JP2011152004A - Power generation unit and power generation devic - Google Patents

Power generation unit and power generation devic Download PDF

Info

Publication number
JP2011152004A
JP2011152004A JP2010012636A JP2010012636A JP2011152004A JP 2011152004 A JP2011152004 A JP 2011152004A JP 2010012636 A JP2010012636 A JP 2010012636A JP 2010012636 A JP2010012636 A JP 2010012636A JP 2011152004 A JP2011152004 A JP 2011152004A
Authority
JP
Japan
Prior art keywords
diaphragm
power generation
generation unit
vibrating
piezoelectric body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010012636A
Other languages
Japanese (ja)
Inventor
Mitsuru Asai
満 浅井
Yasuyoshi Saito
康善 齋藤
Namiko Takagi
凡子 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2010012636A priority Critical patent/JP2011152004A/en
Publication of JP2011152004A publication Critical patent/JP2011152004A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power generation unit enabling stable power generation efficiently by using a piezoelectric element. <P>SOLUTION: The power generation unit at least includes: a housing (C); a first vibration piezoelectric body (B1) comprising a first vibration plate (P1) which is arranged and installed in this housing and vibrates in accordance with input into the housing and a first piezoelectric element (E1) which is joined to the first vibration plate and outputs voltage in conformity with displacement of the first vibration plate; and a second vibration piezoelectric body (B2) comprising a second vibration plate (P2) which is same as the first vibration plate (P1) and a second piezoelectric element (E1) which is joined to the second vibration plate and outputs the voltage in conformity with the displacement of the second vibration plate, and resonating at a frequency different from that of the first vibration piezoelectric body. Each vibration piezoelectric body resonates at the frequency different from each other, thereby enabling efficient power generation to be stably performed with respect to an input frequency having a wide range. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、振動エネルギー等の機械的エネルギーを効率的に電気エネルギーに変換し得る発電ユニットおよびそれを用いた発電装置に関する。   The present invention relates to a power generation unit capable of efficiently converting mechanical energy such as vibration energy into electric energy and a power generation apparatus using the power generation unit.

環境意識の高揚に伴い、省エネルギー化や環境負荷の小さいエネルギー創出が求められている。その一つとして、圧電素子を利用した発電が注目されている。圧電素子にはPZT(チタン酸ジルコン酸鉛:Pb(Zr,Ti)O)等があり、圧電素子はある特定方向に圧力を加えると電気分極が誘起されて電圧を発生させる。この圧電素子を利用すれば、機械的変位が電圧に変換されるので、発電が可能となる。もっとも、利用可能な電力を取り出すには、圧電素子に継続的な変位を加える必要がある。そこで、圧電素子を振動板に取り付け、振動板の振幅を利用して圧電素子に継続的な変位を与えて発電可能とした発電ユニットが下記の特許文献などに提案されている。 Along with the heightened environmental awareness, energy saving and the creation of energy with low environmental impact are required. As one of them, power generation using a piezoelectric element has attracted attention. Piezoelectric elements include PZT (lead zirconate titanate: Pb (Zr, Ti) O 3 ) and the like, and when a pressure is applied in a specific direction, electric polarization is induced to generate a voltage. If this piezoelectric element is used, the mechanical displacement is converted into a voltage, so that power generation is possible. However, in order to extract available power, it is necessary to apply continuous displacement to the piezoelectric element. In view of this, a power generation unit capable of generating power by attaching a piezoelectric element to a diaphragm and applying a continuous displacement to the piezoelectric element using the amplitude of the diaphragm has been proposed in the following patent documents.

特開平7−49388号公報JP 7-49388 A 特開2006−166694号公報JP 2006-166694 A

上記の特許文献には、振動板および圧電素子を共振させることで、出力を高められる旨が記載されている。しかし、効率的な発電を安定して行えるような、現実の利用に適した具体策については触れられていない。
なお、特許文献2の図6には、振動板と圧電素子を接合した振動圧電体を筐体内に複数配設した音力発電装置が記載されている。もっとも、その発電装置は、出力電圧を高めるために、単に同じ仕様の振動圧電体を複数並列的に配設しているに過ぎない。
The above-described patent document describes that the output can be increased by resonating the diaphragm and the piezoelectric element. However, there is no mention of a specific measure suitable for actual use that can stably generate efficient power.
Note that FIG. 6 of Patent Document 2 describes a sound power generation apparatus in which a plurality of vibrating piezoelectric bodies each having a diaphragm and a piezoelectric element joined are arranged in a casing. However, the power generation device simply has a plurality of vibrating piezoelectric bodies having the same specifications arranged in parallel in order to increase the output voltage.

本発明は、このような事情に鑑みて為されたものである。すなわち本発明は、圧電素子を用いて効率的な発電を安定的に行うことを可能とする発電ユニットおよびそれを用いた発電装置を提供することを目的とする。   The present invention has been made in view of such circumstances. That is, an object of the present invention is to provide a power generation unit capable of stably performing efficient power generation using a piezoelectric element, and a power generation apparatus using the power generation unit.

本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、振動板と圧電素子を接合した振動圧電体であって、異なる周波数で共振するか、または異なる方向の入力に対して共振するものを筐体内に複数配設することを新たに思いついた。この発想を発展させることにより、以降に述べる本発明を完成するに至った。   The present inventor has intensively studied to solve this problem, and as a result of repeated trial and error, it is a vibrating piezoelectric body in which a diaphragm and a piezoelectric element are joined, and resonates at different frequencies, or inputs in different directions. I came up with a new idea of arranging a plurality of resonating elements in the housing. By developing this idea, the present invention described below has been completed.

《発電ユニット》
(1)本発明の発電ユニットは、筐体と、該筐体内に配設され該筐体への入力に応じて振動する第1振動板と該第1振動板に接合され該第1振動板の変位に応じた電圧を出力する第1圧電素子とからなる第1振動圧電体と、該筐体内に配設され該筐体への入力に応じて振動する第2振動板と該第2振動板に接合され該第2振動板の変位に応じた電圧を出力する第2圧電素子とからなり、該第1振動圧電体と異なる周波数で共振する第2振動圧電体とを少なくとも備え、該筐体への入力に応じて発電することを特徴とする。
《Power generation unit》
(1) A power generation unit according to the present invention includes a casing, a first diaphragm that is disposed in the casing and vibrates in response to an input to the casing, and is joined to the first diaphragm. A first vibration piezoelectric body including a first piezoelectric element that outputs a voltage corresponding to the displacement of the first vibration element, a second diaphragm that is disposed in the casing and vibrates in response to an input to the casing, and the second vibration A second piezoelectric element which is joined to a plate and outputs a voltage corresponding to the displacement of the second diaphragm, and which resonates at a frequency different from that of the first vibrating piezoelectric element. It generates electricity according to the input to the body.

(2)また本発明の発電ユニットは、筐体と、該筐体内に配設され該筐体への入力に応じて振動する第1振動板と該第1振動板に接合され該第1振動板の変位に応じた電圧を出力する第1圧電素子とからなる第1振動圧電体と、該筐体内に配設され該筐体への入力に応じて振動する第2振動板と該第2振動板に接合され該第2振動板の変位に応じた電圧を出力する第2圧電素子とからなり、該第1振動圧電体とは筐体内における共振方向が異なる第2振動圧電体とを少なくとも備え、該筐体への入力に応じて発電することを特徴とする。 (2) The power generation unit of the present invention includes a casing, a first diaphragm that is disposed in the casing and vibrates in response to an input to the casing, and is joined to the first diaphragm and the first vibration A first vibrating piezoelectric body including a first piezoelectric element that outputs a voltage corresponding to the displacement of the plate; a second vibrating plate disposed in the casing and vibrating in response to an input to the casing; and the second A second piezoelectric element that is bonded to the diaphragm and outputs a voltage corresponding to the displacement of the second diaphragm, and at least a second vibrating piezoelectric body having a resonance direction in the housing different from that of the first vibrating piezoelectric body. And generating electricity in response to an input to the housing.

