JP2011122853A - Apparatus failure evaluation system - Google Patents

Apparatus failure evaluation system Download PDF

Info

Publication number
JP2011122853A
JP2011122853A JP2009278795A JP2009278795A JP2011122853A JP 2011122853 A JP2011122853 A JP 2011122853A JP 2009278795 A JP2009278795 A JP 2009278795A JP 2009278795 A JP2009278795 A JP 2009278795A JP 2011122853 A JP2011122853 A JP 2011122853A
Authority
JP
Japan
Prior art keywords
frequency
frequency component
abnormality
coincidence
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009278795A
Other languages
Japanese (ja)
Inventor
Yasuhiro Taguchi
保博 田口
Minoru Iino
穣 飯野
Takashi Miyabe
崇 宮部
Saiji Yamamoto
栽士 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009278795A priority Critical patent/JP2011122853A/en
Publication of JP2011122853A publication Critical patent/JP2011122853A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To analyze a frequency of an audio signal generated from a consumer apparatus, and estimate a failure and an abnormality as a precursor of the consumer apparatus. <P>SOLUTION: An apparatus failure evaluation system is equipped with: an audio measurement apparatus 8 for measuring the audio signal generated from a load apparatus (including a facility, a device and a component) 7 supplied with power; a frequency component calculation means 11 for analyzing a waveform of the measured audio signal, and calculating an actually measured frequency component; a data storage means 12 for storing a frequency-abnormal pattern having a frequency-abnormal frequency component estimated as a frequency abnormality for inducing the failure and the precursor in each load apparatus; a frequency component coincidence calculation means 13 for calculating a frequency component coincidence between an actually-measured frequency component calculation result and a plurality of frequency-abnormal frequency components; and a frequency abnormality output means 14 for estimating the frequency-abnormal pattern as the failure and its precursor in the load apparatus from each frequency component coincidence, and outputting or displaying it. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えば無停電電源システムや電力需給システム(例えばマイクログリッド需給管理システム)等の需要家装置から発生する音響信号の周波数成分を計算し、当該需要家装置の状態を評価する装置故障評価システムに関する。   The present invention, for example, calculates a frequency component of an acoustic signal generated from a consumer device such as an uninterruptible power supply system or a power supply and demand system (for example, a microgrid supply and demand management system), and evaluates the state of the consumer device. About the system.

従来、電力の需要家装置から測定される物理量の周波数を分析し、その周波数分析結果から需要家装置の劣化や故障の可能性を評価する方法としては、幾つかの技術が提案されている。   Conventionally, several techniques have been proposed as a method of analyzing the frequency of a physical quantity measured from a power consumer device and evaluating the possibility of deterioration or failure of the consumer device from the frequency analysis result.

従来の技術としては、予め模擬高圧配電線を用いて故障要因別の波形をサンプル収集し、各々のサンプル波形の所定次数までの高調波成分を解析する。そして、故障要因別に高調波含有率の次数毎の平均値の総和を求めた後、故障要因別の総和データの最大値及び最小値を算出して記憶する。実際の高圧配電線の地絡故障時、その零相に流れる電流波形が故障要因別の最大値と最小値の間に入るか否かに基づき、高圧配電線の地絡故障の原因を推定する(特許文献1)。   As a conventional technique, a waveform for each failure factor is sampled in advance using a simulated high-voltage distribution line, and harmonic components up to a predetermined order of each sample waveform are analyzed. And after calculating | requiring the sum total of the average value for every order of a harmonic content rate according to a failure factor, the maximum value and minimum value of the sum total data according to a failure factor are calculated and memorize | stored. Estimate the cause of a ground fault in the high-voltage distribution line based on whether the current waveform flowing in the zero phase of the actual high-voltage distribution line is in the range between the maximum and minimum values for each failure cause (Patent Document 1).

他のもう1つの従来技術は、需要家における基本波有効電力及び基本波無効電力の過度状態前後の変動有効分及び変動無効分を検出し、その変動分の大きさに基づいて需要家の負荷、力率改善コンデンサ、変圧器等の投入・停止といった運用状態を特定する。   Another prior art detects a fluctuation active part and a fluctuation reactive part before and after the transient state of the fundamental wave active power and the fundamental wave reactive power in the consumer, and loads the consumer based on the magnitude of the fluctuation part. , And specify the operational status such as turning on / off power factor correction capacitors and transformers.

また、この技術では、需要家設備の投入時の電流を周波数分析し、高調波成分の波形パターンである設備毎に異なり、かつ時間的に高調波成分比率が変化する変化パターンを取り出し、需要家設備の運用状態や障害発生設備を特定する(特許文献2)。   Also, with this technology, the current at the time of customer equipment input is frequency-analyzed, and the change pattern in which the harmonic component ratio varies with the equipment, which is the waveform pattern of the harmonic component, and the temporal harmonic component ratio changes, is extracted. The operation state of the facility and the facility where the failure occurs are specified (Patent Document 2).

特開平06−217451号公報Japanese Patent Laid-Open No. 06-217451 特許第3952355号公報Japanese Patent No. 3952355

しかしながら、前者の技術は、高圧配電線の地絡故障の原因を特定するだけであり、後者の技術は、専ら需要家設備の投入・停止の運用状態を特定するものであって、音響発生源となる需要家装置から発生する音響の周波数成分から需要家装置の故障やその前兆となる異常を推定するものでない。   However, the former technique only identifies the cause of the ground fault in the high-voltage distribution line, and the latter technique exclusively identifies the operational state of the customer equipment on / off, It is not intended to estimate a failure of the customer device or an abnormality that is a precursor thereof from the frequency component of the sound generated from the customer device.

本発明は上記事情に鑑みてなされたもので、需要家装置から発生する音響信号を測定し、その測定された音響信号を周波数分析し、当該需要家装置の故障や前兆となる異常を推定する装置故障評価システムを提供することを目的とする。   The present invention has been made in view of the above circumstances, and measures an acoustic signal generated from a consumer device, analyzes the frequency of the measured acoustic signal, and estimates a failure or a precursor abnormality of the consumer device. An object is to provide an apparatus failure evaluation system.

上記課題を解決するために、本発明は、電力系統から電力の供給を受ける需要家装置(設備、機器、部品を含む。)から発生する音響信号を測定する音響測定手段と、この音響測定手段で測定される音響信号を波形分析し実測周波数成分を計算する周波数成分計算手段と、前記需要家装置毎に当該各需要家装置の故障や前兆となる周波数異常と推定される周波数異常周波数成分を有する周波数異常パターンを記憶するデータ記録手段と、前記周波数成分計算手段で得られた実測周波数成分計算結果と前記データ記録手段に記憶される複数の周波数異常周波数成分との周波数成分一致度を計算する周波数成分一致度計算手段と、この周波数成分一致度計算手段で算出された各周波数成分一致度から前記需要家装置の故障やその前兆となる前記周波数異常パターンと推定し、出力または表示する周波数異常出力手段とを備えた電力品質評価システムである。   In order to solve the above-described problems, the present invention provides an acoustic measurement unit that measures an acoustic signal generated from a consumer device (including equipment, equipment, and components) that is supplied with power from an electric power system, and the acoustic measurement unit. A frequency component calculating means for analyzing the waveform of the acoustic signal measured in step (b) and calculating an actual frequency component; and for each consumer device, a frequency abnormality frequency component estimated to be a malfunction or a precursor to the abnormal frequency for each consumer device. A data recording means for storing a frequency abnormality pattern having, and a frequency component coincidence between a measured frequency component calculation result obtained by the frequency component calculation means and a plurality of frequency abnormal frequency components stored in the data recording means; The frequency component coincidence calculating means, and the frequency components coincidence calculated by the frequency component coincidence calculating means from the frequency that coincides with the failure of the consumer device or a precursor thereof. It estimated that several abnormal pattern, a power quality evaluation system and a frequency error output means for outputting or displaying.

また、本発明は、予め各需要家装置の正常時の周波数と推定される周波数正常周波数成分を有する周波数正常パターン、あるいは各需要家装置の故障や前兆となる周波数異常と推定される周波数異常周波数成分を有する周波数異常パターンと前記各要家装置の正常時の周波数と推定される周波数正常周波数成分を有する周波数正常パターン、あるいは各需要家装置の故障や前兆となる周波数異常と推定される周波数異常周波数成分を有する周波数異常パターンと前記各要家装置の正常時の周波数と推定される周波数正常周波数成分を有する周波数正常パターンと各需要家装置が並列接続される他の需要家装置特有の周波数と推定される負荷周波数成分の周波数負荷パターンをデータ記録手段に記憶し、前記周波数成分計算手段で得られた実測周波数成分計算結果との周波数成分一致度を計算し、この周波数成分一致度から前記需要家装置の故障やその前兆となる周波数正常パターン、周波数異常パターン、周波数負荷パターンを推定し、出力または表示する構成であってもよい。   In addition, the present invention provides a frequency normal pattern having a frequency normal frequency component estimated in advance as a normal frequency of each consumer device, or a frequency abnormal frequency estimated as a frequency abnormality that is a failure or a precursor of each consumer device. Frequency abnormal pattern having a component and a frequency normal pattern having a normal frequency frequency component estimated to be a normal frequency of each home device, or a frequency abnormality presuming a frequency abnormality to be a failure or a precursor of each consumer device A frequency abnormal pattern having a frequency component, a frequency normal pattern having a frequency normal frequency component estimated to be a normal frequency of each home device, and a frequency unique to another customer device to which each customer device is connected in parallel The frequency load pattern of the estimated load frequency component is stored in the data recording means, and the actual measurement obtained by the frequency component calculating means Calculate the frequency component coincidence with the wave number component calculation result, and estimate or output or display the frequency normal pattern, the frequency abnormal pattern, or the frequency load pattern that is a precursor or failure of the consumer device from the frequency component coincidence. It may be a configuration.

本発明によれば、需要家装置から発生する音響信号を測定し、その測定された音響信号を周波数分析し、需要家装置の故障や前兆となる異常を推定できる装置故障評価システムを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the apparatus failure evaluation system which can measure the acoustic signal which generate | occur | produces from a consumer apparatus, carries out frequency analysis of the measured acoustic signal, and can estimate the malfunction and precursor abnormality of a consumer apparatus can be provided.

本発明に係る装置故障評価システムの電力系統への適用例を示す系統図。The system diagram which shows the example of application to the electric power system of the apparatus failure evaluation system which concerns on this invention. 本発明に係る装置故障評価システムの実施形態1を示す概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram which shows Embodiment 1 of the apparatus failure evaluation system which concerns on this invention. 周波数成分計算手段の一具体例であるFFT処理部を用いた構成図。The block diagram using the FFT process part which is a specific example of a frequency component calculation means. 周波数正常パターンと周波数異常パターンの一例を説明する図。The figure explaining an example of a frequency normal pattern and a frequency abnormal pattern. 予めデータベースに格納される複数の周波数異常パターン例を説明する図。The figure explaining the example of several frequency abnormality patterns previously stored in a database. 周波数成分一致度計算手段の機能ブロック及び処理内容を説明する図。The figure explaining the functional block and processing content of a frequency component coincidence calculation means. 周波数成分の規格化を説明する図。The figure explaining normalization of a frequency component. 規格化された実測周波数成分結果と規格化された周波数異常周波数成分とが完全一致している例を説明する図。The figure explaining the example with which the normalized actual frequency component result and the normalized frequency abnormal frequency component correspond completely. 規格化された実測周波数成分結果と規格化された周波数異常周波数成分とが完全に一致していない例を説明する図。The figure explaining the example in which the normalized actual frequency component result and the normalized frequency abnormal frequency component do not correspond completely. 規格化された実測周波数成分結果と規格化された周波数異常周波数成分とが一部一致している例を説明する図。The figure explaining the example in which the standardized measurement frequency component result and the standardized frequency abnormal frequency component partially correspond. 規格化実測周波数成分計算結果と規格化周波数異常周波数成分との一致度の程度と規格化差合計値との関係を表わす図。The figure showing the relationship between the degree of coincidence of a standardization measurement frequency component calculation result and a standardization frequency abnormal frequency component, and a standardization difference total value. 周波数成分一致度と規格化差分合計値との関係を別の観点から表わした図。The figure showing the relationship between a frequency component coincidence degree and a normalization difference total value from another viewpoint. 図2に示す周波数異常推定手段の一具体例を示す構成図The block diagram which shows one specific example of the frequency abnormality estimation means shown in FIG. 周波数異常周波数成分と周波数成分一致度との関係を説明する図。The figure explaining the relationship between a frequency abnormal frequency component and a frequency component coincidence degree. 周波数異常抽出閾値を設けずに周波数異常推定結果を表示部に表示した一例を示す図。The figure which shows an example which displayed the frequency abnormality estimation result on the display part, without providing a frequency abnormality extraction threshold value. 図2に示す装置故障評価システムの実施形態1の変形例1を示す構成図。The block diagram which shows the modification 1 of Embodiment 1 of the apparatus failure evaluation system shown in FIG. 周波数正常周波数成分と周波数成分一致度との関係を説明する図。The figure explaining the relationship between a frequency normal frequency component and a frequency component coincidence degree. 図2に示す装置故障評価システムの実施形態1の変形例2を示す構成図。The block diagram which shows the modification 2 of Embodiment 1 of the apparatus failure evaluation system shown in FIG. 図2に示す装置故障評価システムの実施形態1の変形例3を示す構成図。The block diagram which shows the modification 3 of Embodiment 1 of the apparatus failure evaluation system shown in FIG. 異なる複数種類の周波数パターンの表示例を説明する図。The figure explaining the example of a display of a plurality of different kinds of frequency patterns. 本発明に係る装置故障評価システムの実施形態2を示す構成図。The block diagram which shows Embodiment 2 of the apparatus failure evaluation system which concerns on this invention. 一定時間毎に取得した複数の周波数異常パターン毎の周波数成分一致度の時系列的な変化の表示例を示す図。The figure which shows the example of a display of the time-sequential change of the frequency component coincidence for every some frequency abnormality pattern acquired for every fixed time. 本発明に係る装置故障評価システムの実施形態3を示す構成図。The block diagram which shows Embodiment 3 of the apparatus failure evaluation system which concerns on this invention. 図23のアラーム発生手段から発生するアラームのアラーム伝送系を示す図。The figure which shows the alarm transmission system of the alarm which generate | occur | produces from the alarm generation means of FIG. アラームの発生条件を説明する図。The figure explaining the generating condition of an alarm. 図23に示す構成に新たに制御指令発生手段を設けた装置故障評価システムの実施の形態4を示す構成図。The block diagram which shows Embodiment 4 of the apparatus failure evaluation system which newly provided the control command generation | occurrence | production means in the structure shown in FIG. 図23の制御指令発生手段から発生する制御指令の制御指令伝送系を示す図。The figure which shows the control command transmission system of the control command which is generated from the control command generation means of FIG. 制御指令の発生条件を説明する図。The figure explaining the generation conditions of a control command.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は本発明に係る装置故障評価システム1を電力系統に適用した一例を示す図である。
装置故障評価システム1は、例えば上位電力系統2の送電線3から変圧器4を経て所定の電力を受電する母線5に対して、配電線(送電線とも成り得る)6を介して需要家装置である負荷装置7が接続されている。ここで、負荷装置7とは、無停電電源システムや電力需給システム(例えばマイクログリッド需給管理システム等)等のごとく電力需要家のために設置される装置であって、単なる装置だけでなく、上位電力系統2から電力の供給を受ける設備、機器、部品なども含むものである。また、図1では、1台の負荷装置7を示しているが、故障ないしその前兆となる異常時に何らかの音響を発する全ての負荷装置7を対象とするものである。
(Embodiment 1)
FIG. 1 is a diagram showing an example in which an apparatus failure evaluation system 1 according to the present invention is applied to a power system.
The apparatus failure evaluation system 1 is a customer apparatus via a distribution line (which can also be a transmission line) 6 for a bus 5 that receives predetermined power from a transmission line 3 of a higher power system 2 via a transformer 4, for example. A load device 7 is connected. Here, the load device 7 is a device installed for a power consumer such as an uninterruptible power supply system or a power supply and demand system (for example, a microgrid demand and supply management system), and is not only a simple device but also a host device. This includes equipment, devices, parts, and the like that receive power from the power system 2. In FIG. 1, one load device 7 is illustrated, but all load devices 7 that emit some sound in the event of a failure or an abnormality that is a precursor thereof are targeted.

