JP2011142967A - Stress state measuring apparatus - Google Patents

Stress state measuring apparatus Download PDF

Info

Publication number
JP2011142967A
JP2011142967A JP2010004458A JP2010004458A JP2011142967A JP 2011142967 A JP2011142967 A JP 2011142967A JP 2010004458 A JP2010004458 A JP 2010004458A JP 2010004458 A JP2010004458 A JP 2010004458A JP 2011142967 A JP2011142967 A JP 2011142967A
Authority
JP
Japan
Prior art keywords
activity
stress state
stress
prefrontal cortex
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010004458A
Other languages
Japanese (ja)
Other versions
JP5565769B2 (en
Inventor
Kaoru Sakatani
薫 酒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2010004458A priority Critical patent/JP5565769B2/en
Publication of JP2011142967A publication Critical patent/JP2011142967A/en
Application granted granted Critical
Publication of JP5565769B2 publication Critical patent/JP5565769B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stress state measuring apparatus determining the stress state of a subject in real time. <P>SOLUTION: The stress state measuring apparatus includes an activity level measuring unit 1 and a stress state determining unit 2. The activity level measuring unit 1 measures each of the activity level of a right side prefrontal area and the activity level of a left side prefrontal area. The stress state determining unit 2 determines the degree of stress on the basis of a difference between the activity level of the right side prefrontal area and the activity level of the left side prefrontal area measured on the activity level measuring unit 1. For instance, the activity level measuring unit 1 measures the activity level on the basis of the oxygenated hemoglobin concentration or oxygen saturation degree. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明はストレス状態測定装置に関し、特に、脳の活動状態からストレスの程度を測定するストレス状態測定装置に関する。   The present invention relates to a stress state measuring apparatus, and more particularly, to a stress state measuring apparatus that measures the degree of stress from a brain activity state.

近年では、ストレスを脳の活動状態から解明しようとする試みが行われている。例えば、血液中のストレスホルモン量の測定や、ポジトロン断層法(PET)や核磁気共鳴画像法(MRI)により脳活動を測定する装置等がある。しかしながら、これらの手法は何れも装置や測定が大掛かりなものであり、高コストであった。また、血液採取や、身体拘束等の測定時において生ずるストレスも問題となる。   In recent years, attempts have been made to elucidate stress from brain activity. For example, there are devices for measuring the amount of stress hormones in blood, and measuring brain activity by positron tomography (PET) or nuclear magnetic resonance imaging (MRI). However, all of these methods require a large amount of equipment and measurement, and are expensive. In addition, the stress that occurs during blood sampling and body restraint measurement is also a problem.

ストレスのかからない測定手法として、例えば近赤外線分光法、又は、近赤外線時間分解分光法を用い、脳の状態を非浸襲で測定する測定装置が存在する。近赤外線分光法の測定原理は、吸光物質を含む溶液に光を照射したときの光の減衰と吸光物質の濃度関係を示したBeer−Lambert法による。この原理を利用した装置により、被験者の頭部に設置した測定用プローブ等を用いて、脳の血流量を測定する。

測定パラメータは、酸素化ヘモグロビン濃度、脱酸素化ヘモグロビン濃度及び酸素飽和度である。酸素化ヘモグロビン濃度の濃度変化や酸素飽和度は、神経活動時の局所脳血流変化と相関するため、神経活動の指標とされている。近赤外線時間分解分光法は、上記近赤外線分光法に、時間分解分光法を導入したものであり、ヘモグロビン濃度や酸素飽和度を絶対値として得られるようにしたものである。
As a measurement technique that does not apply stress, for example, there is a measurement apparatus that uses a near-infrared spectroscopy or a near-infrared time-resolved spectroscopy to measure a brain state in a non-invasive manner. The measurement principle of the near-infrared spectroscopy is based on the Beer-Lambert method showing the relationship between the attenuation of light and the concentration of the light-absorbing substance when the solution containing the light-absorbing substance is irradiated with light. With a device using this principle, the blood flow in the brain is measured using a measuring probe or the like placed on the subject's head.

The measurement parameters are oxygenated hemoglobin concentration, deoxygenated hemoglobin concentration, and oxygen saturation. Changes in oxygenated hemoglobin concentration and oxygen saturation correlate with changes in local cerebral blood flow during nerve activity, and are therefore an indicator of nerve activity. Near-infrared time-resolved spectroscopy is obtained by introducing time-resolved spectroscopy into the above-mentioned near-infrared spectroscopy so that hemoglobin concentration and oxygen saturation can be obtained as absolute values.

