JP2011146624A - Vacuum chamber, vacuum processing apparatus, and method of manufacturing vacuum chamber - Google Patents

Vacuum chamber, vacuum processing apparatus, and method of manufacturing vacuum chamber Download PDF

Info

Publication number
JP2011146624A
JP2011146624A JP2010007977A JP2010007977A JP2011146624A JP 2011146624 A JP2011146624 A JP 2011146624A JP 2010007977 A JP2010007977 A JP 2010007977A JP 2010007977 A JP2010007977 A JP 2010007977A JP 2011146624 A JP2011146624 A JP 2011146624A
Authority
JP
Japan
Prior art keywords
shell member
vacuum
vacuum chamber
inner shell
internal pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010007977A
Other languages
Japanese (ja)
Inventor
Kenji Ago
健二 吾郷
Hirotoshi Nakao
裕利 中尾
Mitsunori Hayashi
光則 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2010007977A priority Critical patent/JP2011146624A/en
Publication of JP2011146624A publication Critical patent/JP2011146624A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum chamber capable of preventing adhesion of particles to an object to be processed, while keeping the cost of the vacuum chamber low, a vacuum processing apparatus equipped with the vacuum chamber, and to provide a method of manufacturing the vacuum chamber. <P>SOLUTION: The vacuum chamber 2 of the large vacuum processing apparatus 1 includes an inner shell member 5, in which a processing space R is formed, and an outer shell member 6, arranged so as to surround the inner shell member 5 wherein the inner shell member 5 is formed from an anti-rust material, and the outer shell material 6 is formed from a low-cost steel material, or the like. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、基板等を真空処理するための真空チャンバ、該真空チャンバを備える真空処理装置及び該真空チャンバの製造方法に関する。   The present invention relates to a vacuum chamber for vacuum processing a substrate or the like, a vacuum processing apparatus including the vacuum chamber, and a method for manufacturing the vacuum chamber.

真空処理装置は、ガラス基板や半導体ウェハ等の基板を処理するための処理空間を内部に形成するチャンバを備える。従来、これらのチャンバは、真空密閉性や熱伝導性及び材料コストを重視して、ステンレス部材やアルミ部材を削りだして作製していた。   The vacuum processing apparatus includes a chamber in which a processing space for processing a substrate such as a glass substrate or a semiconductor wafer is formed. Conventionally, these chambers have been manufactured by cutting out stainless steel members and aluminum members with emphasis on vacuum sealing properties, thermal conductivity, and material costs.

近年、フラットパネルディスプレイや太陽電池の大型化に際して、それらの基板が大型化し、その基板を処理するための処理チャンバや搬送チャンバも大型化する必要が生じた。これにより、削りだしによるチャンバ作製は技術的、コスト的にも困難となったなめ、大型であっても作製が容易かつ低コストであるチャンバの作製方法が必要とされた。さらに、真空処理装置の内部で取り扱われる基板へのパーティクルの付着を防止するために真空処理装置の内部の処理空間を形成する内面に防錆処理が施されたチャンバの作製方法開発が急務となった。   In recent years, when flat panel displays and solar cells are enlarged, their substrates have been enlarged, and it has become necessary to enlarge the processing chamber and the transfer chamber for processing the substrates. As a result, the fabrication of the chamber by shaving has become technically and costly difficult, and there is a need for a chamber fabrication method that can be fabricated easily and at a low cost even with a large size. Furthermore, there is an urgent need to develop a method for producing a chamber in which the inner surface forming the processing space inside the vacuum processing apparatus is subjected to rust prevention treatment in order to prevent particles from adhering to the substrate handled inside the vacuum processing apparatus. It was.

一般的に、チャンバは大型化するに従って、大気に触れるチャンバ外面の表面積が増大し、チャンバ内部を真空状態に減圧した際チャンバにかかる大気圧も増大する。そのため、特にフラットパネルディスプレイ用基板では第8世代型以上のサイズを処理できる大型のチャンバは、小型チャンバに比べて、大気圧に対する高い耐久性が求められる。このような大型チャンバに耐久性を持たせ、かつチャンバ作製コストを低く抑えるには、二重壁構成を有するチャンバが考えられる。具体的には、チャンバの壁面を冷却するために、チャンバの壁が二重壁面構造であり、チャンバの二重壁面の間に形成される空間を真空ポンプにより所定の真空度に制御可能であり、この二重壁面の間の空間の中に液体冷媒を供給可能である真空処理装置が知られている(特許文献1)。これにより、二重壁面の間の空間内を真空ポンプにより減圧し、二重壁面の間の空間に液体冷媒を供給し、液体冷媒が二重壁面の内側の壁面から気化熱を奪うようにすることで、二重壁面の内側の壁面を冷却している。   In general, as the size of the chamber increases, the surface area of the outer surface of the chamber that comes into contact with the atmosphere increases, and the atmospheric pressure applied to the chamber also increases when the pressure inside the chamber is reduced to a vacuum state. For this reason, a large chamber capable of processing the size of the 8th generation or more on a flat panel display substrate is required to have higher durability against atmospheric pressure than a small chamber. In order to give durability to such a large chamber and keep the chamber manufacturing cost low, a chamber having a double wall structure is conceivable. Specifically, in order to cool the wall surface of the chamber, the chamber wall has a double wall surface structure, and the space formed between the double wall surfaces of the chamber can be controlled to a predetermined degree of vacuum by a vacuum pump. A vacuum processing apparatus that can supply a liquid refrigerant into the space between the double wall surfaces is known (Patent Document 1). Thereby, the inside of the space between the double wall surfaces is depressurized by a vacuum pump, the liquid refrigerant is supplied to the space between the double wall surfaces, and the liquid refrigerant takes heat of vaporization from the inner wall surface of the double wall surface. Thus, the inner wall surface of the double wall surface is cooled.

特開2001−156047号公報(段落0017−0020、図1)JP 2001-156047 A (paragraphs 0017-0020, FIG. 1)

しかしながら、上述した特許文献の技術では、チャンバの二重壁面の内側と外側の壁面とは一体的に構成されているため、チャンバを防錆材料で構成する場合には、チャンバ全体を防錆材料で構成する必要があり、コスト高になる、という問題がある。チャンバの二重壁面の内側の壁面だけを例えばクラッド材等を用いて防錆処理を施すことも考えられるが、この場合にも、チャンバのサイズが大きくなるのに伴いコストを抑えることは難しい。   However, in the technology of the above-mentioned patent document, the inner wall and the outer wall surface of the double wall surface of the chamber are integrally formed. Therefore, when the chamber is made of a rust-proof material, the entire chamber is made of the rust-proof material. There is a problem that the cost is high. Although it is conceivable that only the inner wall surface of the double wall surface of the chamber is subjected to rust prevention treatment using, for example, a clad material, it is difficult to suppress the cost as the chamber size increases.

以上のような事情に鑑み、本発明の目的は、真空チャンバのコストを抑えつつ被処理体へのパーティクルの付着を防止可能な真空チャンバ、該真空チャンバを備える真空処理装置及び該真空チャンバの製造方法を提供することにある。   In view of the circumstances as described above, an object of the present invention is to provide a vacuum chamber capable of preventing the adhesion of particles to an object to be processed while suppressing the cost of the vacuum chamber, a vacuum processing apparatus including the vacuum chamber, and manufacturing the vacuum chamber. It is to provide a method.

上記目的を達成するため、本発明の一形態に係る真空チャンバは、内殻部材と、外殻部材とを具備する。
上記内殻部材は、防錆性を有する金属材料で形成され、被処理体に対する真空処理が行われる処理空間を内部に形成する。
上記外殻部材は、上記内殻部材を包囲する。
In order to achieve the above object, a vacuum chamber according to an embodiment of the present invention includes an inner shell member and an outer shell member.
The inner shell member is formed of a metal material having rust prevention properties, and forms a processing space in which a vacuum processing is performed on an object to be processed.
The outer shell member surrounds the inner shell member.

本発明の一実施形態に係る真空処理装置を示す斜視図である。It is a perspective view which shows the vacuum processing apparatus which concerns on one Embodiment of this invention. 図1に示す真空処理装置のA−A断面図である。It is AA sectional drawing of the vacuum processing apparatus shown in FIG. 図2に示す真空処理装置の側壁の領域Bの拡大断面図及び領域Bの側壁の内面の拡大図である。FIG. 3 is an enlarged sectional view of a region B on the side wall of the vacuum processing apparatus shown in FIG. 2 and an enlarged view of an inner surface of the side wall of the region B. 図1に示す真空処理装置の詳細な構成の一実施例を示す斜視図である。It is a perspective view which shows one Example of the detailed structure of the vacuum processing apparatus shown in FIG. 本発明に係る第2の実施の形態の真空処理装置の側壁の部分拡大断面図及び側壁の内面の部分拡大図である。It is the elements on larger scale of the side wall of the vacuum processing apparatus of 2nd Embodiment which concerns on this invention, and the elements on larger scale of the inner surface of a side wall. 第3の実施形態に係る真空チャンバの断面図である。It is sectional drawing of the vacuum chamber which concerns on 3rd Embodiment. 本発明の第4の実施の形態に係る真空処理装置の構成を示す断面図である。It is sectional drawing which shows the structure of the vacuum processing apparatus which concerns on the 4th Embodiment of this invention. 図7に示す真空処理装置の側壁の領域Cの拡大図である。It is an enlarged view of the area | region C of the side wall of the vacuum processing apparatus shown in FIG. 本発明の第5の実施の形態に係る真空処理装置の構成を示す部分断面図である。It is a fragmentary sectional view which shows the structure of the vacuum processing apparatus which concerns on the 5th Embodiment of this invention. 本発明の第6の実施の形態に係る真空処理装置の構成を示す断面図である。It is sectional drawing which shows the structure of the vacuum processing apparatus which concerns on the 6th Embodiment of this invention.

本発明の一実施形態に係る真空チャンバは、内殻部材と、外殻部材とを具備する。
上記内殻部材は、防錆性を有する金属材料で形成され、被処理体に対する真空処理が行われる処理空間を内部に形成する。
上記外殻部材は、上記内殻部材を包囲する。
A vacuum chamber according to an embodiment of the present invention includes an inner shell member and an outer shell member.
The inner shell member is formed of a metal material having rust prevention properties, and forms a processing space in which a vacuum processing is performed on an object to be processed.
The outer shell member surrounds the inner shell member.

