JP2011159528A - Lithium secondary battery and electrode for the same - Google Patents

Lithium secondary battery and electrode for the same Download PDF

Info

Publication number
JP2011159528A
JP2011159528A JP2010020943A JP2010020943A JP2011159528A JP 2011159528 A JP2011159528 A JP 2011159528A JP 2010020943 A JP2010020943 A JP 2010020943A JP 2010020943 A JP2010020943 A JP 2010020943A JP 2011159528 A JP2011159528 A JP 2011159528A
Authority
JP
Japan
Prior art keywords
lithium
active material
garnet
secondary battery
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010020943A
Other languages
Japanese (ja)
Other versions
JP5471527B2 (en
Inventor
Hidehito Matsuo
秀仁 松尾
Shingo Ota
慎吾 太田
Hiroshi Sawada
博 佐和田
Tetsuo Kobayashi
哲郎 小林
Masahiko Asaoka
賢彦 朝岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2010020943A priority Critical patent/JP5471527B2/en
Publication of JP2011159528A publication Critical patent/JP2011159528A/en
Application granted granted Critical
Publication of JP5471527B2 publication Critical patent/JP5471527B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery enhancing safety and performing more stable charging and discharging as well. <P>SOLUTION: The lithium secondary battery 10 includes a cathode 13 in which a cathode active material layer 12 is formed on a current collector 11, an anode 18 in which an anode active material layer 17 is formed on a surface of a current collector 14, an insulation layer 19 formed on the surface of the anode active material layer 17, and a nonaqueous electrolyte solution 20 interposed between the cathode 13 and the anode 18. The insulation layer 19 is formed of a garnet-type oxide which contains Zr and conducts lithium ion. The insulation layer 19 is formed of the garnet-type oxide as expressed in a composition formula Li<SB>5+X</SB>La<SB>3</SB>(Zr<SB>X</SB>, A<SB>2-X</SB>)O<SB>12</SB>. In the formula, A is an element of one kind or more selected from a group of Sc, Ti, V. Y, Nb, Hf, Ta, Al, Si, Ga and Ge, and X is 1.4≤X<2. The insulation layer 19 can be formed on the surface of the cathode active material layer 12. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウム二次電池及びリチウム二次電池用電極に関する。   The present invention relates to a lithium secondary battery and an electrode for a lithium secondary battery.

従来、リチウム二次電池としては、正極活物質及び負極活物質のいずれかの上に、アルミナからなる無機酸化物フィラーと樹脂バインダーとを含む多孔質絶縁層を備えたものが提案されている(例えば、特許文献1参照)。このリチウム二次電池では、多孔質絶縁層の孔を介してリチウムイオンが伝導し、また、内部短絡が起きるような場合においては、この多孔質絶縁層により正負極間の直接の短絡を抑制可能であるため、安全性を高めることができる。   Conventionally, as a lithium secondary battery, a battery including a porous insulating layer containing an inorganic oxide filler made of alumina and a resin binder on either a positive electrode active material or a negative electrode active material has been proposed ( For example, see Patent Document 1). In this lithium secondary battery, lithium ions are conducted through the pores of the porous insulating layer, and in the case where an internal short circuit occurs, this porous insulating layer can suppress a direct short circuit between the positive and negative electrodes. Therefore, safety can be improved.

特開2005−174792号公報JP 2005-174792 A

しかしながら、上述の特許文献1のリチウム二次電池では、正極と負極との間に無機酸化物の多孔質絶縁層が存在することから、電池の内部抵抗の上昇が避けられなかった。この内部抵抗の上昇を更に抑制しようとすると、絶縁層の多孔度を高め空隙を多くするなどしなければならず、一方、空隙率を高めると絶縁性が低下してしまうということがあった。   However, in the above-described lithium secondary battery of Patent Document 1, since an inorganic oxide porous insulating layer exists between the positive electrode and the negative electrode, an increase in the internal resistance of the battery cannot be avoided. In order to further suppress the increase in the internal resistance, the porosity of the insulating layer must be increased and the number of voids must be increased. On the other hand, when the porosity is increased, the insulating property may be lowered.

本発明は、このような課題に鑑みなされたものであり、安全性を高めると共により安定な充放電を行うことができるリチウム二次電池及びリチウム二次電池用電極を提供することを主目的とする。   The present invention has been made in view of such problems, and has as its main object to provide a lithium secondary battery and an electrode for a lithium secondary battery that can improve safety and perform more stable charge and discharge. To do.

上述した目的を達成するために鋭意研究したところ、本発明者らは、Zrを含有しリチウムイオンを伝導するガーネット型酸化物により形成された絶縁層を正極と負極との間に設けるものとすると、安全性を高めると共により安定な充放電を行うことができることを見いだし、本発明を完成するに至った。   As a result of diligent research to achieve the above-described object, the inventors of the present invention provide an insulating layer formed of a garnet-type oxide containing Zr and conducting lithium ions between the positive electrode and the negative electrode. The present inventors have found that the safety can be improved and more stable charge / discharge can be performed, and the present invention has been completed.

即ち、本発明のリチウム二次電池は、リチウムを吸蔵・放出する正極活物質を有する正極と、リチウムを吸蔵・放出する負極活物質を有する負極と、前記正極と前記負極との間に介在しリチウムを伝導する電解液と、前記正極の表面、前記負極の表面及び前記電解液中のうち少なくとも1以上に存在し、Zrを含有しリチウムイオンを伝導するガーネット型酸化物により形成された絶縁層と、を備えたものである。   That is, the lithium secondary battery of the present invention is interposed between a positive electrode having a positive electrode active material that occludes and releases lithium, a negative electrode having a negative electrode active material that occludes and releases lithium, and the positive electrode and the negative electrode. An insulating layer formed of an electrolytic solution that conducts lithium and a garnet-type oxide that is present in at least one of the positive electrode surface, the negative electrode surface, and the electrolytic solution and contains Zr and conducts lithium ions And.

本発明のリチウム二次電池用電極は、リチウムを吸蔵・放出する活物質層と、Zrを含有しリチウムイオンを伝導するガーネット型酸化物により前記活物質層の表面に形成された絶縁層と、を備えたものである。   An electrode for a lithium secondary battery of the present invention includes an active material layer that occludes and releases lithium, an insulating layer that is formed on the surface of the active material layer with a garnet-type oxide that contains Zr and conducts lithium ions, It is equipped with.

本発明は、安全性を高めると共により安定な充放電を行うことができる。このような効果が得られる理由は、以下のように推察される。本発明では、絶縁層が電子伝導度を有さないZrを含有したガーネット型酸化物であるため、例えばプラスチックフィルム製のセパレータなどに比して熱的安定性が高く、正極と負極とが短絡してしまうのをより防止しやすい。また、絶縁層がリチウムイオンを伝導するガーネット型酸化物であるため、リチウムイオン伝導性を有さないものに比して活物質によるリチウムイオンの吸蔵・放出の妨げになりにくい。したがって、安全性を高めると共により安定な充放電を行うことができるものと推察される。   The present invention can improve safety and perform more stable charge / discharge. The reason why such an effect can be obtained is assumed as follows. In the present invention, since the insulating layer is a garnet-type oxide containing Zr that does not have electronic conductivity, the thermal stability is higher than, for example, a plastic film separator, and the positive electrode and the negative electrode are short-circuited. It is easier to prevent it. In addition, since the insulating layer is a garnet-type oxide that conducts lithium ions, it is less likely to prevent occlusion / release of lithium ions by the active material as compared with those that do not have lithium ion conductivity. Therefore, it is assumed that safety can be improved and more stable charging / discharging can be performed.

リチウム二次電池10の構造の一例を示す説明図である。2 is an explanatory diagram showing an example of a structure of a lithium secondary battery 10. FIG. リチウム二次電池10B〜10Dの構造の一例を示す説明図である。It is explanatory drawing which shows an example of the structure of lithium secondary battery 10B-10D. 実験例1,3,5,7のXRDパターンを示すグラフである。It is a graph which shows the XRD pattern of Experimental example 1,3,5. 実験例1〜7(4を除く)の格子定数のX値依存性を示すグラフである。It is a graph which shows the X value dependence of the lattice constant of Experimental examples 1-7 (except 4). 実験例1〜7のリチウムイオン伝導度のX値依存性を示すグラフである。It is a graph which shows the X value dependence of the lithium ion conductivity of Experimental Examples 1-7. ガーネット型酸化物の結晶構造に含まれる部分構造の説明図である。It is explanatory drawing of the partial structure contained in the crystal structure of a garnet-type oxide. ガーネット型酸化物の結晶構造の説明図であり、(a)は全体像、(b)は八面体のLiO6(II)を露出させた様子を示す。It is an explanatory view of the crystal structure of garnet-type oxide, (a) shows the whole picture, showing a state in which to expose the (b) LiO 6 octahedra (II). 実験例1,3,5〜7のLiO4(I)結晶構造のX値依存性を示すグラフであり、(a)は酸素イオンが形成する三角形の辺a,bのX値依存性を示し、(b)は該三角形の面積のX値依存性を示す。It is a graph which shows X value dependence of LiO4 (I) crystal structure of Experimental example 1, 3, 5-7, (a) shows X value dependence of the sides a and b of the triangle which an oxygen ion forms. , (B) shows the X value dependency of the area of the triangle. 実験例1,3,5〜7の各回折強度を(220)回折強度で規格化したときの規格化後強度のX値依存性を示すグラフである。It is a graph which shows X value dependence of the intensity | strength after normalization when each diffraction intensity of Experimental example 1, 3, 5-7 is normalized by (220) diffraction intensity. 実験例1,3,5〜7の(024)の規格化後強度のX値依存性を示すグラフである。It is a graph which shows X value dependence of the intensity | strength after normalization of (024) of Experimental example 1,3,5-7. 実験例1〜7のアレニウスプロットのグラフである。It is a graph of the Arrhenius plot of Experimental Examples 1-7. 実験例1〜7の活性化エネルギーのX値依存性を示すグラフである。It is a graph which shows the X value dependence of the activation energy of Experimental Examples 1-7. 実験例5の室温大気中での化学的安定性を示すグラフである。10 is a graph showing chemical stability in a room temperature atmosphere of Experimental Example 5. 実験例5の電位窓の測定結果を示すグラフである。10 is a graph showing measurement results of a potential window of Experimental Example 5.