(3)本発明の発電ユニットは、機械的エネルギーを電気エネルギーに効率的に変換し得る複数の振動圧電体を有する。しかもこれらの振動圧電体は、異なる周波数で共振するか(本明細書ではこれを適宜「共振周波数が異なる」と便宜的に表現する)、または
異なる方向の入力に対して共振する(本明細書ではこれを適宜「共振方向が異なる」と便宜的に表現する)。
このため、大きさや方向が様々に異なる入力が振動圧電体を収納する筐体へ加えられても、本発明の発電ユニットはそれらの入力に幅広く対応できる。その結果、本発明の発電ユニットは、機械的エネルギーを安定して吸収し、効率的に電気エネルギーへ変換し得る。
(3) The power generation unit of the present invention has a plurality of vibrating piezoelectric bodies that can efficiently convert mechanical energy into electrical energy. In addition, these vibrating piezoelectric bodies resonate at different frequencies (in the present specification, this is appropriately expressed as “different resonance frequencies” for convenience), or resonate with respect to inputs in different directions (in this specification). Then, this is conveniently expressed as “resonance direction is different”).
For this reason, even when inputs having different sizes and directions are added to the housing that houses the vibrating piezoelectric body, the power generation unit of the present invention can widely handle these inputs. As a result, the power generation unit of the present invention can stably absorb mechanical energy and efficiently convert it into electrical energy.

(4)勿論、本発明の発電ユニットは、異なる周波数で共振する第1振動圧電体と第2振動圧電体が、さらに、筐体内での共振方向が異なると好適である。
なお本明細書では、本発明の内容を明確にするために、便宜的に「第1」、「第2」等の表現を用いているが、振動板、圧電素子および振動圧電体の基本的な構造や構成は同じでもよい。また振動圧電体等の数は、同一筐体内に最低2つあればよく、共振周波数や共振方向がそれぞれ異なる振動圧電体等が3以上であればより好ましい。勿論、共振周波数や共振方向が異なる振動圧電体が複数存在することを前提に、共振周波数や共振方向が同じ振動圧電体が同一筐体内に複数存在してもよい。
(4) Of course, in the power generation unit of the present invention, it is preferable that the first vibrating piezoelectric body and the second vibrating piezoelectric body that resonate at different frequencies have different resonance directions in the housing.
In this specification, in order to clarify the contents of the present invention, expressions such as “first” and “second” are used for the sake of convenience. The structure and configuration may be the same. The number of vibrating piezoelectric bodies and the like may be at least two in the same housing, and it is more preferable that the number of vibrating piezoelectric bodies or the like having different resonance frequencies and resonance directions is 3 or more. Of course, on the premise that there are a plurality of vibrating piezoelectric bodies having different resonance frequencies and resonance directions, a plurality of vibrating piezoelectric bodies having the same resonance frequency and resonance direction may exist in the same casing.

《発電装置》
本発明の発電ユニットは、単体でも発電装置として機能するが、複数組合わせて発電装置とすることもできる。いずれの場合でも、本発明に係る圧電素子は振動板の振幅に応じて電圧を発生させるので、その出力は通常は交流となる。消費電力の小さい機器への電力供給や出力電圧の増大などを考慮すると、交流出力よりも直流出力の方が利用し易い場合も多い。そこで、前記の第1振動圧電体および第2振動圧電体の出力を直流に整流する整流器があると好適である。さらに、その整流器からの出力を蓄電するコンデンサまたは電池を備えると、供給電力または供給電圧の安定化を図れるので好ましい。
<< Power generation equipment >>
The power generation unit of the present invention functions as a power generation device by itself, but a plurality of the power generation units can be combined into a power generation device. In any case, since the piezoelectric element according to the present invention generates a voltage according to the amplitude of the diaphragm, the output is normally an alternating current. Considering power supply to devices with low power consumption and increase in output voltage, DC output is often easier to use than AC output. Therefore, it is preferable that there is a rectifier that rectifies the outputs of the first vibrating piezoelectric body and the second vibrating piezoelectric body into a direct current. Furthermore, it is preferable to provide a capacitor or a battery that stores the output from the rectifier, because the supply power or the supply voltage can be stabilized.

整流器は、前記の発電ユニットの筐体内に組み入れてもよいし、発電ユニットとは別に設けてもよい。コンデンサまたは電池についても同様である。本発明の発電装置は、発電ユニット単体として解しても、複数の発電ユニットを組み合わせた発電セットとして解しても、その発電ユニットまたは発電セットに接続された外部機器を含めた発電システム全体として解しても、いずれでもよい。   The rectifier may be incorporated in the casing of the power generation unit, or may be provided separately from the power generation unit. The same applies to a capacitor or a battery. The power generation device of the present invention can be interpreted as a power generation unit alone or as a power generation set in which a plurality of power generation units are combined, or as a whole power generation system including the power generation unit or an external device connected to the power generation set. It does not matter either.

《その他》
特に断らない限り、本明細書でいう「x〜y」は、下限値xおよび上限値yを含む。また、本明細書に記載した種々の下限値または上限値は、任意に組合わされて「a〜b」のような範囲を構成し得る。さらに、本明細書に記載した範囲内に含まれる任意の数値を、数値範囲を設定するための上限値または下限値とすることができる。
<Others>
Unless otherwise specified, “x to y” in the present specification includes a lower limit value x and an upper limit value y. Moreover, the various lower limit value or upper limit value described in this specification can be arbitrarily combined to constitute a range such as “ab”. Furthermore, any numerical value included in the range described in the present specification can be used as an upper limit value or a lower limit value for setting the numerical value range.

片持ち支持した振動圧電体の基本構造例を示す部分断面図である。It is a fragmentary sectional view which shows the example of a basic structure of the vibration piezoelectric material supported by the cantilever. 両端で支持した振動圧電体の基本構造例を示す部分断面図である。It is a fragmentary sectional view which shows the example of a basic structure of the vibration piezoelectric material supported at both ends. 中央で支持した振動圧電体の基本構造例を示す部分断面図である。It is a fragmentary sectional view which shows the basic structural example of the vibration piezoelectric material supported in the center. 片持ち支持した振動圧電体を複数組み合わせた発電ユニットの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the electric power generation unit which combined multiple vibrating piezoelectric bodies supported by the cantilever. 両端で支持した振動圧電体を複数組み合わせた発電ユニットの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the electric power generation unit which combined multiple vibration piezoelectric material supported at both ends. 中央で支持した振動圧電体を複数組み合わせた発電ユニットの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the electric power generation unit which combined multiple vibration piezoelectric bodies supported in the center. 共振する方向が異なる振動圧電体を複数組み合わせた発電ユニットの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the electric power generation unit which combined multiple vibration piezoelectric bodies from which the direction to resonate differs. 増幅流体を筐体内へ封入した発電ユニットの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the electric power generation unit which enclosed the amplification fluid in the housing | casing. その増幅流体が筐体と振動板からなる閉塞空間の一部に充填された発電ユニットの別の実施形態を示す断面図である。It is sectional drawing which shows another embodiment of the electric power generation unit with which the amplification fluid was filled into a part of closed space which consists of a housing | casing and a diaphragm. 増幅流体の流路にストレート状の絞りを設けた発電ユニットの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the electric power generation unit which provided the straight-shaped aperture | diaphragm in the flow path of the amplification fluid. その増幅流体が筐体と振動板からなる閉塞空間の一部に充填された発電ユニットの別の実施形態を示す断面図である。It is sectional drawing which shows another embodiment of the electric power generation unit with which the amplification fluid was filled into a part of closed space which consists of a housing | casing and a diaphragm. 増幅流体の流路にテーパー状の絞りを設けた発電ユニットの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the electric power generation unit which provided the taper-shaped aperture | diaphragm | restriction in the flow path of the amplification fluid. その増幅流体が筐体と振動板からなる閉塞空間の一部に充填された発電ユニットの別の実施形態を示す断面図である。It is sectional drawing which shows another embodiment of the electric power generation unit with which the amplification fluid was filled into a part of closed space which consists of a housing | casing and a diaphragm. 片持ち支持した振動圧電体に設けた錘の質量と共振周波数の関係を示すグラフである。It is a graph which shows the relationship between the mass of the weight provided in the vibration piezoelectric material supported by the cantilever, and the resonance frequency. その振動圧電体の共振周波数と出力電圧の関係を示すグラフである。It is a graph which shows the relationship between the resonant frequency of the vibration piezoelectric material, and an output voltage. 発電装置の回路図である。It is a circuit diagram of a power generator. 片持ち支持した振動圧電体による蓄電圧の時間変化を示すグラフである。It is a graph which shows the time change of the storage voltage by the vibration piezoelectric material supported by the cantilever. その振動圧電体に設けた錘Wの質量と蓄電圧の関係を示すグラフである。It is a graph which shows the relationship between the mass of the weight W provided in the vibration piezoelectric material, and a stored voltage.