本発明では、真空チャンバは、処理空間を内部に形成する内殻部材と、内殻部材を包囲する外殻部材とを備え、内殻部材は防錆性を有する金属材料で形成されている。このため、大型の真空チャンバの内面側での内殻部材の耐食性を向上させることで、被処理体へのパーティクルの付着を防止すると共に、外殻部材を高価な防錆性を有する金属材料でない安価な金属材料を用いて構成することで、外殻部材のコストを抑え、真空チャンバの低コスト化を図ることができる。
上記外殻部材は上記内殻部材とは異なる金属材料からなり、上記内殻部材と上記外殻部材とは溶接により連結されているようにしてもよい。
これにより、異なる金属材料により構成されている内殻部材と外殻部材とを確実な強度で溶接することができる。
In the present invention, the vacuum chamber includes an inner shell member that forms a processing space therein and an outer shell member that surrounds the inner shell member, and the inner shell member is formed of a metal material having rust prevention properties. For this reason, by improving the corrosion resistance of the inner shell member on the inner surface side of the large vacuum chamber, the adhesion of particles to the object to be processed is prevented, and the outer shell member is not a metal material having an expensive rust prevention property. By using an inexpensive metal material, the cost of the outer shell member can be suppressed and the cost of the vacuum chamber can be reduced.
The outer shell member may be made of a metal material different from the inner shell member, and the inner shell member and the outer shell member may be connected by welding.
Thereby, the inner shell member and outer shell member which are comprised with a different metal material can be welded with reliable intensity | strength.

上記内殻部材と上記外殻部材とは、上記内殻部材又は上記外殻部材に格子点状又は格子状に設けられた溶接用の複数の貫通孔を介して溶接されている。これにより、内殻部材と外殻部材とを格子点状に設けられた複数の溶接孔を介して容易かつ短時間で効率的に溶接することができると共に、格子状に設けられた複数の溶接孔を介してより確実に内殻部材と外殻部材とを接合することができる。   The inner shell member and the outer shell member are welded to the inner shell member or the outer shell member via a plurality of welding through-holes provided in a lattice dot shape or a lattice shape. Accordingly, the inner shell member and the outer shell member can be easily and efficiently welded through a plurality of welding holes provided in a lattice point shape, and a plurality of welds provided in a lattice shape. The inner shell member and the outer shell member can be more reliably joined via the hole.

上記内殻部材と上記外殻部材との間に減圧密閉空間が形成されているようにしてもよい。これにより、減圧密閉空間内が減圧されているので、内殻部材の内部の処理空間が減圧されたとき、減圧密閉空間内と処理空間内とで生じた圧力差により内殻部材が破損することを防止することができる。   A reduced pressure sealed space may be formed between the inner shell member and the outer shell member. Thereby, since the inside of the decompression sealed space is decompressed, when the processing space inside the inner shell member is decompressed, the inner shell member is damaged due to a pressure difference generated between the decompression sealed space and the processing space. Can be prevented.

上記減圧密閉空間の内圧を制御するための内圧制御手段と、上記減圧密閉空間の内圧が閾値以上になったことを検知する検知手段と、上記処理空間の内圧を調整するための調整手段とを更に具備するようにしてもよい。   An internal pressure control means for controlling the internal pressure of the decompression sealed space; a detection means for detecting that the internal pressure of the decompression sealed space is equal to or greater than a threshold; and an adjustment means for adjusting the internal pressure of the processing space. Furthermore, you may make it comprise.

これにより、内圧制御手段により減圧密閉空間の内圧を制御(減圧)しておき、検知手段により減圧密閉空間の内圧を検知することができる。また、例えば外的な要因により減圧密閉空間の内圧が閾値以上になったときには、検知手段により減圧密閉空間の内圧が閾値以上になったことを検知することができる。そして、調整手段により処理空間の内圧を調整(加圧)することで、減圧密閉空間の内圧と、処理空間の内圧との差を減少させることができる。つまり、処理空間が減圧されている状態で減圧密閉空間の内圧が閾値以上に上昇した状態が保たれることを防止することができる。この結果、減圧密閉空間の内圧による内殻部材の破損を防止することができる。   Thereby, the internal pressure of the reduced pressure sealed space can be controlled (depressurized) by the internal pressure control means, and the internal pressure of the reduced pressure sealed space can be detected by the detection means. Further, for example, when the internal pressure of the reduced pressure sealed space becomes greater than or equal to a threshold value due to an external factor, it can be detected by the detection means that the internal pressure of the reduced pressure sealed space is equal to or greater than the threshold value. Then, by adjusting (pressurizing) the internal pressure of the processing space by the adjusting means, the difference between the internal pressure of the reduced pressure sealed space and the internal pressure of the processing space can be reduced. In other words, it is possible to prevent the state where the internal pressure of the decompression sealed space has risen above the threshold value while the processing space is decompressed. As a result, it is possible to prevent damage to the inner shell member due to the internal pressure of the reduced pressure sealed space.

上記真空チャンバは、上記減圧密閉空間の内圧を制御するための内圧制御手段と、上記減圧密閉空間の内圧と上記処理空間の内圧との差圧が閾値以上になったことを検知する検知手段と、上記処理空間の内圧を調整するための調整手段とを更に具備するようにしてもよい。   The vacuum chamber includes an internal pressure control means for controlling an internal pressure of the decompression sealed space, and a detection means for detecting that a differential pressure between the internal pressure of the decompression sealed space and the internal pressure of the processing space is equal to or greater than a threshold value. And adjusting means for adjusting the internal pressure of the processing space.

検知手段は、減圧密閉空間の内圧と処理空間の内圧とを検知する。検知手段により、これらの差圧が閾値以上になったとき、調整手段により処理空間の内圧を調整することで、減圧密閉空間の内圧と処理空間の内圧との差を減少させることができる。つまり、処理空間が減圧されている状態で減圧密閉空間の内圧が閾値以上に上昇した状態が保たれることを防止することができる。この結果、減圧密閉空間の内圧による内殻部材の破損を防止することができる。また、処理空間が減圧されている状態で処理空間の内圧が大気圧と真空圧との間で大きく変動する場合であっても、処理空間の内圧と密閉空間の内圧との差を小さく維持することができるので、内殻部材の破損等を防止することができる。   The detection means detects the internal pressure of the reduced pressure sealed space and the internal pressure of the processing space. When these differential pressures exceed the threshold by the detection means, the difference between the internal pressure of the reduced pressure sealed space and the internal pressure of the processing space can be reduced by adjusting the internal pressure of the processing space by the adjusting means. In other words, it is possible to prevent the state where the internal pressure of the decompression sealed space has risen above the threshold value while the processing space is decompressed. As a result, it is possible to prevent damage to the inner shell member due to the internal pressure of the reduced pressure sealed space. Further, even when the internal pressure of the processing space varies greatly between the atmospheric pressure and the vacuum pressure in a state where the processing space is reduced, the difference between the internal pressure of the processing space and the internal pressure of the sealed space is kept small. Therefore, the inner shell member can be prevented from being damaged.

本発明の一実施形態に係る真空処理装置は、真空チャンバと、処理部とを具備する。
上記真空チャンバは、上記真空チャンバのうちいずれかの真空チャンバである。
上記処理部は、上記真空チャンバ内に設けられ、上記被処理体に処理を施す。
A vacuum processing apparatus according to an embodiment of the present invention includes a vacuum chamber and a processing unit.
The vacuum chamber is any one of the vacuum chambers.
The processing unit is provided in the vacuum chamber and performs processing on the object to be processed.

本発明の一の実施形態に係る真空チャンバの製造方法は、内部に空間が形成されるように外殻部材を形成することを含む。上記外殻部材の内面を被覆するように防錆性を有する金属部材をそれぞれ上記外殻部材の各内面に連結し、各上記金属部材を互いに接合することで、被処理体に対する真空処理が行われる処理空間が内部に形成された内殻部材が形成される。   A manufacturing method of a vacuum chamber according to an embodiment of the present invention includes forming an outer shell member so that a space is formed therein. A metal member having rust prevention properties is connected to each inner surface of the outer shell member so as to cover the inner surface of the outer shell member, and the metal members are joined to each other, thereby performing vacuum processing on the object to be processed. An inner shell member having a processing space formed therein is formed.

以下、図面を参照しながら、本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[第1の実施の形態]
(真空処理装置の構成)
図1は本発明の一実施形態に係る真空処理装置を示す斜視図、図2は図1に示す真空処理装置のA−A断面図である。
本発明に係る真空処理装置1は、被処理体である大型の基板等を真空処理するための装置である。具体的には、FPD(Flat Panel Display)および薄膜太陽電池の製造装置である。真空処理装置1は、内部に図2に示す処理空間Rが形成された真空チャンバ2や図示しない真空ポンプ等を備える。図示しない真空ポンプは、真空チャンバ2内の処理空間Rを減圧(真空)状態にするために、真空チャンバ2に接続されている。
[First Embodiment]
(Configuration of vacuum processing equipment)
FIG. 1 is a perspective view showing a vacuum processing apparatus according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AA of the vacuum processing apparatus shown in FIG.
The vacuum processing apparatus 1 according to the present invention is an apparatus for vacuum processing a large substrate or the like that is an object to be processed. Specifically, it is an apparatus for manufacturing FPD (Flat Panel Display) and thin film solar cells. The vacuum processing apparatus 1 includes a vacuum chamber 2 in which a processing space R shown in FIG. 2 is formed, a vacuum pump (not shown), and the like. A vacuum pump (not shown) is connected to the vacuum chamber 2 in order to bring the processing space R in the vacuum chamber 2 into a reduced pressure (vacuum) state.

真空チャンバ2は、処理空間Rを内部に形成する内殻部材5と、内殻部材5を包囲するように配置された外殻部材6とを備える。内殻部材5の外面側と、外殻部材6の内面側とは略密着している。   The vacuum chamber 2 includes an inner shell member 5 that forms a processing space R therein, and an outer shell member 6 that is disposed so as to surround the inner shell member 5. The outer surface side of the inner shell member 5 and the inner surface side of the outer shell member 6 are in close contact with each other.