本発明のリチウム二次電池は、リチウムを吸蔵・放出する正極活物質を有する正極と、リチウムを吸蔵・放出する負極活物質を有する負極と、正極と負極との間に介在しリチウムを伝導する電解液と、正極の表面、負極の表面及び電解液中のうち少なくとも1以上に存在し、Zrを含有しリチウムイオンを伝導するガーネット型酸化物により形成された絶縁層と、を備えている。リチウムイオンを伝導するガーネット型酸化物は、電子伝導度が低く、電位窓が広く、リチウムイオン伝導度が高く、高温でも安定であり、絶縁層として好ましい。例えば、リチウムイオンを伝導するガーネット型酸化物によって形成された絶縁層は、正極活物質層の表面に形成されているものとしてもよいし、負極活物質層の表面に形成されているものとしてもよいし、電解液に層状体(板状体)で存在しているものとしてもよい。更に、本発明のリチウム二次電池は、正極と負極との間にセパレータを備え、リチウムイオンを伝導するガーネット型酸化物によって形成された絶縁層は、このセパレータと電極との間のいずれかの位置に形成されているものとしてもよい。このように、絶縁層が正極と負極との間のいずれかの位置に形成されているものとすればよい。こうすれば、熱的及び化学的に安定なガーネット型酸化物により、電極の短絡を防止することができる。本実施形態では、説明の便宜のため、リチウムイオンを伝導するガーネット型酸化物によって形成された絶縁層を負極活物質層の表面に形成したものを主として説明する。   The lithium secondary battery of the present invention conducts lithium by interposing between a positive electrode having a positive electrode active material that occludes and releases lithium, a negative electrode having a negative electrode active material that occludes and releases lithium, and the positive electrode and the negative electrode. And an insulating layer formed of a garnet-type oxide that is present in at least one of the surface of the positive electrode, the surface of the negative electrode, and the electrolytic solution and contains Zr and conducts lithium ions. A garnet-type oxide that conducts lithium ions has a low electronic conductivity, a wide potential window, a high lithium ion conductivity, and is stable even at high temperatures, and is preferable as an insulating layer. For example, the insulating layer formed of a garnet-type oxide that conducts lithium ions may be formed on the surface of the positive electrode active material layer, or may be formed on the surface of the negative electrode active material layer. Alternatively, it may be present as a layered body (plate-shaped body) in the electrolytic solution. Furthermore, the lithium secondary battery of the present invention includes a separator between the positive electrode and the negative electrode, and the insulating layer formed of the garnet-type oxide that conducts lithium ions is either between the separator and the electrode. It is good also as what is formed in the position. In this way, the insulating layer may be formed at any position between the positive electrode and the negative electrode. In this way, the short circuit of the electrodes can be prevented by the thermally and chemically stable garnet oxide. In the present embodiment, for convenience of explanation, an example in which an insulating layer formed of a garnet oxide that conducts lithium ions is formed on the surface of the negative electrode active material layer will be mainly described.

本発明のリチウム二次電池の正極は、例えば正極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の正極材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。正極活物質としては、遷移金属元素を含む硫化物や、リチウムと遷移金属元素とを含む酸化物などを用いることができる。具体的には、TiS2、TiS3、MoS3、FeS2などの遷移金属硫化物、Li(1-x)MnO2(0<x<1など、以下同じ)、Li(1-x)Mn24などのリチウムマンガン複合酸化物、Li(1-x)CoO2などのリチウムコバルト複合酸化物、Li(1-x)NiO2などのリチウムニッケル複合酸化物、LiV23などのリチウムバナジウム複合酸化物、V25などの遷移金属酸化物などを用いることができる。これらのうち、リチウムの遷移金属複合酸化物、例えば、LiCoO2、LiNiO2、LiMnO2、LiV23などが好ましい。導電材は、正極の電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。これらの中で、導電材としては、電子伝導性及び塗工性の観点より、カーボンブラック及びアセチレンブラックが好ましい。結着材は、活物質粒子及び導電材粒子を繋ぎ止める役割を果たすものであり、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンマー(EPDM)、スルホン化EPDM、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。また、水系バインダーであるセルロース系やスチレンブタジエンゴム(SBR)の水分散体等を用いることもできる。正極活物質、導電材、結着材を分散させる溶剤としては、例えばN−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどの有機溶剤を用いることができる。また、水に分散剤、増粘剤等を加え、SBRなどのラテックスで活物質をスラリー化してもよい。増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロースなどの多糖類を単独で、あるいは2種以上の混合物として用いることができる。塗布方法としては、例えば、アプリケータロールなどのローラコーティング、スクリーンコーティング、ドクターブレイド方式、スピンコーティング、バーコータなどが挙げられ、これらのいずれかを用いて任意の厚さ・形状とすることができる。集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、鉄、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化性向上の目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものを用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状については、箔状、フィルム状、シート状、ネット状、パンチ又はエキスパンドされたもの、ラス体、多孔質体、発泡体、繊維群の形成体などが挙げられる。集電体の厚さは、例えば1〜500μmのものが用いられる。 The positive electrode of the lithium secondary battery of the present invention is, for example, a mixture of a positive electrode active material, a conductive material, and a binder, and an appropriate solvent is added to form a paste-like positive electrode material, which is applied to the surface of the current collector. It may be dried and compressed to increase the electrode density as necessary. As the positive electrode active material, a sulfide containing a transition metal element, an oxide containing lithium and a transition metal element, or the like can be used. Specifically, transition metal sulfides such as TiS 2 , TiS 3 , MoS 3 , FeS 2 , Li (1-x) MnO 2 (0 <x <1, etc., the same shall apply hereinafter), Li (1-x) Mn Lithium manganese composite oxide such as 2 O 4 , lithium cobalt composite oxide such as Li (1-x) CoO 2 , lithium nickel composite oxide such as Li (1-x) NiO 2 , lithium such as LiV 2 O 3 Vanadium composite oxides, transition metal oxides such as V 2 O 5, and the like can be used. Of these, lithium transition metal composite oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiV 2 O 3 are preferable. The conductive material is not particularly limited as long as it is an electron conductive material that does not adversely affect the battery performance of the positive electrode. For example, graphite such as natural graphite (scale-like graphite, scale-like graphite) or artificial graphite, acetylene black, carbon black, What mixed 1 type (s) or 2 or more types, such as ketjen black, carbon whisker, needle coke, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) can be used. Among these, as the conductive material, carbon black and acetylene black are preferable from the viewpoints of electron conductivity and coatability. The binder serves to bind the active material particles and the conductive material particles. For example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), fluorine-containing resin such as fluorine rubber, or polypropylene, Thermoplastic resins such as polyethylene, ethylene-propylene-dienemer (EPDM), sulfonated EPDM, natural butyl rubber (NBR) and the like can be used alone or as a mixture of two or more. In addition, an aqueous dispersion of cellulose or styrene butadiene rubber (SBR), which is an aqueous binder, can also be used. Examples of the solvent for dispersing the positive electrode active material, the conductive material, and the binder include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, and N, N-dimethylaminopropyl. Organic solvents such as amine, ethylene oxide, and tetrahydrofuran can be used. Moreover, a dispersing agent, a thickener, etc. may be added to water, and an active material may be slurried with latex, such as SBR. As the thickener, for example, polysaccharides such as carboxymethyl cellulose and methyl cellulose can be used alone or as a mixture of two or more. Examples of the application method include roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, and the like, and any of these can be used to obtain an arbitrary thickness and shape. Current collectors include aluminum, titanium, stainless steel, nickel, iron, calcined carbon, conductive polymer, conductive glass, and aluminum, copper, etc. for the purpose of improving adhesion, conductivity, and oxidation resistance. A surface treated with carbon, nickel, titanium, silver or the like can be used. For these, the surface can be oxidized. Examples of the shape of the current collector include foil, film, sheet, net, punched or expanded, lath, porous, foam, and formed fiber group. The thickness of the current collector is, for example, 1 to 500 μm.

本発明のリチウム二次電池の負極は、例えば負極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の負極材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。負極活物質としては、リチウム、リチウム合金、スズ化合物などの無機化合物、リチウムイオンを吸蔵・放出可能な炭素質材料、導電性ポリマーなどが挙げられるが、このうち炭素質材料が安全性の面から見て好ましい。この炭素質材料は、特に限定されるものではないが、コークス類、ガラス状炭素類、グラファイト類、難黒鉛化性炭素類、熱分解炭素類、炭素繊維などが挙げられる。このうち、人造黒鉛、天然黒鉛などのグラファイト類が、金属リチウムに近い作動電位を有し、高い作動電圧での充放電が可能であり電解質塩としてリチウム塩を使用した場合に自己放電を抑え、且つ充電時おける不可逆容量を少なくできるため、好ましい。また、負極に用いられる導電材、結着材、溶剤などは、それぞれ正極で例示したものを用いることができる。負極の集電体には、銅、ニッケル、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金などのほか、接着性、導電性及び耐還元性向上の目的で、例えば銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものも用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状は、正極と同様のものを用いることができる。   The negative electrode of the lithium secondary battery of the present invention is prepared by, for example, mixing a negative electrode active material, a conductive material, and a binder, and adding a suitable solvent to form a paste-like negative electrode material on the surface of the current collector. It may be dried and compressed to increase the electrode density as necessary. Examples of negative electrode active materials include inorganic compounds such as lithium, lithium alloys and tin compounds, carbonaceous materials capable of occluding and releasing lithium ions, and conductive polymers. Among these, carbonaceous materials are used from the viewpoint of safety. It is preferable to see. The carbonaceous material is not particularly limited, and examples thereof include cokes, glassy carbons, graphites, non-graphitizable carbons, pyrolytic carbons, and carbon fibers. Of these, graphites such as artificial graphite and natural graphite have an operating potential close to that of metallic lithium, can be charged and discharged at a high operating voltage, and suppresses self-discharge when a lithium salt is used as an electrolyte salt. In addition, the irreversible capacity during charging can be reduced, which is preferable. In addition, as the conductive material, binder, solvent, and the like used for the negative electrode, those exemplified for the positive electrode can be used. The negative electrode current collector includes copper, nickel, stainless steel, titanium, aluminum, calcined carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., as well as improved adhesion, conductivity and reduction resistance. For the purpose, for example, a copper surface treated with carbon, nickel, titanium, silver or the like can be used. For these, the surface can be oxidized. The shape of the current collector can be the same as that of the positive electrode.