上述の近赤外線時間分解分光法を用いて、脳の血流量を測定する装置として、例えば特許文献1や特許文献2に記載のものがある。特許文献1では、外的刺激前後での前頭前野全体の血流量の変化と、血圧、脈拍数等の変化等とから、総合的に人体に作用する外的刺激を評価する手法が開示されている。特許文献2では、森林浴前後での前頭前野全体の血流量の変化と、血圧、脈拍数等の変化等とから、総合的に生理反応を評価する手法が開示されている。   As an apparatus for measuring the blood flow in the brain using the above-mentioned near-infrared time-resolved spectroscopy, for example, there are devices described in Patent Document 1 and Patent Document 2. Patent Document 1 discloses a method for comprehensively evaluating external stimuli acting on the human body from changes in blood flow in the entire prefrontal cortex before and after external stimulation, changes in blood pressure, pulse rate, and the like. Yes. Patent Document 2 discloses a method for comprehensively evaluating a physiological reaction from changes in blood flow in the entire prefrontal cortex before and after forest bathing, changes in blood pressure, pulse rate, and the like.

また、近赤外線時間分解分光法を用いて、脳の血流量を測定し、ストレスに対する耐性を測定する装置の例として、例えば本願の発明者による非特許文献1がある。非特許文献1では、演算タスクを与える等のストレステスト前後での前頭前野の血流量の検出値の時間的変化量を右側と左側の前頭前野で比較して、右側前頭前野の活動優位性により、ストレスに対する耐性を判断する装置が開示されている。非特許文献1では、ストレステスト前後における左右の前頭前野の正規化された血流量の変化量を比較して、右側前頭前野の活動優位性が顕著である程、即ち、ストレステスト前後で左側前頭前野より右側前頭前野の血流量の変化量が大きい程、ストレス耐性が低いことを、統計的に明らかにしている。   Further, as an example of an apparatus for measuring brain blood flow using near infrared time-resolved spectroscopy and measuring resistance to stress, there is Non-Patent Document 1 by the inventor of the present application, for example. In Non-Patent Document 1, the temporal change in the detected value of the blood flow in the prefrontal cortex before and after the stress test such as giving a calculation task is compared between the right prefrontal cortex and the right prefrontal cortex, An apparatus for determining resistance to stress is disclosed. In Non-Patent Document 1, the amount of change in the normalized blood flow in the right and left prefrontal cortex before and after the stress test is compared, and the greater the activity superiority of the right frontal cortex, that is, the left frontal before and after the stress test. It is statistically clarified that the greater the change in blood flow in the right prefrontal cortex than in the front cortex, the lower the stress tolerance.

特開2002−177282号公報JP 2002-177282 A 特開2005−103309号公報JP 2005-103309 A

Kaoru SAKATANI 「Relation between Mental Stress−induced Prefrontal Cortex Activity and Skin Conditions: A Near−infrared Spectroscopy Study」、BRAIN RESEARCH 1184(2007)P210−216Kaoru SAKATANI “Relation between Mental Stress-induced Preferential Cortex Activity and Skin Conditions: A Near-infrared Spectroscopy Study, SRA 118210R

特許文献1や特許文献2に開示の技術は、環境変化に対する前頭前野の血流量の変化と、その他種々のパラメータから総合的に生理反応を判断するものである。また、特許文献1では、人体に作用する外的刺激前後の脳の活動状態を見るものであり、ストレス状態を判断するものではなかった。また、特許文献2でも、森林浴前後での脳の活動状態を見るものであり、これもストレス状態を判断するものではなかった。   The technologies disclosed in Patent Document 1 and Patent Document 2 comprehensively determine a physiological response from changes in blood flow in the prefrontal cortex with respect to environmental changes and various other parameters. Moreover, in patent document 1, the activity state of the brain before and after the external stimulus which acts on a human body is seen, and the stress state is not judged. In Patent Document 2, the brain activity state before and after the forest bathing is also observed, and this does not determine the stress state.

非特許文献1に開示の技術は、非浸襲で測定できるため、被験者の測定に対するストレスは低減される。しかしながら、まずストレステスト前に、基準となる安静時の脳の活動状態を測定し、ストレステストを行った後に、再度脳の活動状態を測定するため、特許文献1や特許文献2に開示の技術と同様、脳の活動状態の変化を見るものであった。さらに、ストレステストに対する慣れや個人の好悪の問題等が生じ得るため、計測された脳の活動状態の誤差要因となり得るという問題があった。また、非特許文献1は、ストレステストに起因する脳の活動状態の変化が測定できるのであって、被験者がストレスを受けやすいか否かの傾向を判断できるにすぎない。したがって、被験者の現在のストレス状態を解明するものではなかった。   Since the technique disclosed in Non-Patent Document 1 can be measured without invasion, the stress on the measurement of the subject is reduced. However, the technique disclosed in Patent Document 1 and Patent Document 2 is first used to measure the brain activity state at rest as a reference before the stress test, and to measure the brain activity state again after performing the stress test. As with, the changes in brain activity were observed. Furthermore, there is a problem that it may become an error factor of the measured brain activity state because problems such as familiarity with the stress test and personal preference may occur. Further, Non-Patent Document 1 can measure a change in the activity state of the brain caused by a stress test, and can only determine a tendency of whether or not a subject is easily stressed. Therefore, it did not elucidate the current stress state of the subject.

