JP2011128330A - Laser device - Google Patents

Laser device Download PDF

Info

Publication number
JP2011128330A
JP2011128330A JP2009285993A JP2009285993A JP2011128330A JP 2011128330 A JP2011128330 A JP 2011128330A JP 2009285993 A JP2009285993 A JP 2009285993A JP 2009285993 A JP2009285993 A JP 2009285993A JP 2011128330 A JP2011128330 A JP 2011128330A
Authority
JP
Japan
Prior art keywords
wavelength
laser
wavelength conversion
laser beam
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009285993A
Other languages
Japanese (ja)
Inventor
Hitoshi Kawai
斉 河井
Akira Tokuhisa
章 徳久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009285993A priority Critical patent/JP2011128330A/en
Publication of JP2011128330A publication Critical patent/JP2011128330A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser device improving the quality of a laser beam (UV light) generated by a wavelength conversion. <P>SOLUTION: The laser device 1 includes: a laser beam generator 10 to generate the laser beam Ls; a wavelength convertor 20 to convert the wavelength of the laser beam Ls to a predetermined wavelength, using induced Raman scattering; and a wavelength conversion optical system 30 to convert the wavelength of the laser beam Ls1 which has been converted by the wavelength convertor 20 to the predetermined wavelength, to a UV region wavelength. The wavelength conversion optical system 30 includes a wavelength conversion optical element 34 to perform the wavelength conversion using sum-frequency generation by non-critical phase matching. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、レーザ光発生部から射出されたレーザ光を紫外光に波長変換する波長変換部を備えたレーザ装置に関する。   The present invention relates to a laser device including a wavelength conversion unit that converts the wavelength of laser light emitted from a laser light generation unit into ultraviolet light.

波長変換を行うことにより紫外光を出力するレーザ装置としては、例えば、レチクルのパターンを基板に転写する露光装置や、各種光学式検査装置、レーザ治療装置等の光源として用いられている。この種のレーザ装置では、光増幅器により増幅された赤外波長領域のレーザ光を、複数の波長変換光学素子から成る波長変換部において順次波長変換し、最終的にArFエキシマレーザの発振波長と同じ波長である193[nm]の紫外光として出力するような構成のものが知られている(例えば、特許文献1を参照)。   As a laser apparatus that outputs ultraviolet light by performing wavelength conversion, for example, it is used as a light source for an exposure apparatus that transfers a reticle pattern onto a substrate, various optical inspection apparatuses, laser treatment apparatuses, and the like. In this type of laser apparatus, laser light in the infrared wavelength region amplified by an optical amplifier is sequentially wavelength-converted by a wavelength conversion unit composed of a plurality of wavelength conversion optical elements, and finally the same as the oscillation wavelength of an ArF excimer laser. A configuration that outputs light as ultraviolet light having a wavelength of 193 [nm] is known (see, for example, Patent Document 1).

特開2000−200747号公報JP 2000-200747 A

しかしながら、このような構成のレーザ装置では、波長変換によって生じるレーザ光(紫外光)の質が比較的低いものであり、紫外光への波長変換効率が低下する一因となっていた。   However, in the laser device having such a configuration, the quality of the laser light (ultraviolet light) generated by the wavelength conversion is relatively low, which has been a cause of a decrease in the efficiency of wavelength conversion to ultraviolet light.

本発明は、このような問題に鑑みてなされたものであり、波長変換によって生じるレーザ光(紫外光)の質を向上させたレーザ装置を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a laser apparatus that improves the quality of laser light (ultraviolet light) generated by wavelength conversion.

このような目的達成のため、本発明に係るレーザ装置は、レーザ光を発生させるレーザ光発生部と、誘導ラマン散乱を利用して前記レーザ光の波長を所定波長に変換する波長変換器と、前記波長変換器により前記所定波長に変換された前記レーザ光の波長を紫外域の波長に変換する波長変換光学系とを備え、前記波長変換光学系が非臨界位相整合による和周波発生により波長変換を行う波長変換光学素子を有して構成される。   In order to achieve such an object, a laser device according to the present invention includes a laser light generator that generates laser light, a wavelength converter that converts the wavelength of the laser light into a predetermined wavelength using stimulated Raman scattering, A wavelength conversion optical system that converts the wavelength of the laser light converted to the predetermined wavelength by the wavelength converter into a wavelength in the ultraviolet region, and the wavelength conversion optical system converts the wavelength by sum frequency generation by non-critical phase matching. And a wavelength conversion optical element that performs the above.

なお、上述のレーザ装置において、前記レーザ光発生部は、前記レーザ光を発生させる第1の光源部と、前記第1の光源部から発生した前記レーザ光を増幅して前記波長変換器に入射させる光増幅器と、前記所定波長を有するレーザ光を発生させて前記波長変換器に入射させる第2の光源部とを有して構成されることが好ましい。   In the above laser apparatus, the laser light generation unit amplifies the laser light generated from the first light source unit that generates the laser light and the first light source unit, and enters the wavelength converter. It is preferable that the optical amplifier is configured to include a second light source unit that generates the laser light having the predetermined wavelength and causes the laser light to enter the wavelength converter.

また、上述のレーザ装置において、前記波長変換光学系は、前記所定波長を有するレーザ光が入射して、前記所定波長の1/2倍の波長を有するレーザ光を発生させる第1の波長変換光学素子と、前記所定波長を有するレーザ光および前記1/2倍の波長を有するレーザ光が入射して、和周波発生により前記所定波長の1/3倍の波長を有するレーザ光を発生させる第2の波長変換光学素子と、前記1/2倍の波長を有するレーザ光および前記1/3倍の波長を有するレーザ光が入射して、和周波発生により前記所定波長の1/5倍の波長を有するレーザ光を発生させる第3の波長変換光学素子と、前記所定波長を有するレーザ光および前記1/5倍の波長を有するレーザ光が入射して、和周波発生により前記所定波長の1/6倍の波長である前記紫外域の波長を有するレーザ光を発生させる第4の波長変換光学素子とを有し、前記第4の波長変換光学素子が前記非臨界位相整合により波長変換を行うことが好ましい。   Further, in the above laser apparatus, the wavelength conversion optical system includes a first wavelength conversion optical that generates a laser beam having a wavelength that is ½ times the predetermined wavelength when the laser beam having the predetermined wavelength is incident thereon. The element, a laser beam having the predetermined wavelength and a laser beam having the half wavelength are incident, and a laser beam having a wavelength that is 1/3 times the predetermined wavelength is generated by sum frequency generation. The wavelength conversion optical element, the laser light having a wavelength of 1/2 times and the laser light having a wavelength of 1/3 times are incident, and a sum frequency is generated so that the wavelength is 1/5 times the predetermined wavelength. A third wavelength converting optical element for generating the laser beam having the laser beam having the predetermined wavelength and the laser beam having the wavelength of 1/5 times incident, and generating a sum frequency to 1/6 of the predetermined wavelength. Double wavelength And a fourth optical wavelength conversion element for generating a laser beam having a wavelength of the ultraviolet region, it is preferable that the fourth optical wavelength conversion element performs wavelength conversion by the non-critical phase matching.