本発明のリチウム二次電池の絶縁層は、負極活物質層の表面に形成されていてもよい。この絶縁層に含まれるリチウムイオンを伝導するガーネット型酸化物は、少なくともZrを含有していることが好ましく、少なくともZr及びNbを含有していることがより好ましく、少なくともZr、Nb及びLaを含有していることが更に好ましい。こうすれば、リチウムイオンの伝導性をより高めることができる。このリチウムイオンを伝導するガーネット型酸化物は、組成式Li5+XLa3(ZrX,A2-X)O12(式中、AはSc,Ti,V,Y,Nb,Hf,Ta,Al,Si,Ga及びGeからなる群より選ばれた1種類以上の元素、Xは1.4≦X<2)で表されるものとしてもよい。ここで用いるガーネット型酸化物は、Xが1.4≦X<2を満たすため、公知のガーネット型酸化物Li7La3Zr212(つまりX=2)と比べて、リチウムイオン伝導度が高くなり且つ活性化エネルギーも小さくなる。例えば、AがNbの場合、リチウムイオン伝導度が2.5×10-4Scm-1以上、活性化エネルギーが0.34eV以下になる。したがって、この酸化物を含むリチウム二次電池によれば、リチウムイオンが伝導しやすく、抵抗が低くなり、電池の出力が向上する。また、活性化エネルギーが小さい、つまり温度に対するリチウムイオン伝導度の変化の割合が小さいため、電池の出力が安定する。また、Xが1.6≦X≦1.95を満たせば、リチウムイオン伝導度がより高く、活性化エネルギーがより低くなるため、より好ましい。更に、Xが1.65≦X≦1.9を満たせば、リチウムイオン伝導度がほぼ極大、活性化エネルギーがほぼ極小となるため、一層好ましい。なお、Aとしては、NbやNbとイオン半径が同等のTaが好ましい。 The insulating layer of the lithium secondary battery of the present invention may be formed on the surface of the negative electrode active material layer. The garnet-type oxide that conducts lithium ions contained in this insulating layer preferably contains at least Zr, more preferably contains at least Zr and Nb, and contains at least Zr, Nb, and La. More preferably. In this way, the conductivity of lithium ions can be further increased. The garnet-type oxide that conducts lithium ions has the composition formula Li 5 + X La 3 (Zr X , A 2−X ) O 12 (where A is Sc, Ti, V, Y, Nb, Hf, Ta). , Al, Si, Ga, and Ge, one or more elements selected from the group consisting of X, X may be represented by 1.4 ≦ X <2). Since the garnet-type oxide used here satisfies X ≦ 1.4 ≦ X <2, the lithium ion conductivity is higher than that of the known garnet-type oxide Li 7 La 3 Zr 2 O 12 (that is, X = 2). Increases and the activation energy also decreases. For example, when A is Nb, the lithium ion conductivity is 2.5 × 10 −4 Scm −1 or more and the activation energy is 0.34 eV or less. Therefore, according to the lithium secondary battery containing this oxide, lithium ions are easily conducted, the resistance is lowered, and the output of the battery is improved. Further, since the activation energy is small, that is, the rate of change in lithium ion conductivity with respect to temperature is small, the output of the battery is stabilized. Further, it is more preferable that X satisfies 1.6 ≦ X ≦ 1.95 because lithium ion conductivity is higher and activation energy is lower. Furthermore, if X satisfies 1.65 ≦ X ≦ 1.9, the lithium ion conductivity is almost maximized and the activation energy is almost minimized. As A, Nb or Ta having an ion radius equivalent to that of Nb is preferable.

あるいは、本発明の絶縁層に含まれるリチウムイオンを伝導するガーネット型酸化物は、組成式Li7La3Zr212のZrサイトがZrとはイオン半径の異なる元素で置換され、XRDにおける(220)回折の強度を1に規格化したときの(024)回折の規格化後の強度が9.2以上であるものとしてもよい。(024)回折の規格化後の強度が9.2を超えると、LiO4(I)の四面体の酸素イオンが形成する三角形が正三角形に近づき、その三角形の面積が大きくなるため、公知のガーネット型酸化物Li7La3Zr212(つまりX=2)と比べて、リチウムイオン伝導度が高くなり且つ活性化エネルギーも小さくなる。例えば、AがNbの場合、リチウムイオン伝導度が2.5×10-4Scm-1以上、活性化エネルギーが0.34eV以下になる。したがって、この酸化物をリチウム二次電池に用いた場合、リチウムイオンが伝導しやすくなるため、電池の出力が向上する。また、活性化エネルギーが小さい、つまり温度に対するリチウムイオン伝導度の変化の割合が小さいため、電池の出力が安定する。また、(024)回折の規格化後の強度が10.0以上であれば、リチウムイオン伝導度がより高く、活性化エネルギーがより低くなるため、より好ましい。更に、(024)回折の規格化後の強度が10.2以上であれば、リチウムイオン伝導度がほぼ極大、活性化エネルギーがほぼ極小となるため、一層好ましい。なお、Zrとはイオン半径の異なる元素としては、Sc,Ti,V,Y,Nb,Hf,Ta,Al,Si,Ga及びGeからなる群より選ばれた1種類以上の元素が挙げられ、このうち、NbやNbとイオン半径が同等のTaが好ましい。 Alternatively, in the garnet-type oxide that conducts lithium ions contained in the insulating layer of the present invention, the Zr site of the composition formula Li 7 La 3 Zr 2 O 12 is substituted with an element having an ionic radius different from that of Zr, and ( 220) The intensity after normalization of (024) diffraction when the diffraction intensity is normalized to 1 may be 9.2 or more. (024) When the intensity after diffraction standardization exceeds 9.2, the triangle formed by the LiO 4 (I) tetrahedral oxygen ions approaches an equilateral triangle, and the area of the triangle increases. Compared with the garnet-type oxide Li 7 La 3 Zr 2 O 12 (that is, X = 2), the lithium ion conductivity increases and the activation energy also decreases. For example, when A is Nb, the lithium ion conductivity is 2.5 × 10 −4 Scm −1 or more and the activation energy is 0.34 eV or less. Therefore, when this oxide is used for a lithium secondary battery, lithium ions are easily conducted, so that the output of the battery is improved. Further, since the activation energy is small, that is, the rate of change in lithium ion conductivity with respect to temperature is small, the output of the battery is stabilized. Moreover, if the intensity | strength after the normalization of (024) diffraction is 10.0 or more, since lithium ion conductivity is higher and activation energy becomes lower, it is more preferable. Further, it is more preferable that the intensity after normalization of (024) diffraction is 10.2 or more because the lithium ion conductivity is almost maximum and the activation energy is almost minimum. The element having an ionic radius different from that of Zr includes one or more elements selected from the group consisting of Sc, Ti, V, Y, Nb, Hf, Ta, Al, Si, Ga, and Ge. Among these, Nb and Ta having the same ion radius as Nb are preferable.

ここで、リチウムイオンを伝導するガーネット型酸化物は、主としてガーネット型の構造を有していればよく、例えば、他の構造が一部含まれていたり、例えばX線回折のピーク位置がシフトしているなどガーネットからみて歪んだ構造を含むものとしてもよい。また、組成式で示しているが、リチウムイオンを伝導するガーネット型酸化物には他の元素や構造などが一部含まれていてもよい。   Here, the garnet-type oxide that conducts lithium ions only needs to have a garnet-type structure. For example, the garnet-type oxide may include a part of other structures, or the peak position of X-ray diffraction may shift. For example, it may include a distorted structure as viewed from the garnet. In addition, as shown by the composition formula, the garnet-type oxide that conducts lithium ions may contain some other elements and structures.

本発明のリチウム二次電池の絶縁層は、リチウムイオンを伝導するガーネット型酸化物の粒子を固着した層としてもよいし、この固着層を焼成した焼成層としてもよいし、リチウムイオンを伝導するガーネット型酸化物を成形して焼成し活物質層の表面に圧着した板状体層としてもよい。絶縁層を固着層とする場合には、焼結法やゾルゲル法、静電塗装法、ドクターブレード法、スクリーン印刷法、スラリーキャスト法、粉体の圧着などにより作製することができる。絶縁層を焼成体とする場合には、ガーネット型酸化物の粉体を加圧成形して焼成してもよいし、ガーネット型酸化物の粉体をスラリーとして鋳込み成形して焼成してもよい。絶縁層を焼成体とすると、より強固であり、正極と負極との短絡を防止しやすく好ましい。この絶縁層の厚さは、リチウム二次電池の大きさにもよるが、活物質層の厚さT以下とすることが好ましく、この厚さTの5%以上とするのが好ましく、例えば、0.1μm以上5mm以下の厚さとしてもよい。絶縁層の厚さは、リチウム二次電池の安全性や安定性に合わせて経験的に設定するものとしてもよい。   The insulating layer of the lithium secondary battery of the present invention may be a layer in which particles of garnet-type oxide that conduct lithium ions are fixed, or the fixed layer may be a fired fired layer, or it conducts lithium ions. It is good also as a plate-shaped body layer which shape | molded and baked the garnet-type oxide and crimped | bonded to the surface of the active material layer. When the insulating layer is a fixed layer, it can be produced by a sintering method, a sol-gel method, an electrostatic coating method, a doctor blade method, a screen printing method, a slurry cast method, powder pressure bonding, or the like. When the insulating layer is a fired body, the garnet-type oxide powder may be pressure-molded and fired, or the garnet-type oxide powder may be cast as a slurry and fired. . It is preferable that the insulating layer be a fired body because it is stronger and easily prevents a short circuit between the positive electrode and the negative electrode. Although the thickness of this insulating layer depends on the size of the lithium secondary battery, it is preferably not more than the thickness T of the active material layer, preferably not less than 5% of the thickness T. The thickness may be 0.1 μm or more and 5 mm or less. The thickness of the insulating layer may be set empirically in accordance with the safety and stability of the lithium secondary battery.

本発明のリチウム二次電池の絶縁層は、多孔質である多孔質絶縁層とすることが好ましい。こうすれば、多孔質絶縁層に形成されている孔を介してリチウムイオンの移動を図ることができる。この絶縁層の多孔質性は、例えば、ガーネット型酸化物のリチウムイオン伝導度が低いときには絶縁層の多孔性が高いものとし、リチウムイオンの移動を多孔質の孔に依存させるものとしてもよい。あるいは、ガーネット型酸化物のリチウムイオン伝導度が高いときには絶縁層の多孔性が低いものとし、リチウムイオンの移動をガーネット型酸化物自体に依存させるものとしてもよい。絶縁層の多孔化は、例えば、孔を形成する多孔化材料を絶縁層の形成時に加え、のちにこの多孔化材料を除去することにより行うことができる。例えば、炭素粒子などを多孔化材料として加えて、焼成時にこれを除去するものとしてもよいし、有機溶媒に溶解する多孔化材料を加えてのちに有機溶媒により溶解させてこれを除去するものとしてもよい。多孔質とした絶縁層の気孔率は、例えば、5体積%以上80体積%以下が好ましく、10体積%以上50体積%以下がより好ましい。この気孔率が5体積%以上では電解液を含み易いため好ましく、80体積%以下では絶縁性をより確保することができる。   The insulating layer of the lithium secondary battery of the present invention is preferably a porous insulating layer that is porous. In this way, lithium ions can be moved through the holes formed in the porous insulating layer. For example, when the garnet-type oxide has a low lithium ion conductivity, the insulating layer may have a high porosity, and the movement of the lithium ions may depend on the porous pores. Alternatively, when the lithium ion conductivity of the garnet-type oxide is high, the insulating layer may be low in porosity, and the movement of lithium ions may depend on the garnet-type oxide itself. The insulating layer can be made porous by, for example, adding a porous material for forming pores at the time of forming the insulating layer, and then removing the porous material. For example, carbon particles or the like may be added as a porous material and removed during firing, or a porous material that dissolves in an organic solvent may be added and then dissolved in an organic solvent to remove it. Also good. The porosity of the porous insulating layer is, for example, preferably 5% by volume to 80% by volume, and more preferably 10% by volume to 50% by volume. If the porosity is 5% by volume or more, it is preferable because it easily contains an electrolytic solution, and if it is 80% by volume or less, insulation can be further ensured.

