solid-state image pickup element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011171328A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197696A (en) * 2015-04-06 2016-11-24 キヤノン株式会社 Method of manufacturing solid-state image pickup device, solid-state image pickup device and camera
JP2018036338A (en) * 2016-08-29 2018-03-08 キヤノン株式会社 Forming method of color filter array and manufacturing method of electronic device
US10163739B2 (en) 2016-03-14 2018-12-25 Ricoh Company, Ltd. Solid-state imaging device and method for producing the same
CN110945665A (en) * 2017-07-31 2020-03-31 Jsr株式会社 Photoelectric conversion device
JP2021005107A (en) * 2020-09-30 2021-01-14 キヤノン株式会社 Forming method of color filter array and manufacturing method of electronic device
US10923504B2 (en) * 2018-03-23 2021-02-16 Innolux Corporation Display device with sloped pinhole
US10969681B2 (en) 2016-08-29 2021-04-06 Canon Kabushiki Kaisha Method for forming color filter array and method for manufacturing electronic device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197696A (en) * 2015-04-06 2016-11-24 キヤノン株式会社 Method of manufacturing solid-state image pickup device, solid-state image pickup device and camera
US10163739B2 (en) 2016-03-14 2018-12-25 Ricoh Company, Ltd. Solid-state imaging device and method for producing the same
JP2018036338A (en) * 2016-08-29 2018-03-08 キヤノン株式会社 Forming method of color filter array and manufacturing method of electronic device
US10969681B2 (en) 2016-08-29 2021-04-06 Canon Kabushiki Kaisha Method for forming color filter array and method for manufacturing electronic device
CN110945665A (en) * 2017-07-31 2020-03-31 Jsr株式会社 Photoelectric conversion device
CN110945665B (en) * 2017-07-31 2023-09-05 Jsr株式会社 photoelectric conversion device
US10923504B2 (en) * 2018-03-23 2021-02-16 Innolux Corporation Display device with sloped pinhole
US11574931B2 (en) 2018-03-23 2023-02-07 Innolux Corporation Display device with metal layer having pinhole
US11908869B2 (en) 2018-03-23 2024-02-20 Innolux Corporation Display device comprising a light shielding layer
JP2021005107A (en) * 2020-09-30 2021-01-14 キヤノン株式会社 Forming method of color filter array and manufacturing method of electronic device
JP7000525B2 (en) 2020-09-30 2022-01-19 キヤノン株式会社 How to form a color filter array and how to manufacture electronic devices

Similar Documents

Publication Publication Date Title
US7579209B2 (en) Image sensor and fabricating method thereof
JP2011171328A (en) Solid-state image pickup element and method of manufacturing the same
KR101035613B1 (en) CMOS Image sensor
US10986293B2 (en) Solid-state imaging device including microlenses on a substrate and method of manufacturing the same
US20060138499A1 (en) Solid-state image sensor, method of manufacturing the same, and camera
JP2000196053A (en) Image sensor and its manufacture
US7579625B2 (en) CMOS image sensor and method for manufacturing the same
KR20080058549A (en) Image sensor and method of manufacturing image sensor
JP2013012518A (en) Solid state imaging device
US20070102716A1 (en) Image sensor and fabricating method thereof
US7605016B2 (en) CMOS image sensor and method of manufacturing the same
US20050045805A1 (en) Solid-state image sensor and a manufacturing method thereof
JP4181487B2 (en) Solid-state imaging device and manufacturing method thereof
JP2006351786A (en) Manufacturing method of color filter, manufacturing method of imaging device, and solid-stage image pickup element using the same
JP5564751B2 (en) Manufacturing method of image sensor
US7879640B2 (en) CMOS image sensor and method for fabricating the same
WO2018193986A1 (en) Solid-state imaging element and method for manufacturing same
JP2011165791A (en) Solid-state imaging element, and method of manufacturing the same
KR100449951B1 (en) Image sensor and method of fabricating the same
JP2011165923A (en) Color solid-state imaging element, and method of manufacturing the same
JP5874209B2 (en) On-chip color filter for color solid-state image sensor
JP5353356B2 (en) Solid-state imaging device and manufacturing method thereof
JP2018078268A (en) Image sensor and method for manufacturing the same
JP5510053B2 (en) Manufacturing method of color filter for linear sensor
JP5446374B2 (en) Solid-state imaging device and manufacturing method thereof