JP2011114176A - Power semiconductor device - Google Patents

Power semiconductor device Download PDF

Info

Publication number
JP2011114176A
JP2011114176A JP2009269562A JP2009269562A JP2011114176A JP 2011114176 A JP2011114176 A JP 2011114176A JP 2009269562 A JP2009269562 A JP 2009269562A JP 2009269562 A JP2009269562 A JP 2009269562A JP 2011114176 A JP2011114176 A JP 2011114176A
Authority
JP
Japan
Prior art keywords
power semiconductor
pair
semiconductor element
metal
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009269562A
Other languages
Japanese (ja)
Inventor
Masao Kikuchi
正雄 菊池
Osamu Usui
修 碓井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009269562A priority Critical patent/JP2011114176A/en
Publication of JP2011114176A publication Critical patent/JP2011114176A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power semiconductor device that suppresses deterioration in heat dissipation performance and insulation performance. <P>SOLUTION: The power semiconductor device 101 includes a power semiconductor element 1 as a first power semiconductor element, metal members 6, 8 as a pair of metal members arranged with the power semiconductor element 1 interposed therebetween, a pair of insulating layers 12a, 12b laminated on metal plates 11a, 11b as a pair of heat sinks with the pair of metal members 6, 8 interposed therebetween, and a filling resin 18 charged while covering at least the power semiconductor element 1, the pair of metal members 6, 8, and the pair of insulating layers 12a, 12b. The coefficient of thermal expansion of the pair of insulating layers 12a, 12b is substantially equal to that of the filling resin 18. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明はパワー半導体装置に関し、特にMOSFETやIGBTなどの1個あるいは複数個のパワー半導体素子を内蔵して、モータなどの負荷を制御するパワー半導体装置に関する。   The present invention relates to a power semiconductor device, and more particularly to a power semiconductor device that incorporates one or a plurality of power semiconductor elements such as MOSFETs and IGBTs and controls a load such as a motor.

パワー半導体素子は、モータなどの大きな負荷を制御するために、制御する電流が大きく、そのために自己発熱が大きい。したがって、パワー半導体素子を収納するパワー半導体装置は、パワー半導体素子の放熱を考慮する必要がある。   Since the power semiconductor element controls a large load such as a motor, the current to be controlled is large, and thus the self-heating is large. Therefore, the power semiconductor device that houses the power semiconductor element needs to consider heat dissipation of the power semiconductor element.

従来のパワー半導体装置におけるパワー半導体素子は、絶縁基板上に搭載され、絶縁基板は金属板に接合されて、ケースに収納される。パワー半導体素子の上面電極には、複数のボンディングワイヤが接続され、ボンディングワイヤのもう一端は、絶縁基板上の配線あるいはケースに取り付けられた電極に接続される。一方、パワー半導体素子の裏面電極は、絶縁基板上の配線にはんだ接合されて搭載される。パワー半導体装置は、金属板表面でグリースなどを介して冷却器に取り付けられ、パワー半導体素子の発熱は、はんだ、絶縁基板、金属板を通って、冷却器によって放熱される。   A power semiconductor element in a conventional power semiconductor device is mounted on an insulating substrate, and the insulating substrate is bonded to a metal plate and stored in a case. A plurality of bonding wires are connected to the upper surface electrode of the power semiconductor element, and the other end of the bonding wire is connected to a wiring on the insulating substrate or an electrode attached to the case. On the other hand, the back electrode of the power semiconductor element is mounted by soldering to the wiring on the insulating substrate. The power semiconductor device is attached to the cooler through grease or the like on the surface of the metal plate, and the heat generated by the power semiconductor element is dissipated by the cooler through the solder, the insulating substrate, and the metal plate.

また、パワー半導体素子を動作させるための電圧を供給するため、パワー半導体素子の上面電極と同一平面上に制御電極が設けられており、上記と同様にボンディングワイヤで基板上の配線あるいはケースに取り付けられた電極に接続される。大電流が流れる配線あるいは電極と制御用の配線あるいは電極は同一の基板表面上あるいはケース表面上に設けられることが多い。   In addition, in order to supply a voltage for operating the power semiconductor element, a control electrode is provided on the same plane as the upper surface electrode of the power semiconductor element. Connected to the connected electrode. A wiring or electrode through which a large current flows and a control wiring or electrode are often provided on the same substrate surface or case surface.

パワー半導体素子は、MOSFETやIGBTといった素子が大きな電流を制御する用途では多用されており、パワー半導体装置によって数Aから数百A程度の電流を制御する。このために、パワー半導体装置の冷却性能を向上するために、例えば、特許文献1に記載のパワー半導体装置がある。   Power semiconductor elements are widely used in applications in which elements such as MOSFETs and IGBTs control large currents, and currents of several A to several hundreds A are controlled by a power semiconductor device. For this reason, in order to improve the cooling performance of the power semiconductor device, for example, there is a power semiconductor device described in Patent Document 1.

特許文献1では、コレクタ電極ならびに制御電極と同一面に形成されたエミッタ電極を有する複数のパワー半導体素子を備え、これらのパワー半導体素子を挟むように設けられ、挟む側の面に半導体チップの電極に接合するための電極パターンが配設された高熱伝導性絶縁基板があり、高放熱伝導性基板の電極パターンと半導体素子の電極をロウ付けにより接合している。   In Patent Document 1, a plurality of power semiconductor elements each having an emitter electrode formed on the same surface as the collector electrode and the control electrode are provided, and are provided so as to sandwich these power semiconductor elements. There is a high thermal conductive insulating substrate provided with an electrode pattern for bonding to the electrode, and the electrode pattern of the high heat dissipation conductive substrate and the electrode of the semiconductor element are bonded by brazing.

特開平10−56131号公報JP-A-10-56131

従来のパワー半導体装置は、パワー半導体素子の表裏を挟み込むように絶縁基板を設けるため、組立のばらつきによって絶縁基板の表面の平行度が悪化する。特に、特許文献1に記載されるように、絶縁基板に窒化アルミニウムなどのセラミックスを用いる場合、絶縁基板が非常に硬いため、その表面に冷却器を取り付ける際に片当たりが発生し、半導体素子の局部に過大な力が加わりこれらを破壊する恐れがある。また、破壊に至らないまでも、冷却器と絶縁基板の間に大きな隙間が発生するため、グリース層が厚くなり放熱性能が悪化する。   In the conventional power semiconductor device, since the insulating substrate is provided so as to sandwich the front and back of the power semiconductor element, the parallelism of the surface of the insulating substrate is deteriorated due to variation in assembly. In particular, as described in Patent Document 1, when ceramics such as aluminum nitride is used for the insulating substrate, the insulating substrate is very hard, and therefore, when the cooler is attached to the surface of the insulating substrate, contact per unit occurs. There is a risk of destroying them by applying excessive force to the local area. In addition, a large gap is generated between the cooler and the insulating substrate even before destruction, resulting in a thick grease layer and poor heat dissipation performance.

また、上下2枚の絶縁基板の間に樹脂を充填する場合、樹脂と絶縁基板との間が密着していないと、高い電圧がパワー半導体素子に加わるような場合には絶縁破壊を招く恐れがある。ここで、一般的にセラミックスと樹脂との接着性は良くないため、このような事態が生じやすい。また、セラミックスと樹脂とは熱膨張差が大きいため、熱膨張により接着面に大きな熱応力が発生し、そのまま冷熱サイクルが繰り返されると絶縁基板と樹脂との間で剥がれが発生し、絶縁性が劣化してしまうという問題があった。   In addition, when a resin is filled between two upper and lower insulating substrates, if the resin and the insulating substrate are not in close contact with each other, there is a risk of causing dielectric breakdown when a high voltage is applied to the power semiconductor element. is there. Here, since the adhesiveness between ceramics and resin is generally not good, such a situation is likely to occur. In addition, since the thermal expansion difference between ceramics and resin is large, a large thermal stress is generated on the bonding surface due to thermal expansion, and if the cooling and heating cycle is repeated as it is, peeling occurs between the insulating substrate and the resin, and the insulating property is reduced. There was a problem of deterioration.

本発明は、上記のような問題を解決すべくなされたものであり、放熱性能、絶縁性能の劣化を抑制するパワー半導体装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a power semiconductor device that suppresses deterioration of heat dissipation performance and insulation performance.

本発明にかかるパワー半導体装置は、第1パワー半導体素子と、前記第1パワー半導体素子を挟んで配置された一対の第1金属部材と、前記一対の第1金属部材を挟んで一対の放熱板上に積層された一対の絶縁層と、少なくとも前記第1パワー半導体素子と、前記一対の第1金属部材と、前記一対の絶縁層とを覆って充填された充填樹脂とを備え、前記一対の絶縁層と前記充填樹脂とは、熱膨張率が略等しい。   A power semiconductor device according to the present invention includes a first power semiconductor element, a pair of first metal members disposed with the first power semiconductor element interposed therebetween, and a pair of heat sinks with the pair of first metal members interposed therebetween. A pair of insulating layers stacked thereon, at least the first power semiconductor element, the pair of first metal members, and a filling resin filled to cover the pair of insulating layers, The insulating layer and the filling resin have substantially the same coefficient of thermal expansion.

本発明にかかるパワー半導体装置によれば、第1パワー半導体素子と、前記第1パワー半導体素子を挟んで配置された一対の第1金属部材と、前記一対の第1金属部材を挟んで一対の放熱板上に積層された一対の絶縁層と、少なくとも前記第1パワー半導体素子と、前記一対の第1金属部材と、前記一対の絶縁層とを覆って充填された充填樹脂とを備え、前記一対の絶縁層と前記充填樹脂とは、熱膨張率が略等しいことにより、十分な放熱性能を有し、かつ、絶縁層と充填樹脂との熱膨張差により剥がれが発生し絶縁性が劣化することを抑制することができる。   According to the power semiconductor device of the present invention, the first power semiconductor element, the pair of first metal members disposed with the first power semiconductor element interposed therebetween, and the pair of the first metal members sandwiched between the pair of first metal members. A pair of insulating layers stacked on a heat sink, at least the first power semiconductor element, the pair of first metal members, and a filled resin filled to cover the pair of insulating layers, The pair of insulating layers and the filling resin have substantially the same thermal expansion coefficient, so that they have sufficient heat dissipation performance, and peeling occurs due to a difference in thermal expansion between the insulating layer and the filling resin, resulting in deterioration of insulation. This can be suppressed.

実施の形態1にかかるパワー半導体装置の断面図である。1 is a cross-sectional view of a power semiconductor device according to a first embodiment. 実施の形態1にかかるパワー半導体装置の製造方法を示す図である。FIG. 3 is a diagram showing a method for manufacturing the power semiconductor device according to the first embodiment; 実施の形態1にかかるパワー半導体装置の製造方法を示す図である。FIG. 3 is a diagram showing a method for manufacturing the power semiconductor device according to the first embodiment; 実施の形態2にかかるパワー半導体装置の断面図である。FIG. 6 is a cross-sectional view of a power semiconductor device according to a second embodiment. 実施の形態2にかかるパワー半導体装置の製造方法を示す図である。FIG. 10 is a diagram showing a method for manufacturing the power semiconductor device according to the second embodiment; 実施の形態3にかかるパワー半導体装置の断面図である。It is sectional drawing of the power semiconductor device concerning Embodiment 3. FIG. 実施の形態3にかかるパワー半導体装置の回路図である。FIG. 6 is a circuit diagram of a power semiconductor device according to a third embodiment. 実施の形態3にかかるパワー半導体装置の断面図である。It is sectional drawing of the power semiconductor device concerning Embodiment 3. FIG. 実施の形態3にかかるパワー半導体装置の断面図である。It is sectional drawing of the power semiconductor device concerning Embodiment 3. FIG. 実施の形態4にかかるパワー半導体装置の断面図である。FIG. 6 is a cross-sectional view of a power semiconductor device according to a fourth embodiment.