本発明のリチウム二次電池の電解液としては、支持塩を含む非水系電解液や水溶液系電解液などを用いることができる。非水電解液の溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、フラン類、スルホラン類及びジオキソラン類などが挙げられ、これらを単独又は混合して用いることができる。具体的には、カーボネート類としてエチレンカーボネートやプロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネートなどの環状カーボネート類や、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチル−n−ブチルカーボネート、メチル−t−ブチルカーボネート、ジ−i−プロピルカーボネート、t−ブチル−i−プロピルカーボネートなどの鎖状カーボネート類、γ−ブチルラクトン、γ−バレロラクトンなどの環状エステル類、ギ酸メチル、酢酸メチル、酢酸エチル、酪酸メチルなどの鎖状エステル類、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタンなどのエーテル類、アセトニトリル、ベンゾニトリルなどのニトリル類、テトラヒドロフラン、メチルテトラヒドロフラン、などのフラン類、スルホラン、テトラメチルスルホランなどのスルホラン類、1,3−ジオキソラン、メチルジオキソランなどのジオキソラン類などが挙げられる。このうち、環状カーボネート類と鎖状カーボネート類との組み合わせが好ましい。この組み合わせによると、充放電の繰り返しでの電池特性を表すサイクル特性が優れているばかりでなく、電解液の粘度、得られる電池の電気容量、電池出力などをバランスの取れたものとすることができる。   As the electrolytic solution of the lithium secondary battery of the present invention, a non-aqueous electrolytic solution containing a supporting salt or an aqueous electrolytic solution can be used. Examples of the solvent for the nonaqueous electrolytic solution include carbonates, esters, ethers, nitriles, furans, sulfolanes and dioxolanes, and these can be used alone or in combination. Specifically, as carbonates, cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, butylene carbonate, chloroethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl-n-butyl carbonate, methyl-t -Chain carbonates such as butyl carbonate, di-i-propyl carbonate, t-butyl-i-propyl carbonate, cyclic esters such as γ-butyllactone and γ-valerolactone, methyl formate, methyl acetate, ethyl acetate, Chain esters such as methyl butyrate, ethers such as dimethoxyethane, ethoxymethoxyethane, and diethoxyethane; nitriles such as acetonitrile and benzonitrile; Examples include furans such as lan, methyltetrahydrofuran, sulfolanes such as sulfolane and tetramethylsulfolane, and dioxolanes such as 1,3-dioxolane and methyldioxolane. Among these, the combination of cyclic carbonates and chain carbonates is preferable. According to this combination, not only the cycle characteristics representing the battery characteristics in repeated charge and discharge are excellent, but also the viscosity of the electrolyte, the electric capacity of the obtained battery, the battery output, etc. should be balanced. it can.

本発明のリチウム二次電池に含まれている支持塩は、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、LiSbF6、LiSiF6、LiAlF4、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlCl4などが挙げられる。このうち、LiPF6、LiBF4、LiAsF6、LiClO4などの無機塩、及びLiCF3SO3、LiN(CF3SO22、LiC(CF3SO23などの有機塩からなる群より選ばれる1種又は2種以上の塩を組み合わせて用いることが電気特性の点から見て好ましい。この支持塩は、非水電解液中の濃度が0.1mol/L以上5mol/L以下であることが好ましく、0.5mol/L以上2mol/L以下であることがより好ましい。支持塩の濃度が0.1mol/L以上では、十分な電流密度を得ることができ、5mol/L以下では、電解液をより安定させることができる。また、この非水電解液には、リン系、ハロゲン系などの難燃剤を添加してもよい。 The supporting salt contained in the lithium secondary battery of the present invention is, for example, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , Examples include LiSbF 6 , LiSiF 6 , LiAlF 4 , LiSCN, LiClO 4 , LiCl, LiF, LiBr, LiI, and LiAlCl 4 . Among these, from the group consisting of inorganic salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , and organic salts such as LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3. It is preferable from the viewpoint of electrical characteristics to use a combination of one or two or more selected salts. The supporting salt preferably has a concentration in the non-aqueous electrolyte of 0.1 mol / L or more and 5 mol / L or less, and more preferably 0.5 mol / L or more and 2 mol / L or less. If the concentration of the supporting salt is 0.1 mol / L or more, a sufficient current density can be obtained, and if it is 5 mol / L or less, the electrolytic solution can be made more stable. Moreover, you may add flame retardants, such as a phosphorus type and a halogen type, to this non-aqueous electrolyte.

本発明のリチウム二次電池は、負極と正極との間にセパレータを備えていてもよい。セパレータとしては、リチウム二次電池の使用範囲に耐えうる組成であれば特に限定されないが、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の薄い微多孔膜が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。例えば、樹脂系のセパレータを絶縁層と併用すると、例えば、温度上昇時にはセパレータの融解によるイオン伝導の遮断(シャットダウン効果)を得ることができ、より安全性を高めることができる。   The lithium secondary battery of the present invention may include a separator between the negative electrode and the positive electrode. The separator is not particularly limited as long as it has a composition that can withstand the range of use of the lithium secondary battery. For example, a polymer nonwoven fabric such as a polypropylene nonwoven fabric or a polyphenylene sulfide nonwoven fabric, or a thin fine olefin resin such as polyethylene or polypropylene is used. A porous membrane is mentioned. These may be used alone or in combination. For example, when a resin separator is used in combination with an insulating layer, for example, when the temperature rises, the ion conduction can be blocked (shutdown effect) due to melting of the separator, and the safety can be further improved.

本発明のリチウム二次電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、電気自動車等に用いる大型のものなどに適用してもよい。図1は、本発明のリチウム二次電池10の一例を示す模式図である。このリチウム二次電池10は、集電体11に正極活物質層12を形成した正極13と、集電体14の表面に負極活物質層17を形成した負極18と、負極活物質層17の表面に形成された絶縁層19と、正極13と負極18との間に介在する非水電解液20と、を備えたものである。この絶縁層19は、Zrを含有しリチウムイオンを伝導するガーネット型酸化物により形成されている。こうすれば、絶縁層19によって、安全性を高めると共により安定な充放電を行うことができる。   The shape of the lithium secondary battery of the present invention is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type. Moreover, you may apply to the large sized thing used for an electric vehicle etc. FIG. 1 is a schematic diagram showing an example of a lithium secondary battery 10 of the present invention. The lithium secondary battery 10 includes a positive electrode 13 in which a positive electrode active material layer 12 is formed on a current collector 11, a negative electrode 18 in which a negative electrode active material layer 17 is formed on the surface of a current collector 14, and a negative electrode active material layer 17. An insulating layer 19 formed on the surface and a non-aqueous electrolyte solution 20 interposed between the positive electrode 13 and the negative electrode 18 are provided. The insulating layer 19 is made of a garnet-type oxide containing Zr and conducting lithium ions. In this way, the insulating layer 19 can enhance safety and perform more stable charge / discharge.

以上詳述した本実施形態のリチウム二次電池では、絶縁層が電子伝導度を有さないZrを含有したガーネット型酸化物であるため、例えばプラスチックフィルム製のセパレータに比して熱的安定性が高く、正極と負極とが短絡してしまうのをより防止しやすい。また、絶縁層がリチウムイオンを伝導するガーネット型酸化物であるため、リチウムイオン伝導性を有さないものに比して活物質のリチウムイオンの吸蔵・放出の妨げになりにくい。また、リチウムイオンを伝導するガーネット型酸化物は、電位窓が広く、リチウムイオン伝導度が高く、高温でも安定であり、好ましい。したがって、安全性を高めると共により安定な充放電を行うことができる。   In the lithium secondary battery of the present embodiment described in detail above, since the insulating layer is a garnet-type oxide containing Zr that does not have electronic conductivity, for example, thermal stability compared to a plastic film separator. And it is easier to prevent a short circuit between the positive electrode and the negative electrode. In addition, since the insulating layer is a garnet-type oxide that conducts lithium ions, it is less likely to prevent occlusion / release of lithium ions as an active material compared to a material that does not have lithium ion conductivity. A garnet-type oxide that conducts lithium ions is preferable because it has a wide potential window, high lithium ion conductivity, and is stable even at high temperatures. Therefore, safety can be improved and more stable charging / discharging can be performed.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば、上述した実施形態では、絶縁層が負極活物質層の表面に形成されているものとしたが、図2に示すように、絶縁層は正極と負極との間に形成されていればよい。図2は、リチウム二次電池10B〜10Dの構造の一例を示す説明図である。リチウム二次電池10Bは、負極活物質層17の表面の代わりに、正極活物質層12の表面に形成された絶縁層19Bを備えたものである。こうしても、安全性を高めると共により安定な充放電を行うことができる。また、リチウム二次電池10Cは、正極活物質層17の表面に形成された絶縁層19Cと、負極活物質層17の表面に形成された絶縁層19とを備えたものである。こうしても、安全性を高めると共により安定な充放電を行うことができる。また、リチウム二次電池10Dは、集電体11に正極活物質層12を形成した正極13と、集電体14の表面に負極活物質層17を形成した負極18と、負極活物質層17の表面に形成された絶縁層19と正極13との間にセパレータ21を備えたものである。こうしても、安全性を高めると共により安定な充放電を行うことができる。   For example, in the above-described embodiment, the insulating layer is formed on the surface of the negative electrode active material layer. However, as shown in FIG. 2, the insulating layer may be formed between the positive electrode and the negative electrode. . FIG. 2 is an explanatory diagram showing an example of the structure of the lithium secondary batteries 10B to 10D. The lithium secondary battery 10 </ b> B includes an insulating layer 19 </ b> B formed on the surface of the positive electrode active material layer 12 instead of the surface of the negative electrode active material layer 17. Even if it does in this way, while improving safety | security, more stable charge / discharge can be performed. The lithium secondary battery 10 </ b> C includes an insulating layer 19 </ b> C formed on the surface of the positive electrode active material layer 17 and an insulating layer 19 formed on the surface of the negative electrode active material layer 17. Even if it does in this way, while improving safety | security, more stable charge / discharge can be performed. The lithium secondary battery 10 </ b> D includes a positive electrode 13 in which the positive electrode active material layer 12 is formed on the current collector 11, a negative electrode 18 in which the negative electrode active material layer 17 is formed on the surface of the current collector 14, and a negative electrode active material layer 17. A separator 21 is provided between the insulating layer 19 and the positive electrode 13 formed on the surface. Even if it does in this way, while improving safety | security, more stable charge / discharge can be performed.