また、上述のレーザ装置において、前記波長変換光学系は、前記所定波長を有するレーザ光が入射して、前記所定波長の1/2倍の波長を有するレーザ光を発生させる第1の波長変換光学素子と、前記所定波長を有するレーザ光および前記1/2倍の波長を有するレーザ光が入射して、和周波発生により前記所定波長の1/3倍の波長を有するレーザ光を発生させる第2の波長変換光学素子と、前記1/2倍の波長を有するレーザ光および前記1/3倍の波長を有するレーザ光が入射して、和周波発生により前記所定波長の1/5倍の波長を有するレーザ光を発生させる第3の波長変換光学素子と、前記所定波長を有するレーザ光および前記1/5倍の波長を有するレーザ光が入射して、和周波発生により前記所定波長の1/6倍の波長である前記紫外域の波長を有するレーザ光を発生させる第4の波長変換光学素子とを有し、前記第2の波長変換光学素子と前記第3の波長変換光学素子との間の光路上に前記1/2倍または前記1/3倍の波長を有するレーザ光の整形を行うビーム整形素子が設けられるとともに、前記第3の波長変換光学素子が前記非臨界位相整合により波長変換を行うようにしてもよい。   Further, in the above laser apparatus, the wavelength conversion optical system includes a first wavelength conversion optical that generates a laser beam having a wavelength that is ½ times the predetermined wavelength when the laser beam having the predetermined wavelength is incident thereon. The element, a laser beam having the predetermined wavelength and a laser beam having the half wavelength are incident, and a laser beam having a wavelength that is 1/3 times the predetermined wavelength is generated by sum frequency generation. The wavelength conversion optical element, the laser light having a wavelength of 1/2 times and the laser light having a wavelength of 1/3 times are incident, and a sum frequency is generated so that the wavelength is 1/5 times the predetermined wavelength. A third wavelength converting optical element for generating the laser beam having the laser beam having the predetermined wavelength and the laser beam having the wavelength of 1/5 times incident, and generating a sum frequency to 1/6 of the predetermined wavelength. Double wavelength A fourth wavelength conversion optical element for generating laser light having a wavelength in the ultraviolet region, and the first wavelength conversion optical element between the second wavelength conversion optical element and the third wavelength conversion optical element A beam shaping element for shaping laser light having a wavelength of / 2 or 1/3 times is provided, and the third wavelength conversion optical element may perform wavelength conversion by the non-critical phase matching. Good.

本発明によれば、波長変換によって生じるレーザ光(紫外光)の質を向上させることができる。   According to the present invention, the quality of laser light (ultraviolet light) generated by wavelength conversion can be improved.

第1実施形態に係るレーザ装置の概略構成図である。It is a schematic block diagram of the laser apparatus which concerns on 1st Embodiment. 第2実施形態に係るレーザ装置の概略構成図である。It is a schematic block diagram of the laser apparatus which concerns on 2nd Embodiment. レーザ光発生部の変形例を示す図である。It is a figure which shows the modification of a laser beam generation part. レーザ光発生部の第2の変形例を示す図である。It is a figure which shows the 2nd modification of a laser beam generation part.

以下、本発明の好ましい実施形態について説明する。第1実施形態に係るレーザ装置1を図1に示しており、このレーザ装置1は、半導体デバイス製造用の露光装置、各種の光学式検査装置、レーザ治療装置などに好適に用いられるものである。第1実施形態のレーザ装置1は、赤外〜可視域の波長を有するシード光(レーザ光)Lsを発生させるレーザ光発生部10と、誘導ラマン散乱を利用してシード光Lsの波長を所定波長に変換する波長変換器20と、波長変換器20により所定波長に変換されたシード光Ls1の波長を紫外域の波長に変換する波長変換光学系30とを備えて構成される。   Hereinafter, preferred embodiments of the present invention will be described. A laser apparatus 1 according to the first embodiment is shown in FIG. 1, and this laser apparatus 1 is suitably used for an exposure apparatus for manufacturing semiconductor devices, various optical inspection apparatuses, a laser treatment apparatus, and the like. . The laser device 1 according to the first embodiment has a laser light generation unit 10 that generates seed light (laser light) Ls having a wavelength in the infrared to visible range, and a predetermined wavelength of the seed light Ls using stimulated Raman scattering. A wavelength converter 20 that converts the wavelength into a wavelength and a wavelength conversion optical system 30 that converts the wavelength of the seed light Ls1 converted into a predetermined wavelength by the wavelength converter 20 into a wavelength in the ultraviolet region are configured.

レーザ光発生部10は、狭帯域化された単一波長のシード光Lsを発生させる。このようなレーザ光発生部10として、例えばYb(イッテルビウム)ファイバーレーザが用いられ、本実施形態では、レーザ光発生部10が波長λ=1086[nm]となる連続波(CW)のシード光Lsを発生させる。波長変換器20は、誘導ラマン散乱(SRS:Stimulated Raman Scattering)を利用して、レーザ光発生部10から発生したシード光Lsの波長を1086[nm]から1146[nm]にシフトさせる(変換する)。このような波長変換器20として、例えばラマンセルが用いられる。このようにして、波長変換器20により波長を1146[nm]にシフトさせたシード光Ls1を基本波として波長変換光学系30に入射させる。   The laser beam generator 10 generates a single-band seed beam Ls having a narrow band. For example, a Yb (ytterbium) fiber laser is used as the laser beam generation unit 10. In this embodiment, the laser beam generation unit 10 has a continuous wave (CW) seed beam Ls having a wavelength λ = 1086 [nm]. Is generated. The wavelength converter 20 uses stimulated Raman scattering (SRS) to shift (convert) the wavelength of the seed light Ls generated from the laser light generator 10 from 1086 [nm] to 1146 [nm]. ). As such a wavelength converter 20, for example, a Raman cell is used. In this way, the seed light Ls1 whose wavelength is shifted to 1146 [nm] by the wavelength converter 20 is made incident on the wavelength conversion optical system 30 as a fundamental wave.

波長変換光学系30は、非線形光学結晶や周期分極反転結晶などの波長変換光学素子を主体に構成され、波長変換器20から出射されたシード光Ls1を波長変換光学素子に入射させ、第2高調波発生(SHG)や和周波発生により高調波を発生させる。本実施形態の波長変換光学系30は、4つの波長変換光学素子31〜34と、2つのビームスプリッター35,38と、2つのミラー36,37とを有して構成される。   The wavelength conversion optical system 30 is mainly composed of a wavelength conversion optical element such as a nonlinear optical crystal or a periodically poled crystal, and makes the seed light Ls1 emitted from the wavelength converter 20 incident on the wavelength conversion optical element, so that the second harmonic. Harmonics are generated by wave generation (SHG) or sum frequency generation. The wavelength conversion optical system 30 according to the present embodiment includes four wavelength conversion optical elements 31 to 34, two beam splitters 35 and 38, and two mirrors 36 and 37.