本発明は、斯かる実情に鑑み、リアルタイムに被験者のストレス状態を判断できるストレス状態測定装置を提供しようとするものである。   In view of such circumstances, the present invention intends to provide a stress state measuring apparatus that can determine a subject's stress state in real time.

上述した本発明の目的を達成するために、本発明によるストレス状態測定装置は、右側前頭前野の活性度と左側前頭前野の活性度とをそれぞれ測定する活性度測定部と、活性度測定部で測定される右側前頭前野の活性度と左側前頭前野との活性度の差分に基づき、ストレスの程度を判断するストレス状態判断部と、を具備するものである。   In order to achieve the above-described object of the present invention, a stress state measurement apparatus according to the present invention includes an activity measurement unit that measures the activity of the right prefrontal cortex and the activity of the left prefrontal cortex, and an activity measurement unit, respectively. And a stress state determination unit that determines the degree of stress based on the difference between the measured activity of the right prefrontal cortex and the activity of the left prefrontal cortex.

また、活性度測定部は、酸素化ヘモグロビン濃度又は酸素飽和度に基づき活性度を測定すれば良い。   The activity measuring unit may measure the activity based on the oxygenated hemoglobin concentration or oxygen saturation.

また、活性度測定部は、赤外線発光部と赤外線受光部とからなる一対の測定用プローブを有し、一対の測定用プローブにより、近赤外線時間分解分光法を用いて右側前頭前野の活性度と左側前頭前野の活性度とをそれぞれ測定すれば良い。   The activity measuring unit has a pair of measurement probes each including an infrared light emitting unit and an infrared light receiving unit. With the pair of measurement probes, the activity of the right prefrontal cortex is measured using near infrared time-resolved spectroscopy. What is necessary is to measure the activity of the left prefrontal cortex.

本発明のストレス状態測定装置には、リアルタイムに被験者のストレス状態を判断できるという利点がある。   The stress state measuring apparatus of the present invention has an advantage that the stress state of the subject can be determined in real time.

図1は、本発明のストレス状態測定装置を説明するための概略ブロック図である。FIG. 1 is a schematic block diagram for explaining a stress state measuring apparatus according to the present invention. 図2は、本発明のストレス状態測定装置の活性度測定部で測定される活性度の差分と従来技術において測定される活性度の相対変化量との違いを説明する模式図である。FIG. 2 is a schematic diagram for explaining the difference between the difference in activity measured by the activity measuring unit of the stress state measuring apparatus of the present invention and the relative change in activity measured in the prior art. 図3は、本発明のストレス状態測定装置の測定結果と、状態−特性不安検査によるストレス度との相関関係を示すグラフである。FIG. 3 is a graph showing the correlation between the measurement result of the stress state measuring apparatus of the present invention and the stress level by the state-characteristic anxiety test. 図4は、本発明のストレス状態測定装置の測定結果と、身体的ストレス反応との相関関係を示すグラフである。FIG. 4 is a graph showing the correlation between the measurement result of the stress state measuring apparatus of the present invention and the physical stress response.

以下、本発明を実施するための形態を図示例と共に説明する。図1は、本発明のストレス状態測定装置を説明するための概略ブロック図である。図示例の通り、本発明のストレス状態測定装置は、活性度測定部1と、ストレス状態判断部2から主に構成されている。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described together with illustrated examples. FIG. 1 is a schematic block diagram for explaining a stress state measuring apparatus according to the present invention. As shown in the drawing, the stress state measuring apparatus of the present invention is mainly composed of an activity measuring unit 1 and a stress state determining unit 2.

活性度測定部1は、右側前頭前野の活性度と左側前頭前野の活性度とをそれぞれ測定するものである。ここで、活性度とは、神経の活動量を意味するものである。即ち、活性度測定部1は、右側前頭前野の神経活動量と左側前頭前野の神経活動量とをそれぞれ測定できるものであれば良い。   The activity measuring unit 1 measures the activity of the right prefrontal cortex and the activity of the left prefrontal cortex, respectively. Here, the degree of activity means the amount of nerve activity. That is, the activity measuring unit 1 may be any device that can measure the amount of neural activity in the right prefrontal cortex and the amount of neural activity in the left prefrontal cortex.