<A.実施の形態1>
<A−1.構成>
本発明の実施の形態1について説明する。図1は、本発明の実施の形態1を説明するためのパワー半導体装置の断面模式図である。図1に示すように第1パワー半導体素子としてのパワー半導体素子1(図1では、2個内蔵の場合を示している)は、第1の電極としてのコレクタ電極2と、第2の電極としてのエミッタ電極3とを有しており、これらの電極はパワー半導体素子1の表裏面に形成される。
<A. Embodiment 1>
<A-1. Configuration>
Embodiment 1 of the present invention will be described. FIG. 1 is a schematic sectional view of a power semiconductor device for explaining the first embodiment of the present invention. As shown in FIG. 1, a power semiconductor element 1 as a first power semiconductor element (in FIG. 1, a case where two are included) includes a collector electrode 2 as a first electrode and a second electrode as a first electrode. The emitter electrodes 3 are formed on the front and back surfaces of the power semiconductor element 1.

エミッタ電極3側には、パワー半導体素子1を駆動するために必要な電力を供給するための制御電極4が備えられる。コレクタ電極2は、第1の金属ブロックとしての金属ブロック5にはんだ層1001を介して接合され、金属ブロック5は一対の第1金属部材の一方である金属部材6にはんだ層1001を介して電気的に接合される。   On the emitter electrode 3 side, a control electrode 4 for supplying electric power necessary for driving the power semiconductor element 1 is provided. The collector electrode 2 is joined to a metal block 5 as a first metal block via a solder layer 1001, and the metal block 5 is electrically connected to a metal member 6 which is one of a pair of first metal members via a solder layer 1001. Are joined together.

一方、エミッタ電極3上側には、金属ブロック5よりも一回り面積が小さい第2の金属ブロックとしての金属ブロック7がはんだ層1001を介して接合され、さらに、金属ブロック7上部は、一対の第1金属部材の他方である金属部材8にはんだ層1001を介して接合される。   On the other hand, a metal block 7 as a second metal block having a slightly smaller area than the metal block 5 is joined to the upper side of the emitter electrode 3 via a solder layer 1001. The other metal member 8 is joined to the metal member 8 via the solder layer 1001.

パワー半導体装置101は、上下一対の金属板、すなわち放熱板としての金属板11aおよび金属板11bに挟まれ、金属板11a、11bのパワー半導体素子1とは反対側の表面111、121が、装置外部に露出した構造となっている。露出面と反対側の面(パワー半導体素子1側の面)には絶縁層12a、12bが貼り付けられており、絶縁層12a、12bに一対の金属部材6、8、および第2金属部材である金属部材1002が取り付けられる。   The power semiconductor device 101 is sandwiched between a pair of upper and lower metal plates, that is, a metal plate 11a and a metal plate 11b as heat radiating plates, and surfaces 111 and 121 on the opposite side of the power semiconductor element 1 of the metal plates 11a and 11b The structure is exposed to the outside. Insulating layers 12a and 12b are attached to the surface opposite to the exposed surface (the surface on the power semiconductor element 1 side), and a pair of metal members 6 and 8 and a second metal member are attached to the insulating layers 12a and 12b. A metal member 1002 is attached.

パワー半導体装置101は、上記した各部位が、上下一対の金属板11a、11bの一部の面(表面111、121)を除いて、充填樹脂18によって被覆される。ただし、金属部材6は、例えば図1中(A)のように、下層の絶縁層12aが露出する箇所が設けられている。   In the power semiconductor device 101, each of the above-described parts is covered with the filling resin 18 except for a part of the surfaces (surfaces 111 and 121) of the pair of upper and lower metal plates 11a and 11b. However, the metal member 6 is provided with a portion where the lower insulating layer 12a is exposed, for example, as shown in FIG.

図1において、第2金属部材である金属部材1002は、金属部材6と電気的に分離されて、絶縁層12a上に配置され、例えば配線を構成する。金属部材1002は、パワー半導体素子1とワイヤを介して接続されている。図1においては、金属部材1002は絶縁層12a上に配置されているが、絶縁層12b上に配置することも可能である。   In FIG. 1, a metal member 1002 that is a second metal member is electrically separated from the metal member 6 and disposed on the insulating layer 12a, and constitutes, for example, a wiring. The metal member 1002 is connected to the power semiconductor element 1 via a wire. In FIG. 1, the metal member 1002 is disposed on the insulating layer 12a, but may be disposed on the insulating layer 12b.

絶縁層12a、12bは樹脂材料からなり、充填樹脂18の材料と熱膨張率が略等しい材料、望ましくは同種の材料で構成される。充填樹脂18の材料と同種の材料で構成することによって、接合箇所において絶縁層12a、12bと充填樹脂18との反応が良く進み、接合強度が向上するだけでなく、界面の消失効果がある。したがって、金属板11a、11b、金属ブロック5、7、あるいはパワー半導体素子1との線膨張の違いによる熱応力が発生しても、絶縁層12a、12bと充填樹脂18との間で容易に剥がれの進行がなく、高い絶縁信頼性やはんだクラック耐量が維持できる。これらの材料としては、いずれもエポキシ材料であれば、パッケージの強度が大きくなり、充填樹脂18内部に内蔵されるパワー半導体素子1周辺のストレスを分散させる効果が大きく、またハンドリング性も良くなる。   The insulating layers 12a and 12b are made of a resin material, and are made of a material having substantially the same thermal expansion coefficient as that of the filling resin 18, preferably the same kind of material. By using the same kind of material as the material of the filling resin 18, the reaction between the insulating layers 12 a and 12 b and the filling resin 18 proceeds well at the joining portion, and not only the joining strength is improved but also the effect of disappearing the interface. Therefore, even if thermal stress occurs due to a difference in linear expansion from the metal plates 11a and 11b, the metal blocks 5 and 7, or the power semiconductor element 1, the insulating layers 12a and 12b and the filling resin 18 are easily peeled off. Therefore, high insulation reliability and solder crack resistance can be maintained. If these materials are all epoxy materials, the strength of the package is increased, the effect of dispersing the stress around the power semiconductor element 1 built in the filling resin 18 is great, and the handling property is also improved.

本発明におけるパワー半導体素子は、例えばシリコンからなる素子であるが、素子の発熱を素子の上下方向から効率的に逃がすことができるので、素子の温度が高くなっても、充填樹脂等の有機材料に熱が拡がらずに温度上昇を抑えることができる。   The power semiconductor element in the present invention is an element made of, for example, silicon. However, since the heat generated by the element can be efficiently released from the vertical direction of the element, an organic material such as a filling resin can be used even when the temperature of the element increases. The temperature rise can be suppressed without spreading the heat.

また、パワー半導体素子の周辺にある他の電子部品に対しても熱の拡がりが少ない。したがって、炭化珪素からなる素子によって高温での動作をしても、装置の信頼性は確保することができる。さらには、冷却器に取り付けられる上下の金属板11a、11bの表面111、121とパワー半導体素子1の間に絶縁層12a、12bを形成する構造となるため、パワー半導体素子1の温度サイクルによる高さ方向の伸縮が柔らかい絶縁層12a、12bによって吸収されるため、冷却器の取り付け面(すなわち、金属板11a、11bの表面111、121)の接触部分の熱抵抗が変化することがない。これらの点で、特に炭化珪素からなるパワー半導体素子を搭載したパワー半導体装置であれば、非常に優れた効果を発揮することができる。   Further, the heat spread is small for other electronic components around the power semiconductor element. Therefore, the reliability of the apparatus can be ensured even if the element made of silicon carbide is operated at a high temperature. In addition, since the insulating layers 12a and 12b are formed between the power semiconductor elements 1 and the surfaces 111 and 121 of the upper and lower metal plates 11a and 11b attached to the cooler, the power semiconductor elements 1 have a high temperature cycle. Since the expansion and contraction in the vertical direction is absorbed by the soft insulating layers 12a and 12b, the thermal resistance of the contact portion of the mounting surface of the cooler (that is, the surfaces 111 and 121 of the metal plates 11a and 11b) does not change. In these respects, a power semiconductor device equipped with a power semiconductor element made of silicon carbide in particular can exhibit a very excellent effect.

<A−2.製造方法>
次に、本実施の形態1のパワー半導体装置101の製造方法について、図2および図3を用いて説明する。金属板11aあるいは、絶縁層12a、金属部材6、1002はあらかじめ、ホットプレスなどの工程を経て積層する。また、金属部材6、1002は、複数の部材を島状に配置して、絶縁層12aを接合しても良いし、金属板11a、絶縁層12aと同等の面積を有する板状の金属部材6、1002を積層した後に、例えばエッチング等の方法で所望の形状に成形しても良い。後者は、種々の形状の金属部材6、1002が一括で形成することができるため工業的に有用な方法である。また、同様にあらかじめ所望の形状に成形された金属部材6、1002を積層しても良い。
<A-2. Manufacturing method>
Next, a method for manufacturing the power semiconductor device 101 according to the first embodiment will be described with reference to FIGS. The metal plate 11a or the insulating layer 12a and the metal members 6 and 1002 are laminated in advance through a process such as hot pressing. The metal members 6 and 1002 may be formed by arranging a plurality of members in an island shape and joining the insulating layer 12a, or the plate-like metal member 6 having an area equivalent to that of the metal plate 11a and the insulating layer 12a. , 1002 may be laminated and then formed into a desired shape by a method such as etching. The latter is an industrially useful method because the metal members 6 and 1002 having various shapes can be formed at a time. Similarly, metal members 6 and 1002 previously formed into a desired shape may be laminated.

そのように製造した積層構造(以下、積層基板102a)に、図2(a)のように金属ブロック5、パワー半導体素子1、金属ブロック7がその順に搭載される。これらの部材と積層基板102aとの接合は、本実施の形態1では、例えばはんだを用いてはんだ付けする。この場合のはんだ層1001(図2(b))は、同一材料のはんだ材を用いて一括してはんだ付けするものである。   As shown in FIG. 2A, the metal block 5, the power semiconductor element 1, and the metal block 7 are mounted on the laminated structure thus manufactured (hereinafter, laminated substrate 102a) in that order. In the first embodiment, these members and the laminated substrate 102a are soldered using, for example, solder. The solder layer 1001 (FIG. 2B) in this case is soldered together using the same solder material.

次に、パワー半導体素子1の制御電極4と金属部材6の所定の箇所とをワイヤ16で電気的に接続する(図2(b))。さらに、前述した積層基板102aの製造方法と同様の方法で製作したもう一つの積層基板102bを、金属部材8側が金属ブロック7に当接するように載せて接合する。この場合にも、例えばはんだ材を用いて接合する(図3(a))。このはんだ材は、3層のはんだ層1001の融点と比べて、その融点が同等以下であることが好ましい。なぜならば、図3(a)に示す工程での、はんだ付けのための加熱によるはんだ層1001への影響を、極力防止するためである。特に、はんだ層1001が再溶融すると、パワー半導体素子1と金属部材6の相対位置が変化し、ワイヤ16にストレスが加わる恐れがあるため、はんだ層1001が溶融しないように融点を上記のように組み合わせることが好ましい。   Next, the control electrode 4 of the power semiconductor element 1 and a predetermined portion of the metal member 6 are electrically connected by a wire 16 (FIG. 2B). Further, another laminated substrate 102b manufactured by the same method as the method of manufacturing the laminated substrate 102a described above is placed and bonded so that the metal member 8 side is in contact with the metal block 7. Also in this case, it joins, for example using a solder material (FIG. 3 (a)). This solder material preferably has a melting point equal to or lower than that of the three solder layers 1001. This is because the influence on the solder layer 1001 due to the heating for soldering in the step shown in FIG. In particular, when the solder layer 1001 is remelted, the relative position between the power semiconductor element 1 and the metal member 6 changes, and stress may be applied to the wire 16, so that the melting point is set as described above so that the solder layer 1001 does not melt. It is preferable to combine them.

次に、積層基板102a、102bでサンドイッチされた構造であるパワー半導体素子1を金型17にセットし、充填樹脂18を注入して樹脂充填する(図3(b))。この際、上下一対の積層基板102a、102bの表面111、121は、金型17面に加圧密着し、表面111、121への樹脂の流動を防止する。樹脂を充填した後、金型17面を外し、パワー半導体装置101が製造される(図3(c))。   Next, the power semiconductor element 1 having a structure sandwiched between the laminated substrates 102a and 102b is set in the mold 17, and a filling resin 18 is injected to fill the resin (FIG. 3B). At this time, the surfaces 111 and 121 of the pair of upper and lower laminated substrates 102 a and 102 b are in pressure contact with the surface of the mold 17 to prevent the resin from flowing to the surfaces 111 and 121. After filling the resin, the mold 17 is removed, and the power semiconductor device 101 is manufactured (FIG. 3C).

ここで、充填樹脂18と絶縁層12a、12bは同種の材料でできており、材料としては、エポキシ樹脂が充填構造として機械的強度が高く、パワー半導体装置101の保持状態が良い。エポキシ樹脂の充填方法には、生産性の優れた方法であるトランスファーモールド法がある。   Here, the filling resin 18 and the insulating layers 12a and 12b are made of the same kind of material. As the material, epoxy resin is used as a filling structure and has high mechanical strength, and the holding state of the power semiconductor device 101 is good. An epoxy resin filling method includes a transfer mold method which is a method with excellent productivity.

図2(a)、図3(a)の部材の積層工程では、高さ方向に一定の偏りが発生しうるため、上下一対の積層基板102a、102bの表面111、121の平行度が必ずしも良好ではない。しかしながら本実施の形態1においては、パワー半導体素子1を挟んで上下に一対のシリコン系からなる絶縁層12a、12bが形成されており、この絶縁層12a、12bはパワー半導体素子1や他の金属に比べて柔らかい材質であるため、金型17に当接する際に金型17と金属板11a、11bの表面111、121の当りの偏りを吸収することができる。よって、金型17と金属板11a、11bの表面111、121との間には、樹脂が入り込まないように密着することができ、かつ、偏圧によるパワー半導体素子1へのダメージも防止するように、樹脂充填することができる。   In the step of laminating the members shown in FIGS. 2 (a) and 3 (a), a certain amount of deviation can occur in the height direction. Therefore, the parallelism of the surfaces 111 and 121 of the pair of upper and lower laminated substrates 102a and 102b is not necessarily good. is not. However, in the first embodiment, a pair of silicon-based insulating layers 12a and 12b are formed on both sides of the power semiconductor element 1, and the insulating layers 12a and 12b are formed of the power semiconductor element 1 and other metal. Since it is a soft material compared to the above, it is possible to absorb the deviation of the contact between the mold 17 and the surfaces 111 and 121 of the metal plates 11a and 11b when contacting the mold 17. Therefore, the mold 17 and the surfaces 111 and 121 of the metal plates 11a and 11b can be in close contact with each other so that the resin does not enter, and damage to the power semiconductor element 1 due to bias pressure can be prevented. In addition, the resin can be filled.

また、上下一対の絶縁層12a、12bによって、パワー半導体素子1とパワー半導体装置101外部面は絶縁される。さらに、絶縁層12a、12bを充填樹脂18内部に内蔵することにより、外部環境の湿気、イオン成分、異物などの付着による絶縁性の劣化がなく、信頼性が高い装置とすることができる。パワー半導体装置101では、高電圧かつ大電流を制御するため、絶縁信頼性の優れた装置を提供することは、非常に有用である。   Further, the power semiconductor element 1 and the outer surface of the power semiconductor device 101 are insulated by the pair of upper and lower insulating layers 12a and 12b. Further, by incorporating the insulating layers 12a and 12b inside the filling resin 18, there is no deterioration in insulation due to adhesion of moisture, ionic components, foreign matters, etc. in the external environment, and a highly reliable device can be obtained. Since the power semiconductor device 101 controls a high voltage and a large current, it is very useful to provide a device with excellent insulation reliability.

本実施の形態1においては、金属部材6、8、1002は、種々の形状をとり得るが、例えば金属部材6、8、1002によって複数のパワー半導体素子1、あるいは外部接続端子と接続された複数の電気配線を形成することができる。   In the first embodiment, the metal members 6, 8, 1002 can take various shapes. For example, the metal members 6, 8, 1002 can be connected to a plurality of power semiconductor elements 1 or a plurality of external connection terminals. The electrical wiring can be formed.

パワー半導体素子1のエミッタ電極3からの配線は、金属ブロック5を通じて積層基板102aの上側の金属部材6、1002で形成することができ、一方、コレクタ電極2ならびに制御用の配線パターンは、積層基板102bの下側の金属部材8で形成することができる。上下一対の積層基板102a、102bの金属部材6、8、1002で配線形成することによって、非常にコンパクトなパワー半導体装置101を実現できるだけでなく、配線長を最小化することができて、損失を低減することができる。   The wiring from the emitter electrode 3 of the power semiconductor element 1 can be formed by the metal members 6 and 1002 on the upper side of the multilayer substrate 102a through the metal block 5, while the collector electrode 2 and the control wiring pattern are the multilayer substrate. The lower metal member 8 can be formed of 102b. By forming wiring with the metal members 6, 8, and 1002 of the pair of upper and lower laminated substrates 102a and 102b, not only a very compact power semiconductor device 101 can be realized, but also the wiring length can be minimized and loss can be reduced. Can be reduced.

ところで、積層基板102bにおける絶縁層12bは、金属板11b上にあらかじめ形成することで、軟質な絶縁層12bを平面的に支持しつつパワー半導体素子1上方より当接することができる。また、金属板11a、11bは、金型17当接時に金属板11a、11b自身が変形せずに均一加圧できるよう、銅またはアルミニウム、あるいはこれらを主成分とする合金、積層板であることが好ましく、厚さは0.1mm以上が好ましい。また、良好な放熱性を確保するために3mm程度以下とすることが好ましい。   By the way, the insulating layer 12b in the multilayer substrate 102b is formed in advance on the metal plate 11b, so that the soft insulating layer 12b can be brought into contact with the power semiconductor element 1 from above while being planarly supported. Further, the metal plates 11a and 11b are made of copper or aluminum, or an alloy or a laminated plate containing them as a main component so that the metal plates 11a and 11b themselves can be uniformly pressed without being deformed when contacting the mold 17. The thickness is preferably 0.1 mm or more. Moreover, in order to ensure favorable heat dissipation, it is preferable to set it as about 3 mm or less.

また、絶縁層12a、12bはエポキシ等(充填樹脂18と同質)の材料であって、特に金属板11bに固着された絶縁層12bは、半硬化状態(Bステージ状態)としておくと、パワー半導体素子1へのダメージを抑制しながらパワー半導体装置101を製造することができる。   The insulating layers 12a and 12b are made of epoxy or the like (same quality as the filling resin 18). In particular, the insulating layer 12b fixed to the metal plate 11b is a semi-cured state (B stage state). The power semiconductor device 101 can be manufactured while suppressing damage to the element 1.

具体的には、金属板11a、絶縁層12a、金属部材6、金属ブロック5の上にパワー半導体素子1を搭載し、絶縁層12aはほぼ硬化が完了した状態にしておく。次に、金属ブロック7、金属部材8、絶縁層12b、金属板11bを配置した後、金型17によって上下の金属板11a、11bの表面111、121に当接して加熱しながら、充填樹脂18を充填する。この際、絶縁層12bを半硬化状態にしておくと、金型17当接時ならびに樹脂注入時の圧力によって容易に変形することができる。このため、パワー半導体素子1へのダメージを防止することができる。   Specifically, the power semiconductor element 1 is mounted on the metal plate 11a, the insulating layer 12a, the metal member 6, and the metal block 5, and the insulating layer 12a is in a state where the curing is almost completed. Next, after the metal block 7, the metal member 8, the insulating layer 12 b, and the metal plate 11 b are arranged, the filling resin 18 is brought into contact with the surfaces 111 and 121 of the upper and lower metal plates 11 a and 11 b by the mold 17 and heated. Fill. At this time, if the insulating layer 12b is in a semi-cured state, it can be easily deformed by the pressure at the time of contacting the mold 17 and at the time of resin injection. For this reason, damage to the power semiconductor element 1 can be prevented.

また、あらかじめ金属部材6、8に、上下一対の金属板11a、11bの表面111、121間の高さ制御用のスペーサとなる柱状部材(第1柱状部材)を適当な箇所に取り付けても良い。例えば、一対の金属部材6、8を他の構成要素に支障のない所で所定の幅まで拡張し、それらに接触し支持する複数の柱状部材(図9の屈曲部位22のような部材)がパワー半導体素子1を避けて配置できるように形成すれば、金属部材6、8がこの複数の柱状部材で固定される。   Further, a columnar member (first columnar member) serving as a spacer for controlling the height between the surfaces 111 and 121 of the pair of upper and lower metal plates 11a and 11b may be attached to the metal members 6 and 8 in advance at appropriate positions. . For example, a plurality of columnar members (members such as the bent portion 22 in FIG. 9) that expand the pair of metal members 6 and 8 to a predetermined width where they do not interfere with other components and support them are provided. If formed so as to avoid the power semiconductor element 1, the metal members 6 and 8 are fixed by the plurality of columnar members.

こうすることによって、金属板11a、11b間の高さの精度が、この複数の柱状部材によってコントロールされるため、柱状部材が所望の部材精度を確保すれば、一対の金属部材6,8が積層された上下の金属板11a、11bの、その表面111、121の平行度が得られ、金型17当接時に偏圧が発生してパワー半導体素子1にダメージが入ったり、金属板11a、11bの表面に過剰な樹脂が侵入したりすることを防ぐことができる。   By doing so, the accuracy of the height between the metal plates 11a and 11b is controlled by the plurality of columnar members. Therefore, if the columnar members ensure the desired member accuracy, the pair of metal members 6 and 8 are stacked. The parallelism of the surfaces 111 and 121 of the upper and lower metal plates 11a and 11b thus obtained is obtained, and when the die 17 comes into contact, pressure is generated and the power semiconductor element 1 is damaged or the metal plates 11a and 11b are damaged. It is possible to prevent excessive resin from entering the surface of the resin.

また、金属部材6、8で電気配線を形成する場合、電気配線の周囲は配線として延伸する箇所を除いて、可能な限り金属部材6、8の周辺に、露出した絶縁層12a、12bを設けることがよい。こうすることによって、金属部材6、8は充填樹脂18との接着性が良好とは言い難いが、その周辺にある接着性に優れた絶縁層12a、12bが充填樹脂18と強固に接合するので、金属部材6、8で剥離の進展がなく好ましい。   Further, when the electrical wiring is formed with the metal members 6 and 8, the exposed insulating layers 12a and 12b are provided around the metal members 6 and 8 as much as possible around the electrical wiring except for the portion extending as the wiring. It is good. By doing so, the metal members 6 and 8 are unlikely to have good adhesion to the filling resin 18, but the insulating layers 12 a and 12 b having excellent adhesion in the vicinity thereof are firmly bonded to the filling resin 18. The metal members 6 and 8 are preferable since there is no progress of peeling.

<A−3.効果>
本発明にかかる実施の形態1によれば、パワー半導体装置において、第1パワー半導体素子であるパワー半導体素子1と、パワー半導体素子1を挟んで配置された一対の第1金属部材である金属部材6、8と、一対の金属部材6、8を挟んで一対の放熱板である金属板11a、11b上に積層された一対の絶縁層12a、12bと、少なくともパワー半導体素子1と、一対の金属部材6、8と、一対の絶縁層12a、12bとを覆って充填された充填樹脂18とを備え、一対の絶縁層12a、12bと充填樹脂18とは、熱膨張率が略等しいことで、十分な放熱性能を有し、かつ、絶縁層12a、12bと充填樹脂18との熱膨張差により剥がれが発生し絶縁性が劣化することを抑制することができる。
<A-3. Effect>
According to the first embodiment of the present invention, in a power semiconductor device, a power semiconductor element 1 that is a first power semiconductor element and a metal member that is a pair of first metal members arranged with the power semiconductor element 1 interposed therebetween. 6, 8; a pair of insulating layers 12a, 12b stacked on metal plates 11a, 11b which are a pair of heat sinks with a pair of metal members 6, 8 sandwiched therebetween; at least the power semiconductor element 1; Members 6 and 8 and a filling resin 18 filled to cover the pair of insulating layers 12a and 12b, and the pair of insulating layers 12a and 12b and the filling resin 18 have substantially the same thermal expansion coefficient, It has sufficient heat dissipation performance, and it is possible to prevent the insulation from deteriorating due to the difference in thermal expansion between the insulating layers 12a and 12b and the filling resin 18 and deterioration.

また、本発明にかかる実施の形態1によれば、パワー半導体装置において、一対の絶縁層12a、12bと充填樹脂18とは、同種の材質であることで、十分な放熱性能を有し、かつ、絶縁層12a、12bと充填樹脂18との熱膨張差により剥がれが発生し絶縁性が劣化することを抑制することができる。   Further, according to the first embodiment of the present invention, in the power semiconductor device, the pair of insulating layers 12a and 12b and the filling resin 18 are made of the same material, so that they have sufficient heat dissipation performance, and Further, it is possible to prevent the insulation from deteriorating due to the difference in thermal expansion between the insulating layers 12a and 12b and the filling resin 18 and degrading the insulation.

また、樹脂からなる絶縁層12a、12bがパワー半導体素子1を挟み込むように設けられているため、上下一対の金属板11a、11bの平行度が偏っていても、絶縁層12a、12bでその偏りを吸収することができるので、パワー半導体素子1にダメージを与えることがなく、パワー半導体装置の製造が可能である。   Further, since the insulating layers 12a and 12b made of resin are provided so as to sandwich the power semiconductor element 1, even if the parallelism of the pair of upper and lower metal plates 11a and 11b is biased, the bias is offset by the insulating layers 12a and 12b. Therefore, the power semiconductor device 1 can be manufactured without damaging the power semiconductor element 1.

また、充填樹脂18との接着性に優れ、絶縁層12a、12bと充填樹脂18の間の剥がれを抑制し、パワー半導体装置の絶縁性能が向上する。   Moreover, it is excellent in adhesiveness with the filling resin 18, suppresses peeling between the insulating layers 12a and 12b and the filling resin 18, and improves the insulation performance of the power semiconductor device.

また、本発明にかかる実施の形態1によれば、パワー半導体装置において、充填樹脂18は、一対の放熱板である金属板11a、11bの第1パワー半導体素子であるパワー半導体素子1とは反対側の表面111、121を除いた領域を覆って充填されることで、十分な放熱性能を確保することができる。   Further, according to the first embodiment of the present invention, in the power semiconductor device, the filling resin 18 is opposite to the power semiconductor element 1 that is the first power semiconductor element of the metal plates 11a and 11b that are the pair of heat sinks. By covering and filling the area excluding the side surfaces 111 and 121, sufficient heat dissipation performance can be ensured.

また、本発明にかかる実施の形態1によれば、パワー半導体装置において、一対の第1金属部材である金属部材6、8と電気的に分離されて一対の絶縁層12a、12bの少なくとも一方上に配置された第2金属部材である金属部材1002をさらに備え、金属部材1002は、第1パワー半導体素子であるパワー半導体素子1と電気的に接続されることで、金属部材1002をパワー半導体素子1の電気配線として活用することができ、パワー半導体装置のモジュールサイズの小型化が可能となる。   In addition, according to the first embodiment of the present invention, in the power semiconductor device, the metal members 6 and 8 that are the pair of first metal members are electrically separated from each other and on at least one of the pair of insulating layers 12a and 12b. The metal member 1002 which is the 2nd metal member arrange | positioned in this is further provided, and the metal member 1002 is electrically connected with the power semiconductor element 1 which is a 1st power semiconductor element, The metal member 1002 is made into a power semiconductor element. Therefore, the module size of the power semiconductor device can be reduced.

また、本発明にかかる実施の形態1によれば、パワー半導体装置において、第2金属部材である金属部材1002は、第1パワー半導体素子であるパワー半導体素子1と接続された複数の電気配線を含むことで、高密度に実装可能となり、パワー半導体装置のモジュールサイズの小型化が可能となる。   Further, according to the first embodiment of the present invention, in the power semiconductor device, the metal member 1002 that is the second metal member includes a plurality of electrical wirings connected to the power semiconductor element 1 that is the first power semiconductor element. By including, it becomes possible to mount with high density, and the module size of the power semiconductor device can be reduced.

また、本発明にかかる実施の形態1によれば、パワー半導体装置において、一対の放熱板である金属板11a、11b間に、一対の金属板11a、11bを支持する第1柱状部材をさらに備えることで、金属板11a、11b間の高さ調整が可能となり、金属板11a、11bの表面111、121の平行度を確保することができる。   According to the first embodiment of the present invention, the power semiconductor device further includes the first columnar member that supports the pair of metal plates 11a and 11b between the metal plates 11a and 11b that are the pair of heat radiating plates. Thus, the height between the metal plates 11a and 11b can be adjusted, and the parallelism of the surfaces 111 and 121 of the metal plates 11a and 11b can be ensured.

また、本発明にかかる実施の形態1によれば、パワー半導体装置において、第1パワー半導体素子であるパワー半導体素子1は、炭化珪素からなることで、高温になっても、熱を効率的に装置外部に輸送することができ、装置内部に熱がこもって、充填樹脂18などの有機材料や、他の電子部品が熱により劣化することを防止することができる。   Further, according to the first embodiment of the present invention, in the power semiconductor device, the power semiconductor element 1 as the first power semiconductor element is made of silicon carbide, so that the heat can be efficiently generated even at a high temperature. It can be transported to the outside of the apparatus, and heat can be prevented from being accumulated inside the apparatus, and organic materials such as the filling resin 18 and other electronic components can be prevented from being deteriorated by heat.

<B.実施の形態2>
<B−1.構成>
本発明の実施の形態2について説明する。図4は、本実施の形態2におけるパワー半導体装置を示した図であり、パワー半導体素子1aは実施の形態1と同様に、コレクタ電極2aが下側の金属ブロック5aに、エミッタ電極3aが上側の金属ブロック7aに接続されるように構成されているが、第2パワー半導体素子としてのパワー半導体素子1bは、コレクタ電極2bが上側の金属ブロック5bに、エミッタ電極3bが下側の金属ブロック7bに接合されており、各々のパワー半導体素子1a、1bが上下入れ替わった構成を有している。
<B. Second Embodiment>
<B-1. Configuration>
A second embodiment of the present invention will be described. FIG. 4 is a diagram showing a power semiconductor device according to the second embodiment. As in the first embodiment, the power semiconductor element 1a has the collector electrode 2a on the lower metal block 5a and the emitter electrode 3a on the upper side. The power semiconductor element 1b as the second power semiconductor element is configured such that the collector electrode 2b is on the upper metal block 5b and the emitter electrode 3b is on the lower metal block 7b. The power semiconductor elements 1a and 1b are switched upside down.

具体的には、実施の形態1と同様の構成で挟まれたパワー半導体素子1aと、上下入れ替わった構成で挟まれたパワー半導体素子1bとを備えるものであり、パワー半導体素子1bは、絶縁層12a上に第3金属部材としての金属部材6bが配置され、さらに金属ブロック7bがその上に配置される。その金属ブロック7b上にパワー半導体素子1bが配置され、金属ブロック5b、第3金属部材としての金属部材8b、絶縁層12bがその上に配置されるが、パワー半導体素子1bのコレクタ電極2bは、金属ブロック5b側に接し、エミッタ電極3bは、金属ブロック7b側に接する。絶縁層12b上には、第4の金属部材である金属部材1003が配置され、金属部材1003は金属部材8bとは電気的に分離され、ワイヤ16bを介して第2パワー半導体素子であるパワー半導体素子1bと接続される。   Specifically, a power semiconductor element 1a sandwiched in the same configuration as in the first embodiment and a power semiconductor element 1b sandwiched in an upside down configuration are provided, and the power semiconductor element 1b includes an insulating layer. A metal member 6b as a third metal member is disposed on 12a, and a metal block 7b is disposed thereon. The power semiconductor element 1b is disposed on the metal block 7b, and the metal block 5b, the metal member 8b as the third metal member, and the insulating layer 12b are disposed thereon. The collector electrode 2b of the power semiconductor element 1b is The emitter electrode 3b is in contact with the metal block 5b side. A metal member 1003, which is a fourth metal member, is disposed on the insulating layer 12b. The metal member 1003 is electrically separated from the metal member 8b, and is a power semiconductor that is a second power semiconductor element via a wire 16b. It is connected to the element 1b.

本実施の形態2は、例えば、上下方向を入れ替えることで複数のパワー半導体素子1a、1bを直列接続したパワー半導体装置103であり、片側の金属部材1002による配線では、横方向に配線の引き出しが必要となるために装置全体が大形化してしまうが、本実施の形態2の場合には、上下一対の金属部材1002、1003からなる配線パターンで配線形成することによって、容易にコンパクトな配線を形成することができる。   The second embodiment is, for example, a power semiconductor device 103 in which a plurality of power semiconductor elements 1a and 1b are connected in series by switching the vertical direction. In the wiring using the metal member 1002 on one side, the wiring is drawn out in the horizontal direction. In the case of the second embodiment, compact wiring can be easily performed by forming wiring with a wiring pattern made up of a pair of upper and lower metal members 1002 and 1003. Can be formed.

<B−2.製造方法>
また、パワー半導体素子1bの制御用の配線は上側の金属部材1003によって配線する。この場合、パワー半導体素子1bの制御用電極からのワイヤ16bの引き出しは、上側の金属部材1003に接合するが、図5のように、あらかじめ、各々のパワー半導体素子1a、1bを搭載し、ワイヤボンドした積層基板アセンブリ201a、201bを製造する工程を経て(図5(a))、上側にくる積層基板アセンブリ201bをひっくり返して上下一対の積層基板アセンブリ201a、201bを張り合わせる(図5(b))ことで、生産性を損なうことなくワイヤボンド可能なパワー半導体装置103が実現できる(図5(c))。
<B-2. Manufacturing method>
Further, the control wiring of the power semiconductor element 1b is wired by the upper metal member 1003. In this case, the wire 16b is pulled out from the control electrode of the power semiconductor element 1b and joined to the upper metal member 1003. However, as shown in FIG. Through the process of manufacturing the bonded multilayer substrate assemblies 201a and 201b (FIG. 5A), the upper multilayer substrate assembly 201b is turned over and the pair of upper and lower multilayer substrate assemblies 201a and 201b are bonded together (FIG. 5B). )), A power semiconductor device 103 capable of wire bonding can be realized without impairing productivity (FIG. 5C).

本実施の形態2によれば、コンパクトなパワー半導体装置103ができる。また、図4では、直列接続する一対のパワー半導体素子1a、1bを搭載した例に基づいて説明したが、上下電極を入れ替えたパワー半導体素子、および上下電極が同じ向き同士のパワー半導体素子を多数搭載したパワー半導体装置も製造することが可能であり、様々な組合せの回路構成に対応可能なことはいうまでもない。   According to the second embodiment, a compact power semiconductor device 103 can be obtained. Moreover, although FIG. 4 demonstrated based on the example which mounted a pair of power semiconductor element 1a, 1b connected in series, many power semiconductor elements with which the upper and lower electrodes exchanged and the upper and lower electrodes are the same direction are many. Needless to say, the mounted power semiconductor device can also be manufactured, and can be applied to various combinations of circuit configurations.

図5に示す積層基板アセンブリ201a、201bは、同一のパワー半導体素子を直列とする場合には、同一の積層基板アセンブリを製造し、いずれか一方を上下ひっくり返して重ねることで製造できるので、積層基板アセンブリ毎に異なる形状を作る必要がなく、容易に製造することができる。   The stacked substrate assemblies 201a and 201b shown in FIG. 5 can be manufactured by manufacturing the same stacked substrate assembly when the same power semiconductor elements are arranged in series, and turning one of them upside down. It is not necessary to create a different shape for each substrate assembly, and it can be easily manufactured.

<B−3.効果>
本発明にかかる実施の形態2によれば、パワー半導体装置において、一対の第3金属部材である金属部材6b、8bに挟まれ、第1パワー半導体素子であるパワー半導体素子1aと電極が逆向きに一対の絶縁層12a、12b間に配置された、第2パワー半導体素子であるパワー半導体素子1bをさらに備え、一対の第3金属部材である金属部材6b、8bと電気的に分離されて一対の絶縁層12a、12bの少なくとも一方上に配置された第4金属部材である金属部材1003をさらに備え、金属部材1003は、パワー半導体素子1bと電気的に接続されることで、上下両側の絶縁層12a、12b上を効率的に利用して配線形成ができ、パワー半導体装置のコンパクト化が可能となる。また、低インダクタンス化が可能となる。
<B-3. Effect>
According to the second embodiment of the present invention, in the power semiconductor device, the power semiconductor element 1a that is the first power semiconductor element and the electrode are opposite to each other between the pair of metal members 6b and 8b that are the third metal members. Is further provided with a power semiconductor element 1b, which is a second power semiconductor element, disposed between the pair of insulating layers 12a, 12b, and is electrically separated from the metal members 6b, 8b, which are a pair of third metal members. The metal member 1003 is a fourth metal member disposed on at least one of the insulating layers 12a and 12b, and the metal member 1003 is electrically connected to the power semiconductor element 1b, thereby insulating the upper and lower sides. Wiring can be formed using the layers 12a and 12b efficiently, and the power semiconductor device can be made compact. In addition, the inductance can be reduced.

<C.実施の形態3>
<C−1.構成>
本発明の実施の形態3について説明する。図6は、本実施の形態3におけるパワー半導体装置を示した図であり、パワー半導体素子1cは、コレクタ電極2cが下側の金属ブロック5c、金属部材6cに接続されている。
<C. Embodiment 3>
<C-1. Configuration>
Embodiment 3 of the present invention will be described. FIG. 6 is a diagram showing the power semiconductor device according to the third embodiment. In the power semiconductor element 1c, the collector electrode 2c is connected to the lower metal block 5c and the metal member 6c.

一方、パワー半導体素子1cのエミッタ電極3cは、パワー半導体素子1dのコレクタ電極2dに接続される。また、パワー半導体素子1dのエミッタ電極3dが、上側の金属ブロック7d、金属部材8dと接続される点は、実施の形態1と同様である。   On the other hand, the emitter electrode 3c of the power semiconductor element 1c is connected to the collector electrode 2d of the power semiconductor element 1d. Further, the point that the emitter electrode 3d of the power semiconductor element 1d is connected to the upper metal block 7d and the metal member 8d is the same as in the first embodiment.

本実施の形態3では、パワー半導体素子1cのエミッタ電極3cとパワー半導体素子1dのコレクタ電極2dとの間に、中間配線部材19が設けられており、パワー半導体素子1cのエミッタ電極3cとパワー半導体素子1dのコレクタ電極2dとの接続は、中間配線部材19を介して行われる。すなわち、第1パワー半導体素子であるパワー半導体素子1cは、中間配線部材19を挟んで積層されている。   In the third embodiment, an intermediate wiring member 19 is provided between the emitter electrode 3c of the power semiconductor element 1c and the collector electrode 2d of the power semiconductor element 1d, and the emitter electrode 3c and the power semiconductor of the power semiconductor element 1c. The element 1d is connected to the collector electrode 2d through the intermediate wiring member 19. That is, the power semiconductor element 1 c that is the first power semiconductor element is stacked with the intermediate wiring member 19 interposed therebetween.

一方、図6では、さらにパワー半導体素子1eとパワー半導体素子1fも示されており、パワー半導体素子1eのコレクタ電極2eはパワー半導体素子1cのコレクタ電極2cと同じ金属部材6cに接続され、パワー半導体素子1eのエミッタ電極3eと、パワー半導体素子1fのコレクタ電極2fとは、中間配線部材19の同極部位に接続される。   On the other hand, FIG. 6 also shows a power semiconductor element 1e and a power semiconductor element 1f, and the collector electrode 2e of the power semiconductor element 1e is connected to the same metal member 6c as the collector electrode 2c of the power semiconductor element 1c. The emitter electrode 3e of the element 1e and the collector electrode 2f of the power semiconductor element 1f are connected to the same polarity part of the intermediate wiring member 19.

また、パワー半導体素子1cのエミッタ電極3cならびにパワー半導体素子1dのコレクタ電極2dも、中間配線部材19の同極部位に接続され、パワー半導体素子1fのエミッタ電極3fは、パワー半導体素子1dのエミッタ電極3dと同じ金属部材8dに接続される。   The emitter electrode 3c of the power semiconductor element 1c and the collector electrode 2d of the power semiconductor element 1d are also connected to the same polarity part of the intermediate wiring member 19, and the emitter electrode 3f of the power semiconductor element 1f is the emitter electrode of the power semiconductor element 1d. It is connected to the same metal member 8d as 3d.

図7は、本実施の形態3におけるパワー半導体装置の基本回路構成の一例である。図7(a)のように、トランジスタ素子A、Bと、ダイオード素子C、Dとの組合せがハーフブリッジ回路である。これを2個並列に接続してブリッジ回路を構成したものが、図7(b)に示す単相フルブリッジ回路となり、単相交流に変換する。   FIG. 7 shows an example of a basic circuit configuration of the power semiconductor device according to the third embodiment. As shown in FIG. 7A, the combination of the transistor elements A and B and the diode elements C and D is a half-bridge circuit. A circuit in which two are connected in parallel to form a bridge circuit becomes a single-phase full-bridge circuit shown in FIG.

また、図7(c)に示すように、図7(a)のハーフブリッジ回路を3個並列に接続した三相ハーフブリッジ回路によって、直流電力を三相交流に変換する。すなわち、図7(a)のトランジスタ素子A、Bが、パワー半導体素子1c、1eに相当し、ダイオード素子C、Dが、パワー半導体素子1d、1fに相当する。   Moreover, as shown in FIG.7 (c), direct-current power is converted into a three-phase alternating current by the three-phase half bridge circuit which connected three half bridge circuits of Fig.7 (a) in parallel. That is, the transistor elements A and B in FIG. 7A correspond to the power semiconductor elements 1c and 1e, and the diode elements C and D correspond to the power semiconductor elements 1d and 1f.

本実施の形態3の構成がハーフブリッジ回路となり、図7(b)、図7(c)は、適宜これらの構成を並べることによって容易に製造可能となる。   The configuration of the third embodiment is a half-bridge circuit, and FIGS. 7B and 7C can be easily manufactured by appropriately arranging these configurations.

<C−2.製造方法>
本実施の形態3における、パワー半導体装置は以下の製造工程を経て製造される。まず、金属板11cに、絶縁層12c、金属部材6cをあらかじめホットプレスによって積層する。これを積層基板102cとする。同様に、金属板11dに、絶縁層12d、金属部材8dを積層したものを積層基板102dと称する。
<C-2. Manufacturing method>
The power semiconductor device according to the third embodiment is manufactured through the following manufacturing process. First, the insulating layer 12c and the metal member 6c are previously laminated on the metal plate 11c by hot pressing. This is referred to as a laminated substrate 102c. Similarly, a laminate in which an insulating layer 12d and a metal member 8d are laminated on a metal plate 11d is referred to as a laminated substrate 102d.

次に、各積層基板102cの金属部材6c上に、金属ブロック5c、5eならびにパワー半導体素子1c、1eをはんだ付け、または導電樹脂接着等の方法によって搭載する。一方、パワー半導体素子1d、1fは、中間配線部材19に同様にはんだ付け、または導電性樹脂等の方法によって搭載する。   Next, the metal blocks 5c and 5e and the power semiconductor elements 1c and 1e are mounted on the metal member 6c of each multilayer substrate 102c by a method such as soldering or conductive resin bonding. On the other hand, the power semiconductor elements 1d and 1f are similarly mounted on the intermediate wiring member 19 by a method such as soldering or conductive resin.

次に、パワー半導体素子1c、1eを搭載した積層基板102cと中間配線部材19とを重ね合わせ、さらにその上側に、積層基板102dを積み上げてはんだ付け、または導電性接着等の方法で接合して組み立てる。パワー半導体素子1d、1fが搭載された側に、金属ブロック7d、7fを積層し、さらにその上に積層基板102dが、金属部材8d、絶縁層12d、金属板11dの順に積層するように配置する。   Next, the laminated substrate 102c on which the power semiconductor elements 1c and 1e are mounted and the intermediate wiring member 19 are overlapped, and further, the laminated substrate 102d is stacked and bonded by a method such as soldering or conductive adhesion. assemble. The metal blocks 7d and 7f are stacked on the side where the power semiconductor elements 1d and 1f are mounted, and the stacked substrate 102d is further stacked thereon in the order of the metal member 8d, the insulating layer 12d, and the metal plate 11d. .

この際、中間配線部材19は、金属板11cの表面111aを基準として高さをコントロールするための治具(第1柱状部材等)を設け、金属板11cの表面111aに対する中間配線部材19のパワー半導体素子搭載面20の高さを精度よく制御する。さらに、場合によっては、中間配線部材19のパワー半導体素子搭載面20と金属板11dの表面121bの高さを治具で調整してコントロールする。   At this time, the intermediate wiring member 19 is provided with a jig (first columnar member or the like) for controlling the height with respect to the surface 111a of the metal plate 11c, and the power of the intermediate wiring member 19 with respect to the surface 111a of the metal plate 11c. The height of the semiconductor element mounting surface 20 is accurately controlled. Further, in some cases, the height of the power semiconductor element mounting surface 20 of the intermediate wiring member 19 and the surface 121b of the metal plate 11d is adjusted by a jig and controlled.

以上の実施の形態3によれば、パワー回路の基本構成となるハーフブリッジ回路を縦方向に積み上げることができるため、パワー半導体素子の電極ごとに配線するボンディングワイヤやリード端子といった配線部材が不要となり、非常にコンパクトかつ生産性が高い構造を実現できる。特に、中間配線部材19により、パワー半導体装置の出力端子を引き出すことで、各パワー半導体素子からの電気接続に要する配線を集約することができる。   According to the third embodiment described above, since the half bridge circuits as the basic configuration of the power circuit can be stacked in the vertical direction, wiring members such as bonding wires and lead terminals that are wired for each electrode of the power semiconductor element become unnecessary. A very compact and highly productive structure can be realized. In particular, by pulling out the output terminal of the power semiconductor device by the intermediate wiring member 19, it is possible to collect the wiring required for electrical connection from each power semiconductor element.

また、ハーフブリッジ回路におけるトランジスタ素子とダイオード素子が、各々上下の金属板より均等に放熱されるため、パワー半導体素子間で温度上昇のアンバランスがなく、非常に効率的に放熱して、温度上昇を抑制することができる。   In addition, since the transistor elements and diode elements in the half-bridge circuit are evenly dissipated from the upper and lower metal plates, there is no unbalance in temperature rise between the power semiconductor elements, and heat is dissipated very efficiently, resulting in a temperature rise. Can be suppressed.

さらに、縦方向にパワー半導体素子を積み上げても、樹脂充填時の金型17当接時のパワー半導体素子へのストレスおよび金属板11c、11dの表面111a、121bへの樹脂侵入に対して、金属板11c、11dと金属部材6c、8d間にある絶縁層12c、12dが十分に軟らかく、ストレスの吸収および金型17との密着性の向上が可能となり、各パワー半導体素子へのダメージならびに樹脂バリを低減することができる。   Further, even if the power semiconductor elements are stacked in the vertical direction, the metal against the stress on the power semiconductor element when the mold 17 is in contact with the resin and the resin intrusion into the surfaces 111a and 121b of the metal plates 11c and 11d. The insulating layers 12c and 12d between the plates 11c and 11d and the metal members 6c and 8d are sufficiently soft to absorb the stress and improve the adhesion to the mold 17, thereby causing damage to each power semiconductor element and resin burrs. Can be reduced.

本実施の形態3では、パワー半導体素子1cと1e、ならびパワー半導体素子1dと1fは、それぞれ一つの金属部材6c、8dに接続されているが、図6中の(A)部および(B)部を、図8に示すように金属部材61cと金属部材62cとに分割して、例えば、金属部材間を、ボンディングワイヤ21aあるいはリボン21b等で接続すると、パワー半導体素子1c、1dとパワー半導体素子1e、1fとが、金型当接に対して独立懸架の構造となるため、各々独立して柔軟に変形でき、パワー半導体素子に対するダメージをさらに低減することができる。   In the third embodiment, the power semiconductor elements 1c and 1e and the power semiconductor elements 1d and 1f are connected to one metal member 6c and 8d, respectively, but (A) and (B) in FIG. As shown in FIG. 8, when the metal member 61c and the metal member 62c are divided, for example, when the metal members are connected by the bonding wire 21a or the ribbon 21b, the power semiconductor elements 1c and 1d and the power semiconductor element Since 1e and 1f have a structure of independent suspension with respect to the mold contact, they can be deformed independently and flexibly, and damage to the power semiconductor element can be further reduced.

図9は、中間配線部材19から放熱板である金属板11cに向かって配線部材の一部が屈曲して金属部材1000に接触する第2柱状部材としての屈曲部位22を形成している。屈曲部位22は、絶縁層12c上に接触しても良いが、屈曲部位22の接触のための金属部材1000を別途設けることによって金属部材1000上に接触するようにすれば、屈曲部位22によるストレスによって絶縁層12c上がダメージを受けることがない。   In FIG. 9, a part of the wiring member is bent from the intermediate wiring member 19 toward the metal plate 11 c that is a heat radiating plate to form a bent portion 22 as a second columnar member that contacts the metal member 1000. The bent portion 22 may be in contact with the insulating layer 12c. However, if the metal member 1000 for contacting the bent portion 22 is separately provided so as to contact the metal member 1000, the stress caused by the bent portion 22 is caused. Therefore, the insulating layer 12c is not damaged.

屈曲部位22によって、金属板11cの表面111aと中間配線部材19間の高さ、平行度を確保することができる。屈曲部位22は、中間配線部材19間と一体的に、曲げ加工によって形成しており、曲げ精度を勘案すれば、高さ精度は確保することが可能となる。よって、複数のパワー半導体素子を積み上げた場合でも、厚みのばらつきに影響されず、樹脂充填時の金型17に精度よく収納することができる。   With the bent portion 22, the height and parallelism between the surface 111 a of the metal plate 11 c and the intermediate wiring member 19 can be secured. The bent portion 22 is formed integrally with the intermediate wiring member 19 by bending. If the bending accuracy is taken into account, the height accuracy can be ensured. Therefore, even when a plurality of power semiconductor elements are stacked, they can be accurately stored in the mold 17 during resin filling without being affected by variations in thickness.

また屈曲部位22は、中間配線部材19間の上側にも屈曲して形成しても良く、上側の金属板11dを支持して、金属板11dの表面121bと中間配線部材19間の高さ精度を確保することができる。無論、フラットな中間配線部材19間に後付で高さ制御用の部材を取り付けても良い。   Further, the bent portion 22 may be formed so as to be bent also on the upper side between the intermediate wiring members 19, supporting the upper metal plate 11 d, and the height accuracy between the surface 121 b of the metal plate 11 d and the intermediate wiring member 19. Can be secured. Of course, a height control member may be attached between the flat intermediate wiring members 19 later.

さらに、あらかじめ金属板11c、11dの表面111a、121bに積層した金属部材6c、8dに、中間配線部材19間との高さ制御用のピンのような柱状部材を取り付けて、パワー半導体素子、中間配線部材19を積層しても良い。こうすることによって、フラットな中間配線部材19を用いて製造することができるので、製造時に配線部材を収納するスペースが少なくてすむことや、設備に流動させる際に空間が少なくてすみ、生産する上で価値が高い。   Furthermore, a columnar member such as a pin for controlling the height between the intermediate wiring members 19 is attached to the metal members 6c and 8d previously laminated on the surfaces 111a and 121b of the metal plates 11c and 11d, so that the power semiconductor element, the intermediate The wiring member 19 may be laminated. In this way, since the flat intermediate wiring member 19 can be used for manufacturing, the space for storing the wiring member can be reduced at the time of manufacturing, and the space can be reduced when the equipment is flowed to the facility. High value on.

<C−3.効果>
本発明にかかる実施の形態3によれば、パワー半導体装置において、第1パワー半導体素子であるパワー半導体素子は、中間配線部材19を挟んで積層される一対のパワー半導体素子1c、1eを含むことで、必要となる配線の最短化が可能となる。また、中間配線部材19で高さ方向に支持できるため、高さ精度が高くなり、金型17当接時の素子ダメージや樹脂バリを低減できる。中間配線部材19に各パワー半導体素子が直接的に搭載されて電気接続されるため、パワー半導体素子から配線部材へ電気的に接続するための配線が不要となる。
<C-3. Effect>
According to the third embodiment of the present invention, in the power semiconductor device, the power semiconductor element that is the first power semiconductor element includes the pair of power semiconductor elements 1c and 1e stacked with the intermediate wiring member 19 interposed therebetween. Thus, the required wiring can be minimized. Further, since the intermediate wiring member 19 can be supported in the height direction, the height accuracy is increased, and element damage and resin burrs when contacting the mold 17 can be reduced. Since each power semiconductor element is directly mounted and electrically connected to the intermediate wiring member 19, wiring for electrically connecting the power semiconductor element to the wiring member becomes unnecessary.

また、本発明にかかる実施の形態3によれば、パワー半導体装置において、中間配線部材19は、一対の放熱板である金属板11a、11bを支持する第2柱状部材である屈曲部位22をさらに備えることで、金属板11cの表面111aと中間配線部材19間の高さ、平行度を確保することができる。   According to the third embodiment of the present invention, in the power semiconductor device, the intermediate wiring member 19 further includes the bent portion 22 that is the second columnar member that supports the metal plates 11a and 11b that are the pair of heat radiating plates. By providing, the height and parallelism between the surface 111a of the metal plate 11c and the intermediate wiring member 19 can be ensured.

<D.実施の形態4>
<D−1.構成>
本発明の実施の形態4について説明する。図10は、本実施の形態4におけるパワー半導体装置を示した断面模式図である。本実施の形態4におけるパワー半導体装置は、実施の形態1に示すパワー半導体装置101に対し、金属部材26が新たに設けられ、金属部材26に電子部品が搭載された構造となっている。
<D. Embodiment 4>
<D-1. Configuration>
Embodiment 4 of the present invention will be described. FIG. 10 is a schematic cross-sectional view showing the power semiconductor device according to the fourth embodiment. The power semiconductor device according to the fourth embodiment has a structure in which a metal member 26 is newly provided and an electronic component is mounted on the metal member 26 with respect to the power semiconductor device 101 shown in the first embodiment.

金属部材26に設けられた当該電子部品は、例えばパワー半導体を駆動させる、すなわちトランジスタゲートを制御するために必要な受動部品群23、IC24、25といった電子部品群104、あるいは、パワー半導体装置を保護するために必要な電子部品、あるいは、パワー半導体装置内部の温度を検出するサーミスタ、電流を測定するためのシャント抵抗等である。   The electronic component provided on the metal member 26 protects the electronic component group 104 such as the passive component group 23, ICs 24 and 25, or the power semiconductor device necessary for driving the power semiconductor, that is, controlling the transistor gate, for example. For example, a thermistor for detecting the temperature inside the power semiconductor device or a shunt resistor for measuring current is necessary.

<D−2.動作>
これらの部品は、パワー半導体素子に近い位置に配置するほど、回路装置のコンパクト化が図れることはいうまでもないが、トランジスタゲートを制御するための回路に必要な電子部品がパワー半導体素子近くに配置されることによって、ゲートの制御性も向上する。また、ノイズ耐量も向上する。
<D-2. Operation>
It goes without saying that the circuit device can be made more compact as these components are arranged closer to the power semiconductor element, but the electronic components necessary for the circuit for controlling the transistor gate are closer to the power semiconductor element. Arrangement also improves the controllability of the gate. Moreover, noise tolerance is also improved.

さらに、測温素子、電流検出素子等をパワー半導体素子の配線部分に設けて、パワー半導体素子の温度あるいは電流を検出することができ、パワー半導体装置の保護機能を強化することができる。   Furthermore, a temperature measuring element, a current detection element, and the like are provided in the wiring portion of the power semiconductor element so that the temperature or current of the power semiconductor element can be detected, and the protection function of the power semiconductor device can be enhanced.

これらの電子部品は、パワー半導体素子の搭載と同じ工程で搭載することができるため、製造合理化が実現できる。さらに、金属部材1002によって配線パターンを形成することにより、より複雑な回路パターンも金属板11a、11b上の絶縁層12a、12b上に形成することができるので、非常にコンパクトかつ高機能なパワー半導体装置を実現することができる。   Since these electronic components can be mounted in the same process as the mounting of the power semiconductor element, manufacturing rationalization can be realized. Further, by forming a wiring pattern with the metal member 1002, more complicated circuit patterns can be formed on the insulating layers 12a and 12b on the metal plates 11a and 11b, so that the power semiconductor is very compact and has high functionality. An apparatus can be realized.

無論、電子部品は片側の金属部材上にのみならず、あらかじめ上下両方の金属部材上に個別に搭載した後に、上側の金属板を搭載することにより、容易に上下の金属部材に搭載することができ、いっそうのコンパクト化が可能となる。   Of course, the electronic component can be easily mounted on the upper and lower metal members by mounting the upper metal plate not only on the metal member on one side but also on the upper and lower metal members in advance. Can be made even more compact.

<D−3.効果>
本発明にかかる実施の形態4によれば、パワー半導体装置において、第2金属部材である金属部材1002上に配置された電子部品である電子部品群104をさらに備えることで、パワー半導体素子を駆動する電子部品を直近に配置することができ、駆動速度が向上、バランスが良くなる。また、ノイズ耐量が向上する。さらにパワー半導体装置のコンパクト化が可能となる。
<D-3. Effect>
According to the fourth embodiment of the present invention, the power semiconductor device further includes an electronic component group 104 that is an electronic component arranged on the metal member 1002 that is the second metal member, thereby driving the power semiconductor element. The electronic components to be placed can be arranged closest to each other, and the driving speed is improved and the balance is improved. In addition, the noise tolerance is improved. Further, the power semiconductor device can be made compact.

1,1a,1b,1c,1d,1e,1f パワー半導体素子、2,2a,2b,2c,2d,2e,2f コレクタ電極、3,3a,3b,3c,3d,3e,3f エミッタ電極、4 制御電極、5,5a,5b,5c,5e,7,7a,7b,7d,7f 金属ブロック、6,6a,6b,6c,8,8a,8b,8d,26,61c,62c,1000,1002,1003 金属部材、11a,11b,11c,11d 金属板、12a,12b,12c,12d 絶縁層、16,16b ワイヤ、17 金型、18 充填樹脂、19 中間配線部材、20 半導体素子搭載面、21a ボンディングワイヤ、21b リボン、22 屈曲部位、23 受動部品群、101,103 パワー半導体装置、102a,102b,102c,102d 積層基板、104 電子部品群、111,111a,121,121b 表面、201a,201b 積層基板アセンブリ、1001 はんだ層。   1, 1a, 1b, 1c, 1d, 1e, 1f Power semiconductor element, 2, 2a, 2b, 2c, 2d, 2e, 2f Collector electrode, 3, 3a, 3b, 3c, 3d, 3e, 3f Emitter electrode, 4 Control electrode 5, 5a, 5b, 5c, 5e, 7, 7a, 7b, 7d, 7f Metal block, 6, 6a, 6b, 6c, 8, 8a, 8b, 8d, 26, 61c, 62c, 1000, 1002 , 1003 Metal member, 11a, 11b, 11c, 11d Metal plate, 12a, 12b, 12c, 12d Insulating layer, 16, 16b Wire, 17 Mold, 18 Filling resin, 19 Intermediate wiring member, 20 Semiconductor element mounting surface, 21a Bonding wire, 21b Ribbon, 22 Bent part, 23 Passive component group, 101, 103 Power semiconductor device, 102a, 102b, 102c, 102 Layered substrate, 104 an electronic component group, 111, 111a, 121,121B surface, 201a, 201b laminated substrate assembly 1001 solder layer.

Claims (11)

第1パワー半導体素子と、
前記第1パワー半導体素子を挟んで配置された一対の第1金属部材と、
前記一対の第1金属部材を挟んで一対の放熱板上に積層された一対の絶縁層と、
少なくとも前記第1パワー半導体素子と、前記一対の第1金属部材と、前記一対の絶縁層とを覆って充填された充填樹脂とを備え、
前記一対の絶縁層と前記充填樹脂とは、熱膨張率が略等しい、
パワー半導体装置。
A first power semiconductor element;
A pair of first metal members disposed across the first power semiconductor element;
A pair of insulating layers stacked on a pair of heat sinks across the pair of first metal members;
At least the first power semiconductor element, the pair of first metal members, and a filled resin filled to cover the pair of insulating layers,
The pair of insulating layers and the filling resin have substantially the same coefficient of thermal expansion,
Power semiconductor device.
前記一対の絶縁層と前記充填樹脂とは、同種の材質である、
請求項1に記載のパワー半導体装置。
The pair of insulating layers and the filling resin are the same kind of material.
The power semiconductor device according to claim 1.
前記充填樹脂は、前記一対の放熱板の前記第1パワー半導体素子とは反対側の表面を除いた領域を覆って充填される、
請求項1または2に記載のパワー半導体装置。
The filling resin is filled so as to cover a region excluding the surface of the pair of heat sinks opposite to the first power semiconductor element,
The power semiconductor device according to claim 1 or 2.
前記一対の第1金属部材と電気的に分離されて前記一対の絶縁層の少なくとも一方上に配置された第2金属部材をさらに備え、
前記第2金属部材は、前記第1パワー半導体素子と電気的に接続される、
請求項1〜3のいずれかに記載のパワー半導体装置。
A second metal member electrically separated from the pair of first metal members and disposed on at least one of the pair of insulating layers;
The second metal member is electrically connected to the first power semiconductor element;
The power semiconductor device according to claim 1.
前記第2金属部材は、前記第1パワー半導体素子と接続された複数の電気配線を含む、
請求項4に記載のパワー半導体装置。
The second metal member includes a plurality of electrical wirings connected to the first power semiconductor element.
The power semiconductor device according to claim 4.
前記第2金属部材上に配置された電子部品をさらに備える、
請求項4または5に記載のパワー半導体装置。
The electronic component further disposed on the second metal member,
The power semiconductor device according to claim 4 or 5.
前記一対の放熱板間に、前記一対の放熱板を支持する第1柱状部材をさらに備える、
請求項1〜6のいずれかに記載のパワー半導体装置。
A first columnar member that supports the pair of heat sinks between the pair of heat sinks;
The power semiconductor device according to claim 1.
一対の第3金属部材に挟まれ、前記第1パワー半導体素子と電極が逆向きに前記一対の絶縁層間に配置された、第2パワー半導体素子をさらに備え、
前記一対の第3金属部材と電気的に分離されて前記一対の絶縁層の少なくとも一方上に配置された第4金属部材をさらに備え、
前記第4金属部材は、前記第2パワー半導体素子と電気的に接続される、
請求項1〜7のいずれかに記載のパワー半導体装置。
A second power semiconductor element sandwiched between a pair of third metal members, wherein the first power semiconductor element and the electrode are disposed between the pair of insulating layers in opposite directions;
A fourth metal member electrically separated from the pair of third metal members and disposed on at least one of the pair of insulating layers;
The fourth metal member is electrically connected to the second power semiconductor element;
The power semiconductor device according to claim 1.
前記第1パワー半導体素子は、
中間配線部材を挟んで積層される一対のパワー半導体素子を含む、
請求項1〜8のいずれかに記載のパワー半導体装置。
The first power semiconductor element is:
Including a pair of power semiconductor elements stacked with an intermediate wiring member interposed therebetween,
The power semiconductor device according to claim 1.
前記中間配線部材は、前記一対の放熱板を支持する第2柱状部材をさらに備える、
請求項9に記載のパワー半導体装置。
The intermediate wiring member further includes a second columnar member that supports the pair of heat sinks.
The power semiconductor device according to claim 9.
前記第1パワー半導体素子は、炭化珪素からなる、
請求項1〜10のいずれかに記載のパワー半導体装置。
The first power semiconductor element is made of silicon carbide.
The power semiconductor device according to claim 1.
JP2009269562A 2009-11-27 2009-11-27 Power semiconductor device Pending JP2011114176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009269562A JP2011114176A (en) 2009-11-27 2009-11-27 Power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009269562A JP2011114176A (en) 2009-11-27 2009-11-27 Power semiconductor device

Publications (1)

Publication Number Publication Date
JP2011114176A true JP2011114176A (en) 2011-06-09

Family

ID=44236280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009269562A Pending JP2011114176A (en) 2009-11-27 2009-11-27 Power semiconductor device

Country Status (1)

Country Link
JP (1) JP2011114176A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881659A (en) * 2011-07-14 2013-01-16 三菱电机株式会社 Semiconductor device and method of manufacturing the same
JP2013021878A (en) * 2011-07-14 2013-01-31 Honda Motor Co Ltd Semiconductor device
CN103066027A (en) * 2011-08-25 2013-04-24 丰田自动车株式会社 Power module, method for manufacturing power module, and molding die
JP2013149796A (en) * 2012-01-19 2013-08-01 Denso Corp Semiconductor device and manufacturing method of the same
JP2014053457A (en) * 2012-09-07 2014-03-20 Toyota Industries Corp Semiconductor module
JP2014072305A (en) * 2012-09-28 2014-04-21 Sanken Electric Co Ltd Semiconductor module manufacturing method, bonding device and semiconductor module
JP2014099610A (en) * 2012-11-14 2014-05-29 Power Integrations Inc Integrated circuit package and switch mode power converter
WO2016024333A1 (en) * 2014-08-12 2016-02-18 新電元工業株式会社 Semiconductor module
WO2016059702A1 (en) * 2014-10-16 2016-04-21 新電元工業株式会社 Semiconductor module
WO2016067659A1 (en) * 2014-10-29 2016-05-06 新電元工業株式会社 Heat-dissipating structure
WO2016067377A1 (en) * 2014-10-29 2016-05-06 新電元工業株式会社 Heat-dissipating structure
WO2016067390A1 (en) * 2014-10-29 2016-05-06 新電元工業株式会社 Heat-dissipating structure
WO2016067393A1 (en) * 2014-10-29 2016-05-06 新電元工業株式会社 Heat-dissipating structure
WO2016076015A1 (en) * 2014-11-13 2016-05-19 株式会社日立製作所 Power semiconductor module
WO2016125673A1 (en) * 2015-02-02 2016-08-11 株式会社村田製作所 Semiconductor module and power control unit
WO2016174697A1 (en) 2015-04-28 2016-11-03 新電元工業株式会社 Semiconductor module and production method for semiconductor module
WO2016174698A1 (en) * 2015-04-28 2016-11-03 新電元工業株式会社 Semiconductor module
JP2016192497A (en) * 2015-03-31 2016-11-10 日立化成株式会社 Semiconductor device and power module having the same
WO2017134776A1 (en) 2016-02-03 2017-08-10 新電元工業株式会社 Semiconductor device and method for manufacturing semiconductor device
WO2017134774A1 (en) 2016-02-03 2017-08-10 新電元工業株式会社 Semiconductor device and method for manufacturing semiconductor device
WO2017175686A1 (en) * 2016-04-04 2017-10-12 ローム株式会社 Power module and method for manufacturing same
US9831188B2 (en) 2012-11-14 2017-11-28 Power Integrations, Inc. Noise cancellation for a magnetically coupled communication link utilizing a lead frame
US10079543B2 (en) 2012-11-14 2018-09-18 Power Intergrations, Inc. Magnetically coupled galvanically isolated communication using lead frame
KR101897641B1 (en) * 2016-11-29 2018-10-04 현대오트론 주식회사 Method for manufacturing power module package and the power module package using the same
JP6402281B1 (en) * 2017-05-19 2018-10-10 新電元工業株式会社 Electronic module, method for manufacturing connector, and method for manufacturing electronic module
WO2018211681A1 (en) * 2017-05-19 2018-11-22 新電元工業株式会社 Chip module manufacturing method
DE112018000108B4 (en) * 2017-02-22 2020-10-22 Jmj Korea Co., Ltd. Semiconductor package with a double-sided heat dissipation structure and method for its manufacture
DE112020002625T5 (en) 2019-06-28 2022-02-17 Hitachi Astemo, Ltd. Semiconductor device and manufacturing method therefor
WO2022249813A1 (en) * 2021-05-27 2022-12-01 株式会社デンソー Semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08298299A (en) * 1995-04-27 1996-11-12 Hitachi Ltd Semiconductor device
JP2004193476A (en) * 2002-12-13 2004-07-08 Denso Corp Semiconductor device
JP2004303900A (en) * 2003-03-31 2004-10-28 Denso Corp Semiconductor device
JP2005237141A (en) * 2004-02-20 2005-09-02 Toyota Motor Corp Inverter and inverter manufacturing method
JP2006013080A (en) * 2004-06-24 2006-01-12 Fuji Electric Fa Components & Systems Co Ltd Semiconductor module and manufacturing method thereof
JP2007006575A (en) * 2005-06-22 2007-01-11 Denso Corp Three-phase inverter device
JP2007287784A (en) * 2006-04-13 2007-11-01 Denso Corp Semiconductor device, and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08298299A (en) * 1995-04-27 1996-11-12 Hitachi Ltd Semiconductor device
JP2004193476A (en) * 2002-12-13 2004-07-08 Denso Corp Semiconductor device
JP2004303900A (en) * 2003-03-31 2004-10-28 Denso Corp Semiconductor device
JP2005237141A (en) * 2004-02-20 2005-09-02 Toyota Motor Corp Inverter and inverter manufacturing method
JP2006013080A (en) * 2004-06-24 2006-01-12 Fuji Electric Fa Components & Systems Co Ltd Semiconductor module and manufacturing method thereof
JP2007006575A (en) * 2005-06-22 2007-01-11 Denso Corp Three-phase inverter device
JP2007287784A (en) * 2006-04-13 2007-11-01 Denso Corp Semiconductor device, and manufacturing method thereof

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881659A (en) * 2011-07-14 2013-01-16 三菱电机株式会社 Semiconductor device and method of manufacturing the same
JP2013021878A (en) * 2011-07-14 2013-01-31 Honda Motor Co Ltd Semiconductor device
US8654554B2 (en) 2011-07-14 2014-02-18 Honda Motor Co., Ltd. Semiconductor device
CN103066027A (en) * 2011-08-25 2013-04-24 丰田自动车株式会社 Power module, method for manufacturing power module, and molding die
JP2013149796A (en) * 2012-01-19 2013-08-01 Denso Corp Semiconductor device and manufacturing method of the same
JP2014053457A (en) * 2012-09-07 2014-03-20 Toyota Industries Corp Semiconductor module
JP2014072305A (en) * 2012-09-28 2014-04-21 Sanken Electric Co Ltd Semiconductor module manufacturing method, bonding device and semiconductor module
JP2014099610A (en) * 2012-11-14 2014-05-29 Power Integrations Inc Integrated circuit package and switch mode power converter
US10833590B2 (en) 2012-11-14 2020-11-10 Power Integrations, Inc. Magnetically coupled galvanically isolated communication using lead frame
US10361632B2 (en) 2012-11-14 2019-07-23 Power Integrations, Inc. Magnetically coupled galvanically isolated communication using lead frame
US10224292B2 (en) 2012-11-14 2019-03-05 Power Integrations, Inc. Noise cancellation for a magnetically coupled communication link utilizing a lead frame
US10079543B2 (en) 2012-11-14 2018-09-18 Power Intergrations, Inc. Magnetically coupled galvanically isolated communication using lead frame
US9831188B2 (en) 2012-11-14 2017-11-28 Power Integrations, Inc. Noise cancellation for a magnetically coupled communication link utilizing a lead frame
JP5930565B1 (en) * 2014-08-12 2016-06-08 新電元工業株式会社 Semiconductor module
WO2016024333A1 (en) * 2014-08-12 2016-02-18 新電元工業株式会社 Semiconductor module
JP5950488B1 (en) * 2014-10-16 2016-07-13 新電元工業株式会社 Semiconductor module
WO2016059702A1 (en) * 2014-10-16 2016-04-21 新電元工業株式会社 Semiconductor module
US9704828B2 (en) 2014-10-16 2017-07-11 Shindengen Electric Manufacturing Co., Ltd. Semiconductor module
US10251256B2 (en) 2014-10-29 2019-04-02 Shindengen Electric Manufacturing Co., Ltd. Heat dissipating structure
WO2016067383A1 (en) * 2014-10-29 2016-05-06 新電元工業株式会社 Heat-dissipating structure
WO2016067659A1 (en) * 2014-10-29 2016-05-06 新電元工業株式会社 Heat-dissipating structure
WO2016067377A1 (en) * 2014-10-29 2016-05-06 新電元工業株式会社 Heat-dissipating structure
WO2016067390A1 (en) * 2014-10-29 2016-05-06 新電元工業株式会社 Heat-dissipating structure
US10159166B2 (en) 2014-10-29 2018-12-18 Shindengen Electric Manufacturing Co., Ltd. Heat dissipating structure
WO2016067393A1 (en) * 2014-10-29 2016-05-06 新電元工業株式会社 Heat-dissipating structure
JPWO2016067377A1 (en) * 2014-10-29 2017-08-10 新電元工業株式会社 Heat dissipation structure
JPWO2016067393A1 (en) * 2014-10-29 2017-09-14 新電元工業株式会社 Heat dissipation structure
WO2016076015A1 (en) * 2014-11-13 2016-05-19 株式会社日立製作所 Power semiconductor module
WO2016125673A1 (en) * 2015-02-02 2016-08-11 株式会社村田製作所 Semiconductor module and power control unit
JPWO2016125673A1 (en) * 2015-02-02 2017-11-09 株式会社村田製作所 Semiconductor module and power control unit
JP2016192497A (en) * 2015-03-31 2016-11-10 日立化成株式会社 Semiconductor device and power module having the same
CN106463501B (en) * 2015-04-28 2019-08-30 新电元工业株式会社 Semiconductor module
JP6086989B1 (en) * 2015-04-28 2017-03-01 新電元工業株式会社 Semiconductor module
US9892993B2 (en) 2015-04-28 2018-02-13 Shindengen Electric Manufacturing Co., Ltd. Semiconductor module having stacked insulated substrate structures
US9997437B2 (en) 2015-04-28 2018-06-12 Shindengen Electric Manufacturing Co., Ltd. Power semiconductor module for improved thermal performance
CN106463501A (en) * 2015-04-28 2017-02-22 新电元工业株式会社 Semiconductor module
WO2016174697A1 (en) 2015-04-28 2016-11-03 新電元工業株式会社 Semiconductor module and production method for semiconductor module
WO2016174698A1 (en) * 2015-04-28 2016-11-03 新電元工業株式会社 Semiconductor module
EP3104411A4 (en) * 2015-04-28 2017-12-06 Shindengen Electric Manufacturing Co., Ltd. Semiconductor module
WO2017134774A1 (en) 2016-02-03 2017-08-10 新電元工業株式会社 Semiconductor device and method for manufacturing semiconductor device
US10461062B2 (en) 2016-02-03 2019-10-29 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
WO2017134776A1 (en) 2016-02-03 2017-08-10 新電元工業株式会社 Semiconductor device and method for manufacturing semiconductor device
US10269775B2 (en) 2016-02-03 2019-04-23 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
WO2017175686A1 (en) * 2016-04-04 2017-10-12 ローム株式会社 Power module and method for manufacturing same
KR101897641B1 (en) * 2016-11-29 2018-10-04 현대오트론 주식회사 Method for manufacturing power module package and the power module package using the same
DE112018000108B4 (en) * 2017-02-22 2020-10-22 Jmj Korea Co., Ltd. Semiconductor package with a double-sided heat dissipation structure and method for its manufacture
JPWO2018211681A1 (en) * 2017-05-19 2019-06-27 新電元工業株式会社 Chip module manufacturing method
TWI667949B (en) * 2017-05-19 2019-08-01 日商新電元工業股份有限公司 Method of manufacturing chip module
CN109287128A (en) * 2017-05-19 2019-01-29 新电元工业株式会社 The manufacturing method of chip module
WO2018211681A1 (en) * 2017-05-19 2018-11-22 新電元工業株式会社 Chip module manufacturing method
WO2018211683A1 (en) * 2017-05-19 2018-11-22 新電元工業株式会社 Electronic module, production method for connector body, and production method for electronic module
JP6402281B1 (en) * 2017-05-19 2018-10-10 新電元工業株式会社 Electronic module, method for manufacturing connector, and method for manufacturing electronic module
US11264351B2 (en) 2017-05-19 2022-03-01 Shindengen Electric Manufacturing Co., Ltd. Method of manufacturing chip module
CN109287128B (en) * 2017-05-19 2022-07-01 新电元工业株式会社 Method for manufacturing chip module
US11437340B2 (en) 2017-05-19 2022-09-06 Shindengen Electric Manufacturing Co., Ltd. Electronic module, method of manufacturing connector, and method of manufacturing electronic module
DE112020002625T5 (en) 2019-06-28 2022-02-17 Hitachi Astemo, Ltd. Semiconductor device and manufacturing method therefor
WO2022249813A1 (en) * 2021-05-27 2022-12-01 株式会社デンソー Semiconductor device

Similar Documents

Publication Publication Date Title
JP2011114176A (en) Power semiconductor device
JP4635564B2 (en) Semiconductor device
JP4438489B2 (en) Semiconductor device
US20210057372A1 (en) Double-sided cooling type power module and manufacturing method therefor
JP4973059B2 (en) Semiconductor device and power conversion device
US20130015468A1 (en) Semiconductor device and method of manufacturing the same
US20100134979A1 (en) Power semiconductor apparatus
US9891247B2 (en) U-shaped vertical shunt resistor for Power Semiconductor module
WO2005119896A1 (en) Inverter device
JP5129472B2 (en) Power circuit package and manufacturing method thereof
JP2007012831A (en) Power semiconductor device
JP2012119597A (en) Semiconductor device and manufacturing method of the same
JP5664475B2 (en) Semiconductor device
US20190122998A1 (en) Semiconductor device and method for manufacturing the same
JP5370308B2 (en) Semiconductor device, semiconductor device manufacturing method, and semiconductor device mounting method
JP6200759B2 (en) Semiconductor device and manufacturing method thereof
JP2010192591A (en) Power semiconductor device and method of manufacturing the same
JP7058651B2 (en) Circuit board assembly with electrical components and heat sink
US9698076B1 (en) Metal slugs for double-sided cooling of power module
JP2011204968A (en) Semiconductor device and method of manufacturing the same
JP4062191B2 (en) Semiconductor device and manufacturing method thereof
US20170288564A1 (en) Power conversion apparatus and method for manufacturing the same
JP5195828B2 (en) Semiconductor device
KR20140042683A (en) Semiconductor unit and method for manufacturing the same
JP5763467B2 (en) Electronic device manufacturing method and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130326