波長変換器20から出射され、基本波として波長変換光学系30に入射したシード光Ls1は、第1のビームスプリッター35で2つの光に分岐する。第1のビームスプリッター35で反射した基本波(波長を1146[nm]にシフトさせたシード光Ls1)は、第1のミラー36で反射して第1の波長変換光学素子31に集光入射し、一部の光が2倍波(すなわち、波長が基本波の1/2である573[nm]のレーザ光)に変換される。なお、2倍波発生用の波長変換光学素子31として、例えばLBO結晶が用いられるが、PPLN結晶、PPLT結晶、PPKTP結晶等を用いることもできる。   The seed light Ls1 emitted from the wavelength converter 20 and incident on the wavelength conversion optical system 30 as a fundamental wave is branched into two lights by the first beam splitter 35. The fundamental wave reflected by the first beam splitter 35 (the seed light Ls1 whose wavelength is shifted to 1146 [nm]) is reflected by the first mirror 36 and focused on the first wavelength conversion optical element 31. , A part of the light is converted into a double wave (that is, a laser beam having a wavelength of 573 [nm] which is ½ of the fundamental wave). For example, an LBO crystal is used as the wavelength conversion optical element 31 for generating the second harmonic, but a PPLN crystal, a PPLT crystal, a PPKTP crystal, or the like can also be used.

第1の波長変換光学素子31から発生した2倍波と、第1の波長変換光学素子31を透過した基本波は、第2の波長変換光学素子32に集光入射し、一部の光が臨界位相整合(CPM:Critical Phase Matching)による和周波発生により3倍波(すなわち、波長が基本波の1/3である382[nm]のレーザ光)に変換される。なお、3倍波発生用の波長変換光学素子32として、例えばBBO結晶が用いられるが、LBO結晶等を用いることもできる。   The double wave generated from the first wavelength conversion optical element 31 and the fundamental wave transmitted through the first wavelength conversion optical element 31 are condensed and incident on the second wavelength conversion optical element 32, and a part of the light is emitted. By sum frequency generation by critical phase matching (CPM), it is converted into a triple wave (that is, a laser beam having a wavelength of 382 [nm] which is 1/3 of the fundamental wave). As the wavelength conversion optical element 32 for generating the third harmonic wave, for example, a BBO crystal is used, but an LBO crystal or the like can also be used.

第2の波長変換光学素子32から発生した3倍波と、第2の波長変換光学素子32を透過した2倍波は、第3の波長変換光学素子33に集光入射し、一部の光が臨界位相整合(CPM)による和周波発生により5倍波(すなわち、波長が基本波の1/5である229[nm]のレーザ光)に変換される。なお、5倍波発生用の波長変換光学素子33として、例えばBBO結晶が用いられる。   The third harmonic wave generated from the second wavelength conversion optical element 32 and the second harmonic wave transmitted through the second wavelength conversion optical element 32 are condensed and incident on the third wavelength conversion optical element 33, and a part of the light. Is converted to a fifth harmonic (that is, a laser beam of 229 [nm] whose wavelength is 1/5 of the fundamental wave) by sum frequency generation by critical phase matching (CPM). For example, a BBO crystal is used as the wavelength converting optical element 33 for generating the fifth harmonic wave.

第3の波長変換光学素子33から発生した5倍波と、第1のビームスプリッター35を透過して第2のミラー37で反射した基本波は、第2のビームスプリッター38で同軸に重ね合わされて第4の波長変換光学素子34に集光入射し、一部の光が和周波発生により6倍波(すなわち、波長が基本波の1/6である191[nm]のレーザ光)に変換される。これにより、ArFエキシマレーザの発振波長(193[nm])に近い191[nm]の波長を有する紫外光(深紫外光)Lvを得ることができる。なお、6倍波発生用の波長変換光学素子34として、例えばCLBO結晶が用いられる。   The fifth harmonic wave generated from the third wavelength conversion optical element 33 and the fundamental wave transmitted through the first beam splitter 35 and reflected by the second mirror 37 are coaxially superimposed by the second beam splitter 38. The light is focused and incident on the fourth wavelength conversion optical element 34, and a part of the light is converted into a 6th harmonic wave (that is, a 191 [nm] laser light whose wavelength is 1/6 of the fundamental wave) by sum frequency generation. The Thereby, ultraviolet light (deep ultraviolet light) Lv having a wavelength of 191 [nm] close to the oscillation wavelength (193 [nm]) of the ArF excimer laser can be obtained. For example, a CLBO crystal is used as the wavelength conversion optical element 34 for 6th harmonic generation.

ところで、第4の波長変換光学素子34は、非臨界位相整合(NCPM:Non-critical Phase Matching)による和周波発生により波長変換を行う。温度調整により光の位相整合(温度位相整合)を行う非臨界位相整合(NCPM)では、ウォークオフ角度(入射光軸に対する出射光軸のズレ角)が0度になるため、M2が1に近い、質の高いレーザ光(紫外光)を得ることができる。なお、M2は、レーザビーム伝播のファクタ(パラメータ)の一つであり、M2=1のとき、理論上のガウシアンレーザービームとなる。 By the way, the fourth wavelength conversion optical element 34 performs wavelength conversion by sum frequency generation by non-critical phase matching (NCPM). In non-critical phase matching (NCPM) in which phase matching of light (temperature phase matching) is performed by adjusting the temperature, the walk-off angle (shift angle of the outgoing optical axis with respect to the incident optical axis) is 0 degree, so M 2 is 1. Close and high-quality laser light (ultraviolet light) can be obtained. M 2 is one of laser beam propagation factors (parameters). When M 2 = 1, a theoretical Gaussian laser beam is obtained.

このように、本実施形態では、波長変換器20での誘導ラマン散乱(SRS)により波長をシフトさせたシード光Ls1を基本波とし、非臨界位相整合(NCPM)による和周波発生により波長変換を行う第4の波長変換光学素子34を有した波長変換光学系30を用いて波長変換を行うことで、当該シード光Ls1から紫外光(深紫外光)Lvを得ている。これにより、基本波の波長を任意に選べるため、紫外光を得るための(第4の)波長変換光学素子34を非臨界位相整合(NCPM)で使用することが容易になる。そのため、波長変換効率が高くて、質の高いレーザ光(紫外光)Lvを得ることができる。   Thus, in this embodiment, the seed light Ls1 whose wavelength is shifted by stimulated Raman scattering (SRS) in the wavelength converter 20 is used as a fundamental wave, and wavelength conversion is performed by sum frequency generation by non-critical phase matching (NCPM). By performing wavelength conversion using the wavelength conversion optical system 30 having the fourth wavelength conversion optical element 34 to be performed, ultraviolet light (deep ultraviolet light) Lv is obtained from the seed light Ls1. Thereby, since the wavelength of the fundamental wave can be arbitrarily selected, it becomes easy to use the (fourth) wavelength conversion optical element 34 for obtaining ultraviolet light in non-critical phase matching (NCPM). Therefore, high-quality laser light (ultraviolet light) Lv can be obtained with high wavelength conversion efficiency.

また、波長変換光学系30が基本波から6倍波を発生させるように構成されることで、ArFエキシマレーザの発振波長に近い紫外光(深紫外光)Lvを得ることができる。   In addition, since the wavelength conversion optical system 30 is configured to generate a sixth harmonic wave from the fundamental wave, ultraviolet light (deep ultraviolet light) Lv close to the oscillation wavelength of the ArF excimer laser can be obtained.