図示例では、活性度測定部1は、近赤外線時間分解分光法を用いて、脱酸素化ヘモグロビン濃度や酸素飽和度を測定するものを示した。なお、近赤外時間分解分光法は、近赤外光領域において、血液中のヘモグロビン等の色素蛋白が酸素と結合した状態と解離した状態とでは、吸光度スペクトルが異なることを利用し、間接的に生体内の酸素代謝を測る方法である。近赤外光をパルス光として生体に照射すると、パルス光は生体内部で散乱し、時間に応じた様々な光路を通って反射してくる。このパルス光の広がりを時間分解分光法(TRS: Time Resolved Spectroscopy)によって解析することにより、生体の活動を捉えることが可能となる。時間分解分光法は、測定する物理量が時間に対してどのように変化するかを測定するための手法である。図示例の活性度測定部1では、この近赤外時間分解分光法を用いて、脱酸素化ヘモグロビン濃度や酸素飽和度を測定することで、前頭前野の活性度を測定するものである。   In the illustrated example, the activity measurement unit 1 uses the near infrared time-resolved spectroscopy to measure the deoxygenated hemoglobin concentration and oxygen saturation. Near-infrared time-resolved spectroscopy is based on the fact that in the near-infrared light region, the absorbance spectrum differs between the state in which chromoproteins such as hemoglobin in the blood are bound to oxygen and in the dissociated state. It is a method of measuring oxygen metabolism in the body. When near-infrared light is irradiated on a living body as pulsed light, the pulsed light is scattered inside the living body and reflected through various optical paths according to time. By analyzing the spread of the pulsed light by time-resolved spectroscopy (TRS), it is possible to capture the activity of the living body. Time-resolved spectroscopy is a technique for measuring how a physical quantity to be measured changes with time. The activity measuring unit 1 in the illustrated example measures the activity of the prefrontal cortex by measuring the deoxygenated hemoglobin concentration and the oxygen saturation using the near infrared time-resolved spectroscopy.

ここで、近赤外線時間分解分光法を用いた活性度測定部1は、測定用プローブ3,3を有する。測定用プローブ3,3は、被験者の前額部の左右の皮膚上にそれぞれ貼付されるものである。測定用プローブ3,3は、赤外線発光部4と赤外線受光部5とからなる。赤外線発光部4は、例えば波長が700nmから1200nm、より具体的には、例えば760nm、800nm、830nmの3種類の近赤外光のパルス波を、例えば150ピコ秒以下、より具体的には、例えば数ピコ秒毎に照射可能な半導体パルスレーザ光源である。赤外線受光部5は、例えば光電子増倍管と増幅器からなるものである。赤外線受光部5は、赤外線発光部4から照射された近赤外光が脳組織内で散乱・透過して戻ってきた光を受講するものである。活性度測定部1の具体例としては、例えば浜松ホトニクス株式会社製のTRSシリーズが挙げられる。   Here, the activity measuring unit 1 using near-infrared time-resolved spectroscopy has measurement probes 3 and 3. The measuring probes 3 and 3 are attached to the left and right skins of the forehead portion of the subject. The measurement probes 3 and 3 include an infrared light emitting unit 4 and an infrared light receiving unit 5. The infrared light emitting unit 4 has, for example, a wavelength of 700 nm to 1200 nm, more specifically, for example, three types of near infrared light pulse waves of 760 nm, 800 nm, and 830 nm, for example, 150 picoseconds or less, more specifically, For example, it is a semiconductor pulse laser light source capable of irradiation every few picoseconds. The infrared light receiving unit 5 includes, for example, a photomultiplier tube and an amplifier. The infrared light receiving unit 5 receives light returned from the near-infrared light irradiated from the infrared light emitting unit 4 after being scattered and transmitted in the brain tissue. Specific examples of the activity measuring unit 1 include a TRS series manufactured by Hamamatsu Photonics Co., Ltd.

このように、本発明のストレス状態測定装置の活性度測定部1は、赤外線受光部5で受光した結果を、時間分解分光法により解析することで、ヘモグロビン濃度や酸素飽和度が測定できるものである。   As described above, the activity measuring unit 1 of the stress state measuring apparatus of the present invention can measure the hemoglobin concentration and the oxygen saturation by analyzing the result received by the infrared light receiving unit 5 by time-resolved spectroscopy. is there.