S 支持体
P 振動板
E 圧電素子
W 錘
B 振動圧電体
C 筐体
1〜10 発電ユニット
DESCRIPTION OF SYMBOLS S Support body P Diaphragm E Piezoelectric element W Weight B Vibrating piezoelectric body C Housing | casing 1-10 Power generation unit

発明の実施形態を挙げて本発明をより詳しく説明する。なお、以下の実施形態を含めて本明細書で説明する内容は、本発明に係る発電ユニットのみならず、それを含む発電装置等にも適宜適用され得る。従って、上述した本発明の構成に、本明細書中から任意に選択した一つまたは二つ以上の構成を付加し得る。なお、いずれの実施形態が最良であるか否かは、要求される仕様等によって異なる。   The present invention will be described in more detail with reference to embodiments of the invention. In addition, the content demonstrated by this specification including the following embodiment can be suitably applied not only to the power generation unit according to the present invention but also to a power generation device including the power generation unit. Therefore, one or two or more configurations arbitrarily selected from the present specification can be added to the configuration of the present invention described above. Note that which embodiment is the best depends on the required specifications and the like.

《振動圧電体》
振動圧電体は、基本的に、振動板とその振動板に接合されて一体的に変形する圧電素子とからなる。
(1)圧電素子
圧電素子は、ある特定方向に圧力(変形)を加えると電気分極が誘起されて電圧を発生する素子、つまり圧電効果を発現する素子である。圧電素子の材質、形態、種類などの諸元は、適宜、用途に応じて適切なものを選択すればよい。圧電素子の材料(圧電体)には、例えば、チタン酸バリウム、PZT(チタン酸ジルコン酸鉛:Pb(Zr,Ti)O)等の圧電セラミックス、KNN((K、Na)NbO)系等の非鉛圧電セラミックス、リチウムタンタレート(LiTaO)などの圧電単結晶などがある。圧電素子は、基本的に、そのような圧電体を2枚の電極で挟持した素子である。また圧電素子はモノモルフ型、複数の圧電体を積層したバイモルフ型または積層型等のいずれでもよい。さらに、圧電素子(圧電体や電極など)の表面に適切な溝等を形成して、変形に対する追従性(剛性)、共振方向、共振周波数などを調整したものでもよい。
<Vibrating piezoelectric material>
The vibration piezoelectric body basically includes a vibration plate and a piezoelectric element that is joined to the vibration plate and deforms integrally.
(1) Piezoelectric element A piezoelectric element is an element that generates a voltage by inducing electrical polarization when pressure (deformation) is applied in a specific direction, that is, an element that exhibits a piezoelectric effect. The material, form, type, etc. of the piezoelectric element may be appropriately selected according to the application. Examples of the piezoelectric element material (piezoelectric material) include piezoelectric ceramics such as barium titanate and PZT (lead zirconate titanate: Pb (Zr, Ti) O 3 ), and KNN ((K, Na) NbO 3 ). Lead-free piezoelectric ceramics, and piezoelectric single crystals such as lithium tantalate (LiTaO 3 ). A piezoelectric element is basically an element in which such a piezoelectric body is sandwiched between two electrodes. The piezoelectric element may be either a monomorph type, a bimorph type in which a plurality of piezoelectric bodies are laminated, or a laminated type. Further, an appropriate groove or the like may be formed on the surface of the piezoelectric element (such as a piezoelectric body or an electrode) to adjust the followability (rigidity) to the deformation, the resonance direction, the resonance frequency, and the like.

(2)振動板
振動板は、筐体への入力に応じて振動し、圧電素子に変位を与えたり、その変位を増幅または継続させたりする。振動圧電体が共振するとき、振動板の振幅が極大となり、圧電素子へ加わる変形も極大となる。
(2) Diaphragm The diaphragm vibrates in response to an input to the housing and gives displacement to the piezoelectric element, or amplifies or continues the displacement. When the vibrating piezoelectric body resonates, the amplitude of the diaphragm becomes maximum, and the deformation applied to the piezoelectric element also becomes maximum.

振動板の材質、形態(形状やサイズなど)等は、発電ユニットの仕様に適したものを選択すればよい。例えば、振動板の材質は、発電量を多くするために、振動の吸収能や減衰能などが小さいものが好ましい。具体的には、アルミニウム、鉄、真鍮などの金属材料等がある。振動板の形態も、筐体への入力振動(共振周波数、共振方向、振幅等)などに適したものにすればよい。例えば、振動板の剛性が低くなると、一般的に共振周波数が低下し、振幅(変位)が大きくなる。これにより、振動板が弾性限内で振動する限りで、圧電素子の出力を増大させ得る。また振動板の形状は、圧電素子や筐体の形状に応じて、丸型、楕円形、方形など、いずれでもよい。   The material, form (shape, size, etc.), etc. of the diaphragm may be selected according to the specifications of the power generation unit. For example, the material of the diaphragm is preferably a material having a small vibration absorbing ability or damping ability in order to increase the amount of power generation. Specifically, there are metal materials such as aluminum, iron, and brass. The form of the diaphragm may also be suitable for input vibration (resonance frequency, resonance direction, amplitude, etc.) to the housing. For example, when the rigidity of the diaphragm decreases, the resonance frequency generally decreases and the amplitude (displacement) increases. Thus, the output of the piezoelectric element can be increased as long as the diaphragm vibrates within the elastic limit. Further, the shape of the diaphragm may be any of a round shape, an oval shape, a square shape, and the like depending on the shape of the piezoelectric element and the housing.

《増幅体》
(1)増幅体は、振動圧電体(振動板または圧電素子)に設けられて、振動板の振幅を増幅させる。この増幅体により、圧電素子に加える変形が増加し、発電ユニットの出力が向上し得る。
<Amplifier>
(1) The amplifying body is provided on a vibrating piezoelectric body (a vibrating plate or a piezoelectric element), and amplifies the amplitude of the vibrating plate. By this amplifying body, the deformation applied to the piezoelectric element increases, and the output of the power generation unit can be improved.

増幅体は、例えば、振動板に配設された増幅錘である。この増幅錘の質量や配設位置により、振動板の振幅の増幅量を調整できる。さらには振動圧電体の共振周波数の調整も可能である。このため、同じ振動板および圧電素子を用いても、配設する増幅錘の質量や取付位置を変更、調整するだけで、振動圧電体毎に共振周波数さらには共振方向をも容易に変更し得る。   The amplifying body is, for example, an amplifying weight disposed on the diaphragm. The amount of amplification of the amplitude of the diaphragm can be adjusted by the mass of the amplifying weight and the arrangement position. Further, the resonance frequency of the vibrating piezoelectric body can be adjusted. For this reason, even if the same diaphragm and piezoelectric element are used, it is possible to easily change the resonance frequency and the resonance direction for each vibrating piezoelectric body simply by changing and adjusting the mass and mounting position of the amplification weight to be arranged. .

(2)増幅体は、筐体への入力に応じて流動し、少なくとも一つの振動板を押圧し得る増幅流体でもよい。すなわち本発明は、筐体と、筐体内に配設され筐体への入力に応じて振動する振動板と振動板に接合され振動板の変位に応じた電圧を出力する圧電素子とからなる振動圧電体と、筐体への入力に応じて流動し振動板を押圧して振動板の振幅を増幅させ得る増幅流体とを備え、筐体への入力に応じて発電することを特徴とする発電ユニットでもよい。
振動板の支持構造を勘案して、振動板の振幅をより増幅させる位置に増幅流体の絞りを設けてもよい。さらにその絞りの向きを調整して、増幅流体による増幅方向を調整してもよい。さらに、増幅流体は、筐体と振動板とにより区画された閉塞空間を完全に充填していてもよいし、その一部を充填しているだけでもよい。例えば、その閉塞空間対する増幅流体の充填率は、10〜100%、さらには30〜100%であると発電量の増加を図れて好ましい。
この他、増幅体は、筐体への入力に応じて振動板へ繰り返し衝突する衝突体(鋼球など)等でもよい。
(2) The amplifying body may be an amplifying fluid that flows in response to an input to the housing and can press at least one diaphragm. That is, the present invention provides a vibration comprising a housing, a vibration plate disposed in the housing and vibrating in response to an input to the housing, and a piezoelectric element that is joined to the vibration plate and outputs a voltage in accordance with the displacement of the vibration plate. A power generator comprising: a piezoelectric body; and an amplifying fluid that flows according to an input to the housing and presses the diaphragm to amplify the amplitude of the diaphragm, and generates electric power according to the input to the housing It may be a unit.
In consideration of the support structure of the diaphragm, a diaphragm for the amplified fluid may be provided at a position where the amplitude of the diaphragm is further amplified. Furthermore, the direction of the aperture may be adjusted to adjust the amplification direction by the amplification fluid. Further, the amplification fluid may completely fill the closed space defined by the casing and the diaphragm, or may only fill a part thereof. For example, it is preferable that the filling rate of the amplification fluid with respect to the enclosed space is 10 to 100%, further 30 to 100%, because the amount of power generation can be increased.
In addition, the amplifying body may be a collision body (such as a steel ball) that repeatedly collides with the diaphragm in accordance with an input to the housing.

《筐体》
筐体は、上記の振動圧電体、特に振動板を振動可能に支持する。筐体による支持は、一点で支持されても、2点以上で支持されてもよい。具体的には、片持ち支持、両端支持、中央支持などがある。これら支持方法により、各振動圧電体の共振周波数や共振方向も変化し得る。
<Case>
The housing supports the above-described vibrating piezoelectric body, particularly the diaphragm, so as to vibrate. The support by the housing may be supported at one point or at two or more points. Specifically, there are cantilever support, both-end support, center support, and the like. By these support methods, the resonance frequency and resonance direction of each vibrating piezoelectric body can also be changed.

筐体は、必ずしも振動圧電体を包囲する箱形である必要はない。また、密閉式である必要もない。筐体の材質、強度などは、発電ユニットの使用環境、共振周波数、共振方向などを考慮して適宜選択されればよい。もっとも、筐体の材質や形態は、外力や振動などを吸収または減衰させずに、効率的に振動圧電体へ伝達するものであると好ましい。   The housing does not necessarily have a box shape surrounding the vibrating piezoelectric body. Moreover, it is not necessary to be a hermetically sealed type. The material, strength, and the like of the housing may be appropriately selected in consideration of the use environment of the power generation unit, the resonance frequency, the resonance direction, and the like. However, the material and form of the housing are preferably those that efficiently transmit to the vibrating piezoelectric body without absorbing or attenuating external force or vibration.

《発電ユニットの実施形態》
発電ユニットの具体的な形態例を図1〜10に示した。
(1)本発明の発電ユニットの基本的な構造を図1〜3に例示した。図1に部分的に示した発電ユニット1は、金属製(例えば、バネ鋼製)の振動板Pと、振動板Pに一方の電極が接合された圧電素子Eと、振動板Pの一端側を支持する支持体S1と、振動板Pの他端側に配設した錘Wとからなる。なお、支持体S1は筐体と兼用し得る。
以降では、振動板Pおよび圧電素子Eを合わせ振動圧電体Bというが、適宜、錘Wをも含めて振動圧電体Bということもある。また基本的に同じ構造または作用を有する部材には、混乱を生じない範囲で、便宜的に同じ符号を付して説明する。
<< Embodiment of power generation unit >>
Specific examples of the power generation unit are shown in FIGS.
(1) The basic structure of the power generation unit of the present invention is illustrated in FIGS. A power generation unit 1 partially shown in FIG. 1 includes a diaphragm P made of metal (for example, spring steel), a piezoelectric element E in which one electrode is joined to the diaphragm P, and one end side of the diaphragm P. And a weight W disposed on the other end side of the diaphragm P. The support S1 can also be used as a housing.
Hereinafter, the diaphragm P and the piezoelectric element E are referred to as a vibrating piezoelectric body B, but may be appropriately referred to as a vibrating piezoelectric body B including the weight W. Also, members having basically the same structure or action will be described with the same reference numerals for the sake of convenience within a range that does not cause confusion.

ところで発電ユニット1の場合、振動板Pの支持構造がいわゆる片持ち式(カンチレバー)となっている。振動板Pのたわみ(変形)は図示した振動方向で極大となり得る。その先端には錘W(増幅体)が配設されているので、振動板Pのたわみは増幅され、先端側ほど大きくなる。つまり、図示した振動方向に振動(励起)させる加振力が外部から支持体S1へ入力されると、振動板Pは大きく変形し(撓み)、圧電素子Eの大きな出力が期待される。   In the case of the power generation unit 1, the support structure of the diaphragm P is a so-called cantilever type (cantilever). The deflection (deformation) of the diaphragm P can be a maximum in the illustrated vibration direction. Since the weight W (amplifier) is provided at the tip, the deflection of the diaphragm P is amplified and becomes larger toward the tip. That is, when an excitation force that vibrates (excites) in the illustrated vibration direction is input from the outside to the support S1, the diaphragm P is greatly deformed (bent), and a large output of the piezoelectric element E is expected.

図2に示した発電ユニット2は、振動板Pの両端を支持体S2で支持し、振動板Pの中央に接合された圧電素子Eのさらに上面中央に錘Wを配設した場合である。発電ユニット2は、もともと支持構造的にたわみが大きくなる中央部に、さらに錘Wが配設されている。このため、図示した振動方向に振動(励起)させる加振力が外部から支持体S2へ入力されると、振動板Pは中央付近で大きく変形し(撓み)、圧電素子Eの大きな出力が期待される。   The power generation unit 2 shown in FIG. 2 is a case where both ends of the diaphragm P are supported by the support S2, and a weight W is disposed at the center of the upper surface of the piezoelectric element E joined to the center of the diaphragm P. The power generation unit 2 is further provided with a weight W in the central portion where the deflection is originally increased in the support structure. For this reason, when an excitation force that vibrates (excites) in the illustrated vibration direction is input from the outside to the support S2, the diaphragm P is greatly deformed (bent) near the center, and a large output of the piezoelectric element E is expected. Is done.

図3に示した発電ユニット3は、振動板Pの中央を支持体S3で支持し、振動板Pの両端に錘W11、W12を配設した場合である。この場合も支持構造的に振動板Pのたわみが大きくなる端部に、錘W11および錘W12がそれぞれ配設されている。このため、図示した振動方向に振動(励起)させる加振力が外部から支持体S3へ入力されると、振動板Pは両端付近で大きく変形し(撓み)、圧電素子Eの大きな出力が期待される。   The power generation unit 3 shown in FIG. 3 is a case where the center of the diaphragm P is supported by the support S3, and weights W11 and W12 are disposed at both ends of the diaphragm P. Also in this case, the weight W11 and the weight W12 are provided at the end portions where the deflection of the diaphragm P is increased in the support structure. Therefore, when an excitation force that vibrates (excites) in the illustrated vibration direction is input from the outside to the support S3, the diaphragm P is greatly deformed (bent) near both ends, and a large output of the piezoelectric element E is expected. Is done.

(2)図1〜3に示したような種々の方法で支持された振動圧電体を、同一の筐体内に複数配設した発電ユニットを図4〜6に例示した。
図4に示した発電ユニット4は、一つの筐体C4内に片持ち支持した3つの振動圧電体B1、B2、B3を、上下方向に縦列配置したものである。各振動圧電体B1、B2、B3を構成する振動板P1、P2、P3および圧電素子E1、E2、E3は同一である。ただし、振動板P1、P2、P3の各端部に配設した錘W1、W2、W3は、質量がそれぞれ異なっている。このため、各振動圧電体B1、B2、B3が共振する周波数も、錘W1、W2、W3の質量に応じてそれぞれ異なる。
図示した振動方向の加振力が外部から筐体C4へ入力されると、幅広い周波数域で振動板P1、P2、P3の少なくとも一つが、解放端側で大きく揺動することになる。これにより、大きな出力(発電)が広い振動周波数域(いわゆる広帯域)で安定的に得られる。
(2) FIGS. 4 to 6 illustrate power generation units in which a plurality of vibrating piezoelectric bodies supported by various methods as shown in FIGS.
The power generation unit 4 shown in FIG. 4 is one in which three vibrating piezoelectric bodies B1, B2, and B3 that are cantilevered in one casing C4 are vertically arranged in a vertical direction. The diaphragms P1, P2, and P3 and the piezoelectric elements E1, E2, and E3 constituting the respective vibrating piezoelectric bodies B1, B2, and B3 are the same. However, the weights W1, W2, and W3 disposed at the ends of the diaphragms P1, P2, and P3 have different masses. For this reason, the frequencies at which the vibrating piezoelectric bodies B1, B2, and B3 resonate also differ depending on the masses of the weights W1, W2, and W3.
When an excitation force in the illustrated vibration direction is input from the outside to the housing C4, at least one of the diaphragms P1, P2, and P3 swings greatly on the open end side in a wide frequency range. Thereby, a large output (power generation) can be stably obtained in a wide vibration frequency range (so-called broadband).

なお、各圧電素子E1、E2、E3の出力は、筐体C4の外側に設けられた出力端子へ導かれている。この出力端子の一方には、各圧電素子E1、E2、E3の一方の電極が接合された各振動板P1、P2、P3の各端部に結線されている。出力端子の他方は、各圧電素子E1、E2、E3の他方の電極にそれぞれ結線されている。以降の形態例でも結線方法は基本的に同様であり、その限りにおいて結線に関する説明を省略する。   The outputs of the piezoelectric elements E1, E2, E3 are guided to output terminals provided outside the housing C4. One of the output terminals is connected to each end of each diaphragm P1, P2, P3 to which one electrode of each piezoelectric element E1, E2, E3 is joined. The other of the output terminals is connected to the other electrode of each of the piezoelectric elements E1, E2, and E3. In the following embodiments, the connection method is basically the same, and the description regarding the connection is omitted as long as it is.

図5に示した発電ユニット5は、一つの筐体C5内に両端支持した3つの振動圧電体B1、B2、B3を、上下方向に縦列配置したものである。
各振動圧電体B1、B2、B3を構成する振動板P1、P2、P3および圧電素子E1、E2、E3は同一である。ただし、振動板P1、P2、P3の各裏面(圧電素子E1、E2、E3が配設されていない面)の中央部に配設した錘W1、W2、W3は質量がそれぞれ異なっている。このため、各振動圧電体B1、B2、B3が共振する周波数はそれぞれ異なる。
図示した振動方向の加振力が外部から筐体C5へ入力されると、幅広い周波数域で、振動板P1、P2、P3の少なくとも一つが中央付近で大きく揺動し、大きな出力(発電)が広い振動周波数域(広帯域)で安定的に得られる。
The power generation unit 5 shown in FIG. 5 is one in which three vibrating piezoelectric bodies B1, B2, B3 supported at both ends in one casing C5 are vertically arranged in a vertical direction.
The diaphragms P1, P2, and P3 and the piezoelectric elements E1, E2, and E3 constituting the respective vibrating piezoelectric bodies B1, B2, and B3 are the same. However, the masses of the weights W1, W2, and W3 arranged at the center of each back surface (the surface on which the piezoelectric elements E1, E2, and E3 are not arranged) of the diaphragms P1, P2, and P3 are different. For this reason, the frequencies at which the vibrating piezoelectric bodies B1, B2, and B3 resonate are different.
When an excitation force in the illustrated vibration direction is input from the outside to the housing C5, at least one of the diaphragms P1, P2, and P3 swings largely near the center in a wide frequency range, and a large output (power generation) is generated. It can be obtained stably in a wide vibration frequency range (broadband).

図6に示した発電ユニット6は、一つの筐体C6内に中央部で支持した3つの振動圧電体B1、B2、B3を、上下方向に縦列配置したものである。各振動圧電体B1、B2、B3を構成する振動板P1、P2、P3および圧電素子E1、E2、E3は同一である。 ここで錘W11、W12、W13、錘W21、W22、W23の質量は、左右では同じか異なっており、上下では異なっている。例えば、上下方向の錘W11、W12、W13の質量がそれぞれ異なっていても、左右の錘W11、W12の質量がそれぞれ異なっていてもよい。錘の質量が異なる振動圧電体間で、その共振する周波数が異なる。6つの錘の質量が相互に異なる場合、各振動圧電体が共振する周波数がより広帯域化する。
図示した振動方向の加振力が外部から筐体C6へ入力されると、より幅広い周波数域で、振動板P1、P2、P3の少なくとも一つが両端または一端側で大きく揺動する。こうして、発電ユニット6の出力(発電)がより広い振動周波数域(広帯域)で安定的に得られることになる。
The power generation unit 6 shown in FIG. 6 has three vibrating piezoelectric bodies B1, B2, and B3 supported at the center in one casing C6 arranged in a vertical column. The diaphragms P1, P2, and P3 and the piezoelectric elements E1, E2, and E3 constituting the respective vibrating piezoelectric bodies B1, B2, and B3 are the same. Here, the masses of the weights W11, W12, W13, and the weights W21, W22, W23 are the same or different on the left and right, and are different on the top and bottom. For example, the masses of the weights W11, W12, and W13 in the vertical direction may be different from each other, and the masses of the left and right weights W11 and W12 may be different from each other. The resonating frequency differs between vibrating piezoelectric bodies having different masses of weights. When the masses of the six weights are different from each other, the frequency at which each vibrating piezoelectric body resonates becomes wider.
When an excitation force in the illustrated vibration direction is input from the outside to the housing C6, at least one of the diaphragms P1, P2, and P3 swings greatly at both ends or one end side in a wider frequency range. In this way, the output (power generation) of the power generation unit 6 can be stably obtained in a wider vibration frequency range (broadband).

(3)図7に示した発電ユニット7は、一つの筐体C7内に、4つの振動圧電体B1、B2、B3、B4を菱形状に配置したものである。振動圧電体B1、B2、B3、B4の一端側は筐体C7の各内壁面にそれぞれ支持されており、それらの他端側はそれぞれ解放端になっている。
各振動圧電体B1、B2、B3、B4を構成する振動板P1、P2、P3、P4および圧電素子E1、E2、E3、E4は同一である。さらに、振動板P1、P2、P3、P4の各端部に配設した錘W1、W2、W3、W4も同一である。
筐体C7へ、図示したように様々な方向から入力があっても、振動板P1、P2、P3、P4の少なくとも一つは、先端側で大きく揺動する可能性が高い。このため、入力方向が一定でない場合であっても、出力(発電)の安定化を図り得る。
(3) The power generation unit 7 shown in FIG. 7 has four vibrating piezoelectric bodies B1, B2, B3, and B4 arranged in a rhombus shape in one casing C7. One end sides of the vibrating piezoelectric bodies B1, B2, B3, B4 are respectively supported by the inner wall surfaces of the housing C7, and the other end sides thereof are open ends.
The diaphragms P1, P2, P3, and P4 and the piezoelectric elements E1, E2, E3, and E4 constituting the vibrating piezoelectric bodies B1, B2, B3, and B4 are the same. Further, the weights W1, W2, W3, and W4 disposed at the ends of the diaphragms P1, P2, P3, and P4 are the same.
Even if there are inputs to the housing C7 from various directions as shown in the figure, at least one of the diaphragms P1, P2, P3, and P4 is highly likely to swing significantly on the tip side. For this reason, even if the input direction is not constant, the output (power generation) can be stabilized.

(4)両端支持した振動圧電体Bを筐体C内に配設し、その筐体Cに増幅流体Lを入れた発電ユニットを図8A、図8B、図9A、図9B、図10Aおよび図10Bに例示した。振動圧電体Bは振動板Pの中央に圧電素子Eが接合されてなり、その圧電素子Eの上に錘Wが配設されている。なお、便宜上、それら図面には一つの振動圧電体Bしか示していないが、振動圧電体Bを複数設ける方が好ましいことはいうまでもない。
図8Aに示した発電ユニット8は、振動板Pの裏面全体に接するように(つまり充填率100%となるように)、増幅流体Lを筐体C内に封入したものである。図8Bに示した発電ユニット8’は、その増幅流体Lを振動板Pと筐体Cとにより形成された密閉空間の一部にだけ封入したものである。
さらに図9Aに示した発電ユニット9は、振動板Pの裏面の中央にだけ増幅流体Lが当接するように、ストレート状の絞りN1を筐体C内に設けたものである。図9Bに示した発電ユニット9’は、その増幅流体Lを振動板Pと筐体Cとにより形成された密閉空間の一部にだけ封入したものである。図10Aに示した発電ユニット10は、絞りN1をテーパー状の絞りN2に変更したものである。図10Bに示した発電ユニット10’は、その増幅流体Lを振動板Pと筐体Cとにより形成された密閉空間の一部にだけ封入したものである。それら絞りの形状を変更することにより、振動板Pの裏面に当接する増幅流体Lの流量を調整できる。なお、図示していないが、絞りの向きを調整することで、振動板Pの裏面へ増幅流体が当接する方向も変更できる。これにより、振動圧電体の共振方向の増幅流体による調整が容易となる。
(4) FIGS. 8A, 8B, 9A, 9B, 10A and 10A and 10B show the power generation unit in which the vibrating piezoelectric body B supported at both ends is disposed in the housing C and the amplified fluid L is placed in the housing C. Exemplified in 10B. The vibrating piezoelectric body B has a piezoelectric element E bonded to the center of the diaphragm P, and a weight W is disposed on the piezoelectric element E. For convenience, only one vibrating piezoelectric body B is shown in the drawings, but it goes without saying that it is preferable to provide a plurality of vibrating piezoelectric bodies B.
The power generation unit 8 shown in FIG. 8A is obtained by enclosing an amplification fluid L in a casing C so as to be in contact with the entire back surface of the diaphragm P (that is, a filling rate of 100%). The power generation unit 8 ′ shown in FIG. 8B is obtained by enclosing the amplified fluid L only in a part of the sealed space formed by the diaphragm P and the casing C.
Further, in the power generation unit 9 shown in FIG. 9A, a straight throttle N1 is provided in the housing C so that the amplified fluid L contacts only the center of the back surface of the diaphragm P. The power generation unit 9 ′ shown in FIG. 9B is obtained by enclosing the amplified fluid L only in a part of the sealed space formed by the diaphragm P and the casing C. The power generation unit 10 shown in FIG. 10A is obtained by changing the diaphragm N1 to a tapered diaphragm N2. The power generation unit 10 ′ shown in FIG. 10B is obtained by enclosing the amplified fluid L only in a part of the sealed space formed by the diaphragm P and the casing C. By changing the shape of these diaphragms, the flow rate of the amplified fluid L that contacts the back surface of the diaphragm P can be adjusted. Although not shown, the direction in which the amplified fluid comes into contact with the back surface of the diaphragm P can be changed by adjusting the direction of the diaphragm. This facilitates adjustment of the vibrating piezoelectric body in the resonance direction with the amplified fluid.

発電ユニット8、8’、9、9’、10、10’の場合、筐体Cに加振力が入力されると、増幅流体Lの流体圧が各振動板Pの全面または一部に作用する。これにより、振動板Pの変形または振幅が増幅される。特に、振動板Pの中央部における撓み量が極大化しうる。こうして、発電ユニット8、8’、9、9’、10、10’による出力向上が期待できる。
なお、発電ユニット8、9、10の場合、筐体Cへの入力方向が振動圧電体Bの共振方向と異なっていても、パスカルの原理に基づき、増幅流体Lによる流体圧が振動板Pへ作用し得る。これにより、それら発電ユニットの出力が増加し得る。この点で、硬球などの衝撃体を増幅体とするよりも、増幅流体の方が出力向上に効果的である。
In the case of the power generation units 8, 8 ′, 9, 9 ′, 10, 10 ′, when an excitation force is input to the casing C, the fluid pressure of the amplified fluid L acts on the entire surface or a part of each diaphragm P. To do. As a result, the deformation or amplitude of the diaphragm P is amplified. In particular, the amount of bending at the center of the diaphragm P can be maximized. In this way, output improvement by the power generation units 8, 8 ′, 9, 9 ′, 10, 10 ′ can be expected.
In the case of the power generation units 8, 9, 10, even if the input direction to the housing C is different from the resonance direction of the vibrating piezoelectric body B, the fluid pressure by the amplified fluid L is applied to the diaphragm P based on the Pascal principle. Can work. Thereby, the output of these electric power generation units can increase. In this respect, the amplified fluid is more effective in improving the output than the impact body such as a hard sphere is used as the amplification body.

《その他》
本発明の発電ユニットまたは発電装置は、種々の分野や環境下で利用可能である。発電ユニットの筐体への入力の形態は問わない。例えば、音や風などの気圧変動(振動)、人や車両などの移動時に床や道路などに生じる荷重変動、各種機器の振動などが代表的である。発電された電力による駆動対象として、例えば、LED等の照明、小型モータの駆動、小型充電装置、各種センサ用電源等がある。
<Others>
The power generation unit or power generation apparatus of the present invention can be used in various fields and environments. The form of input to the housing of the power generation unit does not matter. For example, atmospheric pressure fluctuations (vibrations) such as sound and wind, load fluctuations that occur on the floor or road when people or vehicles move, and vibrations of various devices are representative. Examples of the driving target by the generated power include illumination such as LEDs, driving of a small motor, a small charging device, and various sensor power sources.

実施例を挙げて本発明をより具体的に説明する。
《共振周波数と出力電圧》
(1)図1に示した構造の発電ユニット1を用いて、共振周波数と出力電圧の関係を調べた。圧電素子Eには、外径φ20mm、厚み0.25mmの株式会社村田製作所製7BB−27−4LOを用いた。振動板Pに真鍮製の円環を用いた。この圧電素子Eと振動板Pとを用いて、外径φ27mm、厚み0.3mm、質量2gの円盤状の振動圧電体Bを製作した。この振動板Pの一端を支持体Sに固定した。支持体S1はSUS製の円柱状をしている。振動圧電体Bは支持体Sへネジで固定した。振動板Pの他端に取り付ける錘には、1gの錘Wと、2gの錘Wを用意した。
The present invention will be described more specifically with reference to examples.
<< Resonance frequency and output voltage >>
(1) The relationship between the resonance frequency and the output voltage was examined using the power generation unit 1 having the structure shown in FIG. For the piezoelectric element E, 7BB-27-4LO manufactured by Murata Manufacturing Co., Ltd. having an outer diameter of 20 mm and a thickness of 0.25 mm was used. A brass ring was used for the diaphragm P. Using this piezoelectric element E and diaphragm P, a disc-shaped vibrating piezoelectric body B having an outer diameter of 27 mm, a thickness of 0.3 mm, and a mass of 2 g was manufactured. One end of the diaphragm P was fixed to the support S. The support S1 has a cylindrical shape made of SUS. The vibrating piezoelectric body B was fixed to the support S with screws. As weights attached to the other end of the diaphragm P, 1 g weight W and 2 g weight W were prepared.

振動加速度1Gの正弦波を支持体Sへ入力し、振動圧電体Bを加振した。この際における振動圧電体B(錘Wを含む)の共振周波数と、圧電素子Eの出力電圧を調べた。試験は、振動板Pに錘Wを付けなかった場合と、1g(振動圧電体Bに対する質量比:0.5)または2g(振動圧電体Bに対する質量比:1)の錘Wを付けた場合の3パターンについて行った。得られた結果を図11および図12に示した。   A sine wave having a vibration acceleration of 1 G was input to the support S, and the vibrating piezoelectric body B was vibrated. At this time, the resonance frequency of the vibrating piezoelectric body B (including the weight W) and the output voltage of the piezoelectric element E were examined. In the test, when the weight P was not attached to the diaphragm P, and when the weight W of 1 g (mass ratio to the vibrating piezoelectric body B: 0.5) or 2 g (mass ratio to the vibrating piezoelectric body B: 1) was attached. The following three patterns were performed. The obtained results are shown in FIG. 11 and FIG.

(2)図11から、振動圧電体Bの先端に付ける錘Wの質量が大きくなるほど、共振周波数は低下することがわかる。図12から、その共振周波数が低下するほど、出力電圧が増大することがわかった。従って、加振源の周波数が一定であれば、錘Wの質量を増加させるほど、大きな出力電圧が得られることになる。 (2) FIG. 11 shows that the resonance frequency decreases as the mass of the weight W attached to the tip of the vibrating piezoelectric body B increases. From FIG. 12, it was found that the output voltage increases as the resonance frequency decreases. Therefore, if the frequency of the excitation source is constant, a larger output voltage can be obtained as the mass of the weight W is increased.

いずれにしても、錘Wの質量を変更することで、振動圧電体Bが共振する周波数を容易に変化させ得ることが明らかとなった。従って、錘Wの質量や配置の調整により、広帯域の入力に対応して安定的な発電を行う発電ユニットを容易に得ることができる。つまり、本発明に係る発電ユニットを用いれば、振動エネルギーを効率よく安定して電気エネルギーに変換することが可能となる。
なお、図1に示した構造の発電ユニット1を用いた場合について説明したが、図2に示した構造の発電ユニット2を用いた場合さらには図3に示した構造の発電ユニット3を用いた場合でも、効果は同様である。
In any case, it has been clarified that the frequency at which the vibrating piezoelectric body B resonates can be easily changed by changing the mass of the weight W. Therefore, by adjusting the mass and arrangement of the weight W, it is possible to easily obtain a power generation unit that performs stable power generation in response to a broadband input. That is, if the power generation unit according to the present invention is used, vibration energy can be efficiently and stably converted into electric energy.
The case where the power generation unit 1 having the structure shown in FIG. 1 is used has been described. However, when the power generation unit 2 having the structure shown in FIG. 2 is used, the power generation unit 3 having the structure shown in FIG. 3 is used. Even in this case, the effect is the same.

《蓄電圧》
上述した発電ユニット1を図13に示す回路に組み込んだ。この回路は、発電ユニットの出力端に接続されたダイオードのブリッジ整流回路と、その下流側に並列接続されたコンデンサとからなる。蓄電圧は、そのコンデンサの端子電圧を測定したものである。
この発電ユニット1へ単発の衝撃振動を入力したときの蓄電圧を測定した。振動圧電体Bのサイズ、質量等は前述した通りであり、加えた衝撃振動のエネルギーは0.013Jであった。
<Storage voltage>
The power generation unit 1 described above was incorporated in the circuit shown in FIG. This circuit includes a diode bridge rectifier circuit connected to the output terminal of the power generation unit and a capacitor connected in parallel downstream thereof. The stored voltage is a measurement of the terminal voltage of the capacitor.
The stored voltage when a single impact vibration was input to the power generation unit 1 was measured. The size, mass, and the like of the vibrating piezoelectric body B were as described above, and the energy of the applied impact vibration was 0.013J.

蓄電圧の時間変化と錘Wの質量との関係を図14に、蓄電圧と錘Wの質量との関係を図15にそれぞれ示した。両図から錘Wの質量が増加する程、蓄電圧が高くなり、発電効率が向上することがわかる。また図14から、加えられた衝撃振動が単発であっても、本発明に係る発電ユニット1を用いると、長時間安定した蓄電圧が得られることがわかった。これは振動板Pの振動が継続するためである。なお、いうまでもないが、図2の発電ユニット2や図3の発電ユニット3を用いた場合でも同様の効果が得られる。   FIG. 14 shows the relationship between the time variation of the stored voltage and the mass of the weight W, and FIG. 15 shows the relationship between the stored voltage and the mass of the weight W. From both figures, it can be seen that as the mass of the weight W increases, the stored voltage increases and the power generation efficiency improves. Moreover, it was found from FIG. 14 that even when the applied impact vibration is single, using the power generation unit 1 according to the present invention, a stable storage voltage can be obtained for a long time. This is because the vibration of the diaphragm P continues. Needless to say, the same effect can be obtained even when the power generation unit 2 of FIG. 2 or the power generation unit 3 of FIG. 3 is used.

Claims (10)

筐体と、
該筐体内に配設され該筐体への入力に応じて振動する第1振動板と該第1振動板に接合され該第1振動板の変位に応じた電圧を出力する第1圧電素子とからなる第1振動圧電体と、
該筐体内に配設され該筐体への入力に応じて振動する第2振動板と該第2振動板に接合され該第2振動板の変位に応じた電圧を出力する第2圧電素子とからなり、該第1振動圧電体と異なる周波数で共振する第2振動圧電体とを少なくとも備え、
該筐体への入力に応じて発電することを特徴とする発電ユニット。
A housing,
A first diaphragm disposed in the casing and vibrating in response to an input to the casing; a first piezoelectric element that is joined to the first diaphragm and outputs a voltage in accordance with the displacement of the first diaphragm; A first vibrating piezoelectric body comprising:
A second diaphragm that is disposed in the casing and vibrates in response to an input to the casing; a second piezoelectric element that is joined to the second diaphragm and outputs a voltage corresponding to the displacement of the second diaphragm; And comprising at least a second vibrating piezoelectric body that resonates at a different frequency from the first vibrating piezoelectric body,
A power generation unit that generates power in response to an input to the housing.
前記第1振動圧電体と前記第2振動圧電体は、さらに、筐体内における共振方向が異なる請求項1に記載の発電ユニット。   2. The power generation unit according to claim 1, wherein the first vibration piezoelectric body and the second vibration piezoelectric body further have different resonance directions in the housing. さらに、前記第1振動板および/または前記第2振動板の振幅を増幅させる増幅体を有する請求項1または2に記載の発電ユニット。   The power generation unit according to claim 1, further comprising an amplifier that amplifies the amplitude of the first diaphragm and / or the second diaphragm. 前記増幅体は、前記第1振動圧電体および/または前記第2振動圧電体に配設された増幅錘、または前記筐体への入力に応じて流動し前記第1振動板および/または前記第2振動板を押圧し得る増幅流体である請求項3に記載の発電ユニット。   The amplifying body flows in response to an input to the amplifying weight disposed in the first vibrating piezoelectric body and / or the second vibrating piezoelectric body, or the housing, and / or the first vibrating plate and / or the first vibrating body. The power generation unit according to claim 3, wherein the power generation unit is an amplifying fluid capable of pressing the two diaphragms. 前記第1振動圧電体または前記第2振動圧電体に対する前記増幅錘の質量比は0.3〜2である請求項4に記載の発電ユニット。   5. The power generation unit according to claim 4, wherein a mass ratio of the amplification weight with respect to the first vibrating piezoelectric body or the second vibrating piezoelectric body is 0.3-2. 筐体と、
該筐体内に配設され該筐体への入力に応じて振動する第1振動板と該第1振動板に接合され該第1振動板の変位に応じた電圧を出力する第1圧電素子とからなる第1振動圧電体と、
該筐体内に配設され該筐体への入力に応じて振動する第2振動板と該第2振動板に接合され該第2振動板の変位に応じた電圧を出力する第2圧電素子とからなり、該第1振動圧電体とは筐体内における共振方向が異なる第2振動圧電体とを少なくとも備え、
該筐体への入力に応じて発電することを特徴とする発電ユニット。
A housing,
A first diaphragm disposed in the casing and vibrating in response to an input to the casing; a first piezoelectric element that is joined to the first diaphragm and outputs a voltage in accordance with the displacement of the first diaphragm; A first vibrating piezoelectric body comprising:
A second diaphragm that is disposed in the casing and vibrates in response to an input to the casing; a second piezoelectric element that is joined to the second diaphragm and outputs a voltage corresponding to the displacement of the second diaphragm; And comprising at least a second vibrating piezoelectric body having a resonance direction different from that in the first vibrating piezoelectric body,
A power generation unit that generates power in response to an input to the housing.
筐体と、
該筐体内に配設され該筐体への入力に応じて振動する振動板と該振動板に接合され該振動板の変位に応じた電圧を出力する圧電素子とからなる振動圧電体と、
該筐体への入力に応じて流動し該振動板を押圧して該振動板の振幅を増幅させ得る増幅流体とを備え、
該筐体への入力に応じて発電することを特徴とする発電ユニット。
A housing,
A vibrating piezoelectric body comprising a diaphragm disposed in the casing and vibrating in response to an input to the casing, and a piezoelectric element joined to the diaphragm and outputting a voltage in accordance with the displacement of the diaphragm;
An amplification fluid that flows according to an input to the housing and presses the diaphragm to amplify the amplitude of the diaphragm;
A power generation unit that generates power in response to an input to the housing.
前記増幅流体は、前記筐体と前記振動板とにより区画された閉塞空間に対する充填率が10〜100%である請求項7に記載の発電ユニット。   The power generation unit according to claim 7, wherein the amplification fluid has a filling rate of 10 to 100% with respect to a closed space defined by the casing and the diaphragm. 請求項1〜8に記載の発電ユニットと、
前記第1振動圧電体および前記第2振動圧電体の出力を直流に整流する整流器と、
を備えることを特徴とする発電装置。
The power generation unit according to claim 1,
A rectifier that rectifies the outputs of the first vibrating piezoelectric body and the second vibrating piezoelectric body to direct current;
A power generation device comprising:
さらに、前記整流器の下流にコンデンサまたは電池を備える請求項9に記載の発電装置。   Furthermore, the electric power generating apparatus of Claim 9 provided with a capacitor | condenser or a battery downstream of the said rectifier.
JP2010012636A 2010-01-22 2010-01-22 Power generation unit and power generation devic Pending JP2011152004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010012636A JP2011152004A (en) 2010-01-22 2010-01-22 Power generation unit and power generation devic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010012636A JP2011152004A (en) 2010-01-22 2010-01-22 Power generation unit and power generation devic

Publications (1)

Publication Number Publication Date
JP2011152004A true JP2011152004A (en) 2011-08-04

Family

ID=44538457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010012636A Pending JP2011152004A (en) 2010-01-22 2010-01-22 Power generation unit and power generation devic

Country Status (1)

Country Link
JP (1) JP2011152004A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013158118A (en) * 2012-01-30 2013-08-15 Mitsuba Corp Power generation apparatus
KR101343807B1 (en) 2012-02-10 2013-12-20 자동차부품연구원 Vibration generation system of using resonance, vibration generator of using resonance and controlling method the same
JP2014152902A (en) * 2013-02-13 2014-08-25 Jtekt Corp Rolling bearing device
KR101500359B1 (en) * 2013-07-02 2015-03-10 현대자동차 주식회사 Piezoelectric power generator
KR101501024B1 (en) * 2014-08-04 2015-03-13 박준형 Oscillation energy harvesting apparatus
JP5800345B1 (en) * 2015-02-13 2015-10-28 新川センサテクノロジ株式会社 Wireless sensor, monitoring system and monitoring method using the same
WO2016200094A1 (en) * 2015-06-11 2016-12-15 (주)와이솔 Piezoelectric vibration module
US9729087B2 (en) 2013-12-12 2017-08-08 Panasonic Intellectual Property Management Co., Ltd. Vibration power generator, vibration monitoring device, and vibration monitoring system
US9735710B2 (en) 2013-03-13 2017-08-15 Sumitomo Riko Company Limited Power generator having a multiple-degree-of-freedom vibration system and a power generating element attached to the vibration system while converting vibration energy of a vibrating member to electrical energy
JP2017158347A (en) * 2016-03-03 2017-09-07 孝彰 五十嵐 Charger
US10027256B2 (en) 2013-12-13 2018-07-17 Sumitomo Riko Company Limited Vibration power generation device
WO2018142714A1 (en) 2017-01-31 2018-08-09 パナソニックIpマネジメント株式会社 Power generation device
WO2018207507A1 (en) * 2017-05-09 2018-11-15 パナソニックIpマネジメント株式会社 Power generation device and sensor-incorporated body using same
KR20190033675A (en) * 2017-09-21 2019-04-01 한국세라믹기술원 Multi-resonance piezoelectric energy harvester
JP2022058210A (en) * 2020-09-30 2022-04-11 ▲広▼州大学 Vortex-induced resonance composite power generation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749388A (en) * 1993-08-04 1995-02-21 Seiko Epson Corp Generator
JPH07245970A (en) * 1994-03-02 1995-09-19 Calsonic Corp Piezoelectric power generator
JP2007143353A (en) * 2005-11-22 2007-06-07 Matsushita Electric Ind Co Ltd Power generation system and electronic device applying the same
JP2007202293A (en) * 2006-01-26 2007-08-09 Taiheiyo Cement Corp Generating set
JP2010273408A (en) * 2009-05-19 2010-12-02 Emprie Technology Development LLC Power device, method of generating power, and method of manufacturing the power device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749388A (en) * 1993-08-04 1995-02-21 Seiko Epson Corp Generator
JPH07245970A (en) * 1994-03-02 1995-09-19 Calsonic Corp Piezoelectric power generator
JP2007143353A (en) * 2005-11-22 2007-06-07 Matsushita Electric Ind Co Ltd Power generation system and electronic device applying the same
JP2007202293A (en) * 2006-01-26 2007-08-09 Taiheiyo Cement Corp Generating set
JP2010273408A (en) * 2009-05-19 2010-12-02 Emprie Technology Development LLC Power device, method of generating power, and method of manufacturing the power device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013158118A (en) * 2012-01-30 2013-08-15 Mitsuba Corp Power generation apparatus
KR101343807B1 (en) 2012-02-10 2013-12-20 자동차부품연구원 Vibration generation system of using resonance, vibration generator of using resonance and controlling method the same
JP2014152902A (en) * 2013-02-13 2014-08-25 Jtekt Corp Rolling bearing device
DE112013006824B4 (en) 2013-03-13 2021-07-22 Panasonic Corporation Power generator
US9735710B2 (en) 2013-03-13 2017-08-15 Sumitomo Riko Company Limited Power generator having a multiple-degree-of-freedom vibration system and a power generating element attached to the vibration system while converting vibration energy of a vibrating member to electrical energy
KR101500359B1 (en) * 2013-07-02 2015-03-10 현대자동차 주식회사 Piezoelectric power generator
DE112014005629B4 (en) 2013-12-12 2023-02-09 Panasonic Intellectual Property Management Co., Ltd. Vibration Energy Generation Device, Vibration Monitoring Device and System
US9729087B2 (en) 2013-12-12 2017-08-08 Panasonic Intellectual Property Management Co., Ltd. Vibration power generator, vibration monitoring device, and vibration monitoring system
US10027256B2 (en) 2013-12-13 2018-07-17 Sumitomo Riko Company Limited Vibration power generation device
DE112014003466B4 (en) 2013-12-13 2021-11-04 Panasonic Intellectual Property Management Co., Ltd. Vibratory power generating device
KR101501024B1 (en) * 2014-08-04 2015-03-13 박준형 Oscillation energy harvesting apparatus
JP5800345B1 (en) * 2015-02-13 2015-10-28 新川センサテクノロジ株式会社 Wireless sensor, monitoring system and monitoring method using the same
JP2016148628A (en) * 2015-02-13 2016-08-18 新川センサテクノロジ株式会社 Wireless sensor, and monitoring system and monitoring method using the same
WO2016129131A1 (en) * 2015-02-13 2016-08-18 新川センサテクノロジ株式会社 Wireless sensor, and monitor system and monitor method using same
US10644219B2 (en) 2015-06-11 2020-05-05 Wisol Co., Ltd. Piezoelectric vibration module
WO2016200094A1 (en) * 2015-06-11 2016-12-15 (주)와이솔 Piezoelectric vibration module
JP2017158347A (en) * 2016-03-03 2017-09-07 孝彰 五十嵐 Charger
WO2018142714A1 (en) 2017-01-31 2018-08-09 パナソニックIpマネジメント株式会社 Power generation device
WO2018207507A1 (en) * 2017-05-09 2018-11-15 パナソニックIpマネジメント株式会社 Power generation device and sensor-incorporated body using same
KR20190033675A (en) * 2017-09-21 2019-04-01 한국세라믹기술원 Multi-resonance piezoelectric energy harvester
KR101971735B1 (en) * 2017-09-21 2019-04-26 한국세라믹기술원 Multi-resonance piezoelectric energy harvester
JP2022058210A (en) * 2020-09-30 2022-04-11 ▲広▼州大学 Vortex-induced resonance composite power generation device
JP7083546B2 (en) 2020-09-30 2022-06-13 ▲広▼州大学 Vortex-excited resonance combined cycle

Similar Documents

Publication Publication Date Title
JP2011152004A (en) Power generation unit and power generation devic
Yang et al. High-efficiency compressive-mode energy harvester enhanced by a multi-stage force amplification mechanism
US8796907B2 (en) Increased frequency power generation using low-frequency ambient vibrations
EP2662971B1 (en) Piezoelectric power generator
Gu Low-frequency piezoelectric energy harvesting prototype suitable for the MEMS implementation
US8853870B2 (en) Vibration energy conversion device
JP4048203B2 (en) Piezoelectric generator
Abdelmoula et al. Low-frequency Zigzag energy harvesters operating in torsion-dominant mode
Yang et al. Design and analysis of a 2D broadband vibration energy harvester for wireless sensors
JP5796229B2 (en) Power generator
US9746047B2 (en) Sound reduction or vibration damping apparatus and structural member
Wang et al. A packaged piezoelectric vibration energy harvester with high power and broadband characteristics
Ju et al. Macro fiber composite-based low frequency vibration energy harvester
US9893655B2 (en) Piezoelectric power generation apparatus
JP2010517282A (en) Piezoelectric element
JP2011066970A (en) Piezoelectric generator
JP2015220774A (en) Vibration power generator
KR101332006B1 (en) Omnidirectional vibration based energy harvester
CN110912371A (en) Multi-mechanism combined type broadband vibration energy harvester
US20100176694A1 (en) Piezoelectric energy converter having a double membrane
Raju et al. Design and simulation of cantilever based MEMS bimorph piezoelectric energy harvester
Afonin Electroelasticity problems for multilayer nano-and micromotors
JP6309698B1 (en) Power generation device and power generation element
RU2623445C1 (en) Piezoelectric cantilever-type converter of mechanical energy into electrical energy
Chaudhuri et al. MEMS piezoelectric energy harvester to power wireless sensor nodes for machine monitoring application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140507