なお、上述の第1実施形態で示した波長変換光学系30は、一つの例であり、波長を1146[nm]にシフトさせた光を基本波とし、当該基本波と5倍波から波長変換光学素子(CLBO結晶)を用いて6倍波である紫外光(深紫外光)を発生させる構成であればよい。   The wavelength conversion optical system 30 shown in the first embodiment described above is an example, and the light whose wavelength is shifted to 1146 [nm] is used as a fundamental wave, and wavelength conversion is performed from the fundamental wave and the fifth harmonic wave. Any structure that generates ultraviolet light (deep ultraviolet light) that is a sixth harmonic using an optical element (CLBO crystal) may be used.

次に、レーザ装置の第2実施形態について、図2を参照しながら説明する。第2実施形態に係るレーザ装置51は、赤外〜可視域の波長を有するシード光(レーザ光)Lsを発生させるレーザ光発生部60と、誘導ラマン散乱を利用してシード光Lsの波長を所定波長に変換する波長変換器70と、波長変換器70により所定波長に変換されたシード光Ls1の波長を紫外域の波長に変換する波長変換光学系80とを備えて構成される。   Next, a second embodiment of the laser device will be described with reference to FIG. The laser device 51 according to the second embodiment includes a laser light generation unit 60 that generates seed light (laser light) Ls having a wavelength in the infrared to visible range, and the wavelength of the seed light Ls using stimulated Raman scattering. A wavelength converter 70 for converting to a predetermined wavelength and a wavelength conversion optical system 80 for converting the wavelength of the seed light Ls1 converted to the predetermined wavelength by the wavelength converter 70 into a wavelength in the ultraviolet region are configured.

レーザ光発生部60は、第1実施形態のレーザ光発生部10と同様の構成であり、本実施形態では、波長λ=1118[nm]となる連続波(CW)のシード光Lsを発生させる。波長変換器70は、第1実施形態の波長変換器20と同様の構成であり、本実施形態では、誘導ラマン散乱(SRS)を利用して、レーザ光発生部60から発生したシード光Lsの波長を1118[nm]から1178[nm]にシフトさせる(変換する)。このようにして、波長変換器70により波長を1178[nm]にシフトさせたシード光Ls1を基本波として波長変換光学系80に入射させる。   The laser beam generator 60 has the same configuration as the laser beam generator 10 of the first embodiment. In this embodiment, the laser beam generator 60 generates a continuous wave (CW) seed beam Ls having a wavelength λ = 1118 [nm]. . The wavelength converter 70 has the same configuration as the wavelength converter 20 of the first embodiment. In this embodiment, the wavelength converter 70 uses the stimulated Raman scattering (SRS) to generate the seed light Ls generated from the laser light generator 60. The wavelength is shifted (converted) from 1118 [nm] to 1178 [nm]. In this way, the seed light Ls1 whose wavelength is shifted to 1178 [nm] by the wavelength converter 70 is made incident on the wavelength conversion optical system 80 as a fundamental wave.

波長変換光学系80は、非線形光学結晶や周期分極反転結晶などの波長変換光学素子を主体に構成され、波長変換器70から出射されたシード光Ls1を波長変換光学素子に入射させ、第2高調波発生(SHG)や和周波発生により高調波を発生させる。本実施形態の波長変換光学系80は、4つの波長変換光学素子81〜84と、2つのビームスプリッター85,88と、2つのミラー86,87とを有して構成される。   The wavelength conversion optical system 80 is mainly composed of a wavelength conversion optical element such as a nonlinear optical crystal or a periodically poled crystal, and makes the seed light Ls1 emitted from the wavelength converter 70 incident on the wavelength conversion optical element, so that the second harmonic. Harmonics are generated by wave generation (SHG) or sum frequency generation. The wavelength conversion optical system 80 according to the present embodiment includes four wavelength conversion optical elements 81 to 84, two beam splitters 85 and 88, and two mirrors 86 and 87.

波長変換器70から出射され、基本波として波長変換光学系80に入射したシード光Ls1は、第1の波長変換光学素子81に集光入射し、一部の光が2倍波(すなわち、波長が基本波の1/2である589[nm]のレーザ光)に変換される。なお、2倍波発生用の波長変換光学素子81として、例えばLBO結晶が用いられるが、PPLN結晶、PPLT結晶、PPKTP結晶等を用いることもできる。   The seed light Ls1 emitted from the wavelength converter 70 and incident on the wavelength conversion optical system 80 as a fundamental wave is condensed and incident on the first wavelength conversion optical element 81, and a part of the light is doubled (that is, wavelength). Is converted to a laser beam of 589 [nm], which is ½ of the fundamental wave. For example, an LBO crystal is used as the wavelength conversion optical element 81 for generating the second harmonic, but a PPLN crystal, a PPLT crystal, a PPKTP crystal, or the like can also be used.

第1の波長変換光学素子81から発生した2倍波と、第1の波長変換光学素子81を透過した基本波は、第2の波長変換光学素子82に集光入射し、一部の光が臨界位相整合(CPM)による和周波発生により3倍波(すなわち、波長が基本波の1/3である393[nm]のレーザ光)に変換される。なお、3倍波発生用の波長変換光学素子82として、例えばBBO結晶が用いられるが、LBO結晶等を用いることもできる。   The double wave generated from the first wavelength conversion optical element 81 and the fundamental wave transmitted through the first wavelength conversion optical element 81 are condensed and incident on the second wavelength conversion optical element 82, and a part of the light is emitted. By sum frequency generation by critical phase matching (CPM), it is converted to a triple wave (that is, a laser beam having a wavelength of 393 [nm], which is 1/3 of the fundamental wave). For example, a BBO crystal is used as the wavelength conversion optical element 82 for generating the third harmonic wave, but an LBO crystal or the like can also be used.

第2の波長変換光学素子82から発生した3倍波は、第1のビームスプリッター85で反射したのち、第1のミラー86および第2のビームスプリッター88で反射する。一方、第2の波長変換光学素子82を透過した基本波および2倍波は、第1のビームスプリッター35を透過したのち、第2のミラー87で反射して第2のビームスプリッター88を透過する。すなわち、第2の波長変換光学素子82から発生した3倍波と、第2の波長変換光学素子82を透過した基本波および2倍波は、第1のビームスプリッター85で分岐したのち、第2のビームスプリッター88で同軸に重ね合わされて第3の波長変換光学素子83に集光入射する。   The third harmonic wave generated from the second wavelength conversion optical element 82 is reflected by the first beam splitter 85 and then reflected by the first mirror 86 and the second beam splitter 88. On the other hand, the fundamental wave and the second harmonic wave transmitted through the second wavelength conversion optical element 82 are transmitted through the first beam splitter 35, then reflected by the second mirror 87 and transmitted through the second beam splitter 88. . That is, the third harmonic wave generated from the second wavelength conversion optical element 82 and the fundamental wave and the second harmonic wave transmitted through the second wavelength conversion optical element 82 are branched by the first beam splitter 85 and then the second wave. The beam splitter 88 coaxially overlaps and enters the third wavelength conversion optical element 83.

各ビームスプリッター85,88による光の分岐および再結合を行うのは、基本波および2倍波と、3倍波との間でビーム形状が異なるため、別々にビーム整形を行うためである。例えば、第1のミラー86と第2のビームスプリッター88との間の光路上にビーム整形素子として2枚のシリンドリカルレンズ(図示せず)を設けて、楕円形となった3倍波の断面形状を円形に整形することができる。また、第2のミラー87と第2のビームスプリッター88との間の光路上にシリンドリカルレンズ等のビーム整形素子(図示せず)を設けて、基本波および2倍波の断面形状を円形に整形するようにしてもよい。なお、第3の波長変換光学素子83に入射する全ての光が同じビーム形状であれば、第1のビームスプリッター85から第2のビームスプリッター88までの各素子を省略することができる。   The splitting and recombination of light by each of the beam splitters 85 and 88 is to perform beam shaping separately because the beam shapes are different between the fundamental wave, the second harmonic wave, and the third harmonic wave. For example, a cross-sectional shape of an elliptical third harmonic wave is provided by providing two cylindrical lenses (not shown) as beam shaping elements on the optical path between the first mirror 86 and the second beam splitter 88. Can be shaped into a circle. In addition, a beam shaping element (not shown) such as a cylindrical lens is provided on the optical path between the second mirror 87 and the second beam splitter 88 to shape the sectional shapes of the fundamental wave and the second harmonic wave into a circle. You may make it do. If all the light incident on the third wavelength conversion optical element 83 has the same beam shape, each element from the first beam splitter 85 to the second beam splitter 88 can be omitted.

第3の波長変換光学素子83に入射した2倍波および3倍波の一部は、非臨界位相整合(NCPM)による和周波発生により5倍波(すなわち、波長が基本波の1/5である236[nm]のレーザ光)に変換される。なお、5倍波発生用の波長変換光学素子83として、例えばCLBO結晶が用いられる。   A part of the second harmonic and the third harmonic incident on the third wavelength conversion optical element 83 is a fifth harmonic (that is, the wavelength is 1/5 of the fundamental wave) by sum frequency generation by non-critical phase matching (NCPM). Converted into a certain 236 [nm] laser beam). For example, a CLBO crystal is used as the wavelength conversion optical element 83 for generating the fifth harmonic wave.

第3の波長変換光学素子83から発生した5倍波と、第3の波長変換光学素子83を透過した基本波は、第4の波長変換光学素子84に集光入射し、一部の光が臨界位相整合(CPM)による和周波発生により6倍波(すなわち、波長が基本波の1/6である196[nm]のレーザ光)に変換される。これにより、ArFエキシマレーザの発振波長(193[nm])に近い196[nm]の波長を有する紫外光(深紫外光)Lvを得ることができる。なお、6倍波発生用の波長変換光学素子84として、例えばCLBO結晶が用いられる。   The fifth harmonic wave generated from the third wavelength conversion optical element 83 and the fundamental wave transmitted through the third wavelength conversion optical element 83 are condensed and incident on the fourth wavelength conversion optical element 84, and a part of the light is emitted. By sum frequency generation by critical phase matching (CPM), it is converted to a 6th harmonic wave (that is, a 196 [nm] laser beam whose wavelength is 1/6 of the fundamental wave). Thereby, ultraviolet light (deep ultraviolet light) Lv having a wavelength of 196 [nm] close to the oscillation wavelength (193 [nm]) of the ArF excimer laser can be obtained. For example, a CLBO crystal is used as the wavelength conversion optical element 84 for 6th harmonic generation.

本実施形態では、紫外光による素子の損傷をできるだけ回避するため、素子を介在させずに第3の波長変換光学素子83と第4の波長変換光学素子84とを直列に配置している。このとき、第3の波長変換光学素子83にウォークオフがあると、第4の波長変換光学素子84において基本波と6倍波の同軸が少しずれ、第4の波長変換光学素子84での波長変換効率が低下してしまう。これに対し、本実施形態に係る第3の波長変換光学素子83は、非臨界位相整合(NCPM)による和周波発生により波長変換を行うため、M2が1に近い、質の高いレーザ光(紫外光)を得ることができる。また、第3の波長変換光学素子83を透過する基本波も光軸がシフトすることはない。従って、第3の波長変換光学素子83での波長変換効率が高くなるだけでなく、臨界位相整合(CPM)による和周波発生により波長変換を行う第4の波長変換光学素子84での波長変換効率も高くすることができる。 In the present embodiment, the third wavelength conversion optical element 83 and the fourth wavelength conversion optical element 84 are arranged in series without any element interposed in order to avoid damage to the element due to ultraviolet light as much as possible. At this time, if there is a walk-off in the third wavelength conversion optical element 83, the fourth wavelength conversion optical element 84 has a slightly shifted coaxiality between the fundamental wave and the sixth harmonic wave, and the wavelength at the fourth wavelength conversion optical element 84. Conversion efficiency decreases. On the other hand, the third wavelength conversion optical element 83 according to the present embodiment performs wavelength conversion by generating the sum frequency by non-critical phase matching (NCPM), so that M 2 is close to 1 and high quality laser light ( UV light) can be obtained. Further, the optical axis of the fundamental wave transmitted through the third wavelength conversion optical element 83 does not shift. Therefore, not only the wavelength conversion efficiency in the third wavelength conversion optical element 83 is increased, but also the wavelength conversion efficiency in the fourth wavelength conversion optical element 84 that performs wavelength conversion by sum frequency generation by critical phase matching (CPM). Can also be high.

このように、第2実施形態によれば、第1実施形態の場合と同様の効果を得ることができる。さらには、より高い波長変換効率を得ることが可能である。   Thus, according to the second embodiment, the same effect as in the first embodiment can be obtained. Furthermore, higher wavelength conversion efficiency can be obtained.

なお、上述の第2実施形態で示した波長変換光学系80は、一つの例であり、波長を1178[nm]にシフトさせた光を基本波とし、その2倍波と3倍波から波長変換光学素子(CLBO結晶)を用いて5倍波(および6倍波)を発生させる構成であればよい。   The wavelength conversion optical system 80 shown in the above-described second embodiment is an example, and a light whose wavelength is shifted to 1178 [nm] is used as a fundamental wave. Any structure that generates a fifth harmonic (and a sixth harmonic) using a conversion optical element (CLBO crystal) may be used.

また、上述の各実施形態において、レーザ光発生部が連続波(CW)のシード光Lsを発生させているが、これに限られるものではなく、パルス光を発生させるようにしてもよい。そこで、レーザ光発生部の変形例について、図3を参照しながら説明する。図3に示すレーザ光発生部90は、パルス状のシード光Lpを発生させるレーザ光源91と、パルス状のシード光Lpを増幅する光増幅器92とを有して構成される。   In each of the above-described embodiments, the laser light generation unit generates the continuous wave (CW) seed light Ls. However, the present invention is not limited to this, and pulsed light may be generated. Therefore, a modified example of the laser beam generator will be described with reference to FIG. The laser light generator 90 shown in FIG. 3 includes a laser light source 91 that generates a pulsed seed light Lp and an optical amplifier 92 that amplifies the pulsed seed light Lp.

レーザ光源91は、狭帯域化された単一波長のシード光を発生させる。このようなレーザ光源91として、例えば、発振波長1.1[μm]帯のDFB半導体レーザが用いられ、ペルチェ素子等を利用した温度調整器により温度制御した状態で発振させることにより、レーザ光源91が波長λ=1086[nm](もしくは、1118[nm])となる単一波長のシード光を発生させる。DFB半導体レーザは、励起電流を波形制御することにより任意強度でCW発振またはパルス発振させることができ、図3の例では、例えば、繰り返し周波数が2[MHz]、パルス幅が1〜2[nsec]となるパルス状のシード光Lpを発生させる。   The laser light source 91 generates seed light having a narrow wavelength and a single wavelength. As such a laser light source 91, for example, a DFB semiconductor laser having an oscillation wavelength of 1.1 [μm] band is used, and the laser light source 91 is oscillated in a temperature controlled state by a temperature regulator using a Peltier element or the like. Generates a single-wavelength seed light having a wavelength λ = 1086 [nm] (or 1118 [nm]). The DFB semiconductor laser can perform CW oscillation or pulse oscillation with arbitrary intensity by controlling the waveform of the excitation current. In the example of FIG. 3, for example, the repetition frequency is 2 [MHz] and the pulse width is 1 to 2 [nsec]. ] To generate a pulsed seed light Lp.

光増幅器92は、レーザ光源91から発生したパルス状のシード光Lpを増幅して波長変換器20(もしくは、第2実施形態の波長変換器70)に入射させる。このような光増幅器92として、例えば、イットリビウム(Yb)・ドープ・ファイバー光増幅器(YDFA)が用いられる。そして、第1実施形態の場合、波長変換器20は、光増幅器92により増幅されたシード光Lpの波長を1086[nm]から1146[nm]にシフトさせる。また、第2実施形態の場合、波長変換器70は、光増幅器92により増幅されたシード光Lpの波長を1118[nm]から1178[nm]にシフトさせる。このようにして、波長変換器20(もしくは、第2実施形態の波長変換器70)により波長をシフトさせたパルス状のシード光Lp1を基本波として波長変換光学系30(もしくは、第2実施形態の波長変換光学系80)に入射させることができる。   The optical amplifier 92 amplifies the pulsed seed light Lp generated from the laser light source 91 and makes it incident on the wavelength converter 20 (or the wavelength converter 70 of the second embodiment). As such an optical amplifier 92, for example, an yttrium (Yb) -doped fiber optical amplifier (YDFA) is used. In the case of the first embodiment, the wavelength converter 20 shifts the wavelength of the seed light Lp amplified by the optical amplifier 92 from 1086 [nm] to 1146 [nm]. In the case of the second embodiment, the wavelength converter 70 shifts the wavelength of the seed light Lp amplified by the optical amplifier 92 from 1118 [nm] to 1178 [nm]. Thus, the wavelength conversion optical system 30 (or the second embodiment) using the pulsed seed light Lp1 whose wavelength is shifted by the wavelength converter 20 (or the wavelength converter 70 of the second embodiment) as a fundamental wave. The wavelength converting optical system 80).

なお、レーザ光源91(DFB半導体レーザ)の後に電気光学変調器(EOM)等の光変調器(図示せず)を設け、レーザ光源91(DFB半導体レーザ)から発生したパルス状のシード光Lpの一部を時間的に切り出して、光増幅器92に入射させるようにしてもよい。このような光変調器(図示せず)は、図示省略する制御装置によりレーザ光源91(DFB半導体レーザ)と同期制御され、例えば、レーザ光源91(DFB半導体レーザ)から発生したパルス幅1〜2[nsec]のシード光から、パルス幅0.3[nsec]程度の光パルスが切り出して、切り出した光パルスによるシード光を光増幅器92に入射させる。   An optical modulator (not shown) such as an electro-optic modulator (EOM) is provided after the laser light source 91 (DFB semiconductor laser), and the pulsed seed light Lp generated from the laser light source 91 (DFB semiconductor laser) is supplied. A part may be cut out in time and made incident on the optical amplifier 92. Such an optical modulator (not shown) is synchronously controlled with a laser light source 91 (DFB semiconductor laser) by a control device (not shown). For example, pulse widths 1 to 2 generated from the laser light source 91 (DFB semiconductor laser) are controlled. An optical pulse having a pulse width of about 0.3 [nsec] is cut out from the [nsec] seed light, and seed light based on the cut out optical pulse is incident on the optical amplifier 92.

また、より狭帯域化されたパルス状のシード光Lp1を得るため、図4に示すように、レーザ光源91および光増幅器92によるパルス状のシード光Lpに加えて、第2のレーザ光源93(DFB半導体レーザ)により、シフト後の(1次ストークス光の)波長λ´=1146[nm](もしくは、1178[nm])を有するパルス状のレーザ光Lp´を発生させて波長変換器20(もしくは、第2実施形態の波長変換光学系80)に入射させるようにしてもよい。このようにすれば、波長変換器20(もしくは、第2実施形態の波長変換光学系80)での誘導ラマン散乱(SRS)により、レーザ光源91および光増幅器92からのシード光Lpがポンプ光となって第2のレーザ光源93からのレーザ光Lp´が増幅されるため、より狭帯域化された波長(1146[nm]もしくは1178[nm])を有するパルス状のシード光Lp1を得ることができる。   Further, in order to obtain a narrower pulsed seed light Lp1, as shown in FIG. 4, in addition to the pulsed seed light Lp by the laser light source 91 and the optical amplifier 92, the second laser light source 93 ( The DFB semiconductor laser) generates pulsed laser light Lp ′ having a wavelength λ ′ = 1146 [nm] (or 1178 [nm]) after the shift (first-order Stokes light) to generate the wavelength converter 20 ( Or you may make it inject into the wavelength conversion optical system 80) of 2nd Embodiment. In this way, the seed light Lp from the laser light source 91 and the optical amplifier 92 is converted into pump light by stimulated Raman scattering (SRS) in the wavelength converter 20 (or the wavelength conversion optical system 80 of the second embodiment). Thus, since the laser beam Lp ′ from the second laser light source 93 is amplified, a pulsed seed beam Lp1 having a narrower wavelength (1146 [nm] or 1178 [nm]) can be obtained. it can.

1 レーザ装置(第1実施形態)
10 レーザ光発生部 20 波長変換器
30 波長変換光学系
31 第1の波長変換光学素子 32 第2の波長変換光学素子
33 第3の波長変換光学素子 34 第4の波長変換光学素子
51 レーザ装置(第2実施形態)
60 レーザ光発生部 70 波長変換器
80 波長変換光学系
81 第1の波長変換光学素子 82 第2の波長変換光学素子
83 第3の波長変換光学素子 84 第4の波長変換光学素子
90 レーザ光発生部(変形例)
91 レーザ光源(第1の光源部) 92 光増幅器
93 第2のレーザ光源(第2の光源部)
1 Laser device (first embodiment)
DESCRIPTION OF SYMBOLS 10 Laser light generation part 20 Wavelength converter 30 Wavelength conversion optical system 31 1st wavelength conversion optical element 32 2nd wavelength conversion optical element 33 3rd wavelength conversion optical element 34 4th wavelength conversion optical element 51 Laser apparatus ( Second embodiment)
DESCRIPTION OF SYMBOLS 60 Laser light generation part 70 Wavelength converter 80 Wavelength conversion optical system 81 1st wavelength conversion optical element 82 2nd wavelength conversion optical element 83 3rd wavelength conversion optical element 84 4th wavelength conversion optical element 90 Laser light generation (Modification)
91 Laser light source (first light source unit) 92 Optical amplifier 93 Second laser light source (second light source unit)