なお、左右の前頭前野の位置する辺りに配置された測定用プローブ3,3は、それぞれ左右の前頭前野の活性度を別々に測定するために、例えば左右交互に赤外線発光部4から近赤外光を照射し交互に赤外線受光部5により受光すれば良い。   Note that the measurement probes 3 and 3 arranged in the vicinity of the left and right prefrontal cortex, for example, alternately measure the activity of the left and right prefrontal cortex separately from the left and right infrared light emitting units 4 in the near infrared. What is necessary is just to irradiate light and to receive light by the infrared light-receiving part 5 alternately.

なお、上述の活性度測定部1では、近赤外線時間分解分光法を用いて右側前頭前野の活性度と左側前頭前野の活性度とをそれぞれ測定するものを説明したが、本発明のストレス状態測定装置の活性度測定部はこれに限定されず、右側前頭前野の活性度と左側前頭前野の活性度とをそれぞれ測定できるものであれば、例えば超音波や磁気等を用いて活性度を測定するものを用いても良い。   In the above-described activity measurement unit 1, the measurement of the activity of the right prefrontal cortex and the activity of the left prefrontal cortex using near infrared time-resolved spectroscopy has been described. The activity measurement unit of the device is not limited to this, and the activity is measured using, for example, ultrasonic waves or magnetism, as long as the activity of the right prefrontal cortex and the activity of the left prefrontal cortex can be measured respectively. A thing may be used.

ストレス状態判断部2は、活性度測定部1で測定される右側前頭前野の活性度と左側前頭前野との活性度の差分に基づき、ストレスの程度を判断するものである。   The stress state determination unit 2 determines the degree of stress based on the difference between the activity of the right prefrontal cortex and the activity of the left prefrontal cortex measured by the activity measurement unit 1.

例えば、活性度測定部1で左右の前頭前野の活性度として酸素飽和度を測定した場合、右側前頭前野の酸素飽和度の数値と、左側前頭前野の酸素飽和度の数値とを減算する。この差分の大きさを、例えばストレス値として、ストレスの程度を測る指標とすれば良い。   For example, when the activity measurement unit 1 measures the oxygen saturation as the activity of the left and right prefrontal cortex, the numerical value of the oxygen saturation of the right prefrontal cortex and the value of the oxygen saturation of the left prefrontal cortex are subtracted. The magnitude of this difference may be used as an index for measuring the degree of stress, for example, as a stress value.

ここで、本発明のストレス状態測定装置と、従来技術の非特許文献1との違いを説明する。図2は、本発明のストレス状態測定装置の活性度測定部で測定される活性度の差分と従来技術において測定される活性度の相対変化量との違いを説明する模式図であり、図2(a)が、非特許文献1に記載の従来技術により測定された左右の前頭前野の活性度の相対変化量を示す模式図であり、図2(b)が、本発明のストレス状態測定装置で測定された左右の前頭前野の活性度の絶対量を示す模式図である。   Here, the difference between the stress state measuring apparatus of the present invention and the conventional non-patent document 1 will be described. FIG. 2 is a schematic diagram for explaining the difference between the difference in activity measured by the activity measuring unit of the stress state measuring apparatus of the present invention and the relative change in activity measured in the prior art. (A) is a schematic diagram which shows the relative variation | change_quantity of the activity of the right and left prefrontal cortex measured by the prior art of a nonpatent literature 1, FIG.2 (b) is the stress state measuring apparatus of this invention. It is a schematic diagram which shows the absolute amount of the activity of the right and left prefrontal cortex measured by (1).

非特許文献1に記載の従来技術は、図2(a)に示される通り、ストレステスト前の左右の前頭前野の活性度を正規化し、それを相対基準として、ストレステスト後の左右の前頭前野のそれぞれの活性度を測定するものである。ここで、ストレステスト前から、ストレステスト後の活性度の変相対化量を、右側前頭前野に対してはΔ右変化量、左側前頭前野に対してはΔ左変化量とする。従来技術では、このΔ右変化量とΔ左変化量の差分であるΔ左右変化量を取り、右側の変化量が大きい場合、即ち、右側優位性がある場合に、ストレスを受けやすい傾向があると判断するものである。   As shown in FIG. 2 (a), the prior art described in Non-Patent Document 1 normalizes the activity of the left and right prefrontal cortex before the stress test, and uses that as a relative reference to the left and right prefrontal cortex after the stress test. The activity of each is measured. Here, the amount of relative change in activity after the stress test from before the stress test is defined as Δright variation for the right prefrontal cortex and Δleft variation for the left prefrontal cortex. In the prior art, the Δ right / left change amount which is the difference between the Δ right change amount and the Δ left change amount is taken, and when the right change amount is large, that is, when there is a right side advantage, there is a tendency to be easily stressed. It is to be judged.