上述した実施形態では、リチウム二次電池として本発明を説明したが、例えば、活物質層の表面に形成された絶縁層を有するリチウム二次電池用電極としてもよい。こうしても、リチウム二次電池として用いた場合には、安全性を高めると共により安定な充放電を行うことができる。   In the above-described embodiment, the present invention has been described as a lithium secondary battery. However, for example, an electrode for a lithium secondary battery having an insulating layer formed on the surface of the active material layer may be used. Even if it does in this way, when it uses as a lithium secondary battery, while improving safety | security, more stable charge / discharge can be performed.

以下には、本発明のリチウム二次電池を具体的に作製した例を実験例として説明する。   Below, the example which produced the lithium secondary battery of this invention concretely is demonstrated as an experiment example.

[ガーネット型酸化物の作製]
ガーネット型酸化物Li5+XLa3(ZrX,Nb2-X)O12(X=0〜2)は、Li2CO3、La(OH)3、ZrO2、およびNb25を出発原料に用いて合成を行った。ここで、実験例1〜7のXの値は、それぞれX=0,1.0,1.5,1.625,1.75,1.875,2.0とした(表1参照)。はじめに、出発原料を化学量論比になるように秤量し、エタノール中にて遊星ボールミル(300rpm/ジルコニアボール)で1時間、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離したのち、Al23製のるつぼ中にて、950℃、10時間大気雰囲気で仮焼を行った。その後、本焼結でのLiの欠損を補う目的で、仮焼した粉末に、Li5+XLa3(ZrX,Nb2-X)O12(X=0〜2)の組成中のLi量に対して Li換算で10at.%になるようにLi2CO3を過剰添加した。この混合粉末を、混合のためエタノール中にて遊星ボールミル(300rpm/ジルコニアボール)で1時間処理した。得られた粉末を再び950℃、10時間大気雰囲気の条件下で再度仮焼して仮焼体を得た。その後、この仮焼体を成型したのち、1200℃、36時間大気中の条件下で本焼結を行い、ガーネット型酸化物(実験例1〜7)を作製した。
[Production of garnet-type oxide]
Garnet-type oxides Li 5 + X La 3 (Zr X , Nb 2−X ) O 12 (X = 0 to 2) are composed of Li 2 CO 3 , La (OH) 3 , ZrO 2 , and Nb 2 O 5 . The starting material was used for synthesis. Here, the values of X in Experimental Examples 1 to 7 were set to X = 0, 1.0, 1.5, 1.625, 1.75, 1.875, and 2.0, respectively (see Table 1). First, starting materials were weighed so as to have a stoichiometric ratio, and mixed and pulverized in ethanol with a planetary ball mill (300 rpm / zirconia balls) for 1 hour. After the mixed powder of the starting material was separated from the balls and ethanol, calcination was performed in an air atmosphere at 950 ° C. for 10 hours in an Al 2 O 3 crucible. Thereafter, in order to make up for the loss of Li in the main sintering, the calcined powder was mixed with Li 5 + X La 3 (Zr X , Nb 2−X ) O 12 (X = 0 to 2) in the composition. 10 at. Li 2 CO 3 was excessively added so as to be a%. This mixed powder was treated in a planetary ball mill (300 rpm / zirconia ball) for 1 hour in ethanol for mixing. The obtained powder was again calcined again at 950 ° C. for 10 hours under atmospheric conditions to obtain a calcined body. Then, after this calcined body was molded, main sintering was performed under the conditions of 1200 ° C. and 36 hours in the air to prepare garnet-type oxides (Experimental Examples 1 to 7).

[ガーネット酸化物の物性の測定及び結果]
1.相対密度
電子天秤にて測定した乾燥重量をノギスを用いて測定した実寸から求めた体積で除算することにより、各試料の測定密度を算出した。また、理論密度を算出し、測定密度を理論密度で除算し100を乗算した値を相対密度(%)とした。実験例1〜7の相対密度は、88〜92%であった。
[Measurement and results of physical properties of garnet oxide]
1. Relative density The measured density of each sample was calculated by dividing the dry weight measured with an electronic balance by the volume determined from the actual size measured with calipers. The theoretical density was calculated, and the value obtained by dividing the measured density by the theoretical density and multiplying by 100 was taken as the relative density (%). The relative densities of Experimental Examples 1 to 7 were 88 to 92%.

2.相及び格子定数
各試料の相及び格子定数は、XRDの測定結果から求めた。XRDの測定は、XRD測定器(ブルカー(Bruker)製、D8ADVANCE)を用いて、試料粉末をCuKα、2θ:10〜120°,0.01°step/1sec.の条件で測定した。結晶構造解析は、結晶構造解析用プログラム:Rietan−2000(Mater. Sci. Forum, p321−324(2000),198)を用いて解析を行った。代表例として実験例1,3,5,7つまりLi5+XLa3(ZrX,Nb2-X)O12(X=0,1.5,1.75,2)のXRDパターンを図3に示す。図3から、各試料は不純物を含まず単相であることがわかる。また、実験例1〜3,5〜7につき、XRDパターンより求めた格子定数のX値依存性を図4に示す。図4から、Zrの割合が増えるほど格子定数が増大することがわかる。これは、Zr4+のイオン半径(rZr4+=0.79Å)がNb5+のイオン半径(rNb5+=0.69Å)よりも大きいためである。格子定数が連続的に変化していることから、NbはZrサイトに置換されていると考えられる(全率固溶が可能と考えられる)。
2. Phase and lattice constant The phase and lattice constant of each sample were determined from the XRD measurement results. The XRD measurement was performed using an XRD measuring device (D8ADVANCE, manufactured by Bruker), and the sample powder was CuKα, 2θ: 10 to 120 °, 0.01 ° step / 1 sec. It measured on condition of this. Crystal structure analysis was performed using a crystal structure analysis program: Rietan-2000 (Matter. Sci. Forum, p321-324 (2000), 198). As representative examples, XRD patterns of Experimental Examples 1, 3, 5 and 7, that is, Li 5 + X La 3 (Zr X , Nb 2−X ) O 12 (X = 0, 1.5, 1.75, 2) are illustrated. 3 shows. FIG. 3 shows that each sample does not contain impurities and is a single phase. Moreover, the X value dependence of the lattice constant calculated | required from the XRD pattern about Experimental example 1-3, 5-7 is shown in FIG. FIG. 4 shows that the lattice constant increases as the ratio of Zr increases. This ionic radius of Zr 4+ (r Zr4 + = 0.79Å ) is larger than the ionic radius of the Nb 5+ (r Nb5 + = 0.69Å ). Since the lattice constant is continuously changed, it is considered that Nb is substituted for the Zr site (it is considered that full solid solution is possible).

3.リチウムイオン伝導度
リチウムイオン伝導度は、恒温槽中にてACインピーダンスアナライザーを用い(周波数:0.1Hz〜1MHz、振幅電圧:100mV)、ナイキストプロットの円弧より抵抗値を求め、この抵抗値から算出した。ACインピーダンスアナライザーで測定する際のブロッキング電極にはAu電極を用いた。Au電極は市販のAuペーストを850℃、30分の条件で焼き付けることで形成した。実験例1〜7つまりLi5+XLa3(ZrX,Nb2-X)O12(X=0〜2)の25℃でのリチウムイオン伝導度のX値依存性を図5に示す。図5から、リチウムイオン伝導度は、Xが1.4≦X<2のとき、公知のLi7La3Zr212(つまりX=2、実験例7)に比べて高くなり、Xが1.6≦X≦1.95のとき、実験例7に比べて一段と高くなり、Xが1.65≦X≦1.9の範囲のとき、ほぼ極大値(6×10-4Scm-1以上)を取ることがわかる。上記1.で述べたとおり、各試料の相対密度は88〜92%であったことから、リチウムイオン伝導度がX値に応じて変化するのは、密度による影響ではないと考えられる。
3. Lithium ion conductivity Lithium ion conductivity is calculated from the resistance value obtained from the arc of the Nyquist plot using an AC impedance analyzer (frequency: 0.1 Hz to 1 MHz, amplitude voltage: 100 mV) in a thermostatic chamber. did. An Au electrode was used as a blocking electrode when measuring with an AC impedance analyzer. The Au electrode was formed by baking a commercially available Au paste at 850 ° C. for 30 minutes. FIG. 5 shows the X value dependence of lithium ion conductivity at 25 ° C. of Experimental Examples 1 to 7, that is, Li 5 + X La 3 (Zr X , Nb 2−X ) O 12 (X = 0 to 2). From FIG. 5, when X is 1.4 ≦ X <2, the lithium ion conductivity is higher than that of the known Li 7 La 3 Zr 2 O 12 (that is, X = 2, Experimental Example 7). When 1.6 ≦ X ≦ 1.95, the value is higher than that of Experimental Example 7, and when X is in the range of 1.65 ≦ X ≦ 1.9, the maximum value (6 × 10 −4 Scm −1). You can see that Above 1. As described above, since the relative density of each sample was 88 to 92%, it is considered that the change in lithium ion conductivity according to the X value is not an influence of the density.