内殻部材5は、防錆材料で形成されている。防錆材料とは、例えばステンレス(SUS304等)である。内殻部材5の内部には、密閉空間である処理空間Rが形成される。内殻部材5の厚さは、外殻部材6の厚さに比べて薄い。これにより、内殻部材5を構成するために必要となる防錆材料の量が抑えられている。処理空間Rは、図示しない真空ポンプにより真空状態となる。また、図示しない封じ切りバルブが開かれることで、処理空間R内は、例えば減圧(真空)状態から大気圧雰囲気になる。   The inner shell member 5 is formed of a rust preventive material. The antirust material is, for example, stainless steel (SUS304 or the like). A processing space R that is a sealed space is formed inside the inner shell member 5. The inner shell member 5 is thinner than the outer shell member 6. Thereby, the quantity of the antirust material required in order to comprise the inner shell member 5 is suppressed. The processing space R is brought into a vacuum state by a vacuum pump (not shown). Further, by opening a sealing valve (not shown), the inside of the processing space R is changed from, for example, a reduced pressure (vacuum) state to an atmospheric pressure atmosphere.

外殻部材6は、内殻部材5を包囲するように配置されている。外殻部材6は、非防錆材料で形成されている。非防錆材料とは、例えば安価な鋼材(SS400、SB等)である。これらの安価な板状の鋼材により、外殻部材6の上壁、側壁及び底壁が構成される。これらの板状の鋼材が図示しない密閉部材を介してボルト締結されて、外殻部材6が構成されている。   The outer shell member 6 is disposed so as to surround the inner shell member 5. The outer shell member 6 is made of a non-rust-proof material. The non-rust-proof material is, for example, an inexpensive steel material (SS400, SB, etc.). These inexpensive plate-shaped steel materials constitute the upper wall, the side wall, and the bottom wall of the outer shell member 6. These plate-shaped steel materials are bolted through a sealing member (not shown) to form an outer shell member 6.

真空チャンバ2の側壁には、図1に示すように開口2aが形成されており、この開口2aがゲートバルブ8により塞がれている。この開口2aと他の真空チャンバの開口とを接続することもできる。ゲートバルブ8を開くことで、開口2aを介した処理空間Rの内外への基板の搬送が可能となる。なお、開口2aの位置、形状及び数等は特に限定されず適宜変更可能である。   As shown in FIG. 1, an opening 2 a is formed on the side wall of the vacuum chamber 2, and the opening 2 a is closed by a gate valve 8. The opening 2a can be connected to the opening of another vacuum chamber. By opening the gate valve 8, the substrate can be transferred into and out of the processing space R through the opening 2a. The position, shape, number, and the like of the opening 2a are not particularly limited and can be changed as appropriate.

真空チャンバ2の外面側には、真空チャンバ2を補強する補強部材3が設けられている。補強部材3は、真空チャンバ2の上壁や側壁等に溶接又はボルト締結されている。補強部材3は、棒形状や板形状を有する。なお、補強部材3の配設位置や形状等は特に限定されず、例えばT形状やH形状やΔ形状の補強部材を用いて真空チャンバ2を補強してもよい。   A reinforcing member 3 that reinforces the vacuum chamber 2 is provided on the outer surface side of the vacuum chamber 2. The reinforcing member 3 is welded or bolted to the upper wall or side wall of the vacuum chamber 2. The reinforcing member 3 has a rod shape or a plate shape. In addition, the arrangement | positioning position, shape, etc. of the reinforcement member 3 are not specifically limited, For example, you may reinforce the vacuum chamber 2 using the reinforcement member of T shape, H shape, and (DELTA) shape.

真空チャンバ2の内部には、図示しない内蔵部品が配置される。図示しない内蔵部品は、例えば基板を搬送するための搬送ロボットや、基板を加熱処理するための加熱処理ユニット等であるが、基板に所定の処理を施すことが可能な処理ユニットであれば特に限定されない。また、真空チャンバ2内にこのような処理ユニットを備えなくてもよい。   A built-in component (not shown) is arranged inside the vacuum chamber 2. Built-in parts (not shown) are, for example, a transfer robot for transferring a substrate, a heat treatment unit for heat-treating a substrate, and the like, but are not particularly limited as long as they are processing units capable of performing a predetermined process on the substrate. Not. Further, such a processing unit may not be provided in the vacuum chamber 2.

真空チャンバ2は、図1に示す人のサイズから分かるように、大型の基板を処理することが可能な大型の真空チャンバ2である。また、真空チャンバ2は、図示しない支持台等の上に配置して用いられるようにしてもよく、例えば他の処理装置との位置関係に応じて適宜変更可能である。   The vacuum chamber 2 is a large vacuum chamber 2 capable of processing a large substrate, as can be seen from the size of a person shown in FIG. Further, the vacuum chamber 2 may be used by being placed on a support stand or the like (not shown), and can be appropriately changed according to the positional relationship with another processing apparatus, for example.

図3は図2に示す真空処理装置1の側壁の領域Bの拡大断面図及び領域Bの側壁の内面の拡大図である。
真空チャンバ2の内殻部材5と、外殻部材6とは、例えば複数の溶接箇所7で溶接により接合されている。複数の溶接箇所7は、格子点状に設けられている。つまり、内殻部材5の複数の溶接箇所7に対応する位置には予め複数の貫通孔9が形成されており、これらの貫通孔9に注入された溶接材により内殻部材5と外殻部材6とが溶接されている。
FIG. 3 is an enlarged cross-sectional view of the region B on the side wall of the vacuum processing apparatus 1 shown in FIG. 2 and an enlarged view of the inner surface of the side wall of the region B.
The inner shell member 5 and the outer shell member 6 of the vacuum chamber 2 are joined by welding at a plurality of welding locations 7, for example. The plurality of welding locations 7 are provided in a lattice point shape. That is, a plurality of through holes 9 are formed in advance at positions corresponding to the plurality of welding locations 7 of the inner shell member 5, and the inner shell member 5 and the outer shell member are formed by the welding material injected into these through holes 9. 6 is welded.

内殻部材5の厚さは、内殻部材5と外殻部材6との間に空気が入り込んだ状態で処理空間R内が真空状態となったときに、この空気圧による外殻部材6からの内殻部材5の破断や内殻部材5の変形を防止することができる厚さである。   The thickness of the inner shell member 5 is determined by the air pressure from the outer shell member 6 when the inside of the processing space R is in a vacuum state with air entering between the inner shell member 5 and the outer shell member 6. The thickness can prevent the inner shell member 5 from being broken and the inner shell member 5 from being deformed.

溶接箇所7の箇所数(又は隣接する溶接箇所7の間のピッチ)は、内殻部材5と外殻部材6との間に空気が入り込んだ状態で処理空間Rが真空状態となったときに、この空気圧による外殻部材6からの内殻部材5の破断を防止することが可能な接合力の得られる箇所数(ピッチ)になっている。   The number of the welding locations 7 (or the pitch between the adjacent welding locations 7) is determined when the processing space R is in a vacuum state with air entering between the inner shell member 5 and the outer shell member 6. The number of places (pitch) at which a joining force capable of preventing breakage of the inner shell member 5 from the outer shell member 6 due to the air pressure is obtained.

図4は図1に示す真空処理装置1の詳細な構成の一例を示す斜視図である。
なおより具体的には、図4の真空チャンバ2内にはガラス基板を水平に保持して開口2aより搬出入する搬送ロボット21が設置されている。各開口2aを介して、真空処理装置1外から装置1内にガラス基板を搬出入するためのロードロック室22、CVD(Chemical vapor deposition)法やスパッタリング法等でガラス基板上に薄膜を成膜できる成膜チャンバ23,24,25が接続されている。
FIG. 4 is a perspective view showing an example of a detailed configuration of the vacuum processing apparatus 1 shown in FIG.
More specifically, a transfer robot 21 that holds a glass substrate horizontally and carries it in and out through the opening 2a is installed in the vacuum chamber 2 of FIG. Through each opening 2a, a thin film is formed on the glass substrate by a load lock chamber 22 for carrying the glass substrate in and out of the vacuum processing apparatus 1 from inside the vacuum processing apparatus 1, CVD (Chemical vapor deposition) method, sputtering method or the like. Possible deposition chambers 23, 24, 25 are connected.

ロードロック室22にガラス基板が搬入されると、ロードロック室22が真空排気された後、開口2aのひとつに設置され真空チャンバ2とロードロック室22を隔てる図示しない真空バルブが開く。ロードロック室22内のガラス基板は、真空チャンバ2内の搬送ロボット21によって真空チャンバ2内に引き入れられ、真空バルブは閉じられる。次に、別の開口2aに設置され真空チャンバ2と成膜チャンバ23を隔てる図示しない真空バルブが開き、搬送ロボット21によってガラス基板は成膜チャンバ23内に搬入される。ガラス基板が成膜チャンバ23の図示しない基板設置位置に設置されると、搬送ロボット21は成膜チャンバ23から退出し、真空バルブは閉じられ、成膜チャンバ23内での成膜が始まる。成膜を受けるガラス基板は搬送ロボット21によって成膜チャンバ23から別の成膜チャンバ24,成膜チャンバ24から別の成膜チャンバ25へと入れ替えられ、そこで別種の膜を成膜されてもよい。各成膜チャンバ23,24,25での処理内容や成膜工程での処理手順等は適宜変更可能である。   When the glass substrate is loaded into the load lock chamber 22, the load lock chamber 22 is evacuated, and then a vacuum valve (not shown) that is installed in one of the openings 2 a and separates the vacuum chamber 2 from the load lock chamber 22 is opened. The glass substrate in the load lock chamber 22 is drawn into the vacuum chamber 2 by the transfer robot 21 in the vacuum chamber 2, and the vacuum valve is closed. Next, a vacuum valve (not shown) that is installed in another opening 2 a and separates the vacuum chamber 2 and the film forming chamber 23 is opened, and the glass substrate is carried into the film forming chamber 23 by the transfer robot 21. When the glass substrate is installed at a substrate installation position (not shown) of the film formation chamber 23, the transfer robot 21 moves out of the film formation chamber 23, the vacuum valve is closed, and film formation in the film formation chamber 23 starts. The glass substrate subjected to film formation may be replaced by the transfer robot 21 from the film formation chamber 23 to another film formation chamber 24, and from the film formation chamber 24 to another film formation chamber 25, where another type of film may be formed. . The processing contents in the film forming chambers 23, 24, and 25, the processing procedure in the film forming process, and the like can be changed as appropriate.

所定の全ての成膜を終えたガラス基板は、成膜チャンバ23又は24又は25から搬送ロボット21によって真空チャンバ2内に搬入され、真空チャンバ2から、ロードロック室22に搬入される。最後に、ロードロック室22が大気圧に戻されると、ガラス基板は真空処理装置1外に取り出される。   After completion of all the predetermined film formation, the glass substrate is carried into the vacuum chamber 2 by the transfer robot 21 from the film formation chamber 23, 24 or 25, and is carried from the vacuum chamber 2 into the load lock chamber 22. Finally, when the load lock chamber 22 is returned to atmospheric pressure, the glass substrate is taken out of the vacuum processing apparatus 1.