一方、本発明のストレス状態測定装置では、図2(b)に示される通り、左右の前頭前野の活性度の絶対量をそれぞれ測定する。ここで、測定された左右の前頭前野の活性度の差分をΔ左右とする。本発明のストレス状態測定装置では、このΔ左右を求めて、この値が大きい程、高ストレス状態であると判断している。反対に、左側前頭前野の活性度が大きい場合は、低ストレス状態であると判断する。   On the other hand, in the stress state measuring apparatus of the present invention, as shown in FIG. 2 (b), the absolute amount of the activity of the left and right prefrontal cortex is measured. Here, the difference between the measured activity levels of the left and right prefrontal cortex is taken as Δ left and right. In the stress state measuring apparatus of the present invention, the Δ left and right are obtained, and the larger this value is, the higher the stress state is determined. On the other hand, when the activity of the left prefrontal cortex is large, it is determined that the stress state is low.

本願発明者は、上述の左右の前頭前野の活性度の差が、ストレスと相関関係があることを見出した。本発明のストレス状態測定装置は、左右の前頭前野の活性度の差を求めることで、リアルタイムにストレス状態を測定することが可能となった。   The inventor of the present application has found that the difference in activity between the left and right prefrontal cortex described above correlates with stress. The stress state measuring apparatus of the present invention can measure the stress state in real time by obtaining the difference in activity between the left and right prefrontal cortex.

以下、本発明のストレス状態測定装置により測定したストレス状態と従来の一般的なストレス検査によるストレス状態との相関関係を検証したので、以下に説明する。   Hereinafter, since the correlation between the stress state measured by the stress state measuring apparatus of the present invention and the stress state by the conventional general stress test has been verified, it will be described below.

図3は、本発明のストレス状態測定装置の測定結果と、状態−特性不安検査によるストレス状態との相関関係を示すグラフである。従来から知られている、状態−特性不安検査(STAI)によるストレス度と、本発明のストレス状態測定装置により測定されたストレス状態とを比較した。   FIG. 3 is a graph showing the correlation between the measurement result of the stress state measuring apparatus of the present invention and the stress state by the state-characteristic anxiety test. The conventionally known stress level by the state-characteristic anxiety test (STAI) was compared with the stress state measured by the stress state measuring apparatus of the present invention.

図3(a)は、ネガティブな感情の場合の比較グラフであり、図3(b)は、ポジティブな感情の場合の比較グラフである。また、グラフの横軸は、STAIによる状態不安尺度のスコアである。縦軸は、左右の前頭前野の酸素飽和度の差の割合(%)であり、プラス値は、右側前頭前野の酸素飽和度が大きい、即ち、ストレス状態測定装置が高ストレス状態であると判断していることを示す。反対に、マイナス値は、左側前頭前野の酸素飽和度が大きい、即ち、ストレス状態測定装置が低ストレス状態であると判断していることを示す。   FIG. 3A is a comparison graph in the case of negative emotions, and FIG. 3B is a comparison graph in the case of positive emotions. Also, the horizontal axis of the graph is the score of the state anxiety scale by STAI. The vertical axis represents the ratio (%) of the difference in oxygen saturation between the left and right prefrontal cortex, and the positive value indicates that the oxygen saturation in the right prefrontal cortex is large, that is, the stress state measuring device is in a high stress state. Indicates that On the other hand, a negative value indicates that the oxygen saturation in the left prefrontal cortex is large, that is, the stress state measuring device determines that the stress state measuring device is in a low stress state.

図示の通り、ネガティブな感情の場合もポジティブな感情の場合も、本発明のストレス状態測定装置とSTAIとは、同じような傾向があることが分かる。ネガティブな感情の場合の比較においては、相関係数rは、r=+0.51であり、p値はp<0.03であった。また、ポジティブな感情との比較においては、相関係数rはr=−0.57であり、p値はp<0.02であった。このように、本発明のストレス状態測定装置による測定結果は、高ストレス状態、又は、低ストレス状態の両方において、本発明のストレス状態測定装置の結果は、従来のSTAIによるストレス度と相関が高いことが分かる。   As shown in the figure, it can be seen that the stress state measuring apparatus of the present invention and STAI tend to have the same tendency for both negative and positive emotions. In the comparison in the case of negative emotion, the correlation coefficient r was r = + 0.51, and the p value was p <0.03. In comparison with positive emotion, the correlation coefficient r was r = −0.57, and the p value was p <0.02. As described above, the measurement result of the stress state measurement device of the present invention is highly correlated with the stress level of the conventional STAI in both the high stress state and the low stress state. I understand that.