ここで、ニオブを適量添加することで、リチウムイオン伝導度が向上した理由について考察する。ガーネット型酸化物の結晶構造には、図6に示すように、リチウムイオンが酸素イオンと4配位してなる四面体のLiO4(I)と、リチウムイオンが酸素イオンと6配位してなる八面体のLiO6(II)と、ランタンイオンが酸素イオンと8配位してなる十二面体のLaO8(I)と、ジルコニウムイオンが酸素イオンと6配位してなる八面体のZrO6とが含まれている。この結晶構造の全体像を図7(a)に示す。この図7(a)の結晶構造では、八面体のLiO6(II)は八面体のZrO6と十二面体のLaO8とによって囲まれているため見えない状態となっている。図7(b)は、図7(a)の結晶構造からLaO8(I)を削除して八面体のLiO6(II)を露出させた様子を示す。このように、6配位しているリチウムイオンは、6個の酸素イオンと、3個のランタンイオンと、2個のジルコニウムイオンに囲まれた位置にあり、恐らく、リチウムイオン伝導度にはほとんど寄与していないと考えられる。一方、4配位しているリチウムイオンは、酸素イオンを頂点とする四面体を形成している。リートベルド(Rietveld)構造解析より求めたLiO4(I)四面体構造の変化を図8に示す。LiO4(I)四面体を形成する酸素イオン間距離は二つの長さがある。ここでは長尺の二辺をa、短尺の一辺をbとする。図8(a)に示すように、長尺の辺aは、Nbの置換量によらずほとんど一定の値を示すのに対し、短尺の辺bは、Nbを適量置換することで長くなっている。つまり、酸素イオンが形成する三角形はNbを適量置換することで、正三角形に近付きつつ面積は増大している(図8(b)参照)。このことから、適量のNbをZrと置換すると、伝導するリチウムイオン周りの構造(酸素イオンが形成している四面体)が最適となり、リチウムイオンの移動を容易にする効果があると考えられる。なお、Zrと置換する元素は、Nb以外の元素、たとえばSc,Ti,V,Y,Hf,Taなどであっても、同様の構造変化が見込まれることから、同様の効果が得られる。 Here, the reason why lithium ion conductivity is improved by adding an appropriate amount of niobium will be considered. As shown in FIG. 6, the crystal structure of the garnet-type oxide includes tetrahedral LiO 4 (I) in which lithium ions are 4-coordinated with oxygen ions, and lithium ions are 6-coordinated with oxygen ions. Octahedral LiO 6 (II), dodecahedron LaO 8 (I) in which lanthanum ions are 8-coordinated with oxygen ions, and octahedral ZrO in which zirconium ions are 6-coordinated with oxygen ions 6 and included. An overall image of this crystal structure is shown in FIG. In the crystal structure of FIG. 7A, the octahedral LiO 6 (II) is surrounded by the octahedral ZrO 6 and the dodecahedron LaO 8 , so that it cannot be seen. FIG. 7B shows a state where LaO 8 (I) is deleted from the crystal structure of FIG. 7A to expose octahedral LiO 6 (II). Thus, the lithium ions that are six-coordinated are in a position surrounded by six oxygen ions, three lanthanum ions, and two zirconium ions, and probably have almost no lithium ion conductivity. It is thought that it does not contribute. On the other hand, the tetracoordinated lithium ions form a tetrahedron with the oxygen ions at the vertices. FIG. 8 shows changes in the LiO 4 (I) tetrahedral structure obtained from the Rietveld structural analysis. The distance between oxygen ions forming the LiO 4 (I) tetrahedron has two lengths. Here, a long side is a, and a short side is b. As shown in FIG. 8A, the long side a shows an almost constant value regardless of the amount of Nb replacement, whereas the short side b becomes longer by replacing Nb with an appropriate amount. Yes. That is, the triangle formed by the oxygen ions is replaced with an appropriate amount of Nb, and the area increases while approaching the regular triangle (see FIG. 8B). From this, it is considered that when an appropriate amount of Nb is substituted with Zr, the structure around the conducting lithium ions (tetrahedron formed by oxygen ions) is optimized, and the effect of facilitating the movement of lithium ions is obtained. Even if the element substituted for Zr is an element other than Nb, such as Sc, Ti, V, Y, Hf, Ta, etc., the same effect can be obtained because the same structural change is expected.

ここで、XRDの回折ピークの強度は、LiO4(I)四面体構造を反映して変化する。すなわち、ZrサイトをNbで置換することによりLiO4(I)四面体をなす三角形が上述したように変化するため、当然、XRDの各回折ピークの強度比も変化するのである。実験例1〜3,5,7の各試料の(220)回折の強度を1に規格化したときの各回折の規格化後強度のX値依存性を図9に示す。代表的なピークとして(024)回折の規格化後強度に注目する(図10参照)。(024)回折に関して言えば、公知のLi7La3Zr212(つまりX=2、実験例7)に比べてリチウムイオン伝導度が高くなる1.4≦X<2に対応する規格化後強度は9.2以上であり、一段とリチウムイオン伝導度が高くなる1.6≦X≦1.95に対応する規格化後強度は10.0以上であり、リチウムイオン伝導度がほぼ極大値を取る1.65≦X≦1.9に対応する規格化後強度は10.2以上であることがわかる。 Here, the intensity of the diffraction peak of XRD changes reflecting the LiO 4 (I) tetrahedral structure. That is, by replacing the Zr site with Nb, the triangle forming the LiO 4 (I) tetrahedron changes as described above, and naturally the intensity ratio of each diffraction peak of XRD also changes. FIG. 9 shows the X-value dependency of the normalized intensity of each diffraction when the intensity of (220) diffraction of each sample of Experimental Examples 1 to 3, 5, and 7 is normalized to 1. As a typical peak, pay attention to the intensity after normalization of (024) diffraction (see FIG. 10). Regarding the diffraction, normalization corresponding to 1.4 ≦ X <2 in which lithium ion conductivity is higher than that of the known Li 7 La 3 Zr 2 O 12 (that is, X = 2, Experimental Example 7). The post-intensity is 9.2 or higher, and the normalized strength corresponding to 1.6 ≦ X ≦ 1.95, which further increases the lithium ion conductivity, is 10.0 or higher, and the lithium ion conductivity is almost a maximum value. It can be seen that the normalized strength corresponding to 1.65 ≦ X ≦ 1.9 is 10.2 or more.

4.活性化エネルギー(Ea)
活性化エネルギー(Ea)はアレニウス(Arrhenius)の式:σ=Aexp(−Ea/kT)(σ:伝導度、A:頻度因子、k:ボルツマン定数、T:絶対温度)を用い、アレニウスプロットの傾きより求めた。代表例として実験例1〜7のLi5+XLa3(ZrX,Nb2-X)O12(X=0〜2)のリチウムイオン伝導度の温度依存性(アレニウスプロット)を図11に示す。図11には、併せてLiイオン伝導性酸化物の中でも特に高いリチウムイオン伝導度を示すガラスセラミックスLi1+XTi2SiX3-X12・AlPO4(オハラ電解質、X=0.4)とLi1.5Al0.5Ge1.5(PO43(LAGP)のリチウムイオン伝導度の温度依存性(いずれも文献値)を示す。実験例1〜7につき、アレニウスプロットより求めた活性化エネルギーEa(25℃)のX値依存性を図12に示す。図12から、Xが1.4≦X<2のとき、Li7La3Zr212(つまりX=2、実験例7)より低い活性化エネルギーEa(つまり0.34eV未満)を示すことから、広い温度域でリチウムイオン伝導度が安定した値をとるといえる。また、Xが1.5≦X≦1.9のときには活性化エネルギーが0.32eV以下となり、特にXが1.75のときに極小値0.3eVとなった。0.3eVという値は既存のLiイオン伝導性酸化物中で最も低い値と同等の値である(オハラ電解質:0.3eV、LAGP:0.31eV)。
4). Activation energy (Ea)
The activation energy (Ea) is calculated using the Arrhenius equation: σ = Aexp (−Ea / kT) (σ: conductivity, A: frequency factor, k: Boltzmann constant, T: absolute temperature) Obtained from the slope. As a representative example, the temperature dependence (Arrhenius plot) of the lithium ion conductivity of Li 5 + X La 3 (Zr X , Nb 2−X ) O 12 (X = 0 to 2) in Experimental Examples 1 to 7 is shown in FIG. Show. FIG. 11 also shows glass ceramics Li 1 + X Ti 2 Si X P 3-X O 12 .AlPO 4 (Ohara electrolyte, X = 0. 4) shows the temperature dependence of the lithium ion conductivity of Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 (LAGP) (all are literature values). FIG. 12 shows the X value dependency of the activation energy Ea (25 ° C.) obtained from the Arrhenius plot for Experimental Examples 1-7. From FIG. 12, when X is 1.4 ≦ X <2, the activation energy Ea (that is, less than 0.34 eV) is lower than Li 7 La 3 Zr 2 O 12 (that is, X = 2, Experimental Example 7). Therefore, it can be said that the lithium ion conductivity takes a stable value in a wide temperature range. In addition, when X is 1.5 ≦ X ≦ 1.9, the activation energy is 0.32 eV or less, and particularly when X is 1.75, the minimum value is 0.3 eV. The value of 0.3 eV is equivalent to the lowest value among the existing Li ion conductive oxides (Ohara electrolyte: 0.3 eV, LAGP: 0.31 eV).

5.化学的安定性
ガーネット型酸化物Li6.75La3Zr1.75Nb0.2512(つまりX=1.75、実験例5)の室温大気中での化学的安定性を調べた。具体的には、大気中に放置したLi6.75La3Zr1.75Nb0.2512のリチウムイオン伝導度の経時変化(0〜7日)の有無を確認することで行った。その結果を図13に示す。バルクの抵抗成分が大気中に放置していた時間によらず一定であることから、ガーネット型酸化物は室温大気中でも安定といえる。
5. Chemical Stability The chemical stability of the garnet-type oxide Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12 (that is, X = 1.75, Experimental Example 5) in the room temperature atmosphere was examined. Specifically, it was performed by confirming the presence or absence of a change over time (0 to 7 days) in lithium ion conductivity of Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12 left in the atmosphere. The result is shown in FIG. Since the bulk resistance component is constant regardless of the time it has been left in the air, it can be said that the garnet-type oxide is stable in the air at room temperature.