図1の8角形の真空チャンバ2では、8角形のうち4辺に開口2aを設置したため、合計4個のチャンバ(つまり、3個の成膜室および1個のロードロック室)に接続できたが、真空チャンバ2の形状および開口2aの数を変更すれば、真空チャンバ2に接続できるロードロック室および処理チャンバの数もそれに合わせて変更可能である。このように、真空チャンバ2を、搬送チャンバとして用いることができる。なお、真空チャンバ2を、ガラス基板等に成膜処理などの各種の処理をするための処理チャンバとして用いるようにしてもよい。   In the octagonal vacuum chamber 2 of FIG. 1, the openings 2a are installed on four sides of the octagon, so that a total of four chambers (that is, three film forming chambers and one load lock chamber) can be connected. However, if the shape of the vacuum chamber 2 and the number of openings 2a are changed, the number of load lock chambers and processing chambers that can be connected to the vacuum chamber 2 can be changed accordingly. Thus, the vacuum chamber 2 can be used as a transfer chamber. The vacuum chamber 2 may be used as a processing chamber for performing various processes such as a film forming process on a glass substrate or the like.

(真空チャンバ2の製造方法)
次に、真空チャンバ2の製造方法について説明する。
まず、外殻部材6の上壁、側壁、底壁等を構成する鉄製等の安価な鋼板を密閉部材を介してボルト締結することで、外殻部材6を形成する。これにより、外殻部材6は、開口2aをゲートバルブ8で密閉することで、その内部に密閉空間を形成可能となる。次に、内殻部材5の上壁、側壁、底壁等を構成する防錆性を有する複数のステンレス板を、外殻部材6の内側から外殻部材6の内面に対応するように配置しておき、ステンレス板を外殻部材6に上述した各溶接箇所7で溶接する。次いで、内殻部材5の上壁、側壁、底壁等を構成する各ステンレス板の端縁部を溶接する。これにより、内部に処理空間Rが形成された内殻部材5が形成される。
(Method for manufacturing vacuum chamber 2)
Next, a method for manufacturing the vacuum chamber 2 will be described.
First, the outer shell member 6 is formed by bolting an inexpensive steel plate made of iron or the like that constitutes the upper wall, side wall, bottom wall and the like of the outer shell member 6 through a sealing member. Thereby, the outer shell member 6 can form a sealed space in the inside thereof by sealing the opening 2 a with the gate valve 8. Next, a plurality of rust-proof stainless steel plates constituting the upper wall, side wall, bottom wall and the like of the inner shell member 5 are arranged so as to correspond to the inner surface of the outer shell member 6 from the inner side of the outer shell member 6. In addition, the stainless steel plate is welded to the outer shell member 6 at each welding spot 7 described above. Subsequently, the edge part of each stainless steel plate which comprises the upper wall, side wall, bottom wall, etc. of the inner shell member 5 is welded. Thereby, the inner shell member 5 in which the processing space R is formed is formed.

(作用等)
このように本実施形態によれば、真空チャンバ2は、処理空間Rを内部に形成する内殻部材5と、内殻部材5を包囲するように配置された外殻部材6とを備え、内殻部材5は、防錆材料で形成されており、外殻部材6は、安価な鋼材等で形成されている。このため、大型の真空処理装置1の真空チャンバ2の内面側での内殻部材5の耐食性を向上させることで、内殻部材5からのパーティクルの発生を防止し、基板へのパーティクルの付着を防止する。この結果、真空処理が施された基板の品質を向上させることができる。また、外殻部材6により強度を確保しつつコストを抑え、真空処理装置1の低コスト化を図ることができる。
(Action etc.)
As described above, according to the present embodiment, the vacuum chamber 2 includes the inner shell member 5 that forms the processing space R inside, and the outer shell member 6 that is disposed so as to surround the inner shell member 5. The shell member 5 is made of a rust-proof material, and the outer shell member 6 is made of an inexpensive steel material or the like. For this reason, by improving the corrosion resistance of the inner shell member 5 on the inner surface side of the vacuum chamber 2 of the large vacuum processing apparatus 1, the generation of particles from the inner shell member 5 is prevented, and the adhesion of particles to the substrate is prevented. To prevent. As a result, the quality of the substrate subjected to the vacuum processing can be improved. In addition, the outer shell member 6 can reduce the cost while securing the strength and can reduce the cost of the vacuum processing apparatus 1.

特に、真空チャンバ2が大型化するのに伴い、真空チャンバ2側壁、上壁、及び底壁等の面積が増加する。このため、真空チャンバ2の処理空間Rを取り囲む内面側の面積が増加するため、必要となる防錆材料の量が多くなる。しかし、本実施形態では、真空チャンバ2の内面側に外殻部材6の厚さより薄い厚さで内殻部材5を設けるので、必要となるステンレスの量を抑えることができ、真空処理装置1の大幅なコストダウンを図ることができる。   In particular, as the vacuum chamber 2 increases in size, the areas of the side wall, the top wall, the bottom wall, and the like of the vacuum chamber 2 increase. For this reason, since the area of the inner surface side surrounding the processing space R of the vacuum chamber 2 is increased, the amount of rust-proof material required is increased. However, in this embodiment, since the inner shell member 5 is provided on the inner surface side of the vacuum chamber 2 with a thickness thinner than that of the outer shell member 6, the amount of necessary stainless steel can be suppressed, and the vacuum processing apparatus 1 Significant cost reduction can be achieved.

内殻部材5と外殻部材6とは、複数の溶接箇所7で溶接されている。この結果、内殻部材5と外殻部材6との間に入り込んだ空気の圧力による外殻部材6からの内殻部材5の破断を防止することができる。また、内殻部材5の厚さは、処理空間Rの減圧(真空)下において内殻部材5と外殻部材6との間に入り込んだ空気の圧力による内殻部材5の変形や破損が生じない厚さになっているので、真空処理時等に内殻部材5が破損することを防止することができる。この結果、真空チャンバ2のリークを防止することができるうえ、真空チャンバ2の内部に配置された例えば搬送ロボットや基板処理ユニット等が、内殻部材5の破損によって生じた破損片によって損傷することを防止することができる。   The inner shell member 5 and the outer shell member 6 are welded at a plurality of welding points 7. As a result, it is possible to prevent the inner shell member 5 from being broken from the outer shell member 6 due to the pressure of the air that has entered between the inner shell member 5 and the outer shell member 6. The thickness of the inner shell member 5 is such that the inner shell member 5 is deformed or damaged by the pressure of the air that has entered between the inner shell member 5 and the outer shell member 6 under reduced pressure (vacuum) in the processing space R. Since the thickness is not large, it is possible to prevent the inner shell member 5 from being damaged during vacuum processing or the like. As a result, the leakage of the vacuum chamber 2 can be prevented and, for example, the transfer robot, the substrate processing unit, etc. disposed inside the vacuum chamber 2 are damaged by the broken pieces caused by the breakage of the inner shell member 5. Can be prevented.

[第2の実施の形態]
次に、本発明に係る第2の実施の形態について説明する。なお、本実施形態以降では、上記第1の実施の形態と同一の構成部材等には同一の符号を付しその説明を省略し異なる箇所を中心に説明する。
(真空処理装置の構成)
図5は本発明に係る第2の実施の形態の真空処理装置の側壁の部分拡大断面図及び側壁の内面の部分拡大図である。
本実施形態に係る真空処理装置の真空チャンバ2は、上記第1の実施の形態に比べて、内殻部材5と外殻部材6とが格子状に溶接接合されている点が異なる。
[Second Embodiment]
Next, a second embodiment according to the present invention will be described. In the following description of the present embodiment, the same components and the like as those of the first embodiment will be denoted by the same reference numerals, description thereof will be omitted, and different points will be mainly described.
(Configuration of vacuum processing equipment)
FIG. 5 is a partially enlarged sectional view of a side wall of the vacuum processing apparatus according to the second embodiment of the present invention and a partially enlarged view of the inner surface of the side wall.
The vacuum chamber 2 of the vacuum processing apparatus according to the present embodiment is different from the first embodiment in that the inner shell member 5 and the outer shell member 6 are welded and joined in a lattice shape.

具体的には、内殻部材5に格子状の複数の貫通孔10が形成されている。複数の貫通孔10は、上述した第1の実施形態の格子点の近傍領域を除いた位置にそれぞれ分割して格子状に形成されている。複数の格子状の貫通孔10に注入された溶接材により、内殻部材5と外殻部材6とが溶接箇所7A、7Bで溶接されている。つまり、溶接箇所7A、7Bは、上述した第1の実施形態の格子点の近傍領域を除いた位置にそれぞれ分割して格子状に形成されている。具体的には、線状の溶接箇所7Aが垂直方向に所定の間隔で直線状に形成されており、同様に、線状の溶接箇所7Bが垂直方向に直交する水平方向に所定の間隔で直線状に形成されている。各溶接箇所7A、7Bは、互いに分離されている。内殻部材5と、外殻部材6とは、例えば自動レーザ溶接により溶接されている。   Specifically, a plurality of lattice-shaped through holes 10 are formed in the inner shell member 5. The plurality of through-holes 10 are each formed in a lattice shape by being divided into positions excluding the region near the lattice point of the first embodiment described above. The inner shell member 5 and the outer shell member 6 are welded at the welding locations 7A and 7B with the welding material injected into the plurality of lattice-shaped through holes 10. That is, the welding locations 7A and 7B are each formed in a lattice shape by being divided into positions other than the vicinity of the lattice points of the first embodiment described above. Specifically, the linear welding points 7A are linearly formed at predetermined intervals in the vertical direction, and similarly, the linear welding points 7B are linear at predetermined intervals in the horizontal direction orthogonal to the vertical direction. It is formed in a shape. Each welding location 7A, 7B is separated from each other. The inner shell member 5 and the outer shell member 6 are welded by, for example, automatic laser welding.

垂直方向に隣り合う溶接箇所7A同士の間隔L2は、溶接箇所7Bの幅L1より大きい。水平方向に隣り合う溶接箇所7B同士の間隔L3は、溶接箇所7Aの幅L4より大きい。なお、本実施形態では、幅L1と幅L4とは略同じであり、間隔L2と間隔L3とは略同じである。   An interval L2 between the welding locations 7A adjacent in the vertical direction is larger than the width L1 of the welding location 7B. An interval L3 between the welding locations 7B adjacent in the horizontal direction is larger than the width L4 of the welding location 7A. In the present embodiment, the width L1 and the width L4 are substantially the same, and the interval L2 and the interval L3 are substantially the same.

なお、溶接箇所7A、7Bの箇所数(又は溶接箇所の面積)は、内殻部材5と外殻部材6との間に空気が入り込んだ状態で処理空間R内が真空状態となったときに、この空気圧による外殻部材6からの内殻部材5の破断を防止することができる強度を得られる箇所数になっている。   The number of welding locations 7A and 7B (or the area of the welding location) is determined when the inside of the processing space R is in a vacuum state with air entering between the inner shell member 5 and the outer shell member 6. The number of locations at which the strength that can prevent the inner shell member 5 from being broken from the outer shell member 6 due to the air pressure can be obtained.

(作用等)
このような構成によれば、内殻部材5と外殻部材6とが複数の格子状の溶接箇所7A及び7Bで溶接されているので、溶接面積を増加させて接合強度を確実に向上させることができる。また、複数の溶接箇所7A、7Bは、格子点の近傍領域を除いた位置にそれぞれ分割して形成されているので、内殻部材5と外殻部材6との間の空間が溶接箇所7A、7Bにより密閉状態で分割されることを防止することができる。この結果、外部からの衝撃等により、外殻部材6が損傷し、損傷した箇所から内殻部材5と外殻部材6との間の空間に空気が入り込んだとしても、内殻部材5と外殻部材6との間の空間で空気が流動可能になる。従って、所定の箇所だけ内圧が上昇することによる内殻部材5の破損を防止することができる。
(Action etc.)
According to such a configuration, since the inner shell member 5 and the outer shell member 6 are welded at the plurality of grid-like welded portions 7A and 7B, the welding area is increased and the joint strength is reliably improved. Can do. In addition, since the plurality of welding locations 7A and 7B are formed separately at positions excluding the region near the lattice points, the space between the inner shell member 5 and the outer shell member 6 is the welding location 7A, 7B can prevent division in a sealed state. As a result, even if the outer shell member 6 is damaged by an external impact or the like and air enters the space between the inner shell member 5 and the outer shell member 6 from the damaged portion, Air can flow in the space between the shell member 6. Accordingly, it is possible to prevent the inner shell member 5 from being damaged due to the internal pressure rising only at a predetermined location.

また、垂直方向に隣り合う溶接箇所7Aの間隔L2は、溶接箇所7Bの幅L1より大きく、かつ水平方向に隣り合う溶接箇所7Bの間隔L3は、溶接箇所7Aの幅L4より大きい。このため、上述したように損傷した箇所から内殻部材5と外殻部材6との間の空間に空気が入り込んだとしても、溶接箇所7A、7Bが垂直方向及び水平方向への空気の流動を妨げることがない。このため、内殻部材5と外殻部材6との間に入り込んだ空気の流れをよりスムーズにすることができ、空気が特定箇所に留まることがなくなる。この結果、局所的かつ急激な圧力変化に伴う体積変化を軽減または分散することができ、真空処理装置の破損を防止することができる。   Further, the interval L2 between the welding locations 7A adjacent in the vertical direction is larger than the width L1 of the welding locations 7B, and the interval L3 between the welding locations 7B adjacent in the horizontal direction is larger than the width L4 of the welding locations 7A. For this reason, even if air enters the space between the inner shell member 5 and the outer shell member 6 from the damaged portion as described above, the welded portions 7A and 7B cause the air flow in the vertical direction and the horizontal direction. There is no hindrance. For this reason, the flow of the air that has entered between the inner shell member 5 and the outer shell member 6 can be made smoother, and air does not stay at a specific location. As a result, volume change accompanying local and sudden pressure change can be reduced or dispersed, and damage to the vacuum processing apparatus can be prevented.

[第3の実施の形態]
次に、本発明に係る第3の実施の形態について説明する。
(真空チャンバの構成)
図6は第3の実施形態に係る真空チャンバの断面図である。
本実施形態に係る真空処理装置20は、上記第1の実施形態に比べて、内殻部材5Aと外殻部材6との間に減圧された密閉空間Mが形成されている真空チャンバ2Aを備える点が異なる。
[Third Embodiment]
Next, a third embodiment according to the present invention will be described.
(Configuration of vacuum chamber)
FIG. 6 is a cross-sectional view of a vacuum chamber according to the third embodiment.
The vacuum processing apparatus 20 according to the present embodiment includes a vacuum chamber 2A in which a reduced sealed space M is formed between the inner shell member 5A and the outer shell member 6 as compared to the first embodiment. The point is different.

減圧された密閉空間Mは、内殻部材5Aと外殻部材6とにより囲まれて形成されており、内部は減圧されて真空状態になっている。具体的には、減圧された密閉空間Mの内圧は、例えば0.1気圧以下である。なお、図6では、減圧された密閉空間Mが見易いように実際のサイズとは異なるサイズで図示している(以下、図7及び図8でも同様)。
内殻部材5Aの厚さは、第1の実施形態の内殻部材5の厚さより薄い。
The decompressed sealed space M is formed by being surrounded by the inner shell member 5A and the outer shell member 6, and the inside is decompressed and is in a vacuum state. Specifically, the internal pressure of the reduced sealed space M is, for example, 0.1 atm or less. In FIG. 6, the reduced sealed space M is illustrated in a size different from the actual size so that it can be easily seen (hereinafter, the same applies to FIGS. 7 and 8).
The thickness of the inner shell member 5A is thinner than the thickness of the inner shell member 5 of the first embodiment.

(作用等)
このような構成によれば、内殻部材5Aの内部の処理空間Rが真空状態となったときでも、減圧された密閉空間Mが真空状態に保たれているので、処理空間Rの内圧と減圧された密閉空間Mの内圧との差圧を低減することができる。この結果、減圧された密閉空間M内と処理空間Rとの差圧により内殻部材5が複数の溶接箇所7等で破損することを防止することができる。この結果、真空処理装置20の信頼性を向上させると共に、真空チャンバ2Aの低コスト化を図ることができる。また、内殻部材5Aの破損を防止することで、真空チャンバ2A内に設けられる図示しない搬送ロボット等が内殻部材5Aの破損片により破損することを防止し、内殻部材5Aの破損に起因するコスト高を防止することができる。
(Action etc.)
According to such a configuration, even when the processing space R inside the inner shell member 5A is in a vacuum state, the decompressed sealed space M is maintained in a vacuum state. The differential pressure from the internal pressure of the sealed space M can be reduced. As a result, it is possible to prevent the inner shell member 5 from being damaged at the plurality of welded portions 7 or the like due to the differential pressure between the reduced pressure in the sealed space M and the processing space R. As a result, the reliability of the vacuum processing apparatus 20 can be improved, and the cost of the vacuum chamber 2A can be reduced. Further, by preventing the inner shell member 5A from being damaged, it is possible to prevent a transfer robot or the like (not shown) provided in the vacuum chamber 2A from being damaged by a damaged piece of the inner shell member 5A. High cost can be prevented.

また、上述したように予め減圧された密閉空間Mを形成することで、内殻部材5Aの破損を防止することができるので、内殻部材5Aの厚さを上記第1の実施形態の内殻部材5の厚さより薄くすることができる。従って、真空チャンバ2Aを製造するために必要となる内殻部材5Aの材料の量を更に減少させることで、真空処理装置20の低コスト化を更に図ることができる。   Further, since the sealed space M that has been depressurized in advance as described above can be used to prevent the inner shell member 5A from being damaged, the thickness of the inner shell member 5A is set to the inner shell of the first embodiment. The thickness of the member 5 can be made thinner. Therefore, the cost of the vacuum processing apparatus 20 can be further reduced by further reducing the amount of the material of the inner shell member 5A required for manufacturing the vacuum chamber 2A.

[第4の実施の形態]
(真空処理装置の構成)
図7は本発明に係る第4の実施の形態の真空処理装置の構成を示す断面図、図8は図7に示す真空処理装置の側壁の領域Cの拡大図である。
真空処理装置100は、上述した第3の実施の形態に比べて、圧力検知センサ31(検知手段)、真空ポンプ32(内圧制御手段)、封じ切りバルブ33、ガス供給部34(調整手段)、封じ切りバルブ35、及び配管36、37を備える点が異なる。
[Fourth Embodiment]
(Configuration of vacuum processing equipment)
FIG. 7 is a cross-sectional view showing the configuration of the vacuum processing apparatus according to the fourth embodiment of the present invention, and FIG.
Compared to the third embodiment described above, the vacuum processing apparatus 100 includes a pressure detection sensor 31 (detection means), a vacuum pump 32 (internal pressure control means), a sealing valve 33, a gas supply unit 34 (adjustment means), The difference is that the sealing valve 35 and the pipes 36 and 37 are provided.

配管36の一端部は、図7及び図8に示すように外殻部材6を貫通し、内殻部材5Aを貫通していない。配管36の先端の開口38は、密閉空間Mに面している。密閉空間Mと配管36内とは、開口38を介してガスが流動可能となるように連通している。   One end of the pipe 36 penetrates the outer shell member 6 as shown in FIGS. 7 and 8 and does not penetrate the inner shell member 5A. The opening 38 at the tip of the pipe 36 faces the sealed space M. The sealed space M and the pipe 36 communicate with each other through the opening 38 so that the gas can flow.

配管36の他端部には、真空ポンプ32が接続されている。真空ポンプ32は、配管36を介して密閉空間M内のガスを吸引し密閉空間M内を減圧(真空)状態にする。
配管36には封じ切りバルブ33が介挿して設けられている。封じ切りバルブ33は、配管36内のガスの流路を開閉するためのバルブである。
A vacuum pump 32 is connected to the other end of the pipe 36. The vacuum pump 32 sucks the gas in the sealed space M through the pipe 36 to bring the sealed space M into a reduced pressure (vacuum) state.
The pipe 36 is provided with a sealing valve 33 interposed therebetween. The sealing valve 33 is a valve for opening and closing a gas flow path in the pipe 36.

圧力検知センサ31は、密閉空間Mの内圧を検知し検知した圧力値が閾値以上であることを作業者に報知する報知機能を有する。この閾値は、例えば大気圧の50%の圧力である。なお、この閾値は特に限定されず、適宜変更可能である。圧力検知センサ31は、配管36に接続して設けられている。より具体的には、圧力検知センサ31は、密閉空間Mの内圧を検知し、検知した圧力値が所定の閾値以上であるか否かを判断する。そして、圧力検知センサ31は、検知した圧力値が所定の閾値以上であるときに、例えば光や音を発生したり、電気的スイッチをオンにしたりすることで、作業者に報知する。   The pressure detection sensor 31 has a notification function for notifying the operator that the detected pressure value is equal to or greater than a threshold value by detecting the internal pressure of the sealed space M. This threshold is, for example, a pressure that is 50% of the atmospheric pressure. This threshold value is not particularly limited, and can be changed as appropriate. The pressure detection sensor 31 is provided connected to the pipe 36. More specifically, the pressure detection sensor 31 detects the internal pressure of the sealed space M, and determines whether or not the detected pressure value is equal to or greater than a predetermined threshold value. Then, when the detected pressure value is equal to or greater than a predetermined threshold, the pressure detection sensor 31 notifies the worker by, for example, generating light or sound or turning on an electrical switch.

配管37の一端部は、外殻部材6及び内殻部材5Aを貫通している。配管37の先端の開口39は、図8に示すように処理空間Rに面している。処理空間R内と配管37内とは、開口39を介してガスが流動可能となるように連通している。配管37の他端部には、封じ切りバルブ35が接続されている。封じ切りバルブ35は、配管37内のガスの流路を開閉するためのバルブである。
ガス供給部34は、配管37を介して真空チャンバ2A内の処理空間Rにガスを供給する。
One end of the pipe 37 passes through the outer shell member 6 and the inner shell member 5A. The opening 39 at the tip of the pipe 37 faces the processing space R as shown in FIG. The processing space R and the pipe 37 communicate with each other through the opening 39 so that the gas can flow. A sealing valve 35 is connected to the other end of the pipe 37. The sealing valve 35 is a valve for opening and closing a gas flow path in the pipe 37.
The gas supply unit 34 supplies gas to the processing space R in the vacuum chamber 2 </ b> A via the pipe 37.

(真空処理装置100を用いた真空処理動作)
次に、真空処理装置100を用いた被処理体である基板に対する真空処理動作について説明する。
まず、予め図8に示す密閉空間Mの内圧を所定の圧力に減圧しておく。具体的には、封じ切りバルブ33を開き、真空ポンプ32により、密閉空間Mの内圧を例えば0.1気圧(1気圧=101.325Pa)以下に減圧し真空状態にする。この結果、圧力検知センサ31は、密閉空間Mの内圧が0.1気圧以下であることを検知し作業者に報知する。
(Vacuum processing operation using the vacuum processing apparatus 100)
Next, a vacuum processing operation for a substrate, which is an object to be processed, using the vacuum processing apparatus 100 will be described.
First, the internal pressure of the sealed space M shown in FIG. 8 is previously reduced to a predetermined pressure. Specifically, the sealing valve 33 is opened, and the internal pressure of the sealed space M is reduced to, for example, 0.1 atm (1 atm = 101.325 Pa) or less by the vacuum pump 32 to make a vacuum state. As a result, the pressure detection sensor 31 detects that the internal pressure of the sealed space M is 0.1 atm or less and notifies the operator.

次いで、図示しない真空ポンプを駆動し、真空チャンバ2Aの処理空間R内を例えば密閉空間Mの真空度と略同じ真空度の真空状態にし、その後、所定の真空処理を被処理体である基板に対して施す。
このとき、密閉空間Mが真空状態となっているため、真空チャンバ2の処理空間R内が真空状態に減圧されても、密閉空間Mの内圧と処理空間Rの内圧との差が略生じない。
Next, a vacuum pump (not shown) is driven to bring the inside of the processing space R of the vacuum chamber 2A into a vacuum state having a degree of vacuum that is substantially the same as the degree of vacuum of the sealed space M, for example, and then a predetermined vacuum processing is performed on the substrate that is the target object Apply to.
At this time, since the sealed space M is in a vacuum state, even if the inside of the processing space R of the vacuum chamber 2 is reduced to a vacuum state, a difference between the internal pressure of the sealed space M and the internal pressure of the processing space R does not substantially occur. .

(内殻部材5Aの破損防止方法)
次に、真空処理装置100の真空チャンバ2Aの内殻部材5Aが破損することを防止するための方法について説明する。
(Method for preventing damage to inner shell member 5A)
Next, a method for preventing the inner shell member 5A of the vacuum chamber 2A of the vacuum processing apparatus 100 from being damaged will be described.

上述したように密閉空間Mを減圧(真空)状態としておき、圧力検知センサ31により、密閉空間Mの内圧を検知する。圧力検知センサ31は、密閉空間Mの内圧を検知し、密閉空間Mの内圧が閾値(0.5気圧)以上であると判断したときに、作業者に光や音や電気的な表示等により報知する。   As described above, the sealed space M is kept in a reduced pressure (vacuum) state, and the pressure detection sensor 31 detects the internal pressure of the sealed space M. When the pressure detection sensor 31 detects the internal pressure of the sealed space M and determines that the internal pressure of the sealed space M is equal to or greater than a threshold value (0.5 atm), the pressure detection sensor 31 notifies the operator by light, sound, electrical display, or the like. Inform.

この報知を受けた作業者は、封じ切りバルブ35を開き、ガス供給部34から配管37を介して、真空チャンバ2Aの処理空間R内にガスを供給し、処理空間Rの内圧を例えば大気圧まで上昇させる。これにより、真空チャンバ2Aの処理空間Rの内圧と、密閉空間Mの内圧との差を減少させ、真空チャンバ2Aの内圧と密閉空間Mの内圧との差により内殻部材5に働く力を減少させる。   The worker who has received this notification opens the shut-off valve 35, supplies gas from the gas supply unit 34 to the processing space R of the vacuum chamber 2A via the pipe 37, and sets the internal pressure of the processing space R to, for example, atmospheric pressure. To rise. This reduces the difference between the internal pressure of the processing space R of the vacuum chamber 2A and the internal pressure of the sealed space M, and reduces the force acting on the inner shell member 5 due to the difference between the internal pressure of the vacuum chamber 2A and the internal pressure of the sealed space M. Let

(作用等)
このように本実施形態によれば、外的な要因による外壁部材6の破損等により、圧力検知センサ31の検知した圧力値が所定の閾値(0.5気圧)以上となったときに、圧力検知センサ31が作業者に報知することができる。これにより、作業者は、封じ切りバルブ35を開き、ガス供給部34から配管37を介して、真空チャンバ2Aの処理空間R内にガスを供給し、真空チャンバ2Aの内圧を上昇させることができる。そして、真空チャンバ2Aの処理空間Rの内圧と、密閉空間Mの内圧との差を減少させることができる。この結果、密閉空間Mの内圧の上昇時に密閉空間M内の内圧により内殻部材5Aが溶接箇所7等で破損することを防止することができる。
(Action etc.)
As described above, according to the present embodiment, when the pressure value detected by the pressure detection sensor 31 exceeds a predetermined threshold value (0.5 atm) due to damage to the outer wall member 6 due to an external factor, the pressure The detection sensor 31 can notify the worker. Thereby, the operator can open the sealing valve 35, supply gas from the gas supply unit 34 to the processing space R of the vacuum chamber 2A via the pipe 37, and increase the internal pressure of the vacuum chamber 2A. . Then, the difference between the internal pressure of the processing space R of the vacuum chamber 2A and the internal pressure of the sealed space M can be reduced. As a result, it is possible to prevent the inner shell member 5A from being damaged at the welded portion 7 or the like by the internal pressure in the sealed space M when the internal pressure in the sealed space M is increased.

なお、圧力検知センサ31の検知した圧力値が閾値以上になったときに、封じ切りバルブ33を開き、真空ポンプ32により、配管36を介して、密閉空間M内のガスを排気し、密閉空間Mの内圧を閾値(0.5気圧)より低い値に減少させるようにしてもよい。これにより、真空チャンバ2Aの処理空間Rの内圧と、密閉空間Mの内圧との差を減少させることができる。この結果、同様に内殻部材5Aが破損することを防止することができる。   When the pressure value detected by the pressure detection sensor 31 exceeds a threshold value, the sealing valve 33 is opened, and the gas in the sealed space M is exhausted via the pipe 36 by the vacuum pump 32, thereby closing the sealed space. You may make it reduce the internal pressure of M to a value lower than a threshold value (0.5 atmosphere). Thereby, the difference between the internal pressure of the processing space R of the vacuum chamber 2A and the internal pressure of the sealed space M can be reduced. As a result, similarly, the inner shell member 5A can be prevented from being damaged.

また、真空チャンバ2の処理空間Rの内圧を真空状態(例えば0.1気圧以下)にした後に、密閉空間Mへの空気の微小リークにより密閉空間Mの内圧が徐々に上昇するおそれがある。しかし、第4の実施形態の真空処理装置100は、圧力検知センサ31を備えるので、万一、密閉空間Mの内圧が徐々に上昇することがあっても、圧力検知センサ31により密閉空間Mの内圧を検知し、上述したように内殻部材5Aの破損を防止することができる。   In addition, after the internal pressure of the processing space R of the vacuum chamber 2 is set to a vacuum state (for example, 0.1 atm or less), the internal pressure of the sealed space M may gradually increase due to a minute leak of air to the sealed space M. However, since the vacuum processing apparatus 100 of the fourth embodiment includes the pressure detection sensor 31, even if the internal pressure of the sealed space M may gradually increase, the pressure detection sensor 31 may It is possible to detect the internal pressure and prevent the inner shell member 5A from being damaged as described above.

なお、上述した作業者による操作は、コンピュータを用いて自動的に行われるようにしてもよい。この場合、真空処理装置100は、圧力検知センサ31からの出力を受けて、ガス供給部34、封じ切りバルブ33、35、真空ポンプ32等を制御するコントローラ(図示略)をさらに備える。   In addition, you may make it perform operation by the operator mentioned above automatically using a computer. In this case, the vacuum processing apparatus 100 further includes a controller (not shown) that receives the output from the pressure detection sensor 31 and controls the gas supply unit 34, the sealing valves 33 and 35, the vacuum pump 32, and the like.

[第5の実施の形態]
(真空処理装置の構成)
図9は本発明に係る第5の実施の形態の真空処理装置の構成を示す断面図である。
本実施形態に係る真空処理装置は、上記第1の実施の形態に比べて、真空チャンバ2Bの内殻部材5と、外殻部材6Aとの溶接箇所の構成が異なっている。
真空チャンバ2Bの外殻部材6Aは、貫通孔40が格子点状に複数形成されている。貫通孔40が形成された格子点状とは、図3に示す溶接箇所7に対応する位置である。なお、貫通孔40が形成された位置や形状は、特に限定されず、内殻部材5の大きさ、厚さ、材質等に応じて適宜変更可能である。
[Fifth Embodiment]
(Configuration of vacuum processing equipment)
FIG. 9 is a cross-sectional view showing the configuration of the vacuum processing apparatus according to the fifth embodiment of the present invention.
The vacuum processing apparatus according to the present embodiment is different from the first embodiment in the configuration of the welding location between the inner shell member 5 and the outer shell member 6A of the vacuum chamber 2B.
The outer shell member 6A of the vacuum chamber 2B has a plurality of through-holes 40 formed in a lattice point shape. The lattice point shape in which the through hole 40 is formed is a position corresponding to the welding spot 7 shown in FIG. In addition, the position and shape in which the through-hole 40 was formed are not specifically limited, According to the magnitude | size, thickness, material, etc. of the inner shell member 5, it can change suitably.

外殻部材6Aは、内殻部材5に溶接箇所41で溶接により接合されている。外殻部材6Aと、内殻部材5とは、外殻部材6Aの外側から作業者により溶接される。より具体的には、上述した外殻部材6と同様に、複数の貫通孔40が形成された安価な鉄製等の鋼材を用いて外殻部材6Aを構成する。次いで、内殻部材5の側壁、上壁及び底壁となるステンレス板を外殻部材6Aの内面を被覆するように重ねて位置合わせしておく。この状態で、外殻部材6Aの外側から複数の貫通孔40を介して溶接材により内殻部材5と外殻部材6Aとを溶接する。   The outer shell member 6A is joined to the inner shell member 5 by welding at a welding point 41. The outer shell member 6A and the inner shell member 5 are welded by an operator from the outside of the outer shell member 6A. More specifically, similarly to the outer shell member 6 described above, the outer shell member 6A is configured using an inexpensive steel material such as iron in which a plurality of through holes 40 are formed. Next, the stainless steel plates serving as the side wall, the upper wall, and the bottom wall of the inner shell member 5 are overlapped and aligned so as to cover the inner surface of the outer shell member 6A. In this state, the inner shell member 5 and the outer shell member 6A are welded by the welding material from the outside of the outer shell member 6A through the plurality of through holes 40.

(作用等)
このように本実施形態によれば、外殻部材6Aには格子点状に複数の貫通孔40が形成されており、貫通孔40内の溶接箇所41で内殻部材5と外殻部材6Aとが内殻部材5の外側から接合されている。このため、内殻部材5と外殻部材6Aとの溶接作業の結果、溶接材が内殻部材5の内側に入り込んだり、内殻部材5の表面に溶接材が設けられたりすることを防止することができる。この結果、処理空間R内でのパーティクルの発生を減少させることができる。また、作業者は、外殻部材6Aの外側から溶接作業を行うことができるので、作業性を向上させることができる。
(Action etc.)
As described above, according to the present embodiment, the outer shell member 6A is formed with a plurality of through holes 40 in the form of lattice points, and the inner shell member 5 and the outer shell member 6A Are joined from the outside of the inner shell member 5. For this reason, as a result of the welding operation between the inner shell member 5 and the outer shell member 6A, it is possible to prevent the welding material from entering the inner shell member 5 or providing the welding material on the surface of the inner shell member 5. be able to. As a result, the generation of particles in the processing space R can be reduced. Moreover, since the worker can perform the welding work from the outside of the outer shell member 6A, workability can be improved.

[第6の実施の形態]
(真空処理装置の構成)
図10は本発明に係る第6の実施の形態の真空処理装置の構成を示す断面図である。
本実施形態に係る真空処理装置200は、上記第4の実施の形態に比べて、真空計51と、検知部52とを備える点が異なる。
[Sixth Embodiment]
(Configuration of vacuum processing equipment)
FIG. 10 is a cross-sectional view showing the configuration of the vacuum processing apparatus according to the sixth embodiment of the present invention.
The vacuum processing apparatus 200 according to the present embodiment is different from the fourth embodiment in that a vacuum gauge 51 and a detection unit 52 are provided.

真空計52は、処理空間Rの内圧を検知する。検知部52はコンピュータで構成されており、真空計32の検知した圧力値と圧力検出センサ31の検知した圧力値とからこれらの差圧を求め、その差圧が閾値以上になったか否かを判断する。そして、検知部52は、差圧が閾値以上のときには、ユーザに報知する。あるいは、検知部52は、ガス供給部34、封じ切りバルブ33、35、真空ポンプ32等を所定の動作で制御する。この場合、検知部52は、第4の実施形態における「コントローラ」に相当する。上記閾値は、例えば0.1気圧であるが、勿論これに限られない。   The vacuum gauge 52 detects the internal pressure of the processing space R. The detection unit 52 is configured by a computer, obtains a differential pressure between the pressure value detected by the vacuum gauge 32 and the pressure value detected by the pressure detection sensor 31, and determines whether or not the differential pressure is equal to or greater than a threshold value. to decide. And the detection part 52 alert | reports to a user, when a differential pressure is more than a threshold value. Or the detection part 52 controls the gas supply part 34, the sealing valves 33 and 35, the vacuum pump 32, etc. by predetermined operation | movement. In this case, the detection unit 52 corresponds to the “controller” in the fourth embodiment. The threshold value is, for example, 0.1 atmospheric pressure, but is not limited to this.

(作用等)
このような構成によれば、検知部52は、真空計51の検知した圧力値と、圧力検知センサ31の検知した圧力値とを比較し、これらの差圧が閾値(例えば0.1気圧)以上であるかを判断し、閾値以上であるときにユーザに報知することができる。この報知があったときには、ユーザは、ガス供給部34により真空チャンバ2Aの処理空間Rの内圧を上昇させたり、真空ポンプ32により密閉空間Mの内圧を減少させたり、処理空間Rの内圧上昇および密閉空間Mの内圧減少を並行して行ったりすることができる。あるいは、これらの操作が自動的に行われるように、検知部52がガス供給部34、封じ切りバルブ33、35、真空ポンプ32等を制御することができる。
(Action etc.)
According to such a configuration, the detection unit 52 compares the pressure value detected by the vacuum gauge 51 with the pressure value detected by the pressure detection sensor 31, and the differential pressure between them is a threshold value (for example, 0.1 atm). Whether it is the above or not can be notified to the user when it is equal to or greater than the threshold. When this notification is given, the user increases the internal pressure of the processing space R of the vacuum chamber 2A by the gas supply unit 34, decreases the internal pressure of the sealed space M by the vacuum pump 32, increases the internal pressure of the processing space R, and The internal pressure of the sealed space M can be reduced in parallel. Or the detection part 52 can control the gas supply part 34, the sealing valves 33 and 35, the vacuum pump 32, etc. so that these operation may be performed automatically.

これによれば、処理空間Rの内圧と密閉空間Mの内圧との差圧を常に小さく維持することができる。この結果、真空チャンバ2Aの内殻部材5Aの破損等を防止することができる。また、真空処理装置100の立ち上げ時やメンテナンス時等、処理空間Rの内圧が大気圧と真空圧との間で大きく変動する場合であっても、処理空間Rの内圧と密閉空間Mの内圧との差圧を常に小さく維持することができるので、真空チャンバ2Aの破損等を防止することができる。   According to this, the differential pressure between the internal pressure of the processing space R and the internal pressure of the sealed space M can always be kept small. As a result, damage to the inner shell member 5A of the vacuum chamber 2A can be prevented. Further, even when the internal pressure of the processing space R varies greatly between the atmospheric pressure and the vacuum pressure, such as when the vacuum processing apparatus 100 is started up or during maintenance, the internal pressure of the processing space R and the internal pressure of the sealed space M Can be kept small at all times, so that the vacuum chamber 2A can be prevented from being damaged.

なお、本発明に係る実施形態は、以上説明した実施形態に限定されず、他の種々の実施形態が考えられる。
上記各実施の形態では、例えば内殻部材5と外殻部材6とを溶接により接合する例を示した。しかし、これに限定されず、例えば内殻部材5と外殻部材6とをボルト締結により結合するようにしてもよい。このような構成によれば、ボルトの締結力を調整することで、内殻部材5と外殻部材6との結合力を容易に調整することができると共に、このボルトを、外殻部材6の上壁と側壁とを連結するためのボルト等と同形状のものとすることで、低コスト化を図る共に生産性を向上させることができる。
In addition, embodiment which concerns on this invention is not limited to embodiment described above, Other various embodiment can be considered.
In each of the above embodiments, for example, the inner shell member 5 and the outer shell member 6 are joined by welding. However, the present invention is not limited to this. For example, the inner shell member 5 and the outer shell member 6 may be coupled by bolt fastening. According to such a configuration, the coupling force between the inner shell member 5 and the outer shell member 6 can be easily adjusted by adjusting the fastening force of the bolt, and the bolt of the outer shell member 6 can be adjusted. By making it the same shape as the bolt etc. for connecting an upper wall and a side wall, cost reduction and productivity can be improved.

上記第4の実施の形態では、圧力検知センサ31の検知した圧力値が閾値(0.5気圧)以上のときに、密閉空間Mの内圧と処理空間Rの内圧との差を減少させるために、ガス供給部34、真空ポンプ32を別々に用いる例を示した。しかし、ガス供給部34により真空チャンバ2Aの処理空間Rの内圧を上昇させると共に、真空ポンプ32により密閉空間Mの内圧を減少させるようにしてもよい。これにより、より短時間でより確実に内圧差を減少させることができ、真空処理装置の破損を防止することができる。   In the fourth embodiment, in order to reduce the difference between the internal pressure of the sealed space M and the internal pressure of the processing space R when the pressure value detected by the pressure detection sensor 31 is equal to or greater than a threshold value (0.5 atm). In the above example, the gas supply unit 34 and the vacuum pump 32 are used separately. However, the internal pressure of the processing space R of the vacuum chamber 2 </ b> A may be increased by the gas supply unit 34, and the internal pressure of the sealed space M may be decreased by the vacuum pump 32. Thereby, an internal pressure difference can be reduced more reliably in a shorter time, and damage to the vacuum processing apparatus can be prevented.

上記各実施形態では、略八角形状の真空チャンバ2等を例示したが、これに限定されず、例えば四角形状等の他の多角形状の真空チャンバに本発明を適用してもよい。具体的には、真空チャンバの形状は、真空チャンバの周囲に配置される処理装置の数に応じて適宜変更可能である。   In each of the above embodiments, the substantially octagonal vacuum chamber 2 or the like is illustrated, but the present invention is not limited to this, and the present invention may be applied to other polygonal vacuum chambers such as a quadrangular shape. Specifically, the shape of the vacuum chamber can be appropriately changed according to the number of processing apparatuses arranged around the vacuum chamber.