Claims (4)

レーザ光を発生させるレーザ光発生部と、
誘導ラマン散乱を利用して前記レーザ光の波長を所定波長に変換する波長変換器と、
前記波長変換器により前記所定波長に変換された前記レーザ光の波長を紫外域の波長に変換する波長変換光学系とを備え、
前記波長変換光学系が非臨界位相整合による和周波発生により波長変換を行う波長変換光学素子を有して構成されることを特徴とするレーザ装置。
A laser light generator for generating laser light;
A wavelength converter that converts the wavelength of the laser light into a predetermined wavelength using stimulated Raman scattering;
A wavelength conversion optical system that converts the wavelength of the laser light converted to the predetermined wavelength by the wavelength converter into a wavelength in the ultraviolet region,
A laser apparatus, wherein the wavelength conversion optical system includes a wavelength conversion optical element that performs wavelength conversion by generating a sum frequency by non-critical phase matching.
前記レーザ光発生部は、
前記レーザ光を発生させる第1の光源部と、
前記第1の光源部から発生した前記レーザ光を増幅して前記波長変換器に入射させる光増幅器と、
前記所定波長を有するレーザ光を発生させて前記波長変換器に入射させる第2の光源部とを有して構成されることを特徴とする請求項1に記載のレーザ装置。
The laser beam generator is
A first light source unit for generating the laser light;
An optical amplifier that amplifies the laser light generated from the first light source unit and makes it incident on the wavelength converter;
The laser apparatus according to claim 1, further comprising: a second light source unit configured to generate a laser beam having the predetermined wavelength and make the laser beam incident on the wavelength converter.
前記波長変換光学系は、
前記所定波長を有するレーザ光が入射して、前記所定波長の1/2倍の波長を有するレーザ光を発生させる第1の波長変換光学素子と、
前記所定波長を有するレーザ光および前記1/2倍の波長を有するレーザ光が入射して、和周波発生により前記所定波長の1/3倍の波長を有するレーザ光を発生させる第2の波長変換光学素子と、
前記1/2倍の波長を有するレーザ光および前記1/3倍の波長を有するレーザ光が入射して、和周波発生により前記所定波長の1/5倍の波長を有するレーザ光を発生させる第3の波長変換光学素子と、
前記所定波長を有するレーザ光および前記1/5倍の波長を有するレーザ光が入射して、和周波発生により前記所定波長の1/6倍の波長である前記紫外域の波長を有するレーザ光を発生させる第4の波長変換光学素子とを有し、
前記第4の波長変換光学素子が前記非臨界位相整合により波長変換を行うことを特徴とする請求項1または2に記載のレーザ装置。
The wavelength conversion optical system is:
A first wavelength conversion optical element that receives a laser beam having the predetermined wavelength and generates a laser beam having a wavelength that is ½ times the predetermined wavelength;
Second wavelength conversion in which the laser beam having the predetermined wavelength and the laser beam having the half wavelength are incident to generate laser light having a wavelength that is 1/3 times the predetermined wavelength by sum frequency generation An optical element;
A laser beam having a wavelength that is 1/2 times the wavelength and a laser beam having a wavelength that is 1/3 times the incident light is incident to generate a laser beam having a wavelength that is 1/5 times the predetermined wavelength by sum frequency generation. 3 wavelength converting optical elements;
The laser light having the predetermined wavelength and the laser light having the wavelength of 1/5 times incident, and the laser light having the wavelength in the ultraviolet region that is 1/6 times the predetermined wavelength by sum frequency generation A fourth wavelength converting optical element to be generated,
The laser device according to claim 1, wherein the fourth wavelength conversion optical element performs wavelength conversion by the non-critical phase matching.
前記波長変換光学系は、
前記所定波長を有するレーザ光が入射して、前記所定波長の1/2倍の波長を有するレーザ光を発生させる第1の波長変換光学素子と、
前記所定波長を有するレーザ光および前記1/2倍の波長を有するレーザ光が入射して、和周波発生により前記所定波長の1/3倍の波長を有するレーザ光を発生させる第2の波長変換光学素子と、
前記1/2倍の波長を有するレーザ光および前記1/3倍の波長を有するレーザ光が入射して、和周波発生により前記所定波長の1/5倍の波長を有するレーザ光を発生させる第3の波長変換光学素子と、
前記所定波長を有するレーザ光および前記1/5倍の波長を有するレーザ光が入射して、和周波発生により前記所定波長の1/6倍の波長である前記紫外域の波長を有するレーザ光を発生させる第4の波長変換光学素子とを有し、
前記第2の波長変換光学素子と前記第3の波長変換光学素子との間の光路上に前記1/2倍または前記1/3倍の波長を有するレーザ光の整形を行うビーム整形素子が設けられるとともに、前記第3の波長変換光学素子が前記非臨界位相整合により波長変換を行うことを特徴とする請求項1または2に記載のレーザ装置。
The wavelength conversion optical system is:
A first wavelength conversion optical element that receives a laser beam having the predetermined wavelength and generates a laser beam having a wavelength that is ½ times the predetermined wavelength;
Second wavelength conversion in which the laser beam having the predetermined wavelength and the laser beam having the half wavelength are incident to generate laser light having a wavelength that is 1/3 times the predetermined wavelength by sum frequency generation An optical element;
A laser beam having a wavelength that is 1/2 times the wavelength and a laser beam having a wavelength that is 1/3 times the incident light is incident to generate a laser beam having a wavelength that is 1/5 times the predetermined wavelength by sum frequency generation. 3 wavelength converting optical elements;
The laser light having the predetermined wavelength and the laser light having the wavelength of 1/5 times incident, and the laser light having the wavelength in the ultraviolet region that is 1/6 times the predetermined wavelength by sum frequency generation A fourth wavelength converting optical element to be generated,
A beam shaping element for shaping the laser beam having the wavelength of 1/2 or 1/3 times is provided on the optical path between the second wavelength conversion optical element and the third wavelength conversion optical element. The laser device according to claim 1, wherein the third wavelength conversion optical element performs wavelength conversion by the non-critical phase matching.
JP2009285993A 2009-12-17 2009-12-17 Laser device Pending JP2011128330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009285993A JP2011128330A (en) 2009-12-17 2009-12-17 Laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009285993A JP2011128330A (en) 2009-12-17 2009-12-17 Laser device

Publications (1)

Publication Number Publication Date
JP2011128330A true JP2011128330A (en) 2011-06-30

Family

ID=44290999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009285993A Pending JP2011128330A (en) 2009-12-17 2009-12-17 Laser device

Country Status (1)

Country Link
JP (1) JP2011128330A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013222173A (en) * 2012-04-19 2013-10-28 Gigaphoton Inc Laser apparatus
WO2014153328A1 (en) * 2013-03-18 2014-09-25 Kla-Tencor Corporation A 193nm laser and an inspection system using a 193nm laser
US8929406B2 (en) 2013-01-24 2015-01-06 Kla-Tencor Corporation 193NM laser and inspection system
US9042006B2 (en) 2012-09-11 2015-05-26 Kla-Tencor Corporation Solid state illumination source and inspection system
US9413134B2 (en) 2011-07-22 2016-08-09 Kla-Tencor Corporation Multi-stage ramp-up annealing for frequency-conversion crystals
US9419407B2 (en) 2014-09-25 2016-08-16 Kla-Tencor Corporation Laser assembly and inspection system using monolithic bandwidth narrowing apparatus
US9529182B2 (en) 2013-02-13 2016-12-27 KLA—Tencor Corporation 193nm laser and inspection system
WO2017064789A1 (en) * 2015-10-15 2017-04-20 国立大学法人 東京大学 Solid-state laser system and excimer laser system
US9748729B2 (en) 2014-10-03 2017-08-29 Kla-Tencor Corporation 183NM laser and inspection system
US9804101B2 (en) 2014-03-20 2017-10-31 Kla-Tencor Corporation System and method for reducing the bandwidth of a laser and an inspection system and method using a laser
US10175555B2 (en) 2017-01-03 2019-01-08 KLA—Tencor Corporation 183 nm CW laser and inspection system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489581A (en) * 1987-09-30 1989-04-04 Rikagaku Kenkyusho Laser beam output controlling method
JP2001352116A (en) * 2000-06-07 2001-12-21 Nikon Corp Laser device, aligner using the same, and exposing method
JP2008122785A (en) * 2006-11-14 2008-05-29 Nikon Corp Laser device, excimer laser device, light irradiation device, exposure device, light generation method, light irradiation method, exposure method, and method for manufacturing device
JP2009513995A (en) * 2005-07-28 2009-04-02 ケーエルエー−テンカー テクノロジィース コーポレイション Non-critical phase matching in CLBO to generate sub-213 nm wavelengths

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489581A (en) * 1987-09-30 1989-04-04 Rikagaku Kenkyusho Laser beam output controlling method
JP2001352116A (en) * 2000-06-07 2001-12-21 Nikon Corp Laser device, aligner using the same, and exposing method
JP2009513995A (en) * 2005-07-28 2009-04-02 ケーエルエー−テンカー テクノロジィース コーポレイション Non-critical phase matching in CLBO to generate sub-213 nm wavelengths
JP2008122785A (en) * 2006-11-14 2008-05-29 Nikon Corp Laser device, excimer laser device, light irradiation device, exposure device, light generation method, light irradiation method, exposure method, and method for manufacturing device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9413134B2 (en) 2011-07-22 2016-08-09 Kla-Tencor Corporation Multi-stage ramp-up annealing for frequency-conversion crystals
JP2013222173A (en) * 2012-04-19 2013-10-28 Gigaphoton Inc Laser apparatus
US9042006B2 (en) 2012-09-11 2015-05-26 Kla-Tencor Corporation Solid state illumination source and inspection system
US8929406B2 (en) 2013-01-24 2015-01-06 Kla-Tencor Corporation 193NM laser and inspection system
US9318869B2 (en) 2013-01-24 2016-04-19 Kla-Tencor Corporation 193nm laser and inspection system
US9935421B2 (en) 2013-02-13 2018-04-03 Kla-Tencor Corporation 193nm laser and inspection system
US9529182B2 (en) 2013-02-13 2016-12-27 KLA—Tencor Corporation 193nm laser and inspection system
US10439355B2 (en) 2013-02-13 2019-10-08 Kla-Tencor Corporation 193nm laser and inspection system
WO2014153328A1 (en) * 2013-03-18 2014-09-25 Kla-Tencor Corporation A 193nm laser and an inspection system using a 193nm laser
US9608399B2 (en) 2013-03-18 2017-03-28 Kla-Tencor Corporation 193 nm laser and an inspection system using a 193 nm laser
US10495582B2 (en) 2014-03-20 2019-12-03 Kla-Tencor Corporation System and method for reducing the bandwidth of a laser and an inspection system and method using a laser
US9804101B2 (en) 2014-03-20 2017-10-31 Kla-Tencor Corporation System and method for reducing the bandwidth of a laser and an inspection system and method using a laser
US9419407B2 (en) 2014-09-25 2016-08-16 Kla-Tencor Corporation Laser assembly and inspection system using monolithic bandwidth narrowing apparatus
US9748729B2 (en) 2014-10-03 2017-08-29 Kla-Tencor Corporation 183NM laser and inspection system
US10199149B2 (en) 2014-10-03 2019-02-05 Kla-Tencor Corporation 183NM laser and inspection system
US10095084B2 (en) 2015-10-15 2018-10-09 The University Of Tokyo Solid-state laser system and excimer laser system
JPWO2017064789A1 (en) * 2015-10-15 2018-08-02 国立大学法人 東京大学 Solid state laser system and excimer laser system
WO2017064789A1 (en) * 2015-10-15 2017-04-20 国立大学法人 東京大学 Solid-state laser system and excimer laser system
US10175555B2 (en) 2017-01-03 2019-01-08 KLA—Tencor Corporation 183 nm CW laser and inspection system
US10429719B2 (en) 2017-01-03 2019-10-01 Kla-Tencor Corporation 183 nm CW laser and inspection system

Similar Documents

Publication Publication Date Title
JP2011128330A (en) Laser device
US20090185583A1 (en) UV and Visible Laser Systems
US8780946B2 (en) Ultraviolet laser device
US10042232B2 (en) Optical amplifier arrangement, laser amplifier system and process
US9429813B2 (en) Deep ultraviolet laser generation device and light source device
US20070237191A1 (en) Devices for high power, high-repetition rate, broadly tunable coherent radiation, and its applications
WO2014021370A1 (en) Laser device, and exposure device and inspection device equipped with said laser device
JP2010003771A (en) Seed light generating device, light source device and method for adjusting the same, optical irradiation apparatus, exposure apparatus, and device manufacturing method
JP6020441B2 (en) UV laser equipment
JP2013156448A (en) Laser device, exposure device and inspection device
JP2007086104A (en) Deep ultraviolet laser device
Donin et al. New method of Q-switching with mode locking in solid-state lasers
JP2011158749A (en) Laser device
IT201800010009A1 (en) TRANSPORT SYSTEM OF A LASER BEAM
JP2001337356A (en) Light source device
JP2011053314A (en) Light source device
JP2011069945A (en) Method for generating laser beam
JP2013007931A (en) Laser device, exposure device and inspecting device
Müller et al. Efficient concept generating 3.9 W of diffraction-limited green light with spectrally combined tapered diode lasers
Christensen et al. Modulation of frequency doubled DFB-tapered diode lasers for medical treatment
Henderson et al. 6.3 Watt single frequency CW source at 780nm based on frequency conversion of a fiber laser
JP2014215577A (en) Light source device, inspection device, and wavelength conversion method
JP2015180902A (en) Laser device, and exposure device and inspection device comprising the laser device
Hirohashi et al. Stable half-watt 355 nm generation with PPMgSLT
Ter-Mikirtychev et al. Broadly-tunable high-power fiber laser system for IR spectral range

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140711