6.電位窓
ガーネット型酸化物Li6.75La3Zr1.75Nb0.2512(つまりX=1.75、実験例5)の電位窓を調べた。電位窓は、Li6.75La3Zr1.75Nb0.2512のバルクペレットの片面に金を、もう片面にLiメタルを貼り付け、0〜5.5V(対Li+)および−0.5V〜9.5V(対Li+)の範囲で電位をスイープ(1mV/sec.)させることで調べた。その測定結果を図14に示す。電位を0〜5.5Vの範囲で走査しても、電流は全く流れなかった。このことからLi6.75La3Zr1.75Nb0.2512は0〜5.5Vの範囲で安定といえる。走査する電位を−0.5 〜9Vに広げると、0Vを境にして、酸化・還元電流が流れた。これはリチウムの酸化・還元に起因すると思われる。また、約7V以上でわずかに酸化電流が流れ始めた。しかし、流れる酸化電流量が非常に微弱であること、目視で色に変化が無いことなどから、流れる酸化電流は電解質の分解ではなく、セラミックス中に含まれている微量の不純物や粒界の分解が原因だと考えている。
6). Potential window The potential window of the garnet-type oxide Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12 (that is, X = 1.75, Experimental Example 5) was examined. The potential window was formed by bonding gold on one side of a bulk pellet of Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12 and Li metal on the other side, and 0 to 5.5 V (vs. Li + ) and −0.5 V to 9. The potential was swept (1 mV / sec.) In the range of 5 V (vs. Li + ). The measurement results are shown in FIG. Even when the potential was scanned in the range of 0 to 5.5 V, no current flowed. From this, it can be said that Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12 is stable in the range of 0 to 5.5V. When the scanning potential was expanded to -0.5 to 9V, an oxidation / reduction current flowed around 0V. This is probably due to the oxidation and reduction of lithium. Further, a slight oxidation current began to flow at about 7 V or more. However, because the amount of flowing oxidation current is very weak and there is no visual change in color, the flowing oxidation current is not the decomposition of the electrolyte, but the decomposition of trace amounts of impurities and grain boundaries contained in the ceramics. I think that is the cause.

[実験例8]
上記作製したリチウムイオンを伝導するガーネット型酸化物を用いて絶縁層を形成したリチウム二次電池を作製した。正極活物質として、層状Ni系活物質である、平均粒径が10μm程度であるLiNi0.80Co0.15Al0.052を用いた。この正極活物質を85重量%、導電材としてのカーボンブラックを10重量%、結着材としてのポリフッ化ビニリデンを5重量%混合し、正極合材を作製した。この正極合材をN−メチル−2−ピロリドン(NMP)で分散させてペーストとし、この正極合材ペーストを厚さ20μmのアルミニウム箔に塗工乾燥させ、ロールプレスして高密度化し、正極電極とした。なお、正極電極は30mm×30mmとし、正極活物質の付着量は片面あたり7mg/cm2程度とした。次に、人造黒鉛を負極活物質とした。この負極活物質を95重量%、結着材としてのポリフッ化ビニリデンを5重量%混合し、負極合材を作製した。この負極合材をN−メチル−2−ピロリドン(NMP)で分散させてペーストとした。この負極合材ペーストを厚さ10μmの銅箔集電体に塗工乾燥させ、ロールプレスして高密度化し、負極電極とした。なお、負極電極は30mm×30mmとし、負極活物質の付着量は片面あたり5mg/cm2程度とした。次に、上記ガーネット型酸化物Li6.75La3Zr1.75Nb0.2512(つまりX=1.75、実験例5)を用いて板状体の多孔質絶縁層を作製した。上記ガーネット型酸化物の本焼結前の仮焼体を平均粒径が0.6μm程度になるよう粉砕した。この平均粒径は、電子顕微鏡を用いて観察した領域内にある各粒子の短径と長径とを計測し、この短径と長径との平均値を1つの粒径とし、全粒子の平均値を算出することにより求めた。このガーネット型酸化物の仮焼体粒子を用い、カーボン粒子(平均粒径40nm)をガーネット型酸化物に対して1重量%となるよう配合して、平板状(30mm×30mm)の成形型により成形した。この成形体を1200℃、36時間大気中の条件下で本焼結を行い、ガーネット型酸化物により形成された多孔質絶縁体を作製した。この多孔質絶縁体を負極電極表面(負極活物質層の表面)に圧着し、本発明のリチウム二次電池用電極を作製した。そして、負極電極、絶縁層、セパレータ(東燃タピルス製、PE25μm厚)、正極電極の順に積層し、電解液を満たして実験例8のリチウム二次電池を作製した。電解液は、LiPF6を、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との混合溶媒(体積比3:7)に1mol/L濃度で溶解したものを用いた。
[Experimental Example 8]
A lithium secondary battery having an insulating layer formed using the garnet-type oxide that conducts lithium ions produced as described above was produced. As the positive electrode active material, a layered Ni-based active material, LiNi 0.80 Co 0.15 Al 0.05 O 2 having an average particle size of about 10 μm was used. 85% by weight of this positive electrode active material, 10% by weight of carbon black as a conductive material, and 5% by weight of polyvinylidene fluoride as a binder were mixed to prepare a positive electrode mixture. This positive electrode mixture is dispersed with N-methyl-2-pyrrolidone (NMP) to form a paste, and this positive electrode mixture paste is applied to and dried on an aluminum foil having a thickness of 20 μm, and the density is increased by roll pressing. It was. The positive electrode was 30 mm × 30 mm, and the amount of positive electrode active material deposited was about 7 mg / cm 2 per side. Next, artificial graphite was used as the negative electrode active material. The negative electrode active material was mixed with 95% by weight and 5% by weight of polyvinylidene fluoride as a binder to prepare a negative electrode mixture. This negative electrode mixture was dispersed with N-methyl-2-pyrrolidone (NMP) to obtain a paste. This negative electrode mixture paste was coated and dried on a copper foil current collector having a thickness of 10 μm, and was densified by roll pressing to obtain a negative electrode. The negative electrode was 30 mm × 30 mm, and the amount of negative electrode active material deposited was about 5 mg / cm 2 per side. Next, a plate-like porous insulating layer was prepared using the garnet-type oxide Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12 (that is, X = 1.75, Experimental Example 5). The calcined body of the garnet-type oxide before main sintering was pulverized so that the average particle size was about 0.6 μm. This average particle diameter is obtained by measuring the short diameter and the long diameter of each particle in the region observed using an electron microscope, and setting the average value of the short diameter and the long diameter as one particle diameter. Was calculated by calculating. Using the garnet-type oxide calcined particles, carbon particles (average particle size of 40 nm) are blended at 1% by weight with respect to the garnet-type oxide, and a flat plate (30 mm × 30 mm) mold is used. Molded. This compact was sintered at 1200 ° C. for 36 hours in the atmosphere to produce a porous insulator formed of a garnet oxide. This porous insulator was pressure-bonded to the surface of the negative electrode (the surface of the negative electrode active material layer) to produce the lithium secondary battery electrode of the present invention. Then, a negative electrode, an insulating layer, a separator (manufactured by Tonen Tapils, PE 25 μm thickness), and a positive electrode were stacked in this order, and the lithium secondary battery of Experimental Example 8 was fabricated by filling the electrolyte solution. The electrolytic solution used was LiPF 6 dissolved in a mixed solvent (volume ratio 3: 7) of ethylene carbonate (EC) and diethyl carbonate (DEC) at a concentration of 1 mol / L.

[実験例9]
上記作製したリチウムイオンを伝導するガーネット型酸化物を含むスラリーを用い、絶縁層を負極活物質層の表面に塗布して形成した以外は、実験例8と同様の工程を経て得られたリチウム二次電池を実験例9とした。絶縁層の形成では、まず、平均粒径0.6μmのリチウムイオンを伝導するガーネット型酸化物を72重量部、ポリフッ化ビニリデンを3重量部、NMPを25重量部混合し、スラリーを調製した。このスラリーを負極活物質層の表面に厚さ20μmとなるように塗布し、乾燥することにより、負極活物質層の表面に絶縁層を形成した、本発明のリチウム二次電池用電極を作製した。
[Experimental Example 9]
The lithium secondary battery obtained through the same steps as in Experimental Example 8 was used, except that the slurry containing the garnet-type oxide that conducts lithium ions was used, and an insulating layer was applied to the surface of the negative electrode active material layer. The secondary battery was designated as Experimental Example 9. In forming the insulating layer, first, 72 parts by weight of a garnet-type oxide that conducts lithium ions having an average particle diameter of 0.6 μm, 3 parts by weight of polyvinylidene fluoride, and 25 parts by weight of NMP were mixed to prepare a slurry. The slurry was applied to the surface of the negative electrode active material layer so as to have a thickness of 20 μm, and dried to prepare an electrode for a lithium secondary battery of the present invention in which an insulating layer was formed on the surface of the negative electrode active material layer. .

[実験例10]
上記作製したリチウムイオンを伝導するガーネット型酸化物を含むスラリーを用い、負極活物質層の表面に静電塗装して6μmの絶縁層を形成した以外は、実験例8と同様の工程を経て得られたリチウム二次電池を実験例10とした。
[Experimental Example 10]
Obtained through the same steps as in Experimental Example 8 except that the above-prepared slurry containing garnet-type oxide that conducts lithium ions was used, and the surface of the negative electrode active material layer was electrostatically coated to form a 6 μm insulating layer. The obtained lithium secondary battery was named experimental example 10.

(充放電試験)
作製した電池について、0.2C(100mA)の電流で、上限4.1V、下限3.0Vとして充放電を5サイクル実行するコンディショニングを行った。次に、20℃の温度条件下で電流密度0.2mA/cm2の定電流・低電圧充電方式で充電上限電圧である4.1Vまで7時間かけて充電した。次いで、電流密度0.1mA/cm2の定電流で放電下限電圧である3.0Vまで放電を実施した。実験例8〜10の電池は、いずれも良好に充放電し、良好な電池特性を有することがわかった。
(Charge / discharge test)
About the produced battery, the conditioning which performs charging / discharging 5 cycles with an electric current of 0.2C (100mA) as an upper limit of 4.1V and a minimum of 3.0V was performed. Next, the battery was charged over 7 hours to a charging upper limit voltage of 4.1 V by a constant current / low voltage charging method with a current density of 0.2 mA / cm 2 under a temperature condition of 20 ° C. Next, discharging was performed to a discharge lower limit voltage of 3.0 V at a constant current of a current density of 0.1 mA / cm 2 . The batteries of Experimental Examples 8 to 10 were all charged and discharged satisfactorily and were found to have good battery characteristics.

10,10B,10C,10D リチウム二次電池、11,14 集電体、12 正極活物質層、13,33 正極、17 負極活物質層、18 負極、19,19B,19C 絶縁層、20 非水電解液、21 セパレータ。   10, 10B, 10C, 10D Lithium secondary battery, 11, 14 current collector, 12 positive electrode active material layer, 13, 33 positive electrode, 17 negative electrode active material layer, 18 negative electrode, 19, 19B, 19C insulating layer, 20 non-aqueous Electrolyte, 21 separator.

Claims (4)

リチウムを吸蔵・放出する正極活物質を有する正極と、
リチウムを吸蔵・放出する負極活物質を有する負極と、
前記正極と前記負極との間に介在しリチウムを伝導する電解液と、
前記正極の表面、前記負極の表面及び前記電解液中のうち少なくとも1以上に存在し、Zrを含有しリチウムイオンを伝導するガーネット型酸化物により形成された絶縁層と、
を備えたリチウム二次電池。
A positive electrode having a positive electrode active material that absorbs and releases lithium;
A negative electrode having a negative electrode active material that absorbs and releases lithium; and
An electrolytic solution that is interposed between the positive electrode and the negative electrode and conducts lithium;
An insulating layer that is present in at least one of the surface of the positive electrode, the surface of the negative electrode, and the electrolyte, and is formed of a garnet-type oxide that contains Zr and conducts lithium ions;
Rechargeable lithium battery.
前記絶縁層は、更にNbを含有したガーネット型酸化物により形成されている、請求項1に記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the insulating layer is further formed of a garnet-type oxide containing Nb. 前記絶縁層は、組成式Li5+XLa3(ZrX,A2-X)O12(式中、AはSc,Ti,V,Y,Nb,Hf,Ta,Al,Si,Ga及びGeからなる群より選ばれた1種類以上の元素、Xは1.4≦X<2)で表されるガーネット型酸化物により形成されている、請求項1又は2に記載のリチウム二次電池。 The insulating layer has a composition formula Li 5 + X La 3 (Zr X , A 2−X ) O 12 (where A is Sc, Ti, V, Y, Nb, Hf, Ta, Al, Si, Ga, and 3. The lithium secondary battery according to claim 1, wherein the lithium secondary battery is formed of a garnet-type oxide represented by one or more elements selected from the group consisting of Ge, wherein X is 1.4 ≦ X <2). . リチウムを吸蔵・放出する活物質層と、Zrを含有しリチウムイオンを伝導するガーネット型酸化物により前記活物質層の表面に形成された絶縁層と、を備えたリチウム二次電池用電極。   An electrode for a lithium secondary battery, comprising: an active material layer that occludes and releases lithium; and an insulating layer that is formed on a surface of the active material layer with a garnet-type oxide that contains Zr and conducts lithium ions.
JP2010020943A 2010-02-02 2010-02-02 Lithium secondary battery and electrode for lithium secondary battery Expired - Fee Related JP5471527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010020943A JP5471527B2 (en) 2010-02-02 2010-02-02 Lithium secondary battery and electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010020943A JP5471527B2 (en) 2010-02-02 2010-02-02 Lithium secondary battery and electrode for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2011159528A true JP2011159528A (en) 2011-08-18
JP5471527B2 JP5471527B2 (en) 2014-04-16

Family

ID=44591303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010020943A Expired - Fee Related JP5471527B2 (en) 2010-02-02 2010-02-02 Lithium secondary battery and electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5471527B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015501070A (en) * 2011-12-16 2015-01-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Lithium sulfur battery separator with polysulfide barrier layer
WO2014203100A3 (en) * 2013-06-19 2015-02-19 Basf Se Alkali-ion conductive separator assembly for rechargeable electrochemical cells
DE102014206829A1 (en) * 2014-04-09 2015-10-15 Robert Bosch Gmbh Galvanic element
JP2016072210A (en) * 2014-09-30 2016-05-09 セイコーエプソン株式会社 Composition for anti-lithium reduction layer formation, film formation method of anti-lithium reduction layer, and lithium secondary battery
DE102015213973A1 (en) * 2015-07-23 2017-01-26 Bayerische Motoren Werke Aktiengesellschaft Inorganic separator
US9570738B2 (en) 2014-02-07 2017-02-14 Samsung Sdi Co., Ltd. Positive active material, positive electrode and lithium battery including the positive active material, and method of manufacturing the positive active material
US9601761B2 (en) 2013-06-24 2017-03-21 Samsung Electronics Co., Ltd. Composite cathode active material, method of preparing the composite cathode active material, and cathode and lithium battery each including the composite cathode active material
KR101805545B1 (en) * 2013-11-11 2017-12-07 삼성에스디아이 주식회사 Electrode assembly and secondary battery using the electrode assembly
US10135084B2 (en) 2012-07-06 2018-11-20 Samsung Electronics Co., Ltd. Solid ion conductor, solid electrolyte including the same, lithium battery including solid electrolyte, and method of manufacturing lithium battery
WO2019022095A1 (en) * 2017-07-24 2019-01-31 公立大学法人首都大学東京 Electrolyte composition, electrolyte film, and cell
US10637097B2 (en) 2014-12-05 2020-04-28 Samsung Sdi Co., Ltd. Organic/inorganic composite electrolyte, electrode-electrolyte assembly and lithium secondary battery including the same, and manufacturing method of the electrode-electrolyte assembly
US11394053B2 (en) 2014-09-30 2022-07-19 Seiko Epson Corporation Composition for forming lithium reduction resistant layer, method for forming lithium reduction resistant layer, and lithium secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181588A (en) * 2007-01-24 2008-08-07 Funai Electric Co Ltd Optical disk device
WO2009003695A2 (en) * 2007-07-02 2009-01-08 Basf Se Ion conductor having a garnet structure
JP2010045019A (en) * 2008-07-16 2010-02-25 Tokyo Metropolitan Univ All-solid lithium secondary battery, and method of manufacturing the same
JP2011113655A (en) * 2009-11-24 2011-06-09 Toyota Central R&D Labs Inc Lithium secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181588A (en) * 2007-01-24 2008-08-07 Funai Electric Co Ltd Optical disk device
WO2009003695A2 (en) * 2007-07-02 2009-01-08 Basf Se Ion conductor having a garnet structure
JP2010045019A (en) * 2008-07-16 2010-02-25 Tokyo Metropolitan Univ All-solid lithium secondary battery, and method of manufacturing the same
JP2011113655A (en) * 2009-11-24 2011-06-09 Toyota Central R&D Labs Inc Lithium secondary battery

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015501070A (en) * 2011-12-16 2015-01-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Lithium sulfur battery separator with polysulfide barrier layer
US10135084B2 (en) 2012-07-06 2018-11-20 Samsung Electronics Co., Ltd. Solid ion conductor, solid electrolyte including the same, lithium battery including solid electrolyte, and method of manufacturing lithium battery
US20160141580A1 (en) * 2013-06-19 2016-05-19 Basf Se Alkali-ion conductive separator assembly for rechargeable electrochemical cells
WO2014203100A3 (en) * 2013-06-19 2015-02-19 Basf Se Alkali-ion conductive separator assembly for rechargeable electrochemical cells
CN105409051A (en) * 2013-06-19 2016-03-16 巴斯夫欧洲公司 Alkali-ion conductive separator assembly for rechargeable electrochemical cells
US10056608B2 (en) 2013-06-24 2018-08-21 Samsung Electronics Co., Ltd. Composite cathode active material, method of preparing the composite cathode active material, and cathode and lithium battery each including the composite cathode active material
US11101461B2 (en) 2013-06-24 2021-08-24 Samsung Electronics Co., Ltd. Composite cathode active material, method of preparing the composite cathode active material, and cathode and lithium battery each including the composite cathode active material
US9601761B2 (en) 2013-06-24 2017-03-21 Samsung Electronics Co., Ltd. Composite cathode active material, method of preparing the composite cathode active material, and cathode and lithium battery each including the composite cathode active material
US10586980B2 (en) 2013-06-24 2020-03-10 Samsung Electronics Co., Ltd. Composite cathode active material, method of preparing the composite cathode active material, and cathode and lithium battery each including the composite cathode active material
KR101805545B1 (en) * 2013-11-11 2017-12-07 삼성에스디아이 주식회사 Electrode assembly and secondary battery using the electrode assembly
US9570738B2 (en) 2014-02-07 2017-02-14 Samsung Sdi Co., Ltd. Positive active material, positive electrode and lithium battery including the positive active material, and method of manufacturing the positive active material
DE102014206829A1 (en) * 2014-04-09 2015-10-15 Robert Bosch Gmbh Galvanic element
US10535894B2 (en) 2014-04-09 2020-01-14 Robert Bosch Gmbh Galvanic element
JP2016072210A (en) * 2014-09-30 2016-05-09 セイコーエプソン株式会社 Composition for anti-lithium reduction layer formation, film formation method of anti-lithium reduction layer, and lithium secondary battery
US11394053B2 (en) 2014-09-30 2022-07-19 Seiko Epson Corporation Composition for forming lithium reduction resistant layer, method for forming lithium reduction resistant layer, and lithium secondary battery
US10637097B2 (en) 2014-12-05 2020-04-28 Samsung Sdi Co., Ltd. Organic/inorganic composite electrolyte, electrode-electrolyte assembly and lithium secondary battery including the same, and manufacturing method of the electrode-electrolyte assembly
DE102015213973A1 (en) * 2015-07-23 2017-01-26 Bayerische Motoren Werke Aktiengesellschaft Inorganic separator
WO2019022095A1 (en) * 2017-07-24 2019-01-31 公立大学法人首都大学東京 Electrolyte composition, electrolyte film, and cell
JPWO2019022095A1 (en) * 2017-07-24 2020-07-02 東京都公立大学法人 Electrolyte composition, electrolyte membrane and battery
JP7038382B2 (en) 2017-07-24 2022-03-18 東京都公立大学法人 Electrolyte composition, electrolyte membrane and battery
CN110945701A (en) * 2017-07-24 2020-03-31 公立大学法人首都大学东京 Electrolyte composition, electrolyte membrane, and battery

Also Published As

Publication number Publication date
JP5471527B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5381640B2 (en) Lithium secondary battery
JP5471527B2 (en) Lithium secondary battery and electrode for lithium secondary battery
JP4061648B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
JP5370937B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
JP5527385B2 (en) Cathode active material and hybrid ion battery
JP2004319129A (en) Anode active material and nonaqueous electrolyte secondary battery using it
JP5271975B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
US20110143205A1 (en) Negative electrode active material for nonaqueous secondary battery, nonaqueous secondary battery, and using method
JP2009026514A (en) Nonaqueous electrolyte secondary battery
JP2017174648A (en) Power storage device
JP5644083B2 (en) Negative electrode active material for lithium secondary battery, lithium secondary battery using the same, and method for producing negative electrode active material for lithium secondary battery
JP2015118742A (en) Nonaqueous electrolyte secondary battery
JP5451671B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
JP2015195195A (en) Nonaqueous electrolyte secondary battery
JP5742144B2 (en) Composite manufacturing method, composite, and alkali metal secondary battery including the same
JP5451681B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
JP5749882B2 (en) Lithium secondary battery
JP2020077571A (en) Composite structure, lithium battery, and method for manufacturing composite structure
JP4678457B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP5463208B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
JP2020087638A (en) Lithium manganese composite oxide, lithium secondary battery, and manufacturing method of lithium manganese composite oxide
JP6503768B2 (en) Lithium ion secondary battery
JPWO2019065196A1 (en) Non-aqueous electrolyte secondary battery
JP5463222B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

LAPS Cancellation because of no payment of annual fees