また、図4は、本発明のストレス状態測定装置により測定されたストレス状態と、身体的ストレス反応との相関関係を示すグラフである。一般に、ストレス状態が高くなると、身体的ストレス反応として、顔面皮脂量が増加することが知られている。そこで、顔面皮脂量と本発明のストレス状態測定装置による測定結果を比較した。グラフの横軸は、左右の前頭前野の酸素飽和度の差の割合(%)であり、縦軸は、顔面皮脂量(μg/cm)である。 FIG. 4 is a graph showing the correlation between the stress state measured by the stress state measuring apparatus of the present invention and the physical stress response. In general, it is known that when the stress state increases, the amount of facial sebum increases as a physical stress response. Therefore, the amount of facial sebum was compared with the measurement results obtained by the stress state measuring apparatus of the present invention. The horizontal axis of the graph is the ratio (%) of the difference in oxygen saturation between the left and right prefrontal cortex, and the vertical axis is the amount of facial sebum (μg / cm 2 ).

図示の通り、右側前頭前野の酸素飽和度が高い、即ち、ストレス状態測定装置が高ストレス状態であると判断する程皮脂量が多くなる傾向があることが分かる。また、相関係数rはr=+0.40であり、p値はp<0.01であった。このように、本発明のストレス状態測定装置の結果は、身体的ストレス反応とも相関が高いことが分かる。   As shown in the drawing, it can be seen that the amount of sebum tends to increase as the oxygen saturation of the right prefrontal cortex is high, that is, the stress state measuring device determines that the stress state measuring device is in a high stress state. The correlation coefficient r was r = + 0.40, and the p value was p <0.01. Thus, it can be seen that the result of the stress state measuring apparatus of the present invention is highly correlated with the physical stress response.

なお、上述の図示例では、ストレス状態を酸素飽和度で示したが、本発明のストレス状態測定装置はこれに限定されず、酸素化ヘモグロビン濃度や総ヘモグロビン濃度等を用いてストレス状態の指標としても良い。   In the illustrated example, the stress state is indicated by oxygen saturation. However, the stress state measuring apparatus of the present invention is not limited to this, and the oxygen state is used as an index of the stress state using the oxygenated hemoglobin concentration, the total hemoglobin concentration, or the like. Also good.

なお、本発明のストレス状態測定装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   It should be noted that the stress state measuring device of the present invention is not limited to the above-described illustrated examples, and it is needless to say that various changes can be made without departing from the gist of the present invention.

1 活性度測定部
2 ストレス状態判断部
3 測定用プローブ
4 赤外線発光部
5 赤外線受光部
DESCRIPTION OF SYMBOLS 1 Activity measurement part 2 Stress state judgment part 3 Probe for measurement 4 Infrared light emission part 5 Infrared light reception part

Claims (3)

ストレスの程度を測定するストレス状態測定装置であって、該ストレス状態測定装置は、
右側前頭前野の活性度と左側前頭前野の活性度とをそれぞれ測定する活性度測定部と、
前記活性度測定部で測定される右側前頭前野の活性度と左側前頭前野との活性度の差分に基づき、ストレスの程度を判断するストレス状態判断部と、
を具備することを特徴とするストレス状態測定装置。
A stress state measuring device for measuring the degree of stress, the stress state measuring device,
An activity measuring unit for measuring the activity of the right prefrontal cortex and the activity of the left prefrontal cortex, respectively,
A stress state determination unit that determines the degree of stress based on the difference between the activity of the right prefrontal cortex and the activity of the left prefrontal cortex measured by the activity measuring unit;
A stress state measuring apparatus comprising:
請求項1に記載のストレス状態測定装置において、前記活性度測定部は、酸素化ヘモグロビン濃度又は酸素飽和度に基づき活性度を測定することを特徴とするストレス状態測定装置。   The stress state measuring apparatus according to claim 1, wherein the activity measuring unit measures the activity based on oxygenated hemoglobin concentration or oxygen saturation. 請求項1又は請求項2に記載のストレス状態測定装置において、前記活性度測定部は、赤外線発光部と赤外線受光部からなる一対の測定用プローブを有し、該一対の測定用プローブにより、近赤外線時間分解分光法を用いて右側前頭前野の活性度と左側前頭前野の活性度とをそれぞれ測定することを特徴とするストレス状態測定装置。   The stress state measuring apparatus according to claim 1 or 2, wherein the activity measuring unit includes a pair of measuring probes each including an infrared light emitting unit and an infrared light receiving unit, and the pair of measuring probes An apparatus for measuring a stress state, wherein the activity of the right prefrontal cortex and the activity of the left prefrontal cortex are respectively measured using infrared time-resolved spectroscopy.
JP2010004458A 2010-01-12 2010-01-12 Stress state measuring device Expired - Fee Related JP5565769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010004458A JP5565769B2 (en) 2010-01-12 2010-01-12 Stress state measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010004458A JP5565769B2 (en) 2010-01-12 2010-01-12 Stress state measuring device