故障ないしその前兆となる異常の際に音響発生源となりうる負荷装置7の筐体内部、筐体外壁または装置筐体近傍には、集音マイクやアンプ等からなる音響測定部8a及びアナログ信号をデジタル信号に変換するAD変換部8bを備えた音響測定装置8が配置される。なお、音響測定部8aが音響信号を直接にデジタル信号として出力するものであれば、AD変換部8bは不要となる。音響測定装置8は、負荷装置7から音響信号10を測定し、伝送系9を通して装置故障評価システム1へ送信する。   An acoustic measurement unit 8a composed of a sound collecting microphone, an amplifier, and the like is provided inside the casing of the load device 7 that can be a sound generation source in the event of a failure or an anomaly that is a sign of the failure, or in the vicinity of the casing of the casing. An acoustic measurement device 8 including an AD conversion unit 8b for converting into a digital signal is disposed. If the acoustic measurement unit 8a directly outputs an acoustic signal as a digital signal, the AD conversion unit 8b is not necessary. The acoustic measurement device 8 measures the acoustic signal 10 from the load device 7 and transmits it to the device failure evaluation system 1 through the transmission system 9.

装置故障評価システム1は、音響測定装置8で測定された負荷装置7(音響発生源)から発生する音響信号10を収集し、音響信号10の周波数成分を分析し、負荷装置7の故障やその前兆となる異常を推定する。   The device failure evaluation system 1 collects the acoustic signal 10 generated from the load device 7 (sound generation source) measured by the acoustic measurement device 8, analyzes the frequency component of the acoustic signal 10, and detects the failure of the load device 7 or its Estimate an anomaly that is a precursor.

よって、図1では、装置故障評価システム1と音響測定装置8は互いに別の構成体として記載されているが、本発明に係る装置故障評価システムの中には音響信号10を測定する音響測定装置8も必須構成要素として含むものである。   Therefore, in FIG. 1, the device failure evaluation system 1 and the acoustic measurement device 8 are described as separate components, but in the device failure evaluation system according to the present invention, an acoustic measurement device that measures the acoustic signal 10. 8 is also included as an essential component.

図2は本発明に係る装置故障評価システムの実施形態1を示す構成図である。
装置故障評価システム1は、コンピュータを用いて、一定の処理手順に従ってソフトウエア的に処理するものであって、機能的には,周波数成分計算手段11と、データ記録手段12と、周波数成分一致度計算手段13と、周波数異常推定手段(広義には周波数異常出力手段に相当する)14とで構成される。
FIG. 2 is a block diagram showing Embodiment 1 of the apparatus failure evaluation system according to the present invention.
The apparatus failure evaluation system 1 uses a computer to perform software processing according to a predetermined processing procedure. Functionally, the apparatus failure evaluation system 1 has a frequency component calculation means 11, a data recording means 12, and a frequency component coincidence degree. The calculation means 13 and the frequency abnormality estimation means (corresponding to the frequency abnormality output means in a broad sense) 14 are configured.

周波数成分計算手段11は、音響測定装置8で測定された負荷装置7から発生する音響信号10を波形分析し、その音響信号10を構成する周波数成分からなる実測周波数成分計算結果15を取得し、データ記録手段12に保存すると共に、周波数成分一致度計算手段13に送る。   The frequency component calculation means 11 analyzes the waveform of the acoustic signal 10 generated from the load device 7 measured by the acoustic measurement device 8, acquires the actual frequency component calculation result 15 composed of the frequency components constituting the acoustic signal 10, The data is stored in the data recording means 12 and sent to the frequency component coincidence calculation means 13.

データ記録手段12は、装置(設備、機器、部品を含む)の故障,その前兆となる異常を推定するために必要な各種のデータを記録するものであって、データベース16により構成される。データベース16には、周波数成分計算手段11で計算された実測周波数成分計算結果15を保存する他、予め各負荷装置7、…に対応する例えば周波数異常と推定される周波数成分(以下、周波数異常周波数成分と呼ぶ)17のパターン(以下、周波数異常パターンと呼ぶ)18が格納されている
周波数成分一致度計算手段13は、データベース16に保存された実測周波数成分計算結果15と周波数異常周波数成分17の周波数成分との一致度(以下、周波数成分一致度と呼ぶ)19を計算する機能を持っている。
The data recording unit 12 records various data necessary for estimating a failure of a device (including equipment, equipment, and parts) and an abnormality that is a precursor thereof, and includes a database 16. In the database 16, the actual frequency component calculation result 15 calculated by the frequency component calculation means 11 is stored, and for example, frequency components (hereinafter referred to as frequency abnormal frequencies) corresponding to the load devices 7. The frequency component coincidence calculation means 13 is stored in the measured frequency component calculation result 15 and the frequency abnormal frequency component 17 stored in the database 16. It has a function of calculating the degree of coincidence with frequency components (hereinafter referred to as frequency component coincidence) 19.

周波数異常推定手段14は、周波数成分一致度計算手段13で計算された周波数成分一致度19が高いとき、該当する周波数異常周波数成分17に対応する周波数異常パターン18を周波数異常の可能性が高い当該周波数異常パターン18と推定し、この推定された周波数異常パターン18を周波数異常推定結果20として出力する。   When the frequency component coincidence degree 19 calculated by the frequency component coincidence degree calculating unit 13 is high, the frequency abnormality estimating unit 14 determines that the frequency abnormality pattern 18 corresponding to the corresponding frequency abnormality frequency component 17 has a high possibility of frequency abnormality. The frequency abnormality pattern 18 is estimated, and the estimated frequency abnormality pattern 18 is output as the frequency abnormality estimation result 20.

周波数異常推定結果20の出力形式としては、例えば、表示装置に表示するとか、プリンタから印字出力するか、あるいはデータ記録手段12または別個の記憶手段に記憶し、あるいは専用伝送回線等を介して外部の出力装置に出力する形式などがある。   The output format of the frequency abnormality estimation result 20 is, for example, displayed on a display device, printed out from a printer, stored in the data recording means 12 or a separate storage means, or externally via a dedicated transmission line or the like. There are formats to output to the output device.

次に、以上のような装置故障評価システム1の作用について説明する。
先ず、周波数成分計算手段11では、音響測定装置8から送られてくる音響信号10に含まれる周波数の次数毎の成分を計算する。
Next, the operation of the apparatus failure evaluation system 1 as described above will be described.
First, the frequency component calculation means 11 calculates a component for each order of the frequency included in the acoustic signal 10 sent from the acoustic measurement device 8.

周波数の次数毎の成分を計算する手法としては、最も一般的には高速フーリェ変換(FFT:Fast Fourier Transformation)が用いられる。   As a method for calculating a component for each order of frequency, fast Fourier transform (FFT) is most commonly used.

周波数としては、一定の周期を有し、周期の違う正弦波の集まりとして表される。今、周波数の基本波を一次とすると、周期が基本波の1/2(周波数は2倍)となる正弦波を2次、周期が基本波の1/3(周波数は3倍)となる正弦波を3次、以下同様に周期が基本波の1/n(周波数はn倍)となる正弦波をn次と呼ぶ。   The frequency is expressed as a collection of sine waves having a constant period and different periods. Now, assuming that the fundamental wave of frequency is primary, a sine wave whose period is 1/2 of the fundamental wave (frequency is twice), and a sine whose period is 1/3 of the fundamental wave (frequency is 3 times) A sine wave whose period is 1 / n (frequency is n times) of the fundamental wave is called the nth order.

例えば基本波を1Hzとすると、2次は2Hz、3次は3Hzとなり、次数とHzは一致する。Hzは周波数の単位となる。1秒間に1周期の周波数を1Hzという。同様に、基本波を10Hzとすると、2次は20Hz、3次は30Hzとなり、次数はHzの10倍となる。   For example, if the fundamental wave is 1 Hz, the second order is 2 Hz, the third order is 3 Hz, and the order and Hz match. Hz is a unit of frequency. The frequency of one cycle per second is 1 Hz. Similarly, if the fundamental wave is 10 Hz, the second order is 20 Hz, the third order is 30 Hz, and the order is 10 times the Hz.

一般に人間が知覚できる音響信号10の周波数範囲は20Hz〜20kHzであるが、人間どうしの会話の周波数の範囲は200Hz〜8kHzである。   Generally, the frequency range of the acoustic signal 10 that can be perceived by humans is 20 Hz to 20 kHz, but the frequency range of conversation between humans is 200 Hz to 8 kHz.

ところで、観測データ(測定データ)が装置の動作特性から離散的なサンプリングデータである場合があり得る。このようなサンプリングデータから周波数成分を求める場合、離散型フーリェ変換と呼ばれる手法を用いて求める必要がある。   By the way, the observation data (measurement data) may be discrete sampling data due to the operating characteristics of the apparatus. When obtaining frequency components from such sampling data, it is necessary to obtain them using a technique called discrete Fourier transform.

その点、高速フーリェ変換(FFT)は、離散型フーリェ変換を高速に解けるように改良した手法であって、連続的または離散的なサンプリングデータの何れにも対応でき、周波数解析において最も汎用的な手法と言える。   On the other hand, the fast Fourier transform (FFT) is an improved method so that the discrete Fourier transform can be solved at high speed, and can cope with either continuous or discrete sampling data, and is the most versatile in frequency analysis. This is a technique.

そこで、本実施の形態における周波数成分計算手段11は、図3に示す高速フーリェ変換機能を持つFFT処理部11aを用いて、周波数成分の計算処理を行う。   Therefore, the frequency component calculation means 11 in the present embodiment performs a frequency component calculation process using an FFT processing unit 11a having a high-speed Fourier transform function shown in FIG.

すなわち、FFT処理部11aは、入力される音響信号10を波形分析し、音響信号10に含まれる周波数の次数毎の成分を計算する。   That is, the FFT processing unit 11 a performs waveform analysis on the input acoustic signal 10 and calculates a component for each order of the frequency included in the acoustic signal 10.

ここで、各次数の周波数の大きさを、周波数スペクトルの大きさとすると、周波数含有率は、周波数の次数毎に計算されるもので、式(1)で表される。   Here, if the magnitude of the frequency of each order is the magnitude of the frequency spectrum, the frequency content is calculated for each order of the frequency, and is expressed by Expression (1).

周波数含有率(次数)=周波数スペクトルの大きさ(次数毎)÷サンプル周波数における周波数スペクトルの大きさの総和 ……(1)
例えばサンプル周波数が1Hz〜1000Hzであれば、サンプル周波数の総和は1Hzから1000Hzまでの周波数スベクトル(次数毎)の総和となる。
Frequency content (order) = frequency spectrum size (per order) ÷ total sum of frequency spectrum size at sample frequency (1)
For example, if the sample frequency is 1 Hz to 1000 Hz, the sum of the sample frequencies is the sum of frequency vectors (for each order) from 1 Hz to 1000 Hz.

一方、データベース16には、前述したように周波数異常パターン18の周波数異常周波数成分17が格納されている。周波数異常パターン18とは、設備,装置,機器,部品の故障やその前兆となる周波数の異常パターンである。   On the other hand, the database 16 stores the frequency abnormal frequency component 17 of the frequency abnormal pattern 18 as described above. The frequency abnormality pattern 18 is an abnormality pattern of a frequency that becomes a failure or a sign of failure of equipment, devices, equipment, or parts.

周波数の正常・異常パターンについて、図4により説明する。
図4(a)は周波数正常パターン21の一例を示す図であって、400Hzから500Hzにピークを有する周波数スペクトル分布を示している。ここで、周波数正常パターン21とは、装置の故障やその前兆とならない周波数のパターンであって、通常運用時の周波数パターンである。これは、設備ごと、装置ごと、機器ごと、部品ごとに異なる。
The normal / abnormal frequency pattern will be described with reference to FIG.
FIG. 4A is a diagram showing an example of the normal frequency pattern 21 and shows a frequency spectrum distribution having a peak from 400 Hz to 500 Hz. Here, the normal frequency pattern 21 is a frequency pattern that does not become a sign of device failure or a sign thereof, and is a frequency pattern during normal operation. This is different for each facility, each device, each device, and each part.

図4(b)は周波数異常パターン18の一例を示す図であって、400Hzから500Hzにピークを有する周波数スペクトル分布とは別に、1500Hz付近に異常を示す周波数スペクトル分布が存在する。   FIG. 4B is a diagram showing an example of the frequency abnormality pattern 18, and there is a frequency spectrum distribution showing an abnormality in the vicinity of 1500 Hz, apart from a frequency spectrum distribution having a peak from 400 Hz to 500 Hz.

図5(a)〜(c)は、データベース16に格納されている周波数異常パターン18−A、18−B、18−Cの一例であって、縦軸が周波数の大きさ(周波数含有率)、横軸が周波数(Hz)で表している。周波数含有率は前述したように周波数の次数毎に式(1)で計算される。   5A to 5C are examples of frequency abnormality patterns 18-A, 18-B, and 18-C stored in the database 16, and the vertical axis indicates the magnitude of the frequency (frequency content). The horizontal axis represents the frequency (Hz). As described above, the frequency content is calculated by the equation (1) for each order of frequency.

周波数異常パターン18−A、18−B、18−Cは、正常な周波数分布とは別に、異常な周波数分布(周波数異常周波数成分)を有する。因みに、周波数異常パターン18−Aは、1500Hz付近に異常な周波数分布があり、周波数異常パターン18−Bは、1200〜1300Hz付近に異常な周波数分布があり、周波数異常パターン18−Cは、1300Hz付近,1700Hz〜1800Hz付近に異常な周波数分布がある例である。   The frequency abnormality patterns 18-A, 18-B, and 18-C have an abnormal frequency distribution (frequency abnormal frequency component) separately from the normal frequency distribution. Incidentally, the frequency abnormality pattern 18-A has an abnormal frequency distribution in the vicinity of 1500 Hz, the frequency abnormality pattern 18-B has an abnormal frequency distribution in the vicinity of 1200 to 1300 Hz, and the frequency abnormality pattern 18-C has a frequency near 1300 Hz. , 1700 Hz to 1800 Hz is an example having an abnormal frequency distribution.

なお、周波数異常パターン18は、正常な周波数分布と異常な周波数分布とが完全に周波数的に分離されているものでなく、例えば正常周波数分布に一部重なり合って突き出すような分布を示す異常な周波数分布の場合もある。   The frequency abnormality pattern 18 is not a frequency distribution in which the normal frequency distribution and the abnormal frequency distribution are completely separated. For example, the frequency abnormality pattern 18 has an abnormal frequency that shows a distribution that partially protrudes from the normal frequency distribution. It may be a distribution.

ところで、異常周波数を含む音響信号10(異常音)は、電力需給システムを構成する負荷装置(設備,装置、機器,部品)7の故障だけでなく、その故障の前兆となっている場合が多い。そのため、データベース16には、電力需給システム等を構成する各負荷装置7の故障の他、その前兆となる異常となる周波数の次数毎成分の組み合せ及び周波数の次数毎成分の含有率からなる多数の周波数異常パターン18が格納される。   By the way, the acoustic signal 10 (abnormal sound) including an abnormal frequency is not only a failure of the load device (equipment, device, equipment, component) 7 constituting the power supply and demand system, but often serves as a precursor of the failure. . Therefore, in the database 16, in addition to the failure of each load device 7 constituting the power supply and demand system, etc., there are a number of combinations of the components for each order of frequency and the content ratios of components for each order of frequency. The frequency abnormality pattern 18 is stored.

図6は周波数成分一致度計算手段13の機能ブロック及び処理内容を説明する図である。   FIG. 6 is a diagram for explaining the functional blocks and processing contents of the frequency component coincidence calculation means 13.

周波数成分一致度計算手段13は、実測周波数成分計算結果15の合計が1となるように規格化する処理を実行する規格化計算処理部13aと、この規格化計算処理部13aで計算された実測周波数成分計算結果15の規格化結果(規格化した値)とデータベース16に格納される周波数異常周波数成分17毎に周波数成分の合計が1となるように規格化した値との一致度を計算する一致度計算処理部13bとが設けられている。   The frequency component coincidence calculation means 13 includes a normalization calculation processing unit 13a that executes a normalization process so that the total of the actual measurement frequency component calculation results 15 is 1, and an actual measurement calculated by the normalization calculation processing unit 13a. The degree of coincidence between the standardized result (standardized value) of the frequency component calculation result 15 and the standardized value so that the sum of the frequency components becomes 1 for each frequency abnormal frequency component 17 stored in the database 16 is calculated. A coincidence calculation processing unit 13b is provided.

規格化計算処理部13aは、サンプル周波数の領域において、周波数成分計算手段11から実測周波数成分計算結果15を受け取ると、規格化処理を実行し、実測周波数成分計算結果15に含む各次数の周波数成分の合計が1となるように規格化する。   When receiving the measured frequency component calculation result 15 from the frequency component calculation means 11 in the sample frequency region, the normalization calculation processing unit 13 a executes normalization processing and includes frequency components of respective orders included in the measured frequency component calculation result 15. Is normalized so that the sum of 1 becomes 1.

規格化処理は、次の式(2)を用いて、規格化後のj次(jは2以上の自然数)の成分を算出する。   In the normalization process, a j-th order component (j is a natural number of 2 or more) after normalization is calculated using the following equation (2).

規格化後のj次の成分=規格化前j次の周波数成分/規格化前の周波数成分の合計値
……(2)
式(1)と式(2)のサンプル周波数が同じであるとすれば、式(2)の規格化後のj次の成分は、実測周波数成分計算結果15における周波数含有率(j次)となる。
J-order component after normalization = j-th frequency component before normalization / total value of frequency components before normalization
(2)
Assuming that the sample frequencies of Expression (1) and Expression (2) are the same, the j-th order component after normalization of Expression (2) is the frequency content rate (j-th order) in the measured frequency component calculation result 15. Become.

但し、図5に示すように正常な周波数分布が異常な周波数分布に比べて大きいとき、周波数正常パターン21と周波数異常パターン18との差が相対的に小さいことから、サンプル周波数としては、異常な周波数領域を相対的に多く含む領域からサンプリングすることが必要である。   However, as shown in FIG. 5, when the normal frequency distribution is larger than the abnormal frequency distribution, the difference between the frequency normal pattern 21 and the frequency abnormal pattern 18 is relatively small. It is necessary to sample from a region including a relatively large frequency region.

例えば周波数異常パターン18−Aにおけるサンプル周波数は1500Hz付近、周波数異常パターン18−Bにおけるサンプル周波数は1200Hz〜1300Hz付近、周波数異常パターン18−Cにおけるサンプル周波数は1300Hz〜1800Hz付近の領域を多く含むようにサンプリングする。   For example, the sample frequency in the frequency abnormality pattern 18-A is in the vicinity of 1500 Hz, the sample frequency in the frequency abnormality pattern 18-B is in the vicinity of 1200 Hz to 1300 Hz, and the sample frequency in the frequency abnormality pattern 18-C includes many regions in the vicinity of 1300 Hz to 1800 Hz. Sampling.

図7は周波数成分の規格化におけるサンプル周波数を説明する図である。
図7(a)は周波数異常パターン18−Aのサンプル周波数の領域が1000Hz〜2000Hzとした場合であって、異常な周波数分布の積分値の合計を1とする。同様に、図7(b)は周波数異常パターン18−Bのサンプル周波数の領域が1000Hz〜1500Hzとした場合、図7(c)は周波数異常パターン18−Cのサンプル周波数の領域が1000Hz〜2000Hzとした場合である。
FIG. 7 is a diagram for explaining sample frequencies in normalization of frequency components.
FIG. 7A shows a case where the sample frequency region of the frequency abnormality pattern 18-A is 1000 Hz to 2000 Hz, and the sum of the integrated values of the abnormal frequency distribution is 1. Similarly, in FIG. 7B, when the region of the sample frequency of the frequency abnormality pattern 18-B is 1000 Hz to 1500 Hz, FIG. 7C shows the region of the sample frequency of the frequency abnormality pattern 18-C is 1000 Hz to 2000 Hz. This is the case.

一致度計算処理部13bは、サンプル周波数領域において、実測周波数成分計算結果15の規格後の値(以下、規格化実測周波数成分計算結果22と呼ぶ。図8(a)参照)と、データベース16にある周波数異常周波数成分17の規格化後の値(以下、規格化周波数異常周波数成分23と呼ぶ。図8(b)参照)との差分の絶対値を次数ごとに取り、式(3)のように合計値(以下、規格化差分合計値24と呼ぶ)を計算する。   The coincidence calculation processing unit 13b stores a value after the standardization of the actually measured frequency component calculation result 15 (hereinafter referred to as a standardized actually measured frequency component calculation result 22; see FIG. 8A) in the sample frequency domain, and the database 16. An absolute value of a difference from a value after normalization of a certain frequency abnormal frequency component 17 (hereinafter, referred to as a normalized frequency abnormal frequency component 23; see FIG. 8B) is taken for each order, as shown in Expression (3) To the total value (hereinafter referred to as the normalized difference total value 24).

規格化差分合計値24=|規格化後の周波数iHzの成分(実測周波数成分計算結果15)−規格化後の周波数iHzの成分(周波数異常周波数成分17)|+|規格化後の周波数jHzの成分(実測周波数成分計算結果15)−規格化後の周波数jHzの成分(周波数異常周波数成分17)|+ …… +|規格化後の周波数nHzの成分(実測周波数成分計算結果15)−規格化後の周波数nHzの成分(周波数異常周波数成分17)|
=|周波数iHzの成分(規格化実測周波数成分計算結果22)−周波数iHzの成分(規格化周波数異常周波数成分23)|+|周波数jHzの成分(規格化実測周波数成分計算結果22)−周波数jHzの成分(規格化周波数異常周波数成分23)|+ …… +|周波数nHzの成分(規格化実測周波数成分計算結果22)−周波数nHzの成分(規格化周波数異常周波数成分23)|(但し、サンプル周波数領域はiHz〜nHzである)。 ……(3)
すなわち、一致度計算処理部13bは、図8に示すように規格化実測周波数成分計算結果22と規格化周波数異常周波数成分23との周波数成分及び大きさとも完全に一致している場合、前記式(3)から規格化差分合計値24=0となる(但し、サンプル周波数領域が1500Hz〜1510Hzの範囲である)。
Total normalized difference value 24 = | component of frequency iHz after normalization (measured frequency component calculation result 15) −component of frequency iHz after normalization (frequency abnormal frequency component 17) | + | frequency of frequency jHz after normalization Component (measurement frequency component calculation result 15)-component of frequency jHz after normalization (frequency abnormal frequency component 17) | + ... + | component of frequency nHz after normalization (measurement frequency component calculation result 15)-normalization Later component of frequency nHz (frequency abnormal frequency component 17) |
= | Frequency iHz component (standardized actual frequency component calculation result 22) −frequency iHz component (normalized frequency abnormal frequency component 23) | + | frequency jHz component (standardized actual frequency component calculation result 22) −frequency jHz (Normalized frequency abnormal frequency component 23) | +... ++ frequency nHz component (standardized actual frequency component calculation result 22) −frequency nHz component (normalized frequency abnormal frequency component 23) | The frequency range is iHz to nHz). ...... (3)
That is, when the coincidence calculation processing unit 13b completely matches the frequency components and magnitudes of the normalized actual frequency component calculation result 22 and the normalized frequency abnormal frequency component 23 as shown in FIG. From (3), the normalized difference total value 24 = 0 (however, the sample frequency region is in the range of 1500 Hz to 1510 Hz).

一方、図9は規格化実測周波数成分計算結果22と規格化周波数異常周波数成分23とが全く一致していない例を示す図である。
一致度計算処理部13bは、式(3)に基づき、規格化実測周波数成分計算結果22と規格化周波数異常周波数成分23が完全に一致していない場合、規格化実測周波数成分計算結果22の合計値と、規格化周波数異常周波数成分23の合計値がそれぞれ「1」であることから、規格化差分合計値24は「2」となる。但し、サンプル周波数領域は1500Hz〜1510Hzの範囲である。
On the other hand, FIG. 9 is a diagram showing an example in which the normalized measurement frequency component calculation result 22 and the normalized frequency abnormal frequency component 23 do not match at all.
Based on the equation (3), the coincidence calculation processing unit 13b calculates the sum of the normalized measured frequency component calculation results 22 when the normalized measured frequency component calculation result 22 and the normalized frequency abnormal frequency component 23 do not completely match. Since the total value of the value and the normalized frequency abnormal frequency component 23 is “1”, the normalized difference total value 24 is “2”. However, the sample frequency region is in the range of 1500 Hz to 1510 Hz.

また、図10は規格化実測周波数成分計算結果22と規格化周波数異常周波数成分23とが一部一致している例を示す図である。一部一致の場合の規格化差分合計値24は、一致していない部分の合計値であって、完全一致している場合の値「0」から全く一致していない場合の値「2」までの中間の値となる。   FIG. 10 is a diagram illustrating an example in which the normalized actual measurement frequency component calculation result 22 and the normalized frequency abnormal frequency component 23 partially match. The standardized difference total value 24 in the case of partial match is the total value of the non-matched part, from the value “0” in the case of complete match to the value “2” in the case of no match at all. The intermediate value of.

因みに、図10の例では、一致していない部分の和としては、規格化実測周波数成分計算結果22の周波数領域1503Hzの値0.6と、規格化周波数異常周波数成分23の周波数領域1507Hzの値0.6との和である「1.2」となる。但し、サンプル周波数領域は1500Hz〜1510Hzの範囲である。   Incidentally, in the example of FIG. 10, the sum of the inconsistent portions is the value 0.6 of the frequency region 1503 Hz of the normalized actual frequency component calculation result 22 and the value of the frequency region 1507 Hz of the normalized frequency abnormal frequency component 23. It is “1.2” which is the sum of 0.6. However, the sample frequency region is in the range of 1500 Hz to 1510 Hz.

図11は規格化実測周波数成分計算結果22と規格化周波数異常周波数成分23との一致度の程度と規格化差合計値24との関係を示す図である。この図から明らかなように、完全一致の規格化差分合計値24は「0」、完全不一致の規格化差分合計値24は「2」となり、部分的に一致しているときはその中間の値となることを表わしている。   FIG. 11 is a diagram showing the relationship between the degree of coincidence between the normalized actual measurement frequency component calculation result 22 and the normalized frequency abnormal frequency component 23 and the normalized difference total value 24. As is apparent from this figure, the standardized difference total value 24 for perfect match is “0”, and the standardized difference total value 24 for perfect mismatch is “2”. It represents that becomes.

ここで、周波数成分一致度19の定義について考える。
今、規格化実測周波数成分計算結果22と規格化周波数異常周波数成分23が完全に一致している場合を100%、全く一致していない場合を−100%、これらの中間を0%となるようにすれば、図12に示すように理解し易く表すことができる。
Here, the definition of the frequency component coincidence 19 is considered.
Now, the standardized actual frequency component calculation result 22 and the standardized frequency abnormal frequency component 23 are 100% when they are completely coincident, −100% when they are not completely coincident, and 0% between them. In this way, it can be expressed easily as shown in FIG.

そこで、図12に示す周波数成分一致度19と規格化差分合計値24との間の変換式は、式(4)で表わせる。その結果、式(4)で計算された結果が周波数成分一致度19と定義することができる。
周波数成分一致度19=(1−規格化差分合計値24)×100(%)…(4)
すなわち、一致度計算処理部13bは、周波数異常周波数成分17ごとに、実測周波数成分計算結果15との周波数成分一致度19を式(4)によって計算し、周波数異常推定手段14に渡す。
Therefore, the conversion equation between the frequency component coincidence 19 and the normalized difference total value 24 shown in FIG. 12 can be expressed by equation (4). As a result, the result calculated by Expression (4) can be defined as the frequency component coincidence degree 19.
Frequency component coincidence 19 = (1−normalized difference total value 24) × 100 (%) (4)
That is, the coincidence calculation processing unit 13 b calculates the frequency component coincidence 19 with the actually measured frequency component calculation result 15 for each frequency abnormal frequency component 17 by the equation (4), and passes it to the frequency abnormality estimating means 14.

周波数異常推定手段14は、周波数成分一致度計算手段13から受け取った周波数異常周波数成分17ごとの周波数成分一致度19をもとに、周波数異常となる周波数異常パターン18を推定する。   The frequency abnormality estimator 14 estimates the frequency abnormality pattern 18 that causes a frequency abnormality based on the frequency component coincidence 19 for each frequency abnormal frequency component 17 received from the frequency component coincidence calculator 13.

図13は、周波数異常推定手段14の機能ブロック及び処理内容を説明する図である。   FIG. 13 is a diagram for explaining the functional blocks and processing contents of the frequency abnormality estimation means 14.

周波数異常推定手段14は一致度並び替え処理部14aと周波数異常抽出部14bとで構成される。   The frequency abnormality estimation means 14 includes a matching degree rearrangement processing unit 14a and a frequency abnormality extraction unit 14b.

一致度並び替え処理部14aは、周波数異常周波数成分17の周波数成分一致度19をもとに当該周波数異常周波数成分17を並び替える処理を行うものであって、例えば周波数成分一致度19の高いものから順に並び替える処理を実行する。   The matching degree rearrangement processing unit 14a performs processing for rearranging the frequency abnormal frequency component 17 based on the frequency component matching degree 19 of the frequency abnormal frequency component 17, and has a high frequency component matching degree 19, for example. The process of rearranging in order is executed.

周波数異常抽出部14bは、周波数成分一致度19の高いものから順に並び替えた周波数異常周波数成分17をもつ周波数異常パターン18の中から、周波数異常と推定されるパターン18を抽出し、周波数異常推定結果20として出力する。   The frequency abnormality extraction unit 14b extracts a pattern 18 that is presumed to be frequency abnormality from the frequency abnormality patterns 18 having the frequency abnormality frequency components 17 that are rearranged in order from the one having the highest frequency component coincidence 19, and the frequency abnormality estimation The result 20 is output.

図14は周波数異常周波数成分17と周波数成分一致度19との関係を説明する図である。   FIG. 14 is a diagram for explaining the relationship between the frequency abnormal frequency component 17 and the frequency component coincidence degree 19.

周波数異常推定手段14は、一致度並び替え処理部14aが周波数異常周波数成分17に対応する周波数異常パターン18を、周波数成分一致度19の高いものから順に左側から並べていくと、図14に示すように周波数成分一致度19が100%から−100%の間に収まり、左側にあるほど周波数異常が高く、右側にあるほどほど周波数異常が低いと考えることができる。   As shown in FIG. 14, when the frequency abnormality estimation means 14 arranges the frequency abnormality patterns 18 corresponding to the frequency abnormal frequency component 17 in order from the highest frequency component matching degree 19 by the matching degree rearrangement processing unit 14 a from the left side. It can be considered that the frequency component coincidence 19 falls between 100% and −100%, the frequency abnormality is higher as it is on the left side, and the frequency abnormality is lower as it is on the right side.

従って、周波数異常推定手段14の周波数異常抽出部14bでは、実験の積み重ねや経験等を通して装置の故障やその前兆となる異常に影響を与える可能性を考慮しつつ周波数異常抽出閾値25を設定し、周波数成分一致度19が周波数異常抽出閾値25よりも高い周波数異常周波数成分17をもつ周波数異常パターン18を周波数異常として抽出することが可能である。つまり、周波数異常抽出部14bは、図14に示すように周波数異常抽出閾値25より上側に存在する周波数異常周波数成分17を持つ周波数異常パターン18を周波数異常推定結果20として出力する。   Therefore, the frequency abnormality extraction unit 14b of the frequency abnormality estimation means 14 sets the frequency abnormality extraction threshold 25 in consideration of the possibility of affecting the failure of the apparatus and the abnormality that is a precursor thereof through the accumulation and experience of experiments, It is possible to extract a frequency abnormality pattern 18 having a frequency abnormality frequency component 17 having a frequency component matching degree 19 higher than the frequency abnormality extraction threshold 25 as a frequency abnormality. That is, the frequency abnormality extraction unit 14b outputs a frequency abnormality pattern 18 having a frequency abnormality frequency component 17 existing above the frequency abnormality extraction threshold 25 as a frequency abnormality estimation result 20 as shown in FIG.

なお、周波数異常推定手段14としては、周波数要因抽出閾値25を設けることなく、周波数成分一致度19の高い順に並べ替えて周波数異常推定結果20として出力してもよい。   The frequency abnormality estimation means 14 may output the frequency abnormality estimation result 20 by rearranging the frequency component matching degree 19 in descending order without providing the frequency factor extraction threshold 25.

図15は周波数異常抽出閾値25を設けずに周波数異常推定結果20を表示装置に表示した一例を示す図である。   FIG. 15 is a diagram showing an example in which the frequency abnormality estimation result 20 is displayed on the display device without providing the frequency abnormality extraction threshold 25.

同図において、縦軸が周波数成分一致度19、横軸が周波数異常パターン18であって、周波数成分一致度19の高い順番に左側から右側に表示している。   In the figure, the vertical axis represents the frequency component coincidence 19 and the horizontal axis represents the frequency abnormality pattern 18, which are displayed from the left to the right in order of the frequency component coincidence 19.

従って、以上のような実施の形態によれば、需要家装置である各負荷装置7自身または当該負荷装置7近傍に音響測定装置8を配置し、この音響測定装置8で負荷装置7,…から発生する異常音を含む音響信号10を測定し、この音響信号10に含まれる周波数の次数毎の成分を計算し、実測周波数成分計算結果15を取り出す。そして、実測周波数成分計算結果15と予めデータベース16に格納される装置等の故障やその前兆となる異常を表す複数の異常周波数成分17との周波数成分一致度を計算し、周波数異常周波数成分17の高い一致度を持つ周波数異常バターン18を抽出するので、需要家装置(設備,機器,部品を含む)の故障やその前兆となる周波数異常パターンを確実、かつ正確に推定できる。   Therefore, according to the embodiment as described above, the acoustic measuring device 8 is arranged in the vicinity of each of the load devices 7 that are customer devices or in the vicinity of the load device 7, and the acoustic measuring device 8 uses the load devices 7. The acoustic signal 10 including the generated abnormal sound is measured, the component for each order of the frequency included in the acoustic signal 10 is calculated, and the actually measured frequency component calculation result 15 is extracted. Then, the frequency component coincidence between the actually measured frequency component calculation result 15 and a plurality of abnormal frequency components 17 representing a failure or an anomaly that is a precursor thereof stored in the database 16 in advance is calculated. Since the frequency abnormality pattern 18 having a high degree of coincidence is extracted, it is possible to reliably and accurately estimate a failure of a customer device (including equipment, equipment, and parts) and a frequency abnormality pattern that is a precursor.

また、周波数成分一致度計算手段13は、周波数成分計算手段11で得られる実測周波数成分計算結果15の合計が1となるように規格化する規格化計算処理部13aと、一致度計算処理部13bとを設け、この一致度計算処理部13bが規格化計算処理部13aで規格化された規格化実測周波数成分計算結果22とデータベース16に格納された周波数異常周波数成分23毎の周波数成分の合計が1となるように規格化された各規格化周波数異常周波数成分23との差分から周波数成分一致度を計算し、一致度の高い順番に並べて表示するので、周波数異常パターン18を見やすく並べて表示でき、何れの周波数異常パターン18が最も故障やその前兆ト成る異常に影響を与えているか容易に把握することができる。   The frequency component coincidence calculation unit 13 includes a normalization calculation processing unit 13a that normalizes the total of the actual frequency component calculation results 15 obtained by the frequency component calculation unit 11, and a coincidence calculation processing unit 13b. The coincidence calculation processing unit 13b calculates the total of the normalized actual measurement frequency component calculation result 22 normalized by the normalization calculation processing unit 13a and the frequency component for each frequency abnormal frequency component 23 stored in the database 16. Since the frequency component coincidence is calculated from the difference from each normalized frequency abnormal frequency component 23 standardized to be 1, and arranged in order of high coincidence, the frequency abnormal pattern 18 can be displayed in an easy-to-view manner, It can be easily ascertained which frequency abnormality pattern 18 has the most influence on the failure or its predecessor abnormality.

(実施の形態1の変形例)
(変形例1)
図16は本発明に係る装置故障評価システムの実施の形態1における変形例1を示す構成図である。
(Modification of Embodiment 1)
(Modification 1)
FIG. 16 is a block diagram showing a first modification of the first embodiment of the apparatus failure evaluation system according to the present invention.

変形例1における装置故障評価システム1は、実施の形態1と同様に、周波数成分計算手段11と、データ記録手段12と、周波数成分一致度計算手段13と、周波数異常推定手段14とで構成される。   As in the first embodiment, the apparatus failure evaluation system 1 according to the first modification includes a frequency component calculation unit 11, a data recording unit 12, a frequency component coincidence calculation unit 13, and a frequency abnormality estimation unit 14. The

上記実施の形態1では、データベース16に各負荷装置7の故障やその前兆となる異常を有する周波数異常周波数成分17、…を持った周波数異常パターン18,…を格納した後、周波数成分一致度計算手段13が周波数成分計算手段11で得られた実測周波数成分計算結果15とデータベース16に格納される周波数異常周波数成分17の周波数成分との一致度19を計算したが、この変形例1では、図16に示すように周波数異常周波数成分17を持った複数の周波数異常パターン18に代えて、データベース16に各負荷装置7に関する周波数正常と推定される周波数正常周波数成分17b,…を持った周波数正常パターン18b,…を格納し、周波数成分一致度計算手段13にて実測周波数成分計算結果15との一致度を計算する構成である。   In the first embodiment, the frequency abnormality coincidence calculation is performed after the frequency abnormality patterns 18,... Having the frequency abnormal frequency components 17,... The means 13 calculates the degree of coincidence 19 between the actually measured frequency component calculation result 15 obtained by the frequency component calculating means 11 and the frequency component of the frequency abnormal frequency component 17 stored in the database 16. 16 instead of a plurality of frequency abnormality patterns 18 having frequency abnormal frequency components 17 as shown in FIG. 16, normal frequency patterns having normal frequency components 17b,... 18b, and so on, and the frequency component coincidence calculation means 13 calculates the coincidence with the actually measured frequency component calculation result 15. It is.

従って、変形例1では、負荷装置7の筐体内部、筐体外部、当該筐体近傍に音響測定装置8を設置し、負荷装置7から発生する音響信号10を測定し、周波数成分計算手段11に音響信号10の波形分析を実施し、周波数成分を計算する点については、実施の形態1と全く同じである。   Therefore, in the first modification, the acoustic measurement device 8 is installed inside the housing of the load device 7, outside the housing, and in the vicinity of the housing, the acoustic signal 10 generated from the load device 7 is measured, and the frequency component calculation unit 11. The point that the waveform analysis of the acoustic signal 10 is performed and the frequency component is calculated is the same as in the first embodiment.

周波数成分一致度計算手段13は、図6に示す構成に基づき、実測周波数成分計算結果15の規格化処理を行った後、この規格化された実測周波数成分計算結果15と、データベース16に保存されている規格化された周波数正常周波数成分17bの周波数成分との周波数成分一致度19bを計算する。なお、周波数成分一致度計算手段13の規格化処理、規格化差分処理及び周波数成分一致度19bの処理は前述する式(2)〜式(4)に従って計算処理を行う。   Based on the configuration shown in FIG. 6, the frequency component coincidence calculation means 13 performs normalization processing on the actual measurement frequency component calculation result 15 and then stores the normalized actual frequency component calculation result 15 and the database 16. The frequency component coincidence 19b with the frequency component of the normalized normal frequency component 17b is calculated. In addition, the normalization process of the frequency component coincidence degree calculation means 13, the normalization difference process, and the process of the frequency component coincidence degree 19b are performed according to the above-described equations (2) to (4).

周波数異常推定手段14は、図13に示すように一致度並び替え処理部14aと周波数異常抽出部14bで構成される。一致度並び替え処理部14aは、周波数正常周波数成分17bの周波数成分一致度19bのもとに、周波数正常周波数成分17bを並び替える処理を行う。例えば、周波数成分一致度19bの高いものから順に並び替える。   As shown in FIG. 13, the frequency abnormality estimation means 14 includes a matching degree rearrangement processing unit 14a and a frequency abnormality extraction unit 14b. The matching degree rearrangement processing unit 14a performs a process of rearranging the normal frequency component 17b based on the frequency component matching degree 19b of the normal frequency component 17b. For example, the components are rearranged in descending order of the frequency component coincidence 19b.

周波数異常抽出部14bは、一致度並び替え処理部14aにて周波数成分一致度19bの高いものから順に並び替えられた周波数正常周波数成分17bをもつ周波数正常パターン18bのうち、当該周波数正常周波数成分17bをもつ周波数正常パターン18bの周波数成分一致度19bが低いとき、周波数異常の可能性をもった周波数正常パターン18bと推定し、周波数異常推定結果20として出力する。   The frequency abnormality extraction unit 14b includes the normal frequency component 17b of the normal frequency component 17b having the normal frequency component 17b rearranged in order from the highest frequency component coincidence 19b by the coincidence rearrangement processing unit 14a. When the frequency component coincidence 19b of the normal frequency pattern 18b having a low value is low, the normal frequency pattern 18b having the possibility of frequency abnormality is estimated and output as a frequency abnormality estimation result 20.

因みに、実測周波数成分計算結果15と周波数正常周波数成分17bとの周波数成分一致度19bが高い場合、例えば両周波数成分が完全に一致した場合には周波数正常パターン18bそのものとなり、正常な周波数であることを意味する。   Incidentally, when the frequency component coincidence 19b between the actually measured frequency component calculation result 15 and the normal frequency component 17b is high, for example, when both frequency components completely coincide with each other, the normal frequency pattern 18b itself is obtained and the frequency is normal. Means.

図17は周波数成分一致度19bと周波数正常周波数成分17bとの関係を示す図である。すなわち、図17は、周波数正常周波数成分17bに対応する周波数正常パターン18bを、周波数成分一致度19bの高いものから順に左側から右側に並べたものであって、周波数成分一致度19bが100%から−100%の間に収まり、左側にあるほど周波数正常として高いと考えられる。   FIG. 17 is a diagram showing the relationship between the frequency component coincidence 19b and the normal frequency component 17b. That is, FIG. 17 shows the normal frequency patterns 18b corresponding to the normal frequency components 17b arranged in order from the left to the right in descending order of the frequency component coincidence 19b, and the frequency component coincidence 19b is from 100%. It is considered that the frequency is within the range of −100%, and the higher the frequency is on the left side.

よって、予め周波数異常閾値26を設定しておけば、周波数成分一致度19bが周波数異常閾値26よりも低いとき、周波数異常と推定することができる。   Therefore, if the frequency abnormality threshold 26 is set in advance, when the frequency component coincidence 19b is lower than the frequency abnormality threshold 26, it can be estimated that the frequency is abnormal.

(変形例2)
図18は本発明に係る装置故障評価システムの実施の形態1における変形例2を示す構成図である。
(Modification 2)
FIG. 18 is a block diagram showing a second modification of the first embodiment of the apparatus failure evaluation system according to the present invention.

変形例2における装置故障評価システム1は、実施の形態1と同様に、周波数成分計算手段11と、データ記録手段12と、周波数成分一致度計算手段13と、周波数異常推定手段14とで構成される。   As in the first embodiment, the apparatus failure evaluation system 1 according to the second modification includes a frequency component calculation unit 11, a data recording unit 12, a frequency component coincidence calculation unit 13, and a frequency abnormality estimation unit 14. The

データ記録手段12を構成するデータベース16に各負荷装置7に関する故障やその前兆となる周波数異常周波数成分17,…を持った周波数異常パターン18,…及び各負荷装置7に関する周波数正常と推定される周波数正常周波数成分17b,…を持った周波数正常パターン18b,…が格納され、周波数成分一致度計算手段13にて実測周波数成分計算結果15との一致度を計算する構成である。   A frequency abnormality pattern 18 having a frequency abnormality frequency component 17,..., Which is a failure or a precursor to each load device 7 in the database 16 constituting the data recording means 12, and a frequency estimated to be normal for each load device 7. The normal frequency patterns 18b having the normal frequency components 17b,... Are stored, and the frequency component coincidence calculating means 13 calculates the coincidence with the actually measured frequency component calculation result 15.

周波数成分一致度計算手段13は、図6に示す構成及び式(2)、式(3)に基づき、周波数成分計算手段11で計算された実測周波数成分計算結果15とデータベース16に保存されている周波数異常周波数成分17の周波数成分と、同じく実測周波数成分計算結果15と周波数正常周波数成分17bの周波数成分とのそれぞれの周波数成分一致度19,19bを計算する。   The frequency component coincidence calculation means 13 is stored in the measured frequency component calculation result 15 and the database 16 calculated by the frequency component calculation means 11 based on the configuration shown in FIG. 6 and the expressions (2) and (3). The frequency component coincidence 19, 19b of the frequency component of the abnormal frequency component 17 and the frequency component of the actually measured frequency component calculation result 15 and the frequency component of the normal frequency component 17b is calculated.

周波数異常推定手段14は、周波数成分一致度計算手段13で計算された周波数成分一致度19,19bに基づき、周波数成分一致度19が高い周波数異常パターン18を周波数異常の可能性が高い周波数異常パターン18と推定し、また、周波数成分一致度19bが低い周波数正常パターン18bを周波数異常の可能性を示す周波数正常パターン18bと推定する。そして、周波数異常推定手段14は、周波数異常パターン18の周波数成分一致度19と、周波数正常パターン18bの周波数成分一致度19bとの両方から周波数異常を判定し、その判定結果を周波数異常推定結果20として出力する。   Based on the frequency component coincidence degrees 19 and 19b calculated by the frequency component coincidence degree calculating unit 13, the frequency abnormality estimation unit 14 converts the frequency abnormality pattern 18 having a high frequency component coincidence 19 into a frequency abnormality pattern having a high possibility of frequency abnormality. 18 and the frequency normal pattern 18b having a low frequency component matching degree 19b is estimated as the frequency normal pattern 18b indicating the possibility of frequency abnormality. Then, the frequency abnormality estimation means 14 determines a frequency abnormality from both the frequency component coincidence 19 of the frequency abnormality pattern 18 and the frequency component coincidence 19b of the frequency normal pattern 18b, and the determination result is used as the frequency abnormality estimation result 20. Output as.

従って、この変形例によれば、周波数異常の可能性が高い周波数異常パターン18の周波数異常周波数成分の高調波一致度19だけでなく、周波数異常の可能性を示す周波数正常パターン18bの周波数正常周波数成分の高調波一致度19bも考慮しつつ、負荷装置7の故障や前兆となる異常を推定することができる。   Therefore, according to this modification, not only the harmonic coincidence 19 of the frequency abnormal frequency component of the frequency abnormal pattern 18 having a high possibility of frequency abnormality but also the normal frequency of the frequency normal pattern 18b indicating the possibility of frequency abnormality. It is possible to estimate a failure of the load device 7 or an anomaly that is a precursor while taking into account the harmonic matching degree 19b of the component.

(変形例3)
図19は本発明に係る装置故障評価システムの実施の形態1における変形例3を示す構成図である。
(Modification 3)
FIG. 19 is a block diagram showing a third modification of the first embodiment of the apparatus failure evaluation system according to the present invention.

上位の商用電力系統2に接続される需要家の電力系統母線5には、企業の工場内を例に挙げれば、各建屋ごとに多数の設備、装置、機器が設置され、また同一の建物であっても各階ごとに異なる設備、装置、機器が設置されている。その結果、周波数異常の可能性が高い周波数異常パターン18の周波数正常周波数成分の高調波一致度だけから、負荷装置7の故障やその前兆となる異常を推定することが難しい。例えば、周波数異常の可能性が高い周波数異常パターン18だけでなく、設備、装置、機器が正常であっても、他の設備、装置、機器の影響を受けて、周波数異常の可能性を示す周波数正常周波数成分の周波数正常パターン18bを発生したり、あるいは電力系統母線5に複数の設備、装置、機器が並列的に接続されている場合、負荷特有の周波数の影響の高い負荷周波数成分の周波数負荷パターンを発生する場合もある。このことは、総合的に周波数成分の一致度19を把握し、周波数成分の異常を推定することが望ましい。   In the power grid bus 5 of the customer connected to the upper commercial power grid 2, for example, in a company factory, a lot of facilities, devices, and equipment are installed in each building. Even if there are, different facilities, devices, and equipment are installed on each floor. As a result, it is difficult to estimate a failure of the load device 7 or an abnormality that is a precursor thereof only from the harmonic matching degree of the frequency normal frequency component of the frequency abnormality pattern 18 that has a high possibility of frequency abnormality. For example, not only the frequency abnormality pattern 18 having a high possibility of frequency abnormality, but also the frequency indicating the possibility of frequency abnormality due to the influence of other equipment, device, and equipment even if the equipment, device, and equipment are normal. When the frequency normal pattern 18b of the normal frequency component is generated, or when a plurality of facilities, apparatuses, and devices are connected in parallel to the power system bus 5, the frequency load of the load frequency component that is highly influenced by the load-specific frequency A pattern may be generated. It is desirable to comprehensively grasp the frequency component coincidence 19 and estimate the abnormality of the frequency component.

そこで、変形例3における装置故障評価システム1は、実施の形態1と同様に、周波数成分計算手段11と、データ記録手段12と、周波数成分一致度計算手段13と、周波数異常推定手段14とで構成される。   Therefore, the apparatus failure evaluation system 1 according to the modified example 3 includes a frequency component calculation unit 11, a data recording unit 12, a frequency component coincidence calculation unit 13, and a frequency abnormality estimation unit 14 as in the first embodiment. Composed.

データ記録手段12を構成するデータベース16には予め各負荷装置7に関する故障やその前兆となる周波数異常周波数成分17,…を持った周波数異常パターン18,…と、各負荷装置7に関する周波数正常と推定される周波数正常周波数成分17b,…の周波数正常パターン18b,…と、並列する負荷装置7,…が存在する場合にその負荷特有の周波数と推定される負荷周波数成分17c,…の周波数負荷パターン18c,…が格納されている。   The database 16 constituting the data recording means 12 is presumed to have a frequency abnormality pattern 18,... Having a frequency abnormality frequency component 17,... .. Of the normal frequency components 17b,..., And the frequency load patterns 18c of the load frequency components 17c,. , ... are stored.

この状態において、周波数成分一致度計算手段13は、前述した図6の構成及び式(2)〜式(4)に基づき、周波数成分計算手段11によって保存された実測周波数成分結果15と周波数異常周波数成分17の周波数成分との周波数成分一致度19と、前記実測周波数成分結果15と周波数正常周波数成分17bの周波数成分との周波数成分一致度19bと、前記実測周波数成分結果15と負荷周波数成分17cの周波数成分との周波数成分一致度19cをそれぞれ計算する。   In this state, the frequency component coincidence calculation means 13 calculates the actual frequency component result 15 and the frequency abnormal frequency stored by the frequency component calculation means 11 based on the configuration of FIG. 6 and the expressions (2) to (4). The frequency component coincidence 19 with the frequency component of the component 17, the frequency component coincidence 19b between the measured frequency component result 15 and the frequency component of the normal frequency component 17b, the measured frequency component result 15 and the load frequency component 17c. The frequency component coincidence 19c with the frequency component is calculated.

周波数異常推定手段14は、周波数成分一致度計算手段13で計算された周波数成分一致度19,19b,19cの中から、周波数成分一致度19が高い周波数異常パターン18を周波数異常の可能性が高い周波数異常パターン18と推定し、周波数成分一致度19bが低い周波数正常パターン18bを周波数異常の可能性を示す周波数正常パターン18bと推定し、さらに、周波数成分一致度19cが高い周波数負荷パターン18cを負荷による周波数の影響の高い周波数負荷パターン18cと推定する。   The frequency abnormality estimation means 14 has a high possibility of frequency abnormality in the frequency abnormality pattern 18 having a high frequency component coincidence 19 out of the frequency component coincidences 19, 19b, 19c calculated by the frequency component coincidence calculation means 13. A frequency normal pattern 18b having a low frequency component coincidence 19b is estimated as a frequency normal pattern 18b indicating the possibility of frequency abnormality, and a frequency load pattern 18c having a high frequency component coincidence 19c is loaded. The frequency load pattern 18c having a high frequency influence is estimated.

そして、周波数異常推定手段14は、周波数異常パターン18の周波数成分一致度19と周波数正常パターン18bの周波数成分一致度19bと周波数負荷パターン18cの周波数成分一致度19cとから周波数異常を判定し、その判定結果を周波数異常推定結果20として出力する。   Then, the frequency abnormality estimation means 14 determines the frequency abnormality from the frequency component coincidence 19 of the frequency abnormality pattern 18, the frequency component coincidence 19b of the frequency normal pattern 18b, and the frequency component coincidence 19c of the frequency load pattern 18c, The determination result is output as the frequency abnormality estimation result 20.

図20は周波数成分一致度と周波数パターンとの表示例を示す図である。同図において縦軸が高調波成分一致度19,19b,19c、横軸が高調波成分一致度18と各パターン21a〜21cとの関係を表す。   FIG. 20 is a diagram showing a display example of the frequency component matching degree and the frequency pattern. In the drawing, the vertical axis represents the harmonic component coincidence 19, 19b, 19c, and the horizontal axis represents the relationship between the harmonic component coincidence 18 and the patterns 21a to 21c.

周波数異常推定手段14は、周波数異常推定結果20を出力する機能を有する。出力する機能とは、印字出力する機能、他の監視センター装置に伝送する機能、システムのデータベース16に蓄積する機能の他、表示部に表示する機能等を含むものである。   The frequency abnormality estimation means 14 has a function of outputting the frequency abnormality estimation result 20. The function to be output includes a function to display on the display unit in addition to a function to print and output, a function to transmit to other monitoring center devices, a function to accumulate in the database 16 of the system.

従って、周波数異常推定手段14としては、図20に示すように、周波数異常推定結果20を表示部に表示することができる。   Therefore, as shown in FIG. 20, the frequency abnormality estimation means 14 can display the frequency abnormality estimation result 20 on the display unit.

図20(a)では、高調波正常パターン18bが周波数異常抽出閾値25の上側に存在し、また高調波負荷パターン18cが周波数正常パターン18bの下側にあり、周波数異常パターン18が周波数異常抽出閾値25の下側にあるが、当該周波数異常パターン18の周波数は負荷周波数の影響を受けているので、正常であり故障はないと判断できる。つまり、母線5に接続される負荷装置7が近くの他の負荷装置である例えばパソコンや回転機などの影響を受けて異常となる成分の周波数が発生していると考えられる。   In FIG. 20A, the harmonic normal pattern 18b exists above the frequency abnormality extraction threshold 25, the harmonic load pattern 18c is below the frequency normal pattern 18b, and the frequency abnormality pattern 18 is the frequency abnormality extraction threshold. Although it is below 25, since the frequency of the frequency abnormality pattern 18 is affected by the load frequency, it can be determined that the frequency is normal and there is no failure. In other words, it is considered that the frequency of the component that becomes abnormal due to the influence of the load device 7 connected to the bus 5 is affected by other nearby load devices such as a personal computer or a rotating machine.

一方、図20(b)では、周波数異常パターン18が周波数異常抽出閾値25の上側に存在し、高調波正常パターン18bが周波数異常抽出閾値25の下側にあるが、周波数異常パターン18が周波数正常パターン18bや周波数負荷パターン18cの上側にあることから、その周波数異常パターン18の周波数は、異常であり故障の可能性があると判断できる。   On the other hand, in FIG. 20B, the frequency abnormality pattern 18 exists above the frequency abnormality extraction threshold 25 and the harmonic normal pattern 18b is below the frequency abnormality extraction threshold 25, but the frequency abnormality pattern 18 is normal. Since it is above the pattern 18b and the frequency load pattern 18c, it can be determined that the frequency of the frequency abnormality pattern 18 is abnormal and there is a possibility of failure.

従って、以上のような変形例3によれば、高調波成分一致度計算手段13は、一致度を計算し、一致度の高い順番に並べて表示可能とするので、各周波数パターン18、18b,18cを見やすく並べて表示でき、これら複数のパターン18、18b,18cから総合的に周波数成分の一致度19,19b,19cを把握し、周波数成分の異常を推定することができる。   Therefore, according to Modification 3 as described above, the harmonic component coincidence calculation means 13 calculates the coincidence, and can display them in the order of high coincidence, so that each frequency pattern 18, 18b, 18c. The frequency components coincidence 19, 19b, 19c can be comprehensively grasped from the plurality of patterns 18, 18b, 18c, and the abnormality of the frequency components can be estimated.

(実施の形態2)
図21は本発明に係る装置故障評価システムの実施の形態2を示す構成図である。
この装置故障評価システム1は、図2に示す周波数成分計算手段11、データ記録手段12及び周波数成分一致度計算手段13の他に、周波数成分一致度計算手段13の出力側に周波数異常推定手段14に代えて、結果表示制御手段31を設けた構成である。なお、周波数異常推定手段14や結果表示制御手段31は、広義には何れも周波数異常出力手段に相当する役割を有する。
(Embodiment 2)
FIG. 21 is a block diagram showing Embodiment 2 of the apparatus failure evaluation system according to the present invention.
In addition to the frequency component calculation unit 11, the data recording unit 12, and the frequency component coincidence calculation unit 13 shown in FIG. 2, the apparatus failure evaluation system 1 includes a frequency abnormality estimation unit 14 on the output side of the frequency component coincidence calculation unit 13. Instead of this, a result display control means 31 is provided. Note that the frequency abnormality estimation means 14 and the result display control means 31 all have a role corresponding to the frequency abnormality output means in a broad sense.

周波数成分一致度計算手段13は、データベース16に保存された実測周波数成分計算結果15と周波数異常周波数成分17の周波数成分との周波数成分一致度19を計算し、例えばデータ記録手段12の所定の記憶領域に記憶し、出力する。   The frequency component coincidence calculation means 13 calculates the frequency component coincidence 19 between the actually measured frequency component calculation result 15 stored in the database 16 and the frequency component of the frequency abnormal frequency component 17, for example, a predetermined storage in the data recording means 12. Store in area and output.

結果表示制御手段31は、周波数成分一致度計算手段13から出力される周波数異常周波数成分17毎の周波数成分一致度19を表示装置32に表示するとともに、一定時間毎に周波数成分計算手段11に戻り、各構成手段11,13,31による処理を繰り返し実行する。その結果、データ記録手段12の所定の記録領域には、所要とする期間(例えば24時間)にわたって所定時間ごとの周波数異常パターン18(18−A〜18−D)毎の周波数成分一致度19が時系列的に記録される。   The result display control means 31 displays the frequency component coincidence 19 for each frequency abnormal frequency component 17 output from the frequency component coincidence calculating means 13 on the display device 32 and returns to the frequency component calculating means 11 at regular intervals. The processes by the constituent units 11, 13, and 31 are repeatedly executed. As a result, in the predetermined recording area of the data recording means 12, the frequency component coincidence degree 19 for each frequency abnormality pattern 18 (18-A to 18-D) for each predetermined time over a required period (for example, 24 hours). Recorded in time series.

図22は、結果表示制御手段31によって周波数異常パターン18−A〜18−D毎の周波数成分一致度19の表示例を示す図である。縦軸は周波数成分一致度19、横軸は時間である。   FIG. 22 is a diagram illustrating a display example of the frequency component coincidence degree 19 for each of the frequency abnormality patterns 18 -A to 18 -D by the result display control means 31. The vertical axis represents frequency component coincidence 19, and the horizontal axis represents time.

図22の例は、一日24時間分の表示例である。すなわち、周波数成分一致度計算手段13は、周波数異常パターン18−A、18−B、18−C、18−Dの周波数成分一致度19を一日24時間分にわたって時系列的に蓄積し、結果表示制御手段31にて表示した例である。   The example of FIG. 22 is a display example for 24 hours a day. That is, the frequency component coincidence calculation means 13 accumulates the frequency component coincidence 19 of the frequency abnormality patterns 18-A, 18-B, 18-C, and 18-D in a time series for 24 hours a day. This is an example displayed by the display control means 31.

この実施の形態によれば、第1の実施の形態と同様の効果を奏する他、所要とする期間にわたって各時間毎の各周波数異常パターン18−A、18−B、18−C、18−D毎の周波数成分一致度19の変化を表示できるので、各周波数異常パターン18の時間的な変化の推移を把握でき、特定の周波数異常パターン18が何れの時間帯に大きく異常となることを容易に判断できる。   According to this embodiment, in addition to the same effects as the first embodiment, each frequency abnormality pattern 18-A, 18-B, 18-C, 18-D for each time over a required period. Since the change of the frequency component coincidence 19 for each time can be displayed, the transition of the temporal change of each frequency abnormality pattern 18 can be grasped, and it is easy for the specific frequency abnormality pattern 18 to become greatly abnormal in any time zone. I can judge.

(実施の形態2の変形例)
実施の形態2は、所定時間毎に複数の周波数異常パターン18の周波数成分一致度19を計算し、データベース16に時系列的に蓄積し、表示装置32に例えば一日24時間分にわたって時系列的に変化する周波数成分一致度19を表示するようにしたが、この実施の形態2に前述した実施の形態1の変形例1〜3の組合せ周波数パターンを適用することもできる。
(Modification of Embodiment 2)
In the second embodiment, the frequency component coincidence 19 of the plurality of frequency abnormality patterns 18 is calculated every predetermined time, accumulated in the database 16 in time series, and stored in the display device 32 in a time series for 24 hours a day, for example. Although the frequency component coincidence degree 19 that changes to is displayed, the combination frequency patterns of the first to third modifications of the first embodiment described above can be applied to the second embodiment.

すなわち、周波数成分一致度計算手段13は、所定時間ごとに実施の形態1の変形例1〜3の組合せ周波数パターン,つまり周波数正常パターン18bの周波数成分一致度19b、周波数異常パターン18及び周波数正常パターン18bの周波数成分一致度19,19b、周波数異常パターン18、周波数正常パターン18b及び周波数負荷パターン18cの周波数成分一致度19,19b,19cを計算し、データベース16に時系列的に蓄積し、かつ、結果表示制御手段31にて例えば一日24時間分にわたって時系列的に変化する周波数成分一致度19を表示装置32に表示させる構成であってもよい。   That is, the frequency component coincidence calculation means 13 performs the combination frequency pattern of the first to third modifications of the first embodiment, that is, the frequency component coincidence 19b of the frequency normal pattern 18b, the frequency abnormal pattern 18 and the frequency normal pattern every predetermined time. Frequency component coincidence 19, 19b of 18b, frequency abnormal pattern 18, frequency normal pattern 18b, and frequency load pattern 18c of frequency component coincidence 19, 19b, 19c are calculated, stored in database 16 in time series, and For example, the result display control means 31 may display the frequency component coincidence degree 19 that changes in time series over 24 hours a day on the display device 32.

(実施の形態3)
図23は本発明に係る装置故障評価システム1の実施の形態3を示す構成図である。
この実施の形態3における装置故障評価システム1は、周波数成分計算手段11、データ記録手段12、周波数成分一致度計算手段13及び周波数異常推定手段14の他、新たにアラーム発生手段40を設けた構成である。
(Embodiment 3)
FIG. 23 is a block diagram showing Embodiment 3 of the apparatus failure evaluation system 1 according to the present invention.
The apparatus failure evaluation system 1 according to the third embodiment has a configuration in which an alarm generation unit 40 is newly provided in addition to the frequency component calculation unit 11, the data recording unit 12, the frequency component coincidence calculation unit 13, and the frequency abnormality estimation unit 14. It is.

アラーム発生手段40は、周波数異常推定手段14によって周波数異常推定結果20ないし周波数異常発生源41が特定されるが、そのとき周波数異常の程度が大きいとき、周波数異常(異常音響)発生源をもつ負荷装置7や電力エネルギー系を集中管理する中央監視制御センター42に対して、アラーム43を送出する。   In the alarm generation means 40, the frequency abnormality estimation result 20 or the frequency abnormality generation source 41 is specified by the frequency abnormality estimation means 14. When the degree of frequency abnormality is large at that time, the load having the frequency abnormality (abnormal sound) generation source An alarm 43 is sent to the central monitoring control center 42 that centrally manages the device 7 and the power energy system.

図24はアラーム発生手段40によるアラーム43のアラーム伝送系を説明する図である。   FIG. 24 is a view for explaining an alarm transmission system of the alarm 43 by the alarm generating means 40. In FIG.

装置故障評価システム1は、各負荷装置7,…(図24では1台の負荷装置)との間にアラーム43を伝送するアラーム伝送系44A,…が接続され、また中央監視制御センター42との間にも同様にアラーム伝送系44Bが接続され、周波数異常の程度が大きいとき、アラーム伝送系44A,44Bを介して周波数異常(異常音響)発生源となる負荷装置7や中央監視制御センター42に対して、アラーム43を送出する。なお、周波数異常の程度は、周波数異常パターン18の周波数成分一致度19とする。   In the apparatus failure evaluation system 1, an alarm transmission system 44A for transmitting an alarm 43 is connected to each load apparatus 7,... (One load apparatus in FIG. 24), and is connected to the central monitoring control center 42. Similarly, when an alarm transmission system 44B is connected in between, and the degree of frequency abnormality is large, the load transmission device 7 and the central monitoring control center 42 that are the sources of frequency abnormality (abnormal sound) are transmitted via the alarm transmission systems 44A and 44B. On the other hand, an alarm 43 is sent out. The degree of frequency abnormality is a frequency component coincidence degree 19 of the frequency abnormality pattern 18.

なお、アラーム43の発生タイミングとしては、図25に示すように、予め定める周波数の警戒レベルを示す周波数警戒レベル閾値45を一定時間(アラーム発生時限値とも呼ぶ)46を超えたとき、アラーム43を発生する。なお、周波数警戒レベル閾値45は、別途に設定してもよく、あるいは図7に示す周波数異常抽出閾値26を用いても良い。   As shown in FIG. 25, the alarm 43 is generated when the frequency warning level threshold value 45 indicating a predetermined frequency warning level exceeds a predetermined time (also called an alarm generation time limit value) 46 as shown in FIG. appear. The frequency warning level threshold 45 may be set separately or the frequency abnormality extraction threshold 26 shown in FIG. 7 may be used.

従って、以上のような実施の形態によれば、周波数異常パターン18の周波数成分一致度19から周波数異常の程度が大きく、周波数警戒レベル閾値45をアラーム発生時限値46を超えたとき、異常周波数(異常音響)発生源となる負荷装置7や中央監視制御センター42に対して、アラーム43を送出するので、負荷装置(設備,機器、部品を含む)7の故障やその前兆となる異常を推定でき、速やかに必要な対策を講じることができる。   Therefore, according to the embodiment as described above, when the frequency abnormality degree is large from the frequency component coincidence 19 of the frequency abnormality pattern 18 and the frequency warning level threshold 45 exceeds the alarm occurrence time limit value 46, the abnormal frequency ( Since the alarm 43 is sent to the load device 7 and the central monitoring and control center 42 that are the source of abnormal sound), it is possible to estimate the failure of the load device (including equipment, equipment, and parts) 7 and the abnormality that is a precursor thereof. The necessary measures can be taken promptly.

(実施の形態3の変形例)
実施の形態3については、周波数異常パターン18の周波数成分一致度19が周波数警戒レベル閾値45を超えてアラーム発生時限値46に至ったとき、アラーム43を送出するようにしたが、当該実施の形態3に前述した実施の形態1の変形例1〜3の組合せ周波数パターンを適用することができる。すなわち、図16、図18、図19に示す装置故障評価システム1の周波数異常推定手段14の出力側にアラーム発生手段40を設け、図25に示す条件のもとに、異常周波数(異常音響)発生源をもつ負荷装置7や電力エネルギー系を集中管理する中央監視制御センター42に対して、アラーム43を通知するようにしても良い。
(Modification of Embodiment 3)
In the third embodiment, the alarm 43 is transmitted when the frequency component coincidence 19 of the frequency abnormality pattern 18 exceeds the frequency warning level threshold 45 and reaches the alarm occurrence time limit 46. 3 can be applied to the combination frequency patterns of the first to third modifications of the first embodiment described above. That is, the alarm generation means 40 is provided on the output side of the frequency abnormality estimation means 14 of the apparatus failure evaluation system 1 shown in FIGS. 16, 18 and 19, and an abnormal frequency (abnormal sound) is obtained under the conditions shown in FIG. The alarm 43 may be notified to the load device 7 having the generation source and the central monitoring control center 42 that centrally manages the power energy system.

(実施の形態4)
図26は本発明に係る装置故障評価システム1の実施の形態4を示す構成図である。
この実施の形態4は、図23に示す構成に新たに制御指令発生手段47を設けたものである。
(Embodiment 4)
FIG. 26 is a block diagram showing Embodiment 4 of the apparatus failure evaluation system 1 according to the present invention.
In the fourth embodiment, a control command generating means 47 is newly provided in the configuration shown in FIG.

すなわち、この装置故障評価システム1は、周波数異常推定手段14の出力側にアラーム発生手段40と制御指令発生手段47とを備え、アラーム発生手段40は前述した要領でアラーム42を発生する。   That is, the apparatus failure evaluation system 1 includes an alarm generation unit 40 and a control command generation unit 47 on the output side of the frequency abnormality estimation unit 14, and the alarm generation unit 40 generates an alarm 42 in the manner described above.

一方、制御指令発生手段47は、ある負荷装置7が周波数異常発生源であると特定されたとき、その負荷装置7に対して停止等の制御指令48を送出する。   On the other hand, when it is determined that a certain load device 7 is a frequency abnormality generation source, the control command generation means 47 sends a control command 48 such as a stop to the load device 7.

図27は制御指令発生手段47による制御指令48の伝送系を説明する図である。   FIG. 27 is a view for explaining a transmission system of the control command 48 by the control command generating means 47.

この例は、操作故障評価システム1と各負荷装置7,…との間に新たに制御指令伝送系49A,…を接続し、例えば、周波数異常推定手段14によって周波数異常発生源が負荷装置7であると特定されたとき、アラーム発生手段40は、アラーム伝送系44Aを介して負荷装置7に対し当該負装置7が周波数異常状態であることのアラーム42を発生する。   In this example, a control command transmission system 49A,... Is newly connected between the operation failure evaluation system 1 and each of the load devices 7,. When it is determined that there is an alarm, the alarm generation means 40 generates an alarm 42 indicating that the negative device 7 is in an abnormal frequency state to the load device 7 via the alarm transmission system 44A.

一方、制御指令発生手段47は、周波数異常推定手段14によってある負荷装置7が周波数異常発生源として特定され、その周波数異常の程度が大きいとき、その特定された負荷装置7に対し、制御指令伝送系49Aを介して停止を含む負荷低減に関する制御指令48を送出することにより、負荷装置7が前兆となる異常の場合には故障に至らないような処置を講じ、あるいは負荷装置7の故障の場合には速やかに回復処置を講じる。   On the other hand, when a certain load device 7 is identified as a frequency abnormality generation source by the frequency abnormality estimation unit 14 and the degree of the frequency abnormality is large, the control command generation unit 47 transmits a control command to the specified load device 7. By sending a control command 48 relating to load reduction including a stop via the system 49A, a measure is taken so as not to cause a failure when the load device 7 is abnormal, or a failure of the load device 7 Take immediate recovery measures.

さらに、アラーム発生手段40は、アラーム伝送系44Bを介して中央監視制御センター42に対し、該当負荷装置7が周波数異常状態であることと、該当負荷装置7へ停止等の制御指令を送出したことのアラーム43を発生する。   Furthermore, the alarm generation means 40 sends the control command to stop the load device 7 to the corresponding load device 7 that the corresponding load device 7 is in an abnormal frequency state to the central monitoring control center 42 via the alarm transmission system 44B. Alarm 43 is generated.

なお、制御指令48の発生タイミングとしては、図28に示すように新たに周波数危険レベル閾値50及び一定の時間(制御指令発生時限値)51を設定する。そして、周波数異常の程度が周波数警戒レベル閾値45及びアラーム発生時限値46を超え、さらに、周波数の危険レベルを示す周波数危険レベル閾値50を一定時間(制御指令発生時限値51)を超えると、停止等の制御指令48を負荷装置7に送出する。   As the generation timing of the control command 48, a frequency risk level threshold value 50 and a fixed time (control command generation time limit value) 51 are newly set as shown in FIG. When the frequency abnormality level exceeds the frequency warning level threshold value 45 and the alarm occurrence time limit value 46, and further exceeds the frequency risk level threshold value 50 indicating the frequency danger level for a certain time (control command occurrence time limit value 51), the operation stops. The control command 48 is sent to the load device 7.

従って、以上のような実施の形態によれば、負荷装置7から発生する音響信号10の分析周波数成分結果と周波数異常周波数成分との周波数成分一致度,周波数異常が警戒レベルにあることのアラームを発生するので、現場の監視要員は負荷装置7が悪化していることを把握でき、周波数異常の影響が危険な状態にあるとき、周波数異常の発生源に対して周波数異常の抑制を図るべき制御指令を送出するので、周波数異常による災害を未然に回避することができる。   Therefore, according to the embodiment as described above, the frequency component coincidence between the analysis frequency component result of the acoustic signal 10 generated from the load device 7 and the frequency abnormal frequency component, and an alarm indicating that the frequency abnormality is at a warning level. Therefore, the on-site monitoring personnel can grasp that the load device 7 is deteriorating, and when the influence of the frequency abnormality is in a dangerous state, control that should suppress the frequency abnormality to the source of the frequency abnormality. Since the command is transmitted, it is possible to avoid a disaster due to frequency abnormality.

(実施の形態4の変形例)
実施の形態4については、周波数異常パターン18の周波数成分一致度19が警戒レベルにあることのアラームを発生し、かつ、負荷装置7の動作制御を停止するようにしたが、前述した実施の形態1の変形例1〜3の組合せ周波数パターンにも同様に適用することができる。すなわち、図16、図18、図19に示す装置故障評価システム1の周波数異常推定手段14の出力側にアラーム発生手段40及び制御指令発生手段47を設け、図28に示す条件のもとに、危険状態にある負荷装置7に対して、制御指令伝送系49Aを介して停止を含む負荷低減に関する制御指令48を送出することができる。
(Modification of Embodiment 4)
In the fourth embodiment, the alarm that the frequency component coincidence 19 of the frequency abnormality pattern 18 is at a warning level is generated and the operation control of the load device 7 is stopped. The same can be applied to the combination frequency patterns of the first to third modifications. That is, the alarm generating means 40 and the control command generating means 47 are provided on the output side of the frequency abnormality estimating means 14 of the apparatus failure evaluation system 1 shown in FIGS. 16, 18 and 19, and under the conditions shown in FIG. A control command 48 relating to load reduction including a stop can be sent to the load device 7 in a dangerous state via the control command transmission system 49A.

その他、本発明は、上記実施の形態に限定されるものでなく、その要旨を逸脱しない範囲で種々変形して実施できる。   In addition, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.

1…装置故障評価システム、2…上位電力系統、5…母線、7…負荷装置、8…音響測定装置、9…伝送系、10…音響信号、11…周波数成分計算手段、11a…FFT処理部、12…データ記録手段、13…周波数成分一致度計算手段、13a…規格化計算処理部、13b…一致度計算処理部、14…周波数異常推定手段、14a…一致度並び替え処理部、14b…周波数異常抽出部、15…実測周波数成分計算結果、16…データベース、17…周波数異常周波数成分、17b…周波数正常周波数成分、17c…負荷周波数成分、18…周波数異常パターン、18b…周波数正常パターン、18c…周波数負荷パターン、31…結果表示制御手段、32…表示装置、40…アラーム発生手段、42…中央監視制御センター、47…制御指令発生手段。   DESCRIPTION OF SYMBOLS 1 ... Device failure evaluation system, 2 ... Upper power system, 5 ... Bus, 7 ... Load device, 8 ... Acoustic measuring device, 9 ... Transmission system, 10 ... Acoustic signal, 11 ... Frequency component calculation means, 11a ... FFT processing part , 12 ... Data recording means, 13 ... Frequency component coincidence calculating means, 13a ... Normalization calculation processing section, 13b ... Concordance calculation processing section, 14 ... Frequency abnormality estimation means, 14a ... Concordance rearrangement processing section, 14b ... Frequency anomaly extraction unit 15 ... calculated frequency component calculation result 16 ... database 17 ... frequency anomalous frequency component 17b ... frequency normal frequency component 17c ... load frequency component 18 ... frequency abnormal pattern 18b ... frequency normal pattern 18c ... frequency load pattern, 31 ... result display control means, 32 ... display device, 40 ... alarm generation means, 42 ... central monitoring control center, 47 ... control Decree generating means.

Claims (11)

電力系統から電力の供給を受ける需要家装置(設備、機器、部品を含む。以下、同じ)から発生する音響信号を測定する音響測定手段と、
この音響測定手段で測定される音響信号を波形分析し実測周波数成分を計算する周波数成分計算手段と、
前記需要家装置毎に当該各需要家装置の故障や前兆となる周波数異常と推定される周波数異常周波数成分を有する周波数異常パターンを記憶するデータ記録手段と、
前記周波数成分計算手段で得られた実測周波数成分計算結果と前記データ記録手段に記憶される複数の周波数異常周波数成分との周波数成分一致度を計算する周波数成分一致度計算手段と、
この周波数成分一致度計算手段で算出された各周波数成分一致度から前記需要家装置の故障やその前兆となる前記周波数異常パターンと推定し、出力または表示する周波数異常出力手段と
を備えたことを特徴とする装置故障評価システム。
An acoustic measurement means for measuring an acoustic signal generated from a consumer device (including equipment, equipment, and parts; hereinafter the same) that receives power supply from the power system;
A frequency component calculating means for analyzing a waveform of an acoustic signal measured by the acoustic measuring means and calculating an actually measured frequency component;
Data recording means for storing a frequency abnormality pattern having a frequency abnormal frequency component estimated to be a frequency abnormality that is a failure or a precursor of each customer device for each customer device;
A frequency component coincidence calculating means for calculating a frequency component coincidence between a measured frequency component calculation result obtained by the frequency component calculating means and a plurality of frequency abnormal frequency components stored in the data recording means;
A frequency abnormality output means for estimating and outputting or displaying the frequency abnormality pattern as a precursor or a failure of the consumer device from each frequency component coincidence calculated by the frequency component coincidence degree calculation means; An equipment failure evaluation system.
電力系統から電力の供給を受ける需要家装置から発生する音響信号を測定する音響測定手段と、
この音響測定手段で測定される音響信号を波形分析し実測周波数成分を計算する周波数成分計算手段と、
前記需要家装置毎に当該各需要家装置の正常時の周波数と推定される周波数正常周波数成分を有する周波数正常パターンを記憶するデータ記録手段と、
前記周波数成分計算手段で得られた実測周波数成分計算結果と前記データ記録手段に記憶される複数の周波数正常周波数成分との周波数成分一致度を計算する周波数成分一致度計算手段と、
この周波数成分一致度計算手段で算出される各周波数成分一致度のうち、当該周波数成分一致度が低い前記周波数正常周波数成分に対応する周波数正常パターンを、周波数異常の可能性を示す周波数正常パターンと推定し、出力または表示する周波数異常出力手段と
を備えたことを特徴とする装置故障評価システム。
An acoustic measurement means for measuring an acoustic signal generated from a consumer device receiving power supply from the power system;
A frequency component calculating means for analyzing a waveform of an acoustic signal measured by the acoustic measuring means and calculating an actually measured frequency component;
Data recording means for storing a frequency normal pattern having a frequency normal frequency component estimated as a normal frequency of each consumer device for each consumer device;
A frequency component coincidence calculating means for calculating a frequency component coincidence between a measured frequency component calculation result obtained by the frequency component calculating means and a plurality of normal frequency components stored in the data recording means;
Of the frequency component coincidence calculated by the frequency component coincidence calculating means, a frequency normal pattern corresponding to the frequency normal frequency component having a low frequency component coincidence is defined as a frequency normal pattern indicating the possibility of frequency abnormality. An apparatus failure evaluation system comprising frequency abnormality output means for estimating, outputting or displaying.
電力系統から電力の供給を受ける需要家装置から発生する音響信号を測定する音響測定手段と、
この音響測定手段で測定される音響信号を波形分析し実測周波数成分を計算する周波数成分計算手段と、
前記需要家装置毎に、各需要家装置の故障や前兆となる周波数異常と推定される周波数異常周波数成分を有する周波数異常パターンと前記各要家装置の正常時の周波数と推定される周波数正常周波数成分を有する周波数正常パターンとを記憶するデータ記録手段と、
前記周波数成分計算手段で得られた実測周波数成分計算結果と前記データ記録手段に記憶される複数の周波数異常周波数成分、前記複数の周波数正常周波数成分とのそれぞれの周波数成分一致度を計算する周波数成分一致度計算手段と、
この周波数成分一致度計算手段で算出される各周波数成分一致度のうち、当該周波数成分一致度が高い前記周波数異常周波数成分に対応する周波数正常パターンを周波数異常の可能性が高い当該周波数正常パターンと推定し、また、前記周波数成分一致度が低い前記周波数正常周波数成分に対応する周波数正常パターンを、周波数異常の可能性を示す周波数正常パターンと推定し、出力または表示する周波数異常出力手段と
を備えたことを特徴とする装置故障評価システム。
An acoustic measurement means for measuring an acoustic signal generated from a consumer device receiving power supply from the power system;
A frequency component calculating means for analyzing a waveform of an acoustic signal measured by the acoustic measuring means and calculating an actually measured frequency component;
For each of the customer devices, a frequency abnormality pattern having a frequency abnormal frequency component that is estimated as a frequency abnormality that is a failure or a precursor of each customer device, and a normal frequency that is estimated as a normal frequency of each of the customer devices. Data recording means for storing a normal frequency pattern having components;
Frequency component for calculating the frequency component coincidence between the actual frequency component calculation result obtained by the frequency component calculating means, the plurality of frequency abnormal frequency components stored in the data recording means, and the plurality of normal frequency frequency components. A degree-of-match calculation means;
Of the frequency component coincidence calculated by the frequency component coincidence calculating means, a frequency normal pattern corresponding to the frequency abnormal frequency component having a high frequency component coincidence is a frequency normal pattern having a high possibility of frequency abnormality. And a frequency abnormality output means for estimating and outputting or displaying a frequency normal pattern corresponding to the frequency normal frequency component having a low frequency component coincidence as a frequency normal pattern indicating the possibility of frequency abnormality. An apparatus failure evaluation system characterized by that.
請求項3に記載の装置故障評価システムにおいて、
前記データ記録手段は、前記需要家装置毎に当該各需要家装置が並列接続される他の需要家装置特有の周波数と推定される負荷周波数成分の周波数負荷パターンを記憶し、
前記周波数成分一致度計算手段は、前記周波数成分計算手段で得られた実測周波数成分計算結果と前記データ記録手段に記憶される複数の周波数異常周波数成分、前記複数の周波数正常周波数成分、前記複数の負荷周波数成分とのそれぞれの周波数成分一致度を計算し、
前記周波数異常出力手段は、前記周波数成分一致度計算手段で算出される各周波数成分一致度のうち、当該周波数成分一致度が高い前記周波数異常周波数成分に対応する周波数正常パターンを周波数異常の可能性が高い当該周波数正常パターンと推定し、前記周波数成分一致度が低い前記周波数正常周波数成分に対応する周波数正常パターンを、周波数異常の可能性を示す周波数正常パターンと推定し、また、前記周波数成分一致度が高い負荷周波数成分に対応する周波数負荷パターンを、前記他の需要家装置による周波数の影響の高い前記周波数負荷パターンと推定し、出力または表示することを特徴とする装置故障評価システム。
In the apparatus failure evaluation system according to claim 3,
The data recording means stores a frequency load pattern of a load frequency component estimated to be a frequency unique to another consumer device to which each consumer device is connected in parallel for each consumer device,
The frequency component coincidence calculation means includes an actual frequency component calculation result obtained by the frequency component calculation means and a plurality of frequency abnormal frequency components stored in the data recording means, the plurality of frequency normal frequency components, and the plurality of frequency components. Calculate the frequency component coincidence with the load frequency component,
The frequency abnormality output means has a frequency normality pattern corresponding to the frequency abnormality frequency component having a high frequency component coincidence among the frequency component coincidence calculated by the frequency component coincidence calculation means as a possibility of frequency abnormality. The frequency normal pattern is estimated to be a normal frequency pattern with a high frequency, the frequency normal pattern corresponding to the frequency normal frequency component with a low frequency component matching degree is estimated as a frequency normal pattern indicating the possibility of frequency abnormality, and the frequency component matching A device failure evaluation system, wherein a frequency load pattern corresponding to a load frequency component having a high degree is estimated as the frequency load pattern having a high frequency influence by the other consumer device, and is output or displayed.
請求項1に記載の装置故障評価システムにおいて、
前記周波数異常出力手段は、前記周波数成分一致度の高い周波数異常周波数成分をもつ周波数異常パターンから順に表示することを特徴とする装置故障評価システム。
In the apparatus failure evaluation system according to claim 1,
The apparatus for evaluating apparatus failure, wherein the frequency abnormality output means displays in order from a frequency abnormality pattern having a frequency abnormality frequency component having a high degree of coincidence of the frequency components.
請求項2に記載の装置故障評価システムにおいて、
前記周波数異常出力手段は、前記周波数成分一致度の高い周波数正常周波数成分をもつ周波数正常パターンから順に表示することを特徴とする装置故障評価システム。
In the apparatus failure evaluation system according to claim 2,
The apparatus for evaluating failure of a device, wherein the frequency abnormality output means displays in order from a frequency normal pattern having a frequency normal frequency component having a high frequency component coincidence.
請求項3に記載の装置故障評価システムにおいて、
前記周波数異常出力手段は、前記周波数成分一致度の高い順に、前記周波数異常周波数成分をもつ周波数異常パターン及び周波数正常周波数成分をもつ周波数正常パターンを表示することを特徴とする装置故障評価システム。
In the apparatus failure evaluation system according to claim 3,
The apparatus for evaluating an apparatus failure, wherein the frequency abnormality output means displays a frequency abnormality pattern having the frequency abnormality frequency component and a frequency normal pattern having a frequency normal frequency component in descending order of the frequency component coincidence.
請求項4に記載の装置故障評価システムにおいて、
前記周波数異常出力手段は、前記周波数成分一致度の高い順に、前記周波数異常周波数成分をもつ周波数異常パターン、周波数正常周波数成分をもつ周波数正常パターン及び前記負荷周波数成分をもつ周波数負荷パターンを表示することを特徴とする装置故障評価システム。
In the apparatus failure evaluation system according to claim 4,
The frequency abnormality output means displays a frequency abnormality pattern having the frequency abnormality frequency component, a frequency normal pattern having a frequency normal frequency component, and a frequency load pattern having the load frequency component in descending order of the frequency component coincidence. Equipment failure evaluation system characterized by
請求項1ないし請求項4の何れか一項に記載の装置故障評価システムにおいて、
前記周波数異常出力手段は、所要期間にわたって予め定めた時間毎に前記周波数成分計算手段及び周波数成分一致度計算手段を繰り返し実行させることにより、前記各パターンにおける前記周波数一致度の時系列的な変化を表示することを特徴とする装置故障評価システム。
In the apparatus failure evaluation system according to any one of claims 1 to 4,
The frequency abnormality output means repeatedly executes the frequency component calculation means and the frequency component coincidence calculation means at predetermined times over a required period, thereby changing the frequency coincidence in each pattern in time series. An apparatus failure evaluation system characterized by displaying.
請求項1ないし請求項4の何れか一項に記載の装置故障評価システムにおいて、
前記周波数異常出力手段の出力側に、周波数異常の程度が予め決められた周波数警戒レベル閾値を超えたとき、周波数異常発生源となる前記需要家装置に注意を喚起するアラーム情報を通知するアラーム発生手段を設けたことを特徴とする装置故障評価システム。
In the apparatus failure evaluation system according to any one of claims 1 to 4,
Generation of an alarm for notifying alarm information for calling attention to the consumer device that is a frequency abnormality generation source when the frequency abnormality level exceeds a predetermined frequency warning level threshold on the output side of the frequency abnormality output means An apparatus failure evaluation system comprising means.
請求項1ないし請求項4及び請求項10の何れか一項に記載の装置故障評価システムにおいて、
前記周波数異常出力手段の出力側に、周波数異常の程度が予め決められた周波数危険レベル閾値を超えたとき、周波数異常発生源となる前記需要家装置に動作抑制ないし停止の制御指令を送出する制御指令発生手段を設けたことを特徴とする装置故障評価システム。
In the apparatus failure evaluation system according to any one of claims 1 to 4 and claim 10,
Control that sends a control command for operation suppression or stop to the consumer device that is a frequency abnormality generation source when the degree of frequency abnormality exceeds a predetermined frequency risk level threshold value on the output side of the frequency abnormality output means An apparatus failure evaluation system, comprising command generation means.
JP2009278795A 2009-12-08 2009-12-08 Apparatus failure evaluation system Pending JP2011122853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009278795A JP2011122853A (en) 2009-12-08 2009-12-08 Apparatus failure evaluation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009278795A JP2011122853A (en) 2009-12-08 2009-12-08 Apparatus failure evaluation system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014096272A Division JP5932880B2 (en) 2014-05-07 2014-05-07 Equipment failure evaluation equipment

Publications (1)

Publication Number Publication Date
JP2011122853A true JP2011122853A (en) 2011-06-23

Family

ID=44286896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009278795A Pending JP2011122853A (en) 2009-12-08 2009-12-08 Apparatus failure evaluation system

Country Status (1)

Country Link
JP (1) JP2011122853A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153590A1 (en) * 2012-04-10 2013-10-17 Necカシオモバイルコミュニケーションズ株式会社 Method of failure prevention for electronic equipment
JP2020008365A (en) * 2018-07-05 2020-01-16 東日本旅客鉄道株式会社 Diagnostic device for degradation of power equipment instrument
WO2021152685A1 (en) * 2020-01-28 2021-08-05 日本電信電話株式会社 Abnormality degree calculation device, abnormal sound detection apparatus, and methods and programs therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285440A (en) * 1991-03-15 1992-10-09 Toshiba Corp Power supply apparatus
JPH07159231A (en) * 1993-11-05 1995-06-23 Kawasaki Steel Corp Deterioration diagnostic system for pump
JPH09166483A (en) * 1995-12-19 1997-06-24 Hitachi Ltd Method and apparatus for monitoring equipment
JP2003233381A (en) * 2002-02-08 2003-08-22 Densei Lambda Kk Noise removing device of uninterruptible power unit and the uninterruptible power unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285440A (en) * 1991-03-15 1992-10-09 Toshiba Corp Power supply apparatus
JPH07159231A (en) * 1993-11-05 1995-06-23 Kawasaki Steel Corp Deterioration diagnostic system for pump
JPH09166483A (en) * 1995-12-19 1997-06-24 Hitachi Ltd Method and apparatus for monitoring equipment
JP2003233381A (en) * 2002-02-08 2003-08-22 Densei Lambda Kk Noise removing device of uninterruptible power unit and the uninterruptible power unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153590A1 (en) * 2012-04-10 2013-10-17 Necカシオモバイルコミュニケーションズ株式会社 Method of failure prevention for electronic equipment
JP2020008365A (en) * 2018-07-05 2020-01-16 東日本旅客鉄道株式会社 Diagnostic device for degradation of power equipment instrument
JP7106375B2 (en) 2018-07-05 2022-07-26 東日本旅客鉄道株式会社 Deterioration diagnosis device for power equipment
WO2021152685A1 (en) * 2020-01-28 2021-08-05 日本電信電話株式会社 Abnormality degree calculation device, abnormal sound detection apparatus, and methods and programs therefor
JPWO2021152685A1 (en) * 2020-01-28 2021-08-05
JP7310937B2 (en) 2020-01-28 2023-07-19 日本電信電話株式会社 Abnormality degree calculation device, abnormal sound detection device, methods and programs thereof

Similar Documents

Publication Publication Date Title
US10488466B2 (en) Fault prediction system for electrical distribution systems and monitored loads
US8898525B2 (en) Method and system for use in condition monitoring
CN103828007A (en) Method and system for estimating transformer remaining life
EP3009801A1 (en) Failure sign diagnosis system of electrical power grid and method thereof
JP2016226265A (en) Integrated transformer health monitoring architecture
JP4751278B2 (en) Power quality monitoring system and method
US9413173B2 (en) Power conversion device, control device for power conversion device, and control method for power conversion device
KR101144276B1 (en) Power quality monitoring system and method thereof
JP4937205B2 (en) Power quality evaluation system
JP5418219B2 (en) High voltage insulation monitoring device
KR20120137623A (en) System and method for monitoring electrical power equipment
JP5395509B2 (en) Power quality evaluation system
JP2008191108A (en) System for evaluating quality of electric power
JP5127608B2 (en) Power quality evaluation system
CN117078017A (en) Intelligent decision analysis system for monitoring power grid equipment
JP5932880B2 (en) Equipment failure evaluation equipment
JP2011122853A (en) Apparatus failure evaluation system
JP5578982B2 (en) Equipment failure evaluation system
US11231999B2 (en) Detection of electric power system anomalies in streaming measurements
JP5491751B2 (en) Power quality evaluation system
KR101098505B1 (en) Power quality monitoring system and power quality measuring method
KR101641269B1 (en) Partial discharge diagnostic system using emf sensor and acoustic sensor
CN110726866B (en) High-voltage-level voltage qualification rate monitoring method and device
Shaik et al. Combined classification of Power Quality Disturbances and Power System Faults
KR20210033883A (en) System and method for diagnosis and monitoring leakage current and insulation of energy storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131105

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140204