上記第4の実施形態では、圧力検知センサ31が、密閉空間Mの内圧を検知すると共に、この内圧が閾値以上であることを報知する機能を有する例を示した。しかし、圧力検知センサ31が、報知機能の代わりに、検知した密閉空間Mの圧力値をメータ等により表示する表示機能だけを有するようにしてもよい。この場合には、真空処理装置の低コスト化を図ることができる。また、この場合には、上述したように密閉空間Mを減圧(真空)状態とした後に、圧力検知センサで検知された密閉空間Mの内圧を作業者が定期的に点検するようにすればよい。これにより、真空チャンバ2の内殻部材5Aの破損等を防止することができる。   In the said 4th Embodiment, while the pressure detection sensor 31 detected the internal pressure of the sealed space M, the example which has a function which alert | reports that this internal pressure is more than a threshold value was shown. However, the pressure detection sensor 31 may have only a display function for displaying the detected pressure value of the sealed space M with a meter or the like instead of the notification function. In this case, the cost of the vacuum processing apparatus can be reduced. In this case, after the sealed space M is in a reduced pressure (vacuum) state as described above, the operator may periodically check the internal pressure of the sealed space M detected by the pressure detection sensor. . Thereby, damage etc. of inner shell member 5A of vacuum chamber 2 can be prevented.

1、20、100、200…真空処理装置、 2、2A、2B…真空チャンバ、 5、5A…内殻部材、 6、6A…外殻部材、 7、7A、7B、71…溶接箇所、 9,10、40…貫通孔、 31…圧力検知センサ、 32…真空ポンプ、 33、35…封じ切りバルブ、 34…ガス供給部、 36、37…配管、51…真空計、52…検知部   DESCRIPTION OF SYMBOLS 1, 20, 100, 200 ... Vacuum processing apparatus 2, 2, 2A, 2B ... Vacuum chamber, 5, 5A ... Inner shell member, 6, 6A ... Outer shell member, 7, 7A, 7B, 71 ... Welding location, 9, DESCRIPTION OF SYMBOLS 10, 40 ... Through-hole, 31 ... Pressure detection sensor, 32 ... Vacuum pump, 33, 35 ... Sealing valve, 34 ... Gas supply part, 36, 37 ... Piping, 51 ... Vacuum gauge, 52 ... Detection part

Claims (8)

防錆性を有する金属材料で形成され、被処理体に対する真空処理が行われる処理空間を内部に形成する内殻部材と、
前記内殻部材を包囲する外殻部材と
を具備する真空チャンバ。
An inner shell member that is formed of a metal material having rust prevention properties and that forms a processing space in which a vacuum treatment is performed on the object to be processed;
A vacuum chamber comprising: an outer shell member surrounding the inner shell member.
請求項1に記載の真空チャンバであって、
前記外殻部材は前記内殻部材とは異なる金属材料からなり、
前記内殻部材と前記外殻部材とは溶接により連結されている
真空チャンバ。
The vacuum chamber according to claim 1, wherein
The outer shell member is made of a metal material different from the inner shell member,
The inner shell member and the outer shell member are connected to each other by welding.
請求項2に記載の真空チャンバであって、
前記内殻部材と前記外殻部材とは、前記内殻部材又は前記外殻部材に格子点状又は格子状に設けられた溶接用の複数の貫通孔を介して溶接されている
真空チャンバ。
A vacuum chamber according to claim 2,
The inner shell member and the outer shell member are welded to the inner shell member or the outer shell member via a plurality of welding through-holes provided in a lattice dot shape or a lattice shape.
請求項3に記載の真空チャンバであって、
前記内殻部材と前記外殻部材との間に減圧密閉空間が形成されている
真空チャンバ。
A vacuum chamber according to claim 3,
A vacuum chamber in which a reduced pressure sealed space is formed between the inner shell member and the outer shell member.
請求項4に記載の真空チャンバであって、
前記減圧密閉空間の内圧を制御するための内圧制御手段と、
前記減圧密閉空間の内圧が閾値以上になったことを検知する検知手段と、
前記処理空間の内圧を調整するための調整手段と
を更に具備する真空チャンバ。
A vacuum chamber according to claim 4,
An internal pressure control means for controlling the internal pressure of the vacuum sealed space;
Detecting means for detecting that the internal pressure of the reduced pressure sealed space is equal to or higher than a threshold;
A vacuum chamber further comprising adjusting means for adjusting the internal pressure of the processing space.
請求項4に記載の真空チャンバであって、
前記減圧密閉空間の内圧を制御するための内圧制御手段と、
前記減圧密閉空間の内圧と前記処理空間の内圧との差圧が閾値以上になったことを検知する検知手段と、
前記処理空間の内圧を調整するための調整手段と
を更に具備する真空チャンバ。
A vacuum chamber according to claim 4,
An internal pressure control means for controlling the internal pressure of the vacuum sealed space;
Detecting means for detecting that the differential pressure between the internal pressure of the reduced pressure sealed space and the internal pressure of the processing space is equal to or greater than a threshold;
A vacuum chamber further comprising adjusting means for adjusting the internal pressure of the processing space.
上記請求項1から上記請求項6のうちいずれか一項に記載の真空チャンバと、
前記真空チャンバ内に設けられ、前記被処理体に処理を施す処理部と
を具備する真空処理装置。
A vacuum chamber according to any one of claims 1 to 6;
A vacuum processing apparatus comprising: a processing unit that is provided in the vacuum chamber and performs processing on the object to be processed.
内部に空間が形成されるように外殻部材を形成し、
前記外殻部材の内面を被覆するように防錆性を有する金属部材をそれぞれ前記外殻部材の各内面に連結し、各前記金属部材を互いに接合することで、被処理体に対する真空処理が行われる処理空間が内部に形成された内殻部材を形成する
真空チャンバの製造方法。
Form the outer shell member so that a space is formed inside,
A metal member having rust prevention properties is connected to each inner surface of the outer shell member so as to cover the inner surface of the outer shell member, and the metal members are joined to each other, thereby performing vacuum processing on the object to be processed. A vacuum chamber manufacturing method for forming an inner shell member having a processing space formed therein.
JP2010007977A 2010-01-18 2010-01-18 Vacuum chamber, vacuum processing apparatus, and method of manufacturing vacuum chamber Pending JP2011146624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010007977A JP2011146624A (en) 2010-01-18 2010-01-18 Vacuum chamber, vacuum processing apparatus, and method of manufacturing vacuum chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010007977A JP2011146624A (en) 2010-01-18 2010-01-18 Vacuum chamber, vacuum processing apparatus, and method of manufacturing vacuum chamber

Publications (1)

Publication Number Publication Date
JP2011146624A true JP2011146624A (en) 2011-07-28

Family

ID=44461194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010007977A Pending JP2011146624A (en) 2010-01-18 2010-01-18 Vacuum chamber, vacuum processing apparatus, and method of manufacturing vacuum chamber

Country Status (1)

Country Link
JP (1) JP2011146624A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014172042A (en) * 2013-03-08 2014-09-22 Tantec Gmbh Reactor
CN105531808A (en) * 2013-09-10 2016-04-27 泰拉半导体株式会社 Chamber for heat treatment device and method for manufacturing same
CN110217556A (en) * 2019-06-06 2019-09-10 平安开诚智能安全装备有限责任公司 A kind of belt conveyer for coal mine protection system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338574A (en) * 1986-08-04 1988-02-19 Sasakura Eng Co Ltd Method for preventing exfoliation of lining material of vacuum vessel
JPH04349929A (en) * 1991-05-28 1992-12-04 Tokyo Electron Ltd Vacuum apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338574A (en) * 1986-08-04 1988-02-19 Sasakura Eng Co Ltd Method for preventing exfoliation of lining material of vacuum vessel
JPH04349929A (en) * 1991-05-28 1992-12-04 Tokyo Electron Ltd Vacuum apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014172042A (en) * 2013-03-08 2014-09-22 Tantec Gmbh Reactor
CN105531808A (en) * 2013-09-10 2016-04-27 泰拉半导体株式会社 Chamber for heat treatment device and method for manufacturing same
JP2016538730A (en) * 2013-09-10 2016-12-08 テラセミコン コーポレイション Chamber of heat treatment apparatus and manufacturing method thereof
CN110217556A (en) * 2019-06-06 2019-09-10 平安开诚智能安全装备有限责任公司 A kind of belt conveyer for coal mine protection system

Similar Documents

Publication Publication Date Title
JP5528374B2 (en) Gas decompression supply device, cylinder cabinet including the same, valve box, and substrate processing apparatus
CN102884348B (en) Direct contact diaphragm valve and high pressure gas filler container
CN101819919B (en) Tray, tray support member, and vacuum processing apparatus
JP2011146624A (en) Vacuum chamber, vacuum processing apparatus, and method of manufacturing vacuum chamber
CN110155249A (en) A kind of ship&#39;s space method of construction with big window
JPWO2008156031A1 (en) Vacuum processing equipment
US20170040147A1 (en) Systems Comprising Silicon Coated Gas Supply Conduits and Methods for Applying Coatings
KR101367473B1 (en) Structure of substrate supporting table, and plasma processing apparatus
US20100065306A1 (en) Rupture resistant system
KR101653709B1 (en) Electron beam welding of large vacuum chamber body having a high emissivity coating
KR20120077375A (en) Vacuum chamber for apparatus manufacturing of fpd and method for manufacturing of that
CN108428616A (en) Substrate processing method using same and its device
KR101179961B1 (en) Vacuum heat treatment furnace
JPWO2004086474A1 (en) Container, container manufacturing method, substrate processing apparatus, and semiconductor device manufacturing method
KR20070031610A (en) Vacuum sealing system between processing tube and flange
JP5558035B2 (en) Plasma processing apparatus and method
JP2006080365A (en) Vacuum treating apparatus
KR101642077B1 (en) Vaccum chamber and manufacturing method thereof
JP5580004B2 (en) Vacuum container and vacuum processing apparatus
JP2014065050A (en) Welding method
JP2008081763A (en) Target assembly unit and sputtering apparatus
JP4588393B2 (en) Vacuum processing equipment
JP4772734B2 (en) How to install a pressure reducing orifice in gas piping
JP2022063669A (en) Installation mechanism of building and installation method for building
JP2010161412A (en) Valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20121203

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140121