Publications (2)

Publication Number Publication Date
JP2011142967A true JP2011142967A (en) 2011-07-28
JP5565769B2 JP5565769B2 (en) 2014-08-06

Family

ID=44458357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010004458A Expired - Fee Related JP5565769B2 (en) 2010-01-12 2010-01-12 Stress state measuring device

Country Status (1)

Country Link
JP (1) JP5565769B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018008039A (en) * 2016-06-30 2018-01-18 パナソニックIpマネジメント株式会社 Biological information detection device
JP2021091260A (en) * 2019-12-09 2021-06-17 日産自動車株式会社 Occupant state determination method and occupant state determination device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042956A (en) * 2004-08-02 2006-02-16 Keiichi Mitani Evaluation and ameliorate system of conditions of mind and body
JP2009136495A (en) * 2007-12-06 2009-06-25 Shimadzu Corp Environmental control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042956A (en) * 2004-08-02 2006-02-16 Keiichi Mitani Evaluation and ameliorate system of conditions of mind and body
JP2009136495A (en) * 2007-12-06 2009-06-25 Shimadzu Corp Environmental control system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013048220; 谷田正弘: '前頭葉活動により顔の肌性格が予測できる-近赤外分光分析法を用いた検討-' フラグレンスジャーナル Vol.35 No.1, 20070115, Page.93-95 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018008039A (en) * 2016-06-30 2018-01-18 パナソニックIpマネジメント株式会社 Biological information detection device
JP7203314B2 (en) 2016-06-30 2023-01-13 パナソニックIpマネジメント株式会社 Biological information detector
JP2021091260A (en) * 2019-12-09 2021-06-17 日産自動車株式会社 Occupant state determination method and occupant state determination device
JP7333254B2 (en) 2019-12-09 2023-08-24 日産自動車株式会社 Occupant state determination method and occupant state determination device

Also Published As

Publication number Publication date
JP5565769B2 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
Funane et al. Quantitative evaluation of deep and shallow tissue layers' contribution to fNIRS signal using multi-distance optodes and independent component analysis
EP3094251B1 (en) Near-infrared spectroscopy and diffuse correlation spectroscopy device and methods
Steinbrink et al. Determining changes in NIR absorption using a layered model of the human head
JP4702107B2 (en) Biological light measurement device
Mesquita et al. Influence of probe pressure on the diffuse correlation spectroscopy blood flow signal: extra-cerebral contributions
US20140316218A1 (en) Systems and methods for monitoring brain metabolism and activity using electroencephalogram and optical imaging
Wabnitz et al. Time-resolved near-infrared spectroscopy and imaging of the adult human brain
US9259486B2 (en) Method and system for calculating a quantification indicator for quantifying a dermal reaction on the skin of a living being
US20040184024A1 (en) Optical measurement apparatus for a living body
US9506854B2 (en) Method and device for measuring scattering-absorption body
Abdalmalak et al. Effects of systemic physiology on mapping resting-state networks using functional near-infrared spectroscopy
JP6472145B2 (en) Brain function measurement device and light irradiation / light detection method using the same
JP2009136434A (en) Optical meter
JP5565769B2 (en) Stress state measuring device
JP3876322B2 (en) Non-invasive brain activity measurement method
YAMADA Continuous wave functional near-infrared spectroscopy: various signal components and appropriate management
Vignal et al. Measuring brain hemodynamic changes in a songbird: responses to hypercapnia measured with functional MRI and near-infrared spectroscopy
WO2015037446A1 (en) Measurement method and measurement device for brown adipose tissue
Li et al. Assessing working memory in real-life situations with functional near-infrared spectroscopy
GB2595162A (en) Biological function measurement device, and biological function measurement method, and program
Zhang et al. Adaptation of stimulation duration to enhance auditory response in fNIRS block design
Selb et al. Sensitivity of Continuous-Wave NIRS and Diffuse Correlation Spectroscopy to Cerebral Hemodynamics during Hypercapnia
WO2014170941A1 (en) Biooptical measurement data analysis device and method
Gurjar et al. High reliability, miniature personal hypoxia monitoring system
Funane et al. Near-infrared spectroscopy system with non-contact source and detector for in vivo multi-distance measurement of deep biological tissue

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R150 Certificate of patent or registration of utility model

Ref document number: